JP2013185892A - Socket, socket board and electronic component testing device - Google Patents

Socket, socket board and electronic component testing device Download PDF

Info

Publication number
JP2013185892A
JP2013185892A JP2012050019A JP2012050019A JP2013185892A JP 2013185892 A JP2013185892 A JP 2013185892A JP 2012050019 A JP2012050019 A JP 2012050019A JP 2012050019 A JP2012050019 A JP 2012050019A JP 2013185892 A JP2013185892 A JP 2013185892A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
socket
conductive member
hole
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012050019A
Other languages
Japanese (ja)
Inventor
Masanori Nagashima
昌範 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2012050019A priority Critical patent/JP2013185892A/en
Priority to TW101146808A priority patent/TWI525911B/en
Priority to KR1020130009170A priority patent/KR101375093B1/en
Publication of JP2013185892A publication Critical patent/JP2013185892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • G01R31/2867Handlers or transport devices, e.g. loaders, carriers, trays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a socket that enables low-cost DUT testing, and realizes pitch narrowing of a conductive portion while securing desired thickness.SOLUTION: A socket 7A comprises: a first insulation member 10A that has multiple first through-holes 11A; and multiple anisotropic conductive members 20A that are inserted into the first through-holes 11A in a detachable manner and electrically connect a solder ball 9 of a DUT 8 with a pad 41 of a wiring board 40. The first through-hole 11A includes: a first aperture 114 that is formed on a first principal surface 12 of the first insulation member 10A; and a second aperture 115 that is formed on a second principal surface 13 closer to the wiring board 40 than the first principal surface 12 in the first insulation member 10A. A width R4 of the first aperture 114 is narrower than a maximum width R2 of the anisotropic conductive member 20A (R4<R2), and a width R5 of the second aperture 115 is equal to or wider than the maximum width R2 of the anisotropic conductive member 20A (R2≤R5).

Description

本発明は、半導体集積回路素子等の電子部品(以下、DUT(Device Under Test)と称する。)の試験に用いられるソケット、並びに、それを備えたソケットボード、及び電子部品試験装置に関するものである。   The present invention relates to a socket used for testing an electronic component such as a semiconductor integrated circuit element (hereinafter referred to as DUT (Device Under Test)), a socket board including the socket, and an electronic component testing apparatus. .

DUTの製造過程では、電子部品試験装置を用いてDUTの性能や機能の試験が行われる。この電子部品試験装置では、DUTをテストヘッドのソケットに押し付けて、DUTの端子とソケットの導電性部材とを電気的に接触させた状態で、電子部品試験装置本体(以下、テスタとも称する)によりDUTに試験信号を入出力することで、DUTの試験を行う。   In the manufacturing process of the DUT, the performance and function of the DUT are tested using an electronic component testing apparatus. In this electronic component testing apparatus, the DUT is pressed against the socket of the test head, and the DUT terminal and the conductive member of the socket are in electrical contact with each other by an electronic component testing apparatus main body (hereinafter also referred to as a tester). The DUT is tested by inputting / outputting test signals to / from the DUT.

こうしたソケットの導電性部材として、例えば、厚さ方向のみに導電性を有する異方導電性シートが知られている(例えば特許文献1参照)。   As a conductive member of such a socket, for example, an anisotropic conductive sheet having conductivity only in the thickness direction is known (see, for example, Patent Document 1).

こうした異方導電性シートは、以下のように製造される。すなわち、導電性粒子が密に充填された高分子物質等をシート状に形成しつつ、当該シート内において導電性を付与する複数の部位に対して厚さ方向に磁場を作用させて、当該導電性粒子を上記複数の部位に集合させることで、異方導電性シートを製造する。   Such an anisotropic conductive sheet is manufactured as follows. That is, while forming a polymer material or the like in which conductive particles are densely packed into a sheet shape, a magnetic field is applied in the thickness direction to a plurality of portions imparting conductivity in the sheet, thereby An anisotropic conductive sheet is manufactured by collecting the conductive particles at the plurality of sites.

特開平7−105741号公報Japanese Patent Laid-Open No. 7-105741

しかしながら、こうした異方導電性シートを備えたソケットを用いると次のような弊害が生じる場合がある。すなわち、試験時において異方導電性シート上のDUTが押し付けられる部分は、当該シートの他の部分と一体的に形成されているため、交換時には異方導電性シート全体を取り換えなくてはならず、このことがソケットのコスト低減を妨げるひとつの原因となる。   However, the use of a socket having such an anisotropic conductive sheet may cause the following adverse effects. In other words, the part where the DUT on the anisotropic conductive sheet is pressed during the test is formed integrally with the other part of the sheet, so the entire anisotropic conductive sheet must be replaced during replacement. This is one cause that hinders the cost reduction of the socket.

また、上記のような異方導電性シートを備えたソケットでは、シート厚を維持しつつ異方導電性シート内の導電部位を狭ピッチ化することは難しかった。すなわち、異方導電性シートをソケットに用いる場合には、DUTの端子に対して適切な押圧力を印加したり、当該端子の高さ誤差を吸収するために、異方導電性シートが所定の厚さを有していることが好ましい。しかしながら、シートが厚くなる程、導電部位を形成する際に印加する磁場を強くする必要がある。一方で、シート内の導電部位を狭ピッチ化するには、磁場を狭ピッチで印加しなければならない。従って、所定のシート厚を確保しつつ磁場を狭ピッチ化すると、隣り合う磁場同士が干渉する場合があるため、シート内の所望の部位に導電性粒子を集合させることが難しくなる。   Further, in the socket provided with the anisotropic conductive sheet as described above, it is difficult to reduce the pitch of the conductive portions in the anisotropic conductive sheet while maintaining the sheet thickness. That is, when an anisotropic conductive sheet is used for a socket, the anisotropic conductive sheet is a predetermined sheet in order to apply an appropriate pressing force to the terminal of the DUT or absorb a height error of the terminal. It preferably has a thickness. However, the thicker the sheet, the stronger the magnetic field applied when forming the conductive site. On the other hand, in order to narrow the pitch of the conductive parts in the sheet, a magnetic field must be applied at a narrow pitch. Therefore, if the pitch of the magnetic field is narrowed while ensuring a predetermined sheet thickness, adjacent magnetic fields may interfere with each other, making it difficult to collect conductive particles at a desired site in the sheet.

本発明が解決しようとする課題は、低コストでDUTの試験を行うことができると共に、所望の厚さを確保しつつ導電部位を狭ピッチ化できるソケットを提供することである。   The problem to be solved by the present invention is to provide a socket capable of performing a DUT test at a low cost and capable of narrowing a conductive portion while ensuring a desired thickness.

[1]本発明に係るソケットは、複数の第1の貫通孔を有する第1の絶縁性部材と、前記第1の貫通孔に着脱可能に挿入され、被試験電子部品の端子と配線基板のパッドとを電気的に接続する複数の異方導電性部材と、を備え、前記第1の貫通孔は、前記第1の絶縁性部材の第1の主面に形成された第1の開口と、前記第1の絶縁性部材において前記第1の主面より前記配線基板に近い第2の主面に形成された第2の開口と、を有し、前記第1の開口の幅は、前記異方導電性部材の最大幅よりも小さく、前記第2の開口の幅は、前記異方導電性部材の最大幅以上であることを特徴とする。   [1] A socket according to the present invention includes a first insulating member having a plurality of first through holes and a terminal of the electronic component to be tested and a wiring board inserted into the first through hole in a detachable manner. A plurality of anisotropically conductive members that electrically connect the pads, and the first through hole is formed of a first opening formed on a first main surface of the first insulating member. A second opening formed in a second main surface closer to the wiring board than the first main surface in the first insulating member, and the width of the first opening is It is smaller than the maximum width of the anisotropic conductive member, and the width of the second opening is not less than the maximum width of the anisotropic conductive member.

