JP2013184504A - Ship, sea floating type equipment, and method for storing liquefied natural gas - Google Patents

Ship, sea floating type equipment, and method for storing liquefied natural gas Download PDF

Info

Publication number
JP2013184504A
JP2013184504A JP2012049290A JP2012049290A JP2013184504A JP 2013184504 A JP2013184504 A JP 2013184504A JP 2012049290 A JP2012049290 A JP 2012049290A JP 2012049290 A JP2012049290 A JP 2012049290A JP 2013184504 A JP2013184504 A JP 2013184504A
Authority
JP
Japan
Prior art keywords
tank
natural gas
liquefied natural
ship
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049290A
Other languages
Japanese (ja)
Other versions
JP5785118B2 (en
Inventor
Koji Mochizuki
幸司 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2012049290A priority Critical patent/JP5785118B2/en
Publication of JP2013184504A publication Critical patent/JP2013184504A/en
Application granted granted Critical
Publication of JP5785118B2 publication Critical patent/JP5785118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ship having an LNG tank, sea floating type equipment, and a method for storing liquefied natural gas, where the tank has a small number of tank structural members and has a shorter weld length required for construction than an independent rectangular tank, and furthermore, has a thinner board thickness and has a small number of weld management portions than a pressure tank, and moreover, the tank can be reduced in weight and manufacturing costs, and is also not much inferior in the volumetric efficiency for a rectangular hull cross-sectional shape to the independent rectangular tank.SOLUTION: In a ship 1 for carrying liquefied natural gas and sea floating type equipment for generating, storing and shipping the liquefied natural gas, a cargo space 2 for storing the liquefied natural gas is formed of a twin-barrel cylindrical tank 10 having a center-line bulkhead and being not a pressure vessel, and a drip pan 40 is provided for serving as a partial secondary barrier which receives the liquefied natural gas leaked from the tank 10 at a lower part of the cylindrical part of the tank 10.

Description

本発明は、液化天然ガス(LNG)を運搬する船舶及び液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備、及び液化天然ガス貯蔵方法に関する。   The present invention relates to a ship for transporting liquefied natural gas (LNG), an offshore floating facility for producing, storing and unloading liquefied natural gas, and a liquefied natural gas storage method.

従来の液化天然ガス(以下LNG)を運搬する、LNG運搬船と呼ばれる船舶では、液化天然ガスを貯蔵するLNGタンクに関しては、国際海事機関(IMO)が基準を定めており、この基準を踏まえて日本海事協会(NK)等の船級協会の鋼船規則等では、LNGの貯蔵温度が非常に低い(LPGのマイナス45℃に対して、LNGはマイナス163℃)ことを考慮して、船体との一体型のタンクを認めずに、メンブレン等のLNGタンクや、完全二次防壁の独立型タンクタイプA、部分二次防壁の独立型タンクタイプB、二次防壁不要の独立型タンクタイプC(圧力容器)のいずれかのタンクを採用することになっている。ここで、独立タンクタイプCの設計蒸気圧Pは、圧力容器として、規則により下記の式(1)より与えられる値以上としなければならない。   In ships called LNG carriers that transport conventional liquefied natural gas (hereinafter referred to as LNG), the International Maritime Organization (IMO) has established standards for LNG tanks that store liquefied natural gas. According to the rules of steel ships of classification societies such as the Maritime Association (NK), the storage temperature of LNG is very low (LPG is minus 45 ° C, LNG is minus 163 ° C). LNG tanks such as membranes, independent secondary tank type A with full secondary barrier, independent secondary tank type B with partial secondary barrier, independent independent tank type C without secondary barrier (pressure vessel ) One of the tanks is to be adopted. Here, the design vapor pressure P of the independent tank type C must be set to a value equal to or higher than the value given by the following equation (1) as a pressure vessel.

P=0,2+A・C(ρr1.5 (MPa) (1)
ここで、A=0.00185(σm/ΔσA2
σm:設計一次膜応力
ΔσA:許容動的膜応力(発現確率Q=10-8レベルでの両振幅)
55N/mm2:フェライト−パーライト、マルテンサイト及び
オーステナイト鋼
25N/mm2:アルミニウム合金(5083−0)
C:次に示すタンクの寸法から定まるもののうち大きい値
h,0.75b又は0.45L
h:タンクの高さ(船の深さ方向)(m)
b:タンクの幅(船の幅方向)(m)
L:タンクの長さ(船の長さ方向)(m)
ρr:設計温度における貨物の比重(清水の場合:ρr=1)
P = 0,2 + A · C (ρ r ) 1.5 (MPa) (1)
Here, A = 0.00185 (σ m / Δσ A ) 2
σ m : Designed primary film stress
Δσ A : Allowable dynamic membrane stress (both amplitudes at the expression probability Q = 10 −8 level)
55 N / mm 2 : ferrite-pearlite, martensite and
Austenitic steel
25 N / mm 2 : Aluminum alloy (5083-0)
C: Larger value determined from the tank dimensions shown below
h, 0.75b or 0.45L
h: Tank height (in the depth direction of the ship) (m)
b: Width of tank (ship width direction) (m)
L: Length of tank (length direction of ship) (m)
ρ r : Specific gravity of cargo at design temperature (in the case of fresh water: ρ r = 1)

また、上記の二次防壁は、例えば、日本船級協会の鋼船規則では、特定航路を除いて、規則に定める荷重頻度分布を考慮して、漏洩液体貨物(LNG)を15日間格納でき、かつ、一次防壁からの漏洩時に船体構造の温度が危険な温度より低くなることを防ぐ必要があり、しかも、一次防壁の破壊の機構が、二次防壁の破壊を引き起こさず、また、逆に、二次防壁の破壊の機構が、一次防壁の破壊を引き起こさず、その上、30度の静的横傾斜角においてもその機能を満足するものでなければならないとされている。   In addition, the above-mentioned secondary barrier, for example, can store leaked liquid cargo (LNG) for 15 days in consideration of the load frequency distribution specified in the rules, except for specific routes, in the Steel Ship Rules of the Japan Classification Society, and It is necessary to prevent the temperature of the hull structure from becoming lower than the dangerous temperature when leaking from the primary barrier, and the mechanism of the primary barrier destruction does not cause the secondary barrier destruction. The mechanism of the destruction of the secondary barrier does not cause the destruction of the primary barrier, and moreover, the function must be satisfied even at a static lateral inclination angle of 30 degrees.