[2]上記発明において、前記異方導電性部材は、径方向に突出したフランジ部を有し、
前記第1の貫通孔は、前記第1の開口と第2の開口との間に段差面を有し、前記フランジ部と前記段差面とが接触していてもよい。
[2] In the above invention, the anisotropic conductive member has a flange portion protruding in a radial direction,
The first through hole may have a step surface between the first opening and the second opening, and the flange portion and the step surface may be in contact with each other.

[3]上記発明において、前記フランジ部は、前記異方導電性部材の最大幅であってもよい。   [3] In the above invention, the flange portion may have a maximum width of the anisotropic conductive member.

[4]上記発明において、前記異方導電性部材は、前記第1の開口の幅以下の幅を持つ第1の小径部を有し、前記第1の小径部は、前記第1の開口に挿入されていてもよい。   [4] In the above invention, the anisotropic conductive member has a first small diameter portion having a width equal to or smaller than a width of the first opening, and the first small diameter portion is formed in the first opening. It may be inserted.

[5]上記発明において、前記第1の小径部の一部は、前記第1の絶縁性部材の前記第1の主面から突出していてもよい。   [5] In the above invention, a part of the first small diameter portion may protrude from the first main surface of the first insulating member.

[6]上記発明において、前記異方導電性部材は、前記被試験電子部品の前記端子に向かって先細となる第1のテーパ形状を有し、前記第1の貫通孔は、前記第1のテーパ形状に対応した第2のテーパ形状を有し、前記第1のテーパ形状と前記第2のテーパ形状とが接触していてもよい。   [6] In the above invention, the anisotropic conductive member has a first tapered shape that tapers toward the terminal of the electronic device under test, and the first through hole is formed by the first through hole. A second taper shape corresponding to the taper shape may be provided, and the first taper shape and the second taper shape may be in contact with each other.

[7]上記発明において、前記第1のテーパ形状において前記配線基板に近い端部は、前記異方導電性部材の最大幅であってもよい。   [7] In the above invention, the end portion close to the wiring board in the first tapered shape may be the maximum width of the anisotropic conductive member.

[8]上記発明において、前記異方導電性部材の最大幅よりも相対的に小さい幅の第2の貫通孔を有する第2の絶縁性部材を備え、前記異方導電性部材は、前記第2の貫通孔に挿入された第2の小径部を有し、前記第1の絶縁性部材と前記第2の絶縁性部材との間に挟まれていてもよい。   [8] In the above invention, the anisotropic conductive member includes a second insulating member having a second through hole having a width relatively smaller than a maximum width of the anisotropic conductive member. A second small diameter portion inserted in the two through holes, and may be sandwiched between the first insulating member and the second insulating member.

[9]上記発明において、前記第1の貫通孔は、前記第1の開口と前記第2の開口との間に段差面を有し、前記異方導電性部材は、前記段差面よりも下方に位置し、前記異方導電性部材と前記段差面とが接触していてもよい。   [9] In the above invention, the first through hole has a step surface between the first opening and the second opening, and the anisotropic conductive member is below the step surface. The anisotropic conductive member and the step surface may be in contact with each other.

[10]本発明に係るソケットボードは、上記発明に係るソケットと、前記異方導電性部材に対応するように配置されたパッドを有する配線基板と、を備えることを特徴とする。   [10] A socket board according to the present invention includes the socket according to the present invention and a wiring board having pads arranged so as to correspond to the anisotropic conductive member.

[11]本発明に係る電子部品試験装置は、上記のソケットボードを有するテストヘッドと、前記テストヘッドが電気的に接続されたテスタと、を備えることを特徴とする。   [11] An electronic component testing apparatus according to the present invention includes a test head having the socket board and a tester to which the test head is electrically connected.

本発明によれば、単一の絶縁性部材に複数の貫通孔を設け、それぞれの貫通孔に異方導電性部材が着脱可能な状態で挿入されていることにより、必要に応じて異方導電性部材を個別に交換することが可能となり、ソケットのコスト低減を図ることができる。   According to the present invention, a plurality of through holes are provided in a single insulating member, and anisotropic conductive members are inserted into the respective through holes in a detachable state. Therefore, it is possible to replace the individual members individually and to reduce the cost of the socket.

また、本発明によれば、単一の絶縁性部材に設けられた複数の貫通孔に、異方導電性部材が挿入されていることにより、ソケットの厚さを一定に保ちながら、導電部位間の距離を狭めることができ、被試験電極の狭ピッチ化に対応することができる。   Further, according to the present invention, the anisotropic conductive member is inserted into the plurality of through holes provided in the single insulating member, so that the thickness of the socket is kept constant, while the conductive portion is kept constant. The distance between the electrodes can be reduced, and the pitch of the electrode under test can be reduced.

図1は、本発明の実施形態における電子部品試験装置の全体構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing the overall configuration of an electronic component testing apparatus in an embodiment of the present invention. 図2は、本発明の実施形態におけるソケットの全体構造を示す断面図である。FIG. 2 is a cross-sectional view showing the overall structure of the socket in the embodiment of the present invention. 図3は、本発明の実施形態におけるソケットの分解断面図である。FIG. 3 is an exploded cross-sectional view of the socket in the embodiment of the present invention. 図4は、本発明の実施形態におけるソケットの第1変形例を示す図である。FIG. 4 is a view showing a first modification of the socket in the embodiment of the present invention. 図5は、本発明の実施形態におけるソケットの第2変形例を示す図である。FIG. 5 is a view showing a second modification of the socket in the embodiment of the present invention. 図6は、本発明の実施形態におけるソケットの第3変形例を示す図である。FIG. 6 is a view showing a third modification of the socket in the embodiment of the present invention. 図7は、本発明の実施形態におけるソケットの第4変形例を示す図である。FIG. 7 is a view showing a fourth modification of the socket in the embodiment of the present invention. 図8は、本発明の実施形態におけるソケットのDUT試験時の断面図である。FIG. 8 is a cross-sectional view of the socket during the DUT test in the embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態における電子部品試験装置の全体構成を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing the overall configuration of the electronic component testing apparatus in the present embodiment.

本実施形態における電子部品試験装置1は、図1に示すように、DUT8(図2参照)を取り廻すためのハンドラ2と、試験時にDUT8に電気的に接続されるテストヘッド4と、テストヘッド4を介してDUT8に対して試験信号を送出し、DUT8の試験を実行するテスタ本体(メインフレーム)3と、を備えている。この電子部品試験装置1は、DUT8に高温又は低温の熱ストレスを印加した状態でDUT8の電気的特性を試験し、当該試験結果に応じてDUT8を分類する。   As shown in FIG. 1, an electronic component testing apparatus 1 according to the present embodiment includes a handler 2 for handling a DUT 8 (see FIG. 2), a test head 4 electrically connected to the DUT 8 during a test, and a test head 4, a tester body (main frame) 3 that transmits a test signal to the DUT 8 via the DUT 8 and executes the test of the DUT 8. The electronic component testing apparatus 1 tests the electrical characteristics of the DUT 8 with high temperature or low temperature thermal stress applied to the DUT 8, and classifies the DUT 8 according to the test result.

図1に示すように、テストヘッド4の上部には、DUT8とテストヘッド4との間の電気的な接続を中継するハイフィックス(HIFIX:High Fidelity Tester Access Fixture)5が装着されている。さらに、このハイフィックス5の上部には、ソケットボード6、及びソケットボード6に固定されたソケット7Aを備えている。   As shown in FIG. 1, a high fidelity tester access fixture (HIFIX) 5 that relays an electrical connection between the DUT 8 and the test head 4 is attached to the top of the test head 4. Further, on the upper part of the HiFix 5, a socket board 6 and a socket 7 A fixed to the socket board 6 are provided.

ソケット7Aは、ハンドラ2に形成された開口2aを介してハンドラ2の内部に臨んでおり、ハンドラ2内を搬送されてきたDUT8がこのソケット7Aに押し付けられ、ソケット7AにDUT8が電気的に接続される。なお、図1では、ソケット7Aを2つのみ図示しているが、実際には64個、128個といった多数のソケット7Aが設けられている。また、ハンドラ2としては、ヒートプレートタイプやチャンバタイプのものを用いることができる。   The socket 7A faces the inside of the handler 2 through the opening 2a formed in the handler 2, and the DUT 8 conveyed in the handler 2 is pressed against the socket 7A, and the DUT 8 is electrically connected to the socket 7A. Is done. In FIG. 1, only two sockets 7A are shown, but in reality, a large number of sockets 7A such as 64 and 128 are provided. As the handler 2, a heat plate type or a chamber type can be used.

図2は本実施形態におけるソケット7Aの断面図、図3は本実施形態におけるソケット7Aの分解断面図である。   FIG. 2 is a sectional view of the socket 7A in the present embodiment, and FIG. 3 is an exploded sectional view of the socket 7A in the present embodiment.

本実施形態におけるソケット7Aは、図2に示すように、DUT8の半田ボール9に接触する多数の異方導電性部材20Aと、異方導電性部材20Aを保持する第1の絶縁性部材10A及び第2の絶縁性部材30Aと、を備えている。   As shown in FIG. 2, the socket 7A in this embodiment includes a large number of anisotropic conductive members 20A that are in contact with the solder balls 9 of the DUT 8, a first insulating member 10A that holds the anisotropic conductive members 20A, and And a second insulating member 30A.

異方導電性部材20Aは、図3に示すように、DUT8の半田ボール9に当接する第1の小径部21と、配線基板40上のパッド41に当接する第2の小径部23と、第1の小径部21と第2の小径部23との間に位置するフランジ部22と、を備えている。   As shown in FIG. 3, the anisotropic conductive member 20 </ b> A includes a first small diameter portion 21 that contacts the solder ball 9 of the DUT 8, a second small diameter portion 23 that contacts the pad 41 on the wiring substrate 40, And a flange portion 22 positioned between the first small diameter portion 21 and the second small diameter portion 23.

第1の小径部21は外径R1の円柱状を有しており、第2の小径部23は外径R3の円柱状を有している。一方、フランジ部22は円板状を有しており、この異方導電性部材20Aはフランジ部22において最大の外径R2を有している。2つの小径部21、23及びフランジ部22は同軸上に配置されていると共に、フランジ部22の外径R2は、2つの小径部21、23の外径R1、R3より大きくなっている(R2>R1、R2>R3)。そのため、異方導電性部材20Aは、フランジ部22で径方向に突出した形状を有している。なお、本実施形態における「外径」が、本発明における「幅」の一例に相当する。   The first small diameter portion 21 has a cylindrical shape with an outer diameter R1, and the second small diameter portion 23 has a cylindrical shape with an outer diameter R3. On the other hand, the flange portion 22 has a disk shape, and the anisotropic conductive member 20 </ b> A has a maximum outer diameter R <b> 2 at the flange portion 22. The two small diameter portions 21 and 23 and the flange portion 22 are arranged coaxially, and the outer diameter R2 of the flange portion 22 is larger than the outer diameters R1 and R3 of the two small diameter portions 21 and 23 (R2 > R1, R2> R3). Therefore, the anisotropic conductive member 20 </ b> A has a shape protruding in the radial direction at the flange portion 22. The “outer diameter” in the present embodiment corresponds to an example of “width” in the present invention.

この異方導電性部材20Aは、特に図示していないが、絶縁体中に導電性粒子が局所的に分散して配置された粒子分散部分と、その粒子分散部分の周囲に位置して、絶縁体のみから構成されている絶縁部分と、を備えている。粒子分散部分は、当該部分が厚み方向に圧縮された際に、厚み方向に隣接する導電性粒子同士が互いに接触することで、厚み方向にのみ導通を図ることが可能となっている。   Although this anisotropic conductive member 20A is not particularly illustrated, the anisotropically conductive member 20A is insulated by disposing a particle dispersed portion in which conductive particles are locally dispersed in an insulator and a periphery of the particle dispersed portion. And an insulating part composed only of the body. When the particle-dispersed portion is compressed in the thickness direction, conductive particles adjacent to each other in the thickness direction come into contact with each other, so that conduction can be achieved only in the thickness direction.

本実施形態においては、DUT8の半田ボール9によって異方導電性部材20Aが圧縮されることにより、DUT8の半田ボール9と、配線基板40上のパッド41とが電気的に導通する。   In the present embodiment, the anisotropic conductive member 20 </ b> A is compressed by the solder balls 9 of the DUT 8, whereby the solder balls 9 of the DUT 8 and the pads 41 on the wiring board 40 are electrically connected.

粒子分散部分を構成する導電性粒子としては、例えば、鉄、銅、亜鉛、クロム、ニッケル、銀、アルミニウム、又は、これらの合金等を挙げることができる。また、粒子分散部分及び絶縁部分を構成する絶縁体としては、例えばシリコンゴム、ウレタンゴム、天然ゴム等の弾性を有する絶縁性材料を挙げることができる。なお、この異方導電性部材12Aの導電性粒子は、絶縁体中に均一に分散して配置されていてもよい。これらの特徴を有する異方導電性部材として、例えば、JSR株式会社製のPCR(登録商標)を例示することができる。   Examples of the conductive particles constituting the particle dispersion portion include iron, copper, zinc, chromium, nickel, silver, aluminum, or alloys thereof. Moreover, as an insulator which comprises a particle | grain dispersion | distribution part and an insulation part, the insulating material which has elasticity, such as silicon rubber, urethane rubber, natural rubber, can be mentioned, for example. Note that the conductive particles of the anisotropic conductive member 12A may be uniformly dispersed in the insulator. As an anisotropic conductive member having these characteristics, for example, PCR (registered trademark) manufactured by JSR Corporation can be exemplified.

また、この異方導電性部材20Aは、例えば、金属線維や炭素線維等の導電性線維の束を、シリコンゴム、ウレタンゴム、天然ゴム等の弾性を有する絶縁性材料の中に保持させた構造を有していてもよい。   The anisotropic conductive member 20A has a structure in which, for example, a bundle of conductive fibers such as metal fibers and carbon fibers is held in an insulating material having elasticity such as silicon rubber, urethane rubber, and natural rubber. You may have.

なお、異方導電性部材20Aは、第1の絶縁性部材10Aの第1の主面よりも上方に突出していることが好ましい。これにより、半田ボール9の押圧による異方導電性部材20Aの電気的導通性が良好となる。異方導電性部材20Aの高さ方向の長さは、半田ボール9の押圧力等に基づいて適宜設定される。   The anisotropic conductive member 20A preferably protrudes upward from the first main surface of the first insulating member 10A. As a result, the electrical conductivity of the anisotropic conductive member 20 </ b> A due to the pressing of the solder ball 9 is improved. The length of the anisotropic conductive member 20 </ b> A in the height direction is appropriately set based on the pressing force of the solder balls 9 and the like.