また、部分二次防壁が要求される場合、部分二次防壁の設置範囲は、最初の漏洩発見後、規則に定める荷重頻度分布を適用して求まる破壊の大きさに対応する漏洩に基づいて定める必要があり、いかなる場合においても、タンク下部の内底板は、漏洩貨物から保護される必要があり、更に、部分二次防壁の範囲外では、一次防壁と二次防壁の間の区画に漏洩貨物を導くような設備を設けなければならないとされている。   In addition, when a partial secondary barrier is required, the installation range of the partial secondary barrier is determined based on the leak corresponding to the magnitude of the fracture obtained by applying the load frequency distribution specified in the rule after the first leak is discovered. In any case, the inner bottom plate at the bottom of the tank needs to be protected from leaked cargo, and outside the range of the partial secondary barrier, the leaked cargo in the compartment between the primary barrier and the secondary barrier It is said that equipment that leads to

一方、陸地から離れた海底ガス田開発の進展に伴い、洋上でLNGを生産して貯蔵して積み出しすることができる、浮体式LNG生産貯蔵積み出し設備(LNG Floating Production Storage and Offloading)と呼ばれる洋上浮体式設備が脚光を浴びている。この洋上浮体式設備は、「LNG FPSO」、「Floating LNG」、「FLNG」等と呼ばれているが、海底ガス田に移動して、そのガス田の洋上に停泊して採掘したガスをLNGにして一時的貯蔵し、LNG運搬船に積み出しを行うものである。この洋上浮体式設備の利用によって、今まで開発が困難だった海底ガス田からの天然ガス生産や、海底油田生産時に出る随伴ガスの利用が可能となる。   On the other hand, with the development of offshore gas fields far from the land, the floating LNG production storage and offloading facility that can produce, store and load LNG on the ocean Body equipment is in the spotlight. This offshore floating facility is called "LNG FPSO", "Floating LNG", "FLNG", etc., but it moves to the offshore gas field, and the gas mined by berthing on the offshore of the gas field is LNG Are temporarily stored and shipped to the LNG carrier. By using this offshore floating facility, it will be possible to produce natural gas from offshore gas fields, which have been difficult to develop until now, and to use associated gas generated during offshore oil field production.

この洋上浮体式設備の設計・建造に当たっては、LNG運搬船の技術が応用される。しかしながら、洋上浮体式設備におけるLNGタンクに求められる要件は次の点でLNG運搬船の場合とは異なっている。一つ目は、浮体の上甲板上にLNG生産プラントを搭載するため、広い甲板エリアの確保を可能とする点である。二つ目は、洋上でLNGが随時生産され貯蔵されるため、LNGの貯蔵量は積み出し後から次の積み出しまで、生産量に従って徐々に増加するため、LNG運搬船のように殆ど満載状態を維持できず、任意の液レベルで搭載可能なLNGタンクとする必要があり、スロッシングによる衝撃圧力がタンク壁に作用することを考慮する必要がある点である。三つ目は、ガス田のサイトに係留され続けるため、LNG運搬船のようにドックでの保守点検ができないので、洋上での保守点検の容易性、長期耐用の信頼性が求められる点である。   In designing and constructing this offshore floating facility, the technology of the LNG carrier is applied. However, the requirements for LNG tanks in offshore floating facilities are different from those for LNG carriers in the following respects. The first point is that a large deck area can be secured because the LNG production plant is mounted on the upper deck of the floating body. Second, because LNG is produced and stored on the ocean as needed, the amount of LNG stored gradually increases from one shipment to the next, so it can be almost fully loaded like an LNG carrier. In other words, it is necessary to make the LNG tank mountable at an arbitrary liquid level, and it is necessary to consider that the impact pressure due to sloshing acts on the tank wall. The third point is that since maintenance is not possible at the dock as in the case of an LNG carrier, since it is still moored at the gas field site, ease of maintenance and long-term reliability at sea is required.

これらの要件をすべて満たすLNGタンクとして、LNG運搬船では建造実績のある独立方形タンクが知られているが、この独立方形タンクは、円筒タンクや球形タンクなどがLNG荷重を曲板の膜力によって支えるのに対して、LNG荷重を、非常に多くの防撓材によって補強された平板によって支えるため、他のタンクに比べて、部材数が多く溶接長も長くなるので、製造コストが高くなる。そのため、これに代わる安価な洋上浮体式設備用のLNGタンクシステムの開発が求められている。   As an LNG tank that satisfies all of these requirements, an independent rectangular tank with a track record of construction is known for LNG carriers, but in this independent rectangular tank, a cylindrical tank or a spherical tank supports the LNG load by the membrane force of the curved plate. On the other hand, since the LNG load is supported by a flat plate reinforced by a very large number of stiffeners, the number of members and the weld length are longer than those of other tanks, resulting in an increase in manufacturing cost. Therefore, the development of an inexpensive LNG tank system for offshore floating type facilities is required instead.

このLNG運搬船や洋上浮体式設備の候補のLNGタンクの一つに、タイプCの独立型タンクで、互いに交接する2つの平行な円筒の形状を有する双胴型タンクが提案されている(例えば、特許文献1参照)。しかしながら、このLNGタンクは、タイプCの条件である圧力容器の条件を満たす必要があるため、タンクの容量を大きくしようとすると、強度上の観点から板厚が著しく増加し、重量と製造工数及び製造コストが増加してしまうので、実際の大型タンクにこの方式を採用するのは困難であるという問題がある。   As one of the LNG tanks that are candidates for the LNG carrier and the offshore floating type equipment, a twin-cylinder tank having two parallel cylindrical shapes that intersect each other is proposed as a type C independent tank (for example, Patent Document 1). However, since this LNG tank needs to satisfy the condition of the pressure vessel, which is a type C condition, when attempting to increase the capacity of the tank, the plate thickness increases remarkably from the viewpoint of strength, and the weight, manufacturing man-hours and Since the manufacturing cost increases, there is a problem that it is difficult to adopt this method for an actual large tank.

特開2009−517272号公報JP 2009-517272 A

本発明は、上述の状況を鑑みてなされたものであり、その目的は、独立方形タンクと比較して、タンク構造部材が少なく、建造に必要な溶接長も短い上に、圧力タンクと比較して板厚が薄く溶接管理箇所が少なくて済み、かつ軽量で製造コストを低くでき、しかも、矩形の船体断面形状に対する容積効率に関しても、独立方形タンクに比べて大きくは劣ることのないLNGタンクを有する船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法を提供することにある。   The present invention has been made in view of the above-described situation, and its object is to reduce the number of tank structural members and the welding length required for construction compared to an independent rectangular tank, and to compare it with a pressure tank. The LNG tank is thin and has a small number of welding management points, is lightweight, can be manufactured at low cost, and has a volume efficiency for a rectangular hull cross-sectional shape that is not inferior to that of an independent rectangular tank. An object of the present invention is to provide a marine vessel, an offshore floating facility, and a liquefied natural gas storage method.

上記の目的を達成するための本発明の船舶は、液化天然ガスを運搬する船舶において、前記液化天然ガスを貯蔵する貨物倉を、中心線隔壁を有する双胴円筒型タンクで、かつ、圧力容器ではないタンクで構成するとともに、該タンクの円筒部の下部に、該タンクから漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けて構成する。   In order to achieve the above object, a ship according to the present invention is a ship that transports liquefied natural gas, wherein the cargo hold for storing the liquefied natural gas is a twin-trunk cylindrical tank having a centerline partition wall, and a pressure vessel A drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked from the tank is provided at the bottom of the cylindrical portion of the tank.

上記の目的を達成するための本発明の洋上浮体式設備は、液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備において、前記液化天然ガスを貯蔵する貨物倉を、中心線隔壁を有する双胴円筒型タンクで、かつ、圧力容器ではないタンクで構成するとともに、該タンクの円筒部の下部に、該タンクから漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けて構成する。   In order to achieve the above object, an offshore floating facility according to the present invention is an offshore floating facility that produces, stores, and loads liquefied natural gas. A drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked from the tank is provided at the bottom of the cylindrical portion of the tank. Configure.

上記の目的を達成するための本発明の液化天然ガス貯蔵方法は、液化天然ガスを運搬する船舶、又は、液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備における液化天然ガス貯蔵方法において、圧力容器ではないタンクで構成し、かつ、該タンクの円筒部の下部に漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けた中心線隔壁を有する双胴円筒型タンクに、前記液化天然ガスを貯蔵することを特徴とする方法である。   The liquefied natural gas storage method of the present invention for achieving the above object is a liquefied natural gas storage method in a ship that transports liquefied natural gas or an offshore floating facility that produces, stores, and loads liquefied natural gas. And a tank with a center line provided with a drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked to the lower part of the cylindrical portion of the tank. And storing the liquefied natural gas.

これらの構成及び方法によれば、タイプCの条件である圧力容器の条件を満たす必要がなくなるので、タンクの容量を大きくしても、強度上の観点から板厚を著しく増加する必要がなくなる。更に、独立方形タンクと比較して、タンク構造部材が少なく、建造に必要な溶接長も短い上に、圧力タンクと比較して板厚が薄く溶接管理箇所が少なくて済む。従って、重量と製造工数及び製造コストの増加を抑制でき、しかも、矩形の船体断面形状に対する容積効率が比較的大きく、独立方形タンクの容積効率に比べて大きくは劣ることがない。   According to these configurations and methods, it is not necessary to satisfy the condition of the pressure vessel, which is a type C condition, and therefore it is not necessary to increase the plate thickness from the viewpoint of strength even if the capacity of the tank is increased. Furthermore, compared with an independent square tank, there are few tank structural members, the welding length required for construction is short, and also a plate | board thickness is thin compared with a pressure tank, and there are few welding management locations. Therefore, an increase in weight, manufacturing man-hours, and manufacturing costs can be suppressed, and the volumetric efficiency with respect to the rectangular hull cross-sectional shape is relatively large, which is not significantly inferior to the volumetric efficiency of the independent rectangular tank.

本発明の船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法によれば、独立方形タンクと比較して、タンク構造部材が少なく、建造に必要な溶接長も短い上に、圧力タンクと比較して板厚が薄く溶接管理箇所が少なくて済み、かつ軽量で製造コストを低くでき、しかも、矩形の船体断面形状に対する容積効率に関しても、独立方形タンクに比べて大きくは劣ることのない船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法を提供できる。   According to the ship, offshore floating type equipment, and liquefied natural gas storage method of the present invention, compared with an independent rectangular tank, there are fewer tank structural members, a weld length required for construction is short, and compared with a pressure tank. It is possible to reduce the manufacturing cost by reducing the plate thickness and the number of welding management points, and reducing the manufacturing cost. Furthermore, the volume efficiency for the rectangular hull cross-sectional shape is not much inferior to that of the independent rectangular tank. It is possible to provide an upper floating type facility and a liquefied natural gas storage method.