異方導電性部材20AとDUT8上の半田ボール9との接触部や、異方導電性部材20Aと配線基板40上のパッド41との接触部は、複数の接点で接触していてもよい。こうした複数の接点を実現する異方導電性部材20Aの先端形状としては、例えば、複数の尖形を有する形状や、複数の半球状凸部を有する形状、あるいは、複数の半球状凹部を有する形状等であってもよい。   The contact portion between the anisotropic conductive member 20A and the solder ball 9 on the DUT 8, and the contact portion between the anisotropic conductive member 20A and the pad 41 on the wiring substrate 40 may be in contact with each other at a plurality of contacts. As the tip shape of the anisotropic conductive member 20A that realizes such a plurality of contacts, for example, a shape having a plurality of cusps, a shape having a plurality of hemispherical protrusions, or a shape having a plurality of hemispherical recesses Etc.

第1の絶縁性部材10Aは、第1の主面12と第2の主面13とを有する平板状の部材であり、電気絶縁性を有する樹脂材料等から構成されている。この第1の絶縁性部材10Aは、厚さ方向に貫通する第1の貫通孔11Aを複数有している。なお、この第1の貫通孔11Aの数や配置は、DUT8が有する半田ボール9の数や配置に応じて設定されており、それぞれの第1の貫通孔11Aに対して異方導電性部材20Aが1つずつ挿入される。   The first insulating member 10A is a flat plate member having a first main surface 12 and a second main surface 13, and is made of a resin material or the like having electrical insulation. The first insulating member 10A has a plurality of first through holes 11A penetrating in the thickness direction. The number and arrangement of the first through holes 11A are set in accordance with the number and arrangement of the solder balls 9 included in the DUT 8, and the anisotropic conductive member 20A with respect to each first through hole 11A. Are inserted one by one.

第1の貫通孔11Aは、互いに内径の異なる上部111と下部112とを有している。第1の貫通孔11Aの上部111は、内径R4の円柱状を有し、第1の絶縁性部材10Aの第1の主面12で開口している第1の開口114を有している。一方、下部112は、内径R5の円柱状を有し、第1の絶縁性部材10Aの第2の主面13で開口している第2の開口115を有している。   The first through hole 11A has an upper portion 111 and a lower portion 112 having different inner diameters. The upper part 111 of the first through hole 11A has a cylindrical shape with an inner diameter R4, and has a first opening 114 that opens at the first main surface 12 of the first insulating member 10A. On the other hand, the lower portion 112 has a columnar shape with an inner diameter R5 and has a second opening 115 that opens at the second main surface 13 of the first insulating member 10A.

第1の貫通孔11Aの下部112の内径R5は、上部111の内径R4よりも大きくなっており(R4<R5)、これにより、第1の貫通孔11Aは、上部111と下部112との間に段差面113を有している。なお、本実施形態における「内径」が、本発明における「幅」の一例に相当する。   The inner diameter R5 of the lower part 112 of the first through-hole 11A is larger than the inner diameter R4 of the upper part 11 1 (R4 <R5), so that the first through-hole 11A is located between the upper part 111 and the lower part 112. Has a stepped surface 113. The “inner diameter” in the present embodiment corresponds to an example of “width” in the present invention.

本実施形態において、異方導電性部材20Aの第1の小径部21の外径R1は、第1の絶縁性部材10Aにおける第1の貫通孔11Aの上部111の内径R4未満となっている(R1<R4)。   In the present embodiment, the outer diameter R1 of the first small diameter portion 21 of the anisotropic conductive member 20A is smaller than the inner diameter R4 of the upper portion 111 of the first through hole 11A in the first insulating member 10A ( R1 <R4).

また、本実施形態において、異方導電性部材20Aのフランジ部22の外径R2は、第1の絶縁性部材10Aの第1の貫通孔11Aにおける上部111の内径R4より大きく、且つ、下部112の内径R5未満となっている(R4<R2<R5)。   In the present embodiment, the outer diameter R2 of the flange portion 22 of the anisotropic conductive member 20A is larger than the inner diameter R4 of the upper portion 111 in the first through hole 11A of the first insulating member 10A and the lower portion 112. The inner diameter is less than R5 (R4 <R2 <R5).

そのため、異方導電性部材20Aの第1の小径部21は、第1の貫通孔11Aの上部111に特に負荷なく挿入され、異方導電性部材20Aのフランジ部22は、第1の貫通孔11Aの下部112に特に負荷なく挿入される。そして、異方導電性部材20Aのフランジ部22が、段差面113に接触することにより、異方導電性部材20Aは第1の貫通孔11A内に係止される。   Therefore, the first small diameter portion 21 of the anisotropic conductive member 20A is inserted into the upper portion 111 of the first through hole 11A without any particular load, and the flange portion 22 of the anisotropic conductive member 20A is connected to the first through hole. It is inserted into the lower portion 112 of 11A without any particular load. Then, when the flange portion 22 of the anisotropic conductive member 20A comes into contact with the step surface 113, the anisotropic conductive member 20A is locked in the first through hole 11A.

なお、異方導電性部材20Aの第1の小径部21の外径R1と第1の貫通孔11Aの上部111の内径R4とを同程度(R1=R4)としてもよい。あるいは、異方導電性部材20Aのフランジ部22の外径R2と第1の貫通孔の下部112の内径R5とを同程度(R2=R5)としてもよい。この場合には異方導電性部材20Aが第1の絶縁性部材10Aから抜け落ちにくくなる。   Note that the outer diameter R1 of the first small diameter portion 21 of the anisotropic conductive member 20A and the inner diameter R4 of the upper portion 111 of the first through hole 11A may be approximately the same (R1 = R4). Alternatively, the outer diameter R2 of the flange portion 22 of the anisotropic conductive member 20A and the inner diameter R5 of the lower portion 112 of the first through hole may be approximately the same (R2 = R5). In this case, the anisotropic conductive member 20A is difficult to come off from the first insulating member 10A.

異方導電性部材20Aを、第1の絶縁性部材10Aの第2の主面13側から第1の貫通孔11Aに挿入した時、異方導電性部材20A及び第1の貫通孔11Aが係止する関係にあれば、異方導電性部材20A及び第1の貫通孔11Aの形状は、特に上記の形状に限定されない。   When the anisotropic conductive member 20A is inserted into the first through hole 11A from the second main surface 13 side of the first insulating member 10A, the anisotropic conductive member 20A and the first through hole 11A are engaged. If there is a relationship to be stopped, the shapes of the anisotropic conductive member 20A and the first through-hole 11A are not particularly limited to the above shapes.

例えば、異方導電性部材20Aの第1の小径部21の形状が、多角柱状や錐台状等であってもよく、フランジ部22が、矩形板状、多角板状、あるいは、錐台状もしくはテーパ状を有する形状等であってもよい。なお、第1の絶縁性部材10Aにおける第1の貫通孔11Aの形状は、それら第1の小径部21及びフランジ部22に対応した形状であることが好ましい。   For example, the shape of the first small diameter portion 21 of the anisotropic conductive member 20A may be a polygonal column shape, a frustum shape, or the like, and the flange portion 22 is a rectangular plate shape, a polygonal plate shape, or a frustum shape. Alternatively, a tapered shape or the like may be used. Note that the shape of the first through hole 11A in the first insulating member 10A is preferably a shape corresponding to the first small diameter portion 21 and the flange portion 22.

一方、第2の絶縁性部材30Aも、電気絶縁性を有する樹脂材料等から構成される。この第2の絶縁性部材30Aは、第3の主面32を上方に有し、第4の主面33を下方に有する平板状の部材であり、厚さ方向に貫通させる第2の貫通孔31を複数有している。第2の絶縁性部材30Aが有する第2の貫通孔31の数や配置は、異方導電性部材20Aの数や配置(すなわち配線基板40上のパッド41の数や配置)に応じて設定されており、それぞれの第2の貫通孔31に対して異方導電性部材20Aの第2の小径部23が1つずつ挿入される。   On the other hand, the second insulating member 30A is also made of a resin material having electrical insulation. The second insulating member 30A is a flat plate member having the third main surface 32 on the upper side and the fourth main surface 33 on the lower side, and is a second through-hole penetrating in the thickness direction. A plurality of 31 are provided. The number and arrangement of the second through holes 31 included in the second insulating member 30A are set according to the number and arrangement of the anisotropic conductive members 20A (that is, the number and arrangement of the pads 41 on the wiring board 40). The second small diameter portion 23 of the anisotropic conductive member 20 </ b> A is inserted into each second through hole 31 one by one.