本発明に係る実施の形態の船舶の構成を示す側断面図である。It is side sectional drawing which shows the structure of the ship of embodiment which concerns on this invention. 図1のY−Y断面図である。It is YY sectional drawing of FIG. 図1のX−X断面図である。It is XX sectional drawing of FIG. タンクの構成を示す側断面図である。It is a sectional side view which shows the structure of a tank. 図4のX1−X1断面図である。It is X1-X1 sectional drawing of FIG. 図4のX2−X2断面図である。It is X2-X2 sectional drawing of FIG. 図4のフィックスサポート部分の拡大図である。It is an enlarged view of the fix support part of FIG. 図4のスライディングサポート部分の拡大図である。It is an enlarged view of the sliding support part of FIG. タンクとドリップパンとの配置関係を示す部分拡大図である。It is a partial enlarged view which shows the arrangement | positioning relationship between a tank and a drip pan. 本発明に係る実施の形態の洋上浮体式設備の構成を示す側面図である。It is a side view which shows the structure of the offshore floating body type equipment of embodiment which concerns on this invention. 図10の平面図である。It is a top view of FIG. 図10のX4−X4断面図の貨物倉内のタンクを示す図である。It is a figure which shows the tank in the cargo hold of X4-X4 sectional drawing of FIG.

以下、図面を参照して本発明に係る実施の形態の船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法について説明する。本発明を適用する対象の船舶は、液化天然ガス(LNG)を運搬する船舶である。   Hereinafter, a ship, an offshore floating facility, and a liquefied natural gas storage method according to embodiments of the present invention will be described with reference to the drawings. The ship to which the present invention is applied is a ship that carries liquefied natural gas (LNG).

図1〜図3に示すように、本発明に係る実施の形態の船舶1は、液化天然ガスを貯蔵する貨物倉2を、船底板3と船側外板4と上甲板5と横隔壁6に囲まれた中に形成する。この貨物倉2の貨物倉内底板2aと船底板3との間に二重底3aを設けると共に、船側外板4側も二重構造にして、座礁や衝突等で船底板3が損傷しても、貨物倉2への浸水を防止できるように構成する。   As shown in FIGS. 1 to 3, a ship 1 according to an embodiment of the present invention includes a cargo hold 2 that stores liquefied natural gas, a ship bottom plate 3, a ship side outer plate 4, an upper deck 5, and a transverse bulkhead 6. Form in the enclosed. The double bottom 3a is provided between the bottom plate 2a and the bottom plate 3 of the cargo hold 2 of the cargo hold 2, and the ship side outer plate 4 side is also made into a double structure so that even if the bottom plate 3 is damaged due to grounding or collision. It is configured to prevent the cargo hold 2 from being flooded.

そして、図4〜図6に示すように、この貨物倉2に、LNGを貯蔵するためのタンクとして、中心線隔壁13を有する双胴円筒型タンクで、かつ、圧力容器ではないタンク10を搭載して構成する。このタンク10は、胴板部シェル11、鏡板部シェル12、中心線隔壁13、前後2条のサポートリング14、制水隔壁15等により構成されている。なお、左右のタンクを等圧に保つために連結管16が装備されている。胴板部シェル11には補強材としてのリングスチフナ11aとドーム11b、ポンプドーム11cが設けられ、中心線隔壁13には防撓材(図示しない)が設けられている。   As shown in FIGS. 4 to 6, the cargo hold 2 is equipped with a tank 10 that is a double-trunk cylindrical tank having a centerline partition wall 13 and is not a pressure vessel as a tank for storing LNG. And configure. The tank 10 includes a body plate shell 11, an end plate shell 12, a centerline partition wall 13, two front and rear support rings 14, a water control partition wall 15, and the like. A connecting pipe 16 is provided to keep the left and right tanks at the same pressure. The body plate shell 11 is provided with a ring stiffener 11a and a dome 11b as a reinforcing material, and a pump dome 11c, and the center line partition wall 13 is provided with a stiffener (not shown).

これらの構造部材のうち、胴板部シェル11及び鏡板部シェル12の大部分は薄膜理論に基づく設計計算式の適用が可能である。この板厚は貨物積載時の静的・動的内圧荷重に対する降伏強度規準により決定される。ただし、図4に示す胴板部シェル11から鏡板部シェル12への移行部(ナックル部)18や、図5に示す胴板部シェル11若しくは鏡板部シェル12と中心線隔壁13との交差部であるY継手部17では局部的な曲げ応力が発生する。そのため、薄膜理論による寸法決定が妥当でない場合があり、そのような箇所では、有限要素法(FEM)を用いた直接強度解析を基に板厚を決定する。また、胴板部シェル11の内面に断面が平板形状のリングスチフナ11aを、タンク10の空倉時の外圧に対する座屈強度規準を満足するように配置する。   Of these structural members, most of the body plate shell 11 and the end plate shell 12 can be applied with a design calculation formula based on a thin film theory. This thickness is determined by the yield strength criteria for static and dynamic internal pressure loads when cargo is loaded. However, the transition part (knuckle part) 18 from the shell plate part shell 11 to the end plate part shell 12 shown in FIG. 4 or the crossing part of the body plate part shell 11 or the end plate part shell 12 and the center line partition wall 13 shown in FIG. A local bending stress is generated at the Y joint portion 17. Therefore, dimension determination by thin film theory may not be appropriate, and in such places, the plate thickness is determined based on direct strength analysis using a finite element method (FEM). In addition, a ring stiffener 11 a having a flat cross section is disposed on the inner surface of the shell plate shell 11 so as to satisfy the buckling strength standard against the external pressure when the tank 10 is empty.

このタンク10の設計蒸気圧は、タイプBのタンクとなるため0.025MPa程度であり、圧力容器とする必要があるタイプCの設計蒸気圧に比べて約1/15以下になるので、タンク10の容量の拡大を図っても、板厚の増加を抑制できる。その結果、建造実績があり、かつ、タイプCの圧力容器である、中心線隔壁を有する双胴円筒型タンクを搭載したLPG船における最大タンク容量(5400m3)の約7倍から8倍以上の容量のタンクを実現することができる。 The design vapor pressure of the tank 10 is about 0.025 MPa because it is a type B tank, and is about 1/15 or less than the design vapor pressure of the type C that needs to be a pressure vessel. Even if the capacity is increased, the increase in plate thickness can be suppressed. As a result, it is about 7 to more than 8 times the maximum tank capacity (5400m 3 ) in an LPG ship equipped with a catamaran cylindrical tank with a centerline bulkhead, which is a type C pressure vessel. A capacity tank can be realized.

また、中心線隔壁13の板厚はY継手部17における膜力の釣り合いにより、胴板部シェル11と鏡板部シェル12と同様に降伏強度規準を満足するように決定するが、中心線隔壁13は緊急時における揚貨や復原性能上、水密隔壁としての機能が要求されているため、片舷タンクのみ満載時の液圧にも耐えられるように防撓材を縦横に配置する。   The plate thickness of the center line partition wall 13 is determined so as to satisfy the yield strength standard in the same manner as the body plate shell 11 and the end plate shell 12 by the balance of the film force at the Y joint portion 17. Since the function of a watertight bulkhead is required for lifting and restoring performance in an emergency, stiffeners are arranged vertically and horizontally to withstand the hydraulic pressure when only one tank is fully loaded.

サポートリング14は船体のタンク支持構造に一致した断面T字型のトランスリング構造となっており、このサポートリング14のリング構造は重要部材であると共に作用する支持反力分布や構造応答が複雑であるため、有限要素法モデルを用いた直接強度解析より得られた応力をベースに、降伏・座屈強度規準を満足するように全体の剛性や部分寸法などを決定する。   The support ring 14 has a T-shaped trans-ring structure that matches the tank support structure of the hull. The ring structure of the support ring 14 is an important member and has a complicated distribution of supporting reaction force and structural response. Therefore, based on the stress obtained from the direct strength analysis using the finite element method model, the overall rigidity and partial dimensions are determined so as to satisfy the yield / buckling strength criteria.

また、タンク10の貯蔵量は積み出し後から次の積み出しまで、生産量に従って徐々に増加するため、LNG運搬船のように殆ど満載状態を維持できないので、積み付け制限を設けずに、任意の液レベルで搭載可能とする。そのため、スロッシングを考慮して、タンク10の長手方向の中央に図6に示すような連通孔15aを有する制水隔壁15を配置する。   In addition, since the storage amount of the tank 10 gradually increases according to the production amount from one shipment to the next, it cannot be almost fully loaded like an LNG carrier. It can be installed with. Therefore, in consideration of sloshing, a water control partition wall 15 having a communication hole 15a as shown in FIG.

タンク10の上にはポンプドーム11cがLNGを排出するために設けられたサンプ11dの直上に設置される。LNG船では、船がアフトトリム(船首側が上となる傾斜姿勢)となっているため、サンプ11dは、船長方向に関してタンク10の後方に設置される。一方、洋上浮体式設備(FLNG)では、基本的にイーブントリム(水平姿勢)を想定しているため、サンプ11dはタンク10の中央部に設置される。   On the tank 10, a pump dome 11c is installed immediately above a sump 11d provided for discharging LNG. In the LNG ship, since the ship has an aft trim (an inclined posture with the bow side up), the sump 11d is installed behind the tank 10 in the captain direction. On the other hand, the offshore floating facility (FLNG) basically assumes an even trim (horizontal posture), so the sump 11d is installed in the center of the tank 10.

図4及び図5に示すように、タンク支持構造20として、タンク10を支持するサポート21、22を設ける。このサポート21、22は、タンク10を搭載する貨物倉2の前後2箇所に設け、船体に固定するサポート(フィックスサポート)21は船体前後方向に関して、図7に示すように、後側(又は前側)に、船体に対してスライド可能なサポート(スライディングサポート)22は、図8に示すように、前側(又は後側)に設置される。その前後位置はタンク構造の全体曲げ及び貨物倉2や二重底3aの構造配置を考慮して決定する。   As shown in FIGS. 4 and 5, supports 21 and 22 that support the tank 10 are provided as the tank support structure 20. The supports 21 and 22 are provided at two positions in the front and rear of the cargo hold 2 on which the tank 10 is mounted, and the support (fixed support) 21 fixed to the hull is the rear side (or front side) as shown in FIG. ), A support (sliding support) 22 slidable with respect to the hull is installed on the front side (or rear side) as shown in FIG. The front-rear position is determined in consideration of the overall bending of the tank structure and the structural arrangement of the cargo hold 2 and the double bottom 3a.

このタンク支持構造20はタンク10に作用する全重量及び動揺による慣性力を船側外板4及び貨物倉2と二重底3aに伝達すると共に、上部には、貨物倉2の浸水時の浮き上がり防止構造25を備えるために、上甲板5を除きほぼタンク10の外側全体にわたるトランスリング構造とする。   This tank support structure 20 transmits the total weight acting on the tank 10 and the inertial force due to shaking to the ship side skin 4 and the cargo hold 2 and the double bottom 3a, and at the top, prevents the cargo hold 2 from floating when it is flooded. In order to provide the structure 25, a trans-ring structure that extends substantially outside the tank 10 except for the upper deck 5 is adopted.

また、図9に示すように、タンク10とタンク支持構造20との間には断熱材と緩衝材を兼ねた強化積層木材23が配置される。この強化積層木材23の設置範囲は、有限要素法モデルを用いた直接強度解析による支持反力分布を参考に、大傾斜時にも設置範囲の端部で過大な反力が発生しないように決定する。更に、図7及び図8に示すように、タンク10のタンク支持構造20に搭載する際に強化積層木材23とタンク支持構造20との間の隙間に充填樹脂24を充填して間を塞ぐ。この強化積層木材23の範囲は、例えば、図5の円弧状の太線部で示すように、タンク10の下側を覆って、タンク10の上下方向中心の真横の位置(水平位置)程度まで設置される。   Further, as shown in FIG. 9, a reinforced laminated wood 23 serving as a heat insulating material and a buffer material is disposed between the tank 10 and the tank support structure 20. The installation range of the reinforced laminated wood 23 is determined so that an excessive reaction force is not generated at the end of the installation range even at a large inclination with reference to a support reaction force distribution by direct strength analysis using a finite element method model. . Further, as shown in FIGS. 7 and 8, when the tank 10 is mounted on the tank support structure 20, the gap between the reinforced laminated wood 23 and the tank support structure 20 is filled with a filling resin 24 to close the gap. The range of the reinforced laminated wood 23 is set up to a position (horizontal position) right next to the center in the vertical direction of the tank 10 so as to cover the lower side of the tank 10 as shown by an arc-shaped thick line portion in FIG. Is done.