第2の貫通孔31は、内径R6の円柱状である。内径R6は、異方導電性部材20Aの第2の小径部23の外径R3より大きく、且つ、異方導電性部材20Aのフランジ部22の外径R2より小さくなっている(R3<R6<R2)。   The second through hole 31 has a cylindrical shape with an inner diameter R6. The inner diameter R6 is larger than the outer diameter R3 of the second small diameter portion 23 of the anisotropic conductive member 20A and smaller than the outer diameter R2 of the flange portion 22 of the anisotropic conductive member 20A (R3 <R6 < R2).

そのため、異方導電性部材20Aの第2の小径部23は、第2の絶縁性部材30Aにおける第2の貫通孔31に、特に負荷を必要とすることなく、第3の主面32側から挿入される。そして、第2の絶縁性部材30Aは、第2の絶縁性部材30Aの第3の主面32と、第1の絶縁性部材10Aの第2の主面13とが向かい合った状態で配置される。   Therefore, the second small-diameter portion 23 of the anisotropic conductive member 20A is not required to load the second through-hole 31 in the second insulating member 30A from the third main surface 32 side. Inserted. The second insulating member 30A is arranged in a state where the third main surface 32 of the second insulating member 30A and the second main surface 13 of the first insulating member 10A face each other. .

なお、異方導電性部材20Aの第2の小径部23の外径R3を、第2の貫通孔31の内径R6と同程度(R3=R6)としてもよい。このとき異方導電性部材20Aが試験中においてより安定に保持される。   The outer diameter R3 of the second small diameter portion 23 of the anisotropic conductive member 20A may be approximately the same as the inner diameter R6 of the second through hole 31 (R3 = R6). At this time, the anisotropic conductive member 20A is held more stably during the test.

異方導電性部材20Aにおける第2の小径部23の形状は、第2の絶縁性部材30Aの第2の貫通孔31への挿入を妨げない範囲であれば他の形状であってもよい。   The shape of the second small diameter portion 23 in the anisotropic conductive member 20A may be another shape as long as it does not hinder the insertion of the second insulating member 30A into the second through hole 31.

例えば、異方導電性部材20Aにおける第2の小径部23の形状として、多角柱状や錐台状、もしくは、テーパ状を有する形状等であってもよい。なお、第2の絶縁性部材30Aにおける第2の貫通孔31は、それら第2の小径部23の形状に対応した形状であることが好ましい。   For example, the shape of the second small diameter portion 23 in the anisotropic conductive member 20 </ b> A may be a polygonal column shape, a truncated cone shape, a tapered shape, or the like. In addition, it is preferable that the 2nd through-hole 31 in 30 A of 2nd insulating members is a shape corresponding to the shape of these 2nd small diameter parts 23. FIG.

本実施形態におけるソケット7Aは、以下のように組み立てられる。   The socket 7A in this embodiment is assembled as follows.

すなわち、異方導電性部材20Aの第1の小径部21を、第1の絶縁性部材10Aの第1の貫通孔11Aの上部111に挿入し、異方導電性部材20Aのフランジ部22を、第1の絶縁性部材10Aの第1の貫通孔11Aの下部112に挿入する。さらに、異方導電性部材20Aの第2の小径部23を、第2の絶縁性部材30Aの第2の貫通孔31に挿入した状態で、第1の絶縁性部材10Aと第2の絶縁性部材30Aとを、例えばネジ等によって固定する。   That is, the first small diameter portion 21 of the anisotropic conductive member 20A is inserted into the upper portion 111 of the first through hole 11A of the first insulating member 10A, and the flange portion 22 of the anisotropic conductive member 20A is The first insulating member 10A is inserted into the lower portion 112 of the first through hole 11A. Further, the second insulating member 10A and the second insulating member 10A are inserted into the second through hole 31 of the second insulating member 30A, and the second insulating member 10A and the second insulating member 10A are in contact with the second insulating member 10A. The member 30A is fixed with, for example, screws.

本実施形態におけるソケットボード6は、図2に示すように、以上に説明したソケット7Aと、このソケット7Aが実施される配線基板40と、を備えている。このソケットボード6は次のように組み立てられる。すなわち、第2の絶縁性部材30Aにおける第4の主面33と配線基板40とを向かい合わせた状態で、異方導電性部材20Aの第2の小径部23と配線基板40上のパッド41とが対向するように位置調整し、ガイド50を介してソケット7Aを配線基板40の上に、例えばネジ等を用いて固定する。   As shown in FIG. 2, the socket board 6 in the present embodiment includes the socket 7A described above and a wiring board 40 on which the socket 7A is implemented. The socket board 6 is assembled as follows. That is, the second small diameter portion 23 of the anisotropic conductive member 20A and the pad 41 on the wiring substrate 40 in a state where the fourth main surface 33 of the second insulating member 30A and the wiring substrate 40 face each other. The socket 7A is fixed on the wiring board 40 through the guide 50 using, for example, screws.

なお、ソケットの構造は、上記に特に限定されない。   Note that the structure of the socket is not particularly limited to the above.

例えば、図4〜7は本発明の実施形態におけるソケットの変形例を示す図である。   For example, FIGS. 4-7 is a figure which shows the modification of the socket in embodiment of this invention.

本実施形態における第1変形例のソケット7Bは、図4に示すように、異方導電性部材20Aの第2の小径部23と第2の絶縁性部材30Aとが省略されている点で、上述のソケット7Aと相違する。この場合、異方導電性部材20Bは、配線基板40上のパッド41に直接載置される。なお、異方導電性部材20Bの構成は、上述の異方導電性部材20Aの構成と、第2の小径部23を除いて同一である。   As shown in FIG. 4, the socket 7B of the first modified example in the present embodiment is such that the second small diameter portion 23 of the anisotropic conductive member 20A and the second insulating member 30A are omitted. This is different from the socket 7A described above. In this case, the anisotropic conductive member 20 </ b> B is directly placed on the pad 41 on the wiring substrate 40. The configuration of the anisotropic conductive member 20B is the same as the configuration of the anisotropic conductive member 20A described above except for the second small diameter portion 23.

また、本実施形態におけるソケット7Aの第2変形例のソケット7Cは、図5に示すように、異方導電性部材20Cの全体が、第1の絶縁性部材10Cにおける第1の貫通孔11C内に位置している。   Further, as shown in FIG. 5, the socket 7C of the second modified example of the socket 7A in the present embodiment is such that the entire anisotropic conductive member 20C is in the first through hole 11C of the first insulating member 10C. Is located.

異方導電性部材20Cは、外径R8の円柱状であり、第1の絶縁性部材10Cは、第1の主面12と第2の主面13とを有する平板状の部材である。この第1の絶縁性部材10Cは、厚さ方向に貫通する第1の貫通孔11Cを複数有している。なお、この第1の貫通孔11Cの数や配置は、DUT8が有する半田ボール9の数や配置に応じて設定されており、それぞれの第1の貫通孔11Cに対して異方導電性部材20Cが1つずつ挿入される。   The anisotropic conductive member 20 </ b> C has a columnar shape with an outer diameter R <b> 8, and the first insulating member 10 </ b> C is a flat plate member having a first main surface 12 and a second main surface 13. The first insulating member 10C has a plurality of first through holes 11C penetrating in the thickness direction. The number and arrangement of the first through holes 11C are set in accordance with the number and arrangement of the solder balls 9 included in the DUT 8, and the anisotropic conductive member 20C with respect to each first through hole 11C. Are inserted one by one.