また、タンク支持構造20は、タンク10の熱収縮を、図8に示すように、前部のスライディングするサポート22で、周方向についてはサポート22の下部台座と強化積層木材23の間の滑りで吸収し、過大な熱応力が発生しないように設計する。また、国際海事機関(IMO)の規準で要求されている衝突時の前後方向加速度に対しては、後部の固定のサポート21で支持できるようにサポート21,22及び二重底3aの構造の剛性を決定する。   Further, the tank support structure 20 causes the heat shrinkage of the tank 10 to be caused by sliding between the lower base of the support 22 and the reinforced laminated wood 23 in the circumferential direction, as shown in FIG. It is designed to absorb and avoid excessive thermal stress. In addition, for the longitudinal acceleration at the time of collision required by the International Maritime Organization (IMO) standards, the rigidity of the structures of the supports 21 and 22 and the double bottom 3a so that they can be supported by the fixed support 21 at the rear. To decide.

そして、更に、図9に示すように、タンク10の円筒部の下部に、タンク10から漏洩した液化天然ガスLを受ける部分二次防壁としてのドリップパン40を設ける。また、防熱構造26は、ポリウレタンに代表されるポリマー系断熱材から構成される。   Further, as shown in FIG. 9, a drip pan 40 as a partial secondary barrier that receives the liquefied natural gas L leaked from the tank 10 is provided at the lower portion of the cylindrical portion of the tank 10. Moreover, the heat insulation structure 26 is comprised from the polymer-type heat insulating material represented by the polyurethane.

図10〜図12に示すように、本発明に係る実施の形態の洋上浮上式設備1Aは、本発明に係る実施の形態の船舶1の船体構造とほぼ同じ構造で形成され、液化天然ガスを貯蔵するための本発明に係る実施の形態の船舶1のタンク10と同じ構造の、つまり、中心線隔壁を有する双胴円筒型タンクで、かつ、圧力容器ではないタンク10Aを貨物倉2Aに搭載して構成する。   As shown in FIGS. 10 to 12, the offshore floating type facility 1 </ b> A according to the embodiment of the present invention is formed with substantially the same structure as the hull structure of the ship 1 according to the embodiment of the present invention. A tank 10A having the same structure as that of the tank 10 of the ship 1 according to the present invention for storing, that is, a double-trunk cylindrical tank having a centerline partition wall and not a pressure vessel is mounted in the cargo hold 2A. And configure.

この洋上浮上式設備1Aは、船舶1とは異なって、上甲板5Aの下の浮体内設備として、LNG生産に必要な電力や蒸気等のユーテリティを供給するためのユーテリティ機器を備えた機械室が、船首部と船尾部にそれぞれ船首機械室51と船尾機械室52として設けられる。   Unlike the ship 1, this offshore levitation equipment 1A has a machine room equipped with utility equipment for supplying utilities such as electric power and steam necessary for LNG production as a floating body equipment under the upper deck 5A. The bow machine room 51 and the stern machine room 52 are provided at the bow part and the stern part, respectively.

また、浮体内設備として、生産されたLNGを積み出しまで貯蔵するタンク10Aを搭載した貨物倉2A以外に、図示しないが、天然ガスから分離したコンデンセートを貯蔵するコンデンセートタンク、タンク10Aの貯蔵量の変化に応じて洋上浮上式設備1Aの姿勢を調整するためのバラストタンク等を備えて形成される。   In addition to the cargo hold 2A equipped with a tank 10A for storing produced LNG until shipment, as a floating body facility, although not shown, a condensate tank for storing condensate separated from natural gas, a change in the storage amount of the tank 10A The ballast tank and the like for adjusting the attitude of the offshore floating type equipment 1A are formed.

また、上甲板5Aの上には、1点係留用外部タレット53、天然ガス採掘装置54、ガス田から採掘された天然ガス中に含まれている酸性ガス等の不純物を除去して液化する液化天然ガス生産設備55、居住設備56、ヘリコプターデッキ57等が設けられる。   Further, on the upper deck 5A, a liquefaction that removes and liquefies impurities such as acid gas contained in the natural gas mined from the one point mooring external turret 53, natural gas mining device 54, and gas field. A natural gas production facility 55, a living facility 56, a helicopter deck 57, and the like are provided.

この洋上浮体式設備1Aでは、従来技術のLNG運搬船に比べて、容量を大きくしたタンク10Aを採用することで、タンク数を少なくして、洋上浮体式設備1Aの限られたスペースを有効利用できるようにしている。また、洋上浮体式設備1Aでは、適切に分散配置されたバラストタンクへの注水量をそれぞれ調整して、タンク10Aの貯蔵量の変化に応じて洋上浮体式設備1Aの姿勢を調整するので、LNG船のようにトリムの発生が無く、常時、水平状態を維持できる。   The offshore floating facility 1A can effectively use the limited space of the offshore floating facility 1A by adopting the tank 10A having a larger capacity than the LNG carrier of the prior art, thereby reducing the number of tanks. I am doing so. Further, in the offshore floating facility 1A, the amount of water injected into the ballast tanks appropriately distributed is adjusted, and the attitude of the offshore floating facility 1A is adjusted according to the change in the storage amount of the tank 10A. There is no generation of trim like a ship, and it can maintain a horizontal state at all times.

そして、本発明の実施の形態の液化天然ガス貯蔵方法は、液化天然ガスを運搬する船舶1、又は、液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備1Aにおける液化天然ガス貯蔵方法において、圧力容器ではないタンクで構成し、かつ、このタンク10、10Aの円筒部の下部に漏洩したLNGを受ける部分二次防壁としてのドリップパン40を設けた中心線隔壁13を有する双胴円筒型タンク10、10Aに、LNGを貯蔵することを特徴とする方法である。   And the liquefied natural gas storage method of embodiment of this invention is the liquefied natural gas storage method in the ship 1 which conveys liquefied natural gas, or the offshore floating-type equipment 1A which produces, stores and unloads liquefied natural gas. And a central cylinder 13 having a drip pan 40 as a partial secondary barrier for receiving a leaked LNG at the lower part of the cylindrical portion of the tank 10 or 10A. LNG is stored in the mold tanks 10 and 10A.