第1の貫通孔11Cは、内径R7の円柱状をしており、その上部に、第1の貫通孔11Cの内側に向かって突出している突出部116を有している。突出部116によって、第1の貫通孔11Cの上部の内径はR9となっている。異方導電性部材20Cの外径R8は、内径R9よりも大きく、且つ、内径R7よりも小さい(R9<R8<R7)。このため、異方導電性部材20Cは、第1の絶縁性部材10Cの第2の主面13側から第1の貫通孔11C内に挿入されると、第1の貫通孔11C内の突出部116に接触して係止する。   The first through-hole 11C has a cylindrical shape with an inner diameter R7, and has a protruding portion 116 that protrudes toward the inside of the first through-hole 11C at the top thereof. Due to the protruding portion 116, the inner diameter of the upper portion of the first through hole 11C is R9. The outer diameter R8 of the anisotropic conductive member 20C is larger than the inner diameter R9 and smaller than the inner diameter R7 (R9 <R8 <R7). For this reason, when the anisotropic conductive member 20C is inserted into the first through-hole 11C from the second main surface 13 side of the first insulating member 10C, the projecting portion in the first through-hole 11C. 116 contacts and locks.

なお、このとき、R7を、R8と同程度(R7=R8)としてもよい。これにより異方導電性部材20Cが試験中においてより安定に保持される。   At this time, R7 may be approximately the same as R8 (R7 = R8). Thereby, the anisotropic conductive member 20C is held more stably during the test.

この第2変形例においても、異方導電性部材20Cは、配線基板40上のパッド41に直接載置される。本例では、異方導電性部材20Cの成形が比較的容易となり、試験のコストが一層低減される。   Also in the second modified example, the anisotropic conductive member 20 </ b> C is directly placed on the pad 41 on the wiring substrate 40. In this example, the anisotropic conductive member 20C can be formed relatively easily, and the test cost can be further reduced.

また、本実施形態における第3変形例のソケット7Dは、図6に示すように、異方導電性部材20Dの形状が上方に向かって先細となる第1のテーパ面24を有し、第1の貫通孔11Dの形状が、第1のテーパ面24に対応する第2のテーパ面117を有している点で上述のソケット10Aと相違する。   Further, as shown in FIG. 6, the socket 7 </ b> D of the third modified example in the present embodiment has a first tapered surface 24 in which the shape of the anisotropic conductive member 20 </ b> D is tapered upward, The shape of the through hole 11 </ b> D is different from the above-described socket 10 </ b> A in that it has a second tapered surface 117 corresponding to the first tapered surface 24.

異方導電性部材20Dが第1のテーパ面24を有することにより、異方導電性部材20Dを取り外す際に、異方導電性部材20Dが折れて、その破片が第1の貫通孔11D内に残る恐れが軽減される。また、交換後に用いる異方導電性部材20Dの第1の貫通孔11Dへのセットが容易となり、異方導電性部材20Dの交換時における取り扱い性が向上する。   Since the anisotropic conductive member 20D has the first tapered surface 24, when removing the anisotropic conductive member 20D, the anisotropic conductive member 20D is bent and the fragments are in the first through hole 11D. The fear of remaining is reduced. Moreover, it becomes easy to set the anisotropic conductive member 20D used after replacement to the first through hole 11D, and the handleability at the time of replacement of the anisotropic conductive member 20D is improved.

また、本実施形態における第4変形例のソケット7Eは、図7に示すように、異方導電性部材20Eの第2の小径部23と、第2の貫通孔31を有する第2の絶縁性部材30Eと、が付け加えられている点で上記第3変形例のソケット7Dと異なる。なお、第1の絶縁性部材10Eは、上述の第1の絶縁性部材10Dと同一の構成である。また、第2の絶縁性部材30Eは、上述の第2の絶縁性部材30Aと同一の構成である。   In addition, as shown in FIG. 7, the socket 7 </ b> E according to the fourth modification example of the present embodiment has the second insulating portion having the second small diameter portion 23 of the anisotropic conductive member 20 </ b> E and the second through hole 31. It differs from the socket 7D of the third modified example in that a member 30E is added. The first insulating member 10E has the same configuration as the above-described first insulating member 10D. The second insulating member 30E has the same configuration as the above-described second insulating member 30A.

このような構造を有することにより、異方導電性部材20Eの交換時において、ピンセット等で異方導電性部材20Eを捕捉しやすくなり、異方導電性部材20Eの交換時における取扱性がさらに向上する。また、通電安定性も向上する。   By having such a structure, when the anisotropic conductive member 20E is replaced, it becomes easier to capture the anisotropic conductive member 20E with tweezers and the like, and the handleability when replacing the anisotropic conductive member 20E is further improved. To do. In addition, energization stability is improved.

次に、試験時におけるソケット7Aの作用について、図8を参照しながら説明する。   Next, the operation of the socket 7A during the test will be described with reference to FIG.

ソケット7Aがソケットボード6に実装されると、図8に示すように、第1の絶縁性部材10Aと第2の絶縁性部材30Aとの間にフランジ部22が挟まれた状態で、異方導電性部材20Aはパッド41に接触して配置される。この状態で、異方導電性部材20AはDUT8の半田ボール9によって押圧されると、異方導電性部材20A内の導電性粒子同士が接触し、異方導電性部材20Aは高さ方向に導電性を帯びる。その結果、DUT8の半田ボール9と配線基板40上のパッド41とが電気的に導通し、DUT8の試験が実行される。   When the socket 7A is mounted on the socket board 6, as shown in FIG. 8, the flange portion 22 is sandwiched between the first insulating member 10A and the second insulating member 30A. The conductive member 20 </ b> A is disposed in contact with the pad 41. In this state, when the anisotropic conductive member 20A is pressed by the solder balls 9 of the DUT 8, the conductive particles in the anisotropic conductive member 20A come into contact with each other, and the anisotropic conductive member 20A conducts in the height direction. Be sexual. As a result, the solder balls 9 of the DUT 8 and the pads 41 on the wiring board 40 are electrically connected, and the test of the DUT 8 is executed.

そして、試験の繰り返しによる異方導電性部材20Aへの半田の付着等により、異方導電性部材20Aの通電安定性が悪化すると、当該異方導電性部材20Aは以下の手順で交換される。すなわち、まず、ソケット7Aを配線板40から取り外し、次に第1の絶縁性部材10Aと第2の絶縁性部材30Aとを取り外す。その後、交換したい異方導電性部材20Aを、例えばピンセット等で第1の貫通孔11Aから持ち上げることで、当該異方導電性部材20Aを第1の絶縁性部材10Aから取り外す。この際、他の異方導電性部材20Aは、交換せずにそのまま第1の絶縁性部材10Aに残しておく。   Then, when the energization stability of the anisotropic conductive member 20A deteriorates due to the adhesion of solder to the anisotropic conductive member 20A due to the repetition of the test, the anisotropic conductive member 20A is replaced by the following procedure. That is, first, the socket 7A is removed from the wiring board 40, and then the first insulating member 10A and the second insulating member 30A are removed. Thereafter, the anisotropic conductive member 20A to be replaced is lifted from the first through hole 11A with tweezers or the like, for example, and the anisotropic conductive member 20A is removed from the first insulating member 10A. At this time, the other anisotropic conductive member 20A is left as it is in the first insulating member 10A without being replaced.