これらの構成及び方法によれば、液化天然ガスを搭載するタンク10、10AがタイプCの条件である圧力容器の条件を満たす必要がなくなるので、タンク10、10Aの容量を大きくしても、強度上の観点から板厚を著しく増加する必要がなくなる。更に、独立方形タンクと比較して、タンク構造部材が少なく、建造に必要な溶接長も短い上に、圧力タンクと比較して板厚が薄く溶接管理箇所が少なくて済む。従って、重量と製造工数及び製造コストの増加を抑制でき、しかも、矩形の船体断面形状に対する容積効率が比較的大きく、独立方形タンクの容積効率に比べて大きくは劣ることがない。   According to these configurations and methods, the tanks 10 and 10A loaded with liquefied natural gas need not satisfy the conditions of the pressure vessel, which is a type C condition. From the above viewpoint, it is not necessary to significantly increase the plate thickness. Furthermore, compared with an independent square tank, there are few tank structural members, the welding length required for construction is short, and also a plate | board thickness is thin compared with a pressure tank, and there are few welding management locations. Therefore, an increase in weight, manufacturing man-hours, and manufacturing costs can be suppressed, and the volumetric efficiency with respect to the rectangular hull cross-sectional shape is relatively large, which is not significantly inferior to the volumetric efficiency of the independent rectangular tank.

本発明の船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法によれば、独立方形タンクと比較して、タンク構造部材が少なく、建造に必要な溶接長も短い上に、圧力タンクと比較して板厚が薄く溶接管理箇所が少なくて済み、かつ軽量で製造コストを低くでき、しかも、矩形の船体断面形状に対する容積効率に関しても、独立方形タンクに比べて大きくは劣ることのない液化天然ガスタンクを有する船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法を提供することができるので、液化天然ガスを運搬する船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法として利用できる。   According to the ship, offshore floating type equipment, and liquefied natural gas storage method of the present invention, compared with an independent rectangular tank, there are fewer tank structural members, a weld length required for construction is short, and compared with a pressure tank. This is a liquefied natural gas tank that has a small plate thickness, requires fewer welding management points, is lightweight, can be manufactured at low cost, and is not significantly inferior to an independent rectangular tank in terms of volumetric efficiency for a rectangular hull cross-sectional shape. Can be provided as a ship for transporting liquefied natural gas, an offshore floating facility, and a liquefied natural gas storage method.

1 船舶
1A 洋上浮体式設備
2、2A 貨物倉
10、10A タンク
11 胴板部シェル
12 鏡板部シェル
13 中心線隔壁
14 サポートリング
15 制水隔壁
16 連結管
17 Y継手部
18 移行部(ナックル部)
20 タンク支持構造
21 サポート(フィックスサポート)
22 サポート(スライディングサポート)
23 強化積層木材
24 充填樹脂
25 浮き上がり防止構造
40 ドリップパン
DESCRIPTION OF SYMBOLS 1 Ship 1A Offshore floating type equipment 2, 2A Cargo hold 10, 10A Tank 11 Shell plate shell 12 End plate shell 13 Centerline partition 14 Support ring 15 Water control partition 16 Connection pipe 17 Y joint 18 Transition part (knuckle part)
20 Tank support structure 21 Support (fix support)
22 Support (sliding support)
23 Reinforced laminated wood 24 Filling resin 25 Lifting prevention structure 40 Drip pan

Claims (3)

液化天然ガスを運搬する船舶において、前記液化天然ガスを貯蔵する貨物倉を、中心線隔壁を有する双胴円筒型タンクで、かつ、圧力容器ではないタンクで構成するとともに、該タンクの円筒部の下部に、該タンクから漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けたことを特徴とする船舶。   In a ship carrying liquefied natural gas, the cargo hold for storing the liquefied natural gas is composed of a double-trunk cylindrical tank having a centerline partition wall and a tank that is not a pressure vessel, and the cylindrical portion of the tank A ship provided with a drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked from the tank at a lower part. 液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備において、前記液化天然ガスを貯蔵する貨物倉を、中心線隔壁を有する双胴円筒型タンクで、かつ、圧力容器ではないタンクで構成するとともに、該タンクの円筒部の下部に、該タンクから漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けたことを特徴とする洋上浮体式設備。   In offshore floating facilities that produce, store and ship liquefied natural gas, the cargo hold for storing the liquefied natural gas is composed of a double-trunk cylindrical tank having a centerline partition and a tank that is not a pressure vessel And a drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked from the tank is provided below the cylindrical portion of the tank. 液化天然ガスを運搬する船舶、又は、液化天然ガスを生産して貯蔵して積み出しする洋上浮体式設備における液化天然ガス貯蔵方法において、圧力容器ではないタンクで構成し、かつ、該タンクの円筒部の下部に漏洩した前記液化天然ガスを受ける部分二次防壁としてのドリップパンを設けた中心線隔壁を有する双胴円筒型タンクに、前記液化天然ガスを貯蔵することを特徴とする液化天然ガス貯蔵方法。   In a liquefied natural gas storage method in a ship that transports liquefied natural gas or an offshore floating facility that produces, stores, and unloads liquefied natural gas, it is constituted by a tank that is not a pressure vessel, and a cylindrical portion of the tank The liquefied natural gas storage is characterized in that the liquefied natural gas is stored in a twin-cylinder cylindrical tank having a centerline partition wall provided with a drip pan as a partial secondary barrier for receiving the liquefied natural gas leaked to the lower part of the tank Method.
JP2012049290A 2012-03-06 2012-03-06 Ship, offshore floating facility, and liquefied natural gas storage method Active JP5785118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049290A JP5785118B2 (en) 2012-03-06 2012-03-06 Ship, offshore floating facility, and liquefied natural gas storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049290A JP5785118B2 (en) 2012-03-06 2012-03-06 Ship, offshore floating facility, and liquefied natural gas storage method