なお、針の先端等を用いて異方導電性部材10Aを第1の貫通孔11Aから突き出すことで、当該異方導電性部材20Aを第1の絶縁性部材10Aから取り外してもよい。また、第1の絶縁性部材10Aと第2の絶縁性部材30Aとを取り外した際、交換したい異方導電性部材20Aが第2の貫通孔31に留まっている場合には、第2の貫通孔31について同様の操作を行う。   Note that the anisotropic conductive member 20A may be removed from the first insulating member 10A by protruding the anisotropic conductive member 10A from the first through hole 11A using the tip of the needle or the like. Further, when the anisotropic conductive member 20A to be replaced remains in the second through hole 31 when the first insulating member 10A and the second insulating member 30A are removed, the second through hole The same operation is performed for the hole 31.

次いで、例えばピンセット等を用いて、第1の貫通孔11Aに新たな異方導電性部材20Aの第1の小径部21を挿入すると共に、当該異方導電性部材20Aの第2の小径部23を第2の貫通孔31に挿入し、その状態で第1の絶縁性部材10Aと第2の絶縁性部材30Aとを、例えばネジ等で固定する。   Next, the first small diameter portion 21 of the new anisotropic conductive member 20A is inserted into the first through hole 11A using, for example, tweezers, and the second small diameter portion 23 of the anisotropic conductive member 20A is inserted. Is inserted into the second through hole 31, and in this state, the first insulating member 10A and the second insulating member 30A are fixed with, for example, screws.

その後、配線基板40に、異方導電性部材20Aの第2の小径部23と配線基板40上のパッド41とが対向するように配置し、ガイド50を介して配線基板40上に例えばネジ等を用いて固定することにより、異方導電性部材20Aは交換される。 Thereafter, the second small diameter portion 23 of the anisotropic conductive member 20 </ b> A and the pad 41 on the wiring substrate 40 are arranged on the wiring substrate 40 so as to face each other, and a screw or the like is placed on the wiring substrate 40 through the guide 50. The anisotropic conductive member 20A is exchanged by fixing using

従来、通電安定性が悪化した際は、異方導電性シート全体を交換しなければならなかったが、本実施形態では上記の通り、通電安定性が悪化した異方導電性部材20Aを個別に取り換えることができる。このため、DUT試験の大幅なコスト低減を図ることができ、更には、交換部材を必要最小限に抑えられることで、廃棄物の削減も図ることができる。   Conventionally, when the energization stability deteriorated, the entire anisotropic conductive sheet had to be replaced. However, in the present embodiment, as described above, the anisotropic conductive member 20A having deteriorated energization stability is individually provided. Can be replaced. For this reason, it is possible to significantly reduce the cost of the DUT test, and furthermore, it is possible to reduce waste by minimizing the number of replacement members.

また、ソケット7Aは、導電部位と絶縁部位とが別々に形成されるので、DUT8の半田ボール9同士のピッチがさらに狭まった場合においても、異方導電性部材20Aが所定の高さを確保できるので、良好な通電安定性を得つつ、隣り合う異方導電性部材20Aどうしが短絡することなく試験を行うことができる。   In addition, since the conductive portion and the insulating portion of the socket 7A are formed separately, the anisotropic conductive member 20A can ensure a predetermined height even when the pitch between the solder balls 9 of the DUT 8 is further narrowed. Therefore, it is possible to perform a test without short-circuiting adjacent anisotropic conductive members 20A while obtaining good current-carrying stability.

本実施形態において、異方導電性部材20Aのフランジ部22が、第1の貫通孔11Aの有する段差面113に係止する構造を有することよって、異方導電性部材20Aが試験時において第1の貫通孔11A内に安定に保持される。   In the present embodiment, since the flange portion 22 of the anisotropic conductive member 20A has a structure that engages with the step surface 113 of the first through hole 11A, the anisotropic conductive member 20A is the first in the test. Is stably held in the through hole 11A.

また、ソケット7Aが、本実施形態における図4のように、第2の貫通孔31が設けられた第2の絶縁性部材30Aを備えていることによって、異方導電性部材20Aがより安定に保持される。   Further, as shown in FIG. 4 in the present embodiment, the socket 7A includes the second insulating member 30A provided with the second through-hole 31, so that the anisotropic conductive member 20A becomes more stable. Retained.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

1・・・電子部品試験装置
2・・・ハンドラ
3・・・テスタ本体
4・・・テストヘッド
6・・・ソケットボード
40・・・配線基板
41・・・パッド
7A、7B、7C、7D、7E・・・ソケット
10A、10B、10C、10D、10E・・・第1の絶縁性部材
11A、11B、11C、11D、11E・・・第1の貫通孔
113・・・段差面
114・・・第1の開口
115・・・第2の開口
116・・・突出部
117・・・第2のテーパ形状
12・・・第1の主面
13・・・第2の主面
20A、20B、20C、20D、20E・・・異方導電性部材
21・・・第1の小径部
22・・・フランジ部
23・・・第2の小径部
24・・・第2のテーパ面
30A、30E・・・第2の絶縁性部材
31・・・第2の貫通孔
32・・・第3の主面
33・・・第4の主面
8・・・DUT
9・・・半田ボール(端子)
DESCRIPTION OF SYMBOLS 1 ... Electronic component test apparatus 2 ... Handler 3 ... Tester body 4 ... Test head 6 ... Socket board 40 ... Wiring board 41 ... Pad 7A, 7B, 7C, 7D, 7E: Socket 10A, 10B, 10C, 10D, 10E ... First insulating member 11A, 11B, 11C, 11D, 11E ... First through hole 113 ... Stepped surface 114 ... 1st opening 115 ... 2nd opening 116 ... Protrusion 117 ... 2nd taper shape 12 ... 1st main surface 13 ... 2nd main surface 20A, 20B, 20C , 20D, 20E ... anisotropic conductive member 21 ... first small diameter portion 22 ... flange portion 23 ... second small diameter portion 24 ... second taper surface 30A, 30E. Second insulating member 31 ... second through hole 32 - the third major surface 33 ... fourth of the main surface 8 ··· DUT
9 ... Solder ball (terminal)

Claims (11)

複数の第1の貫通孔を有する第1の絶縁性部材と、
前記第1の貫通孔に着脱可能に挿入され、被試験電子部品の端子と配線基板のパッドとを電気的に接続する複数の異方導電性部材と、を備え、
前記第1の貫通孔は、
前記第1の絶縁性部材の第1の主面に形成された第1の開口と、
前記第1の絶縁性部材において前記第1の主面より前記配線基板に近い第2の主面に形成された第2の開口と、を有し、
前記第1の開口の幅は、前記異方導電性部材の最大幅よりも小さく、
前記第2の開口の幅は、前記異方導電性部材の最大幅以上であることを特徴とするソケット。
A first insulating member having a plurality of first through holes;
A plurality of anisotropically conductive members that are detachably inserted into the first through holes and electrically connect the terminals of the electronic device under test and the pads of the wiring board,
The first through hole is
A first opening formed in a first main surface of the first insulating member;
A second opening formed in a second main surface closer to the wiring board than the first main surface in the first insulating member,
The width of the first opening is smaller than the maximum width of the anisotropic conductive member,
The socket characterized in that the width of the second opening is not less than the maximum width of the anisotropic conductive member.
請求項1に記載のソケットであって、
前記異方導電性部材は、径方向に突出したフランジ部を有し、
前記第1の貫通孔は、前記第1の開口と第2の開口との間に段差面を有し、
前記フランジ部と前記段差面とが接触していることを特徴とするソケット。
The socket according to claim 1, wherein
The anisotropic conductive member has a flange portion protruding in a radial direction,
The first through hole has a step surface between the first opening and the second opening,
The socket, wherein the flange portion and the stepped surface are in contact with each other.
請求項2に記載のソケットであって、
前記フランジ部は、前記異方導電性部材の最大幅であることを特徴とするソケット。
The socket according to claim 2,
The socket, wherein the flange portion has a maximum width of the anisotropic conductive member.
請求項1〜3の何れかに記載のソケットであって、
前記異方導電性部材は、前記第1の開口の幅以下の幅を持つ第1の小径部を有し、
前記第1の小径部は、前記第1の開口に挿入されていることを特徴とするソケット。
The socket according to any one of claims 1 to 3,
The anisotropic conductive member has a first small diameter portion having a width equal to or less than the width of the first opening,
The socket, wherein the first small diameter portion is inserted into the first opening.
請求項4に記載のソケットであって、
前記第1の小径部の一部は、前記第1の絶縁性部材の前記第1の主面から突出していることを特徴とするソケット。
The socket according to claim 4,
A part of said 1st small diameter part protrudes from said 1st main surface of said 1st insulating member, The socket characterized by the above-mentioned.
請求項1〜5の何れかに記載のソケットであって、
前記異方導電性部材は、前記被試験電子部品の前記端子に向かって先細となる第1のテーパ形状を有し、
前記第1の貫通孔は、前記第1のテーパ形状に対応した第2のテーパ形状を有し、
前記第1のテーパ形状と前記第2のテーパ形状とが接触していることを特徴とするソケット。
The socket according to any one of claims 1 to 5,
The anisotropic conductive member has a first tapered shape that tapers toward the terminal of the electronic device under test,
The first through hole has a second taper shape corresponding to the first taper shape,
The socket, wherein the first tapered shape and the second tapered shape are in contact with each other.
請求項6に記載のソケットであって、
前記第1のテーパ形状において前記配線基板に近い端部は、前記異方導電性部材の最大幅であることを特徴とするソケット。
The socket according to claim 6,
In the first taper shape, the end close to the wiring board is the maximum width of the anisotropic conductive member.
請求項1〜7の何れかに記載のソケットであって、
前記異方導電性部材の最大幅よりも相対的に小さい幅の第2の貫通孔を有する第2の絶縁性部材を備え、
前記異方導電性部材は、前記第2の貫通孔に挿入された第2の小径部を有し、
前記異方導電性部材は、前記第1の絶縁性部材と前記第2の絶縁性部材との間に挟まれていることを特徴とするソケット。
The socket according to any one of claims 1 to 7,
A second insulating member having a second through hole having a width relatively smaller than the maximum width of the anisotropic conductive member;
The anisotropic conductive member has a second small diameter portion inserted into the second through hole,
The socket, wherein the anisotropic conductive member is sandwiched between the first insulating member and the second insulating member.
請求項1に記載のソケットであって、
前記第1の貫通孔は、前記第1の開口と前記第2の開口との間に段差面を有し、
前記異方導電性部材は、前記段差面よりも下方に位置し、
前記異方導電性部材と前記段差面とが接触していることを特徴とするソケット。
The socket according to claim 1,
The first through hole has a step surface between the first opening and the second opening,
The anisotropic conductive member is located below the step surface,
The socket, wherein the anisotropic conductive member and the stepped surface are in contact with each other.
請求項1〜9の何れかに記載のソケットと、
前記異方導電性部材に対応するように配置されたパッドを有する配線基板と、を備えることを特徴とするソケットボード。
A socket according to any of claims 1 to 9,
And a wiring board having a pad disposed so as to correspond to the anisotropic conductive member.
請求項10に記載のソケットボードを有するテストヘッドと、
前記テストヘッドが電気的に接続されたテスタと、を備えることを特徴とする電子部品試験装置。
A test head comprising the socket board according to claim 10;
An electronic component testing apparatus comprising: a tester to which the test head is electrically connected.
JP2012050019A 2012-03-07 2012-03-07 Socket, socket board and electronic component testing device Pending JP2013185892A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012050019A JP2013185892A (en) 2012-03-07 2012-03-07 Socket, socket board and electronic component testing device
TW101146808A TWI525911B (en) 2012-03-07 2012-12-12 Socket, socket board and electronic components test device
KR1020130009170A KR101375093B1 (en) 2012-03-07 2013-01-28 Socket, socket board, and electronic component testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050019A JP2013185892A (en) 2012-03-07 2012-03-07 Socket, socket board and electronic component testing device

Publications (1)

Publication Number Publication Date
JP2013185892A true JP2013185892A (en) 2013-09-19

Family

ID=49387450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050019A Pending JP2013185892A (en) 2012-03-07 2012-03-07 Socket, socket board and electronic component testing device

Country Status (3)

Country Link
JP (1) JP2013185892A (en)
KR (1) KR101375093B1 (en)
TW (1) TWI525911B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800812B1 (en) * 2015-12-17 2017-11-27 주식회사 오킨스전자 Test socket having through hole in silicon rubber and method for manufacturing thereof
KR102179191B1 (en) 2019-04-24 2020-11-18 티비에스테스트테크놀러지스코리아 주식회사 Universal-type Semiconductor Device Test Apparatus
KR102265101B1 (en) * 2020-02-04 2021-06-15 (주)위드멤스 Flexible micro contact pin and test apparatus including the same
KR102525559B1 (en) * 2023-01-02 2023-04-25 (주)새한마이크로텍 Signal Loss Prevented Test Socket

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124520B2 (en) * 1998-07-30 2008-07-23 日本発条株式会社 Conductive contact holder and method of manufacturing the same
JP2003337141A (en) 2002-05-17 2003-11-28 Toray Eng Co Ltd Probe and method of manufacturing the same
KR100966169B1 (en) 2005-10-13 2010-06-25 가부시키가이샤 어드밴티스트 Insert, test tray and semiconductor testing apparatus
JP2011204401A (en) 2010-03-24 2011-10-13 Oki Semiconductor Co Ltd Inspection socket and semiconductor inspection device

Also Published As

Publication number Publication date
TWI525911B (en) 2016-03-11
KR101375093B1 (en) 2014-03-18
TW201340470A (en) 2013-10-01
KR20130102473A (en) 2013-09-17

Similar Documents

Publication Publication Date Title
JP6060253B2 (en) Easy-to-align test socket
KR100926777B1 (en) Test socket with conductive pad having conductive protrusions
JP2016035441A (en) Socket for testing semiconductor device test and having elastic body s contactor
JP7198127B2 (en) Interposers, sockets, socket assemblies and wiring board assemblies
KR20170020223A (en) Probe
JP2013185892A (en) Socket, socket board and electronic component testing device
TWI430525B (en) An aisotropic conductive connector, a probe member, and a wafer inspection device
US20120299614A1 (en) Test socket with a rapidly detachable electrical connection module
KR101471116B1 (en) Test socket with high density conduction section
JP2003084047A (en) Measuring jig for semiconductor device
US9653833B2 (en) Contact pin and electrical component socket
KR101095902B1 (en) Socket for kelvin testing
KR101483757B1 (en) Connector for electrical connection
KR20120037593A (en) Test socket
JP2004053409A (en) Probe card
JP2014127407A (en) Electric contact and socket for electric component
WO2011077555A1 (en) Socket, socket board, and electronic component testing apparatus
JP2012181218A (en) Socket for inspecting semiconductor chip
KR100809578B1 (en) Contact probe
JP2004119945A (en) Interposer
JP6266209B2 (en) Electrical contact and socket for electrical parts
KR20220052449A (en) A pogo pin
KR101183167B1 (en) Socket for kelvin testing
JP2002246428A (en) Anisotropic conductive sheet and wafer tester
KR102693210B1 (en) Data signal transmission connector