Publications (2)

Publication Number Publication Date
JP2013184504A true JP2013184504A (en) 2013-09-19
JP5785118B2 JP5785118B2 (en) 2015-09-24

Family

ID=49386344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049290A Active JP5785118B2 (en) 2012-03-06 2012-03-06 Ship, offshore floating facility, and liquefied natural gas storage method

Country Status (1)

Country Link
JP (1) JP5785118B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021428A1 (en) * 2014-08-08 2016-02-11 三井造船株式会社 Ocean float structure
WO2016059661A1 (en) * 2014-10-16 2016-04-21 川崎重工業株式会社 Ship tank support structure
KR20160002007U (en) * 2014-12-03 2016-06-13 대우조선해양 주식회사 Sump tank and support combination structure for unloading of pressure vessel and the ship or offshore platform including the same
CN105984563A (en) * 2015-02-03 2016-10-05 中集船舶海洋工程设计研究院有限公司 Two-body liquid cargo tank and liquid cargo ship
JP2017114267A (en) * 2015-12-24 2017-06-29 三井海洋開発株式会社 Floating equipment, mooring method of the same, maintenance method of the same, and evacuation method in the same
JP2017114265A (en) * 2015-12-24 2017-06-29 三井海洋開発株式会社 Tank structure of floating body, ship, floating body facility, tank installation method on floating body, and tank maintenance method on floating body
JP2017530052A (en) * 2014-10-08 2017-10-12 エスビーエム・シーダム・ビー.ブイ.SBM Schiedam B.V. LNG carrier and method for manufacturing LNG carrier
JP2018111485A (en) * 2016-11-07 2018-07-19 アーツェー‐イノックス ゲーエムベーハー Multi-lobe cargo tank
JP2019500275A (en) * 2016-01-12 2019-01-10 エクセラレイト・リクェファクション・ソリューションズ・エルエルシー Natural gas liquefaction ship
KR20190013524A (en) 2017-07-31 2019-02-11 카와사키 주코교 카부시키 카이샤 Bi-lobe tank
JP2019108120A (en) * 2017-12-18 2019-07-04 マン・エナジー・ソリューションズ・エスイー Tank system for vessel
CN110356512A (en) * 2019-07-22 2019-10-22 浙江新乐造船股份有限公司 A kind of liquefied natural gas boat-carrying binary storage tank and its manufacturing method
KR20210016174A (en) * 2019-08-01 2021-02-15 삼성중공업 주식회사 Support structure for liquified-gas tank
KR20220086666A (en) 2019-11-29 2022-06-23 미츠비시 조우센 가부시키가이샤 support structure of tanks, ships
NL2027095B1 (en) * 2020-12-11 2022-07-08 Titan Lng B V Liquefied Natural Gas Bunker Ship
WO2023032615A1 (en) * 2021-09-03 2023-03-09 川崎重工業株式会社 Liquefied hydrogen tank and method for designing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994924B1 (en) * 2017-06-22 2019-09-24 삼성중공업 주식회사 Tank for storing lng
KR102162517B1 (en) * 2018-03-19 2020-10-06 한국조선해양 주식회사 Pressure Tank and Ship having the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004509A (en) * 1958-01-31 1961-10-17 Leroux Rene Ships designed for the transport of liquefied gases
GB948566A (en) * 1961-10-05 1964-02-05 Kieler Howaldtswerke Ag Pressure tank for transporting liquefied gases on ships
JPS57194892U (en) * 1981-06-04 1982-12-10
JPH0717467A (en) * 1993-06-30 1995-01-20 Mitsui Eng & Shipbuild Co Ltd Device for evaporating leaked cargo
FR2710310A1 (en) * 1993-09-20 1995-03-31 Technigaz Ste Nouvelle Method for transporting products such as propane, butane or the like and transport arrangement for implementing this method
JPH092576A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Supporting apparatus for liquefied gas tank
JPH094795A (en) * 1995-06-15 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Liquefied gas tank
JPH09508600A (en) * 1994-01-28 1997-09-02 クファルナー マリタイム アクテスカベット Tanks for cryogenic fluids, especially liquefied natural gas
JP2010519480A (en) * 2007-02-26 2010-06-03 ジャー グループ エーエス Support structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004509A (en) * 1958-01-31 1961-10-17 Leroux Rene Ships designed for the transport of liquefied gases
GB948566A (en) * 1961-10-05 1964-02-05 Kieler Howaldtswerke Ag Pressure tank for transporting liquefied gases on ships
JPS57194892U (en) * 1981-06-04 1982-12-10
JPH0717467A (en) * 1993-06-30 1995-01-20 Mitsui Eng & Shipbuild Co Ltd Device for evaporating leaked cargo
FR2710310A1 (en) * 1993-09-20 1995-03-31 Technigaz Ste Nouvelle Method for transporting products such as propane, butane or the like and transport arrangement for implementing this method
JPH09508600A (en) * 1994-01-28 1997-09-02 クファルナー マリタイム アクテスカベット Tanks for cryogenic fluids, especially liquefied natural gas
JPH094795A (en) * 1995-06-15 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Liquefied gas tank
JPH092576A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Supporting apparatus for liquefied gas tank
JP2010519480A (en) * 2007-02-26 2010-06-03 ジャー グループ エーエス Support structure

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037214A (en) * 2014-08-08 2016-03-22 三井造船株式会社 Offshore floating body structure
WO2016021428A1 (en) * 2014-08-08 2016-02-11 三井造船株式会社 Ocean float structure
CN106660611A (en) * 2014-08-08 2017-05-10 三井造船株式会社 Ocean float structure
JP2017530052A (en) * 2014-10-08 2017-10-12 エスビーエム・シーダム・ビー.ブイ.SBM Schiedam B.V. LNG carrier and method for manufacturing LNG carrier
JP6170636B2 (en) * 2014-10-16 2017-07-26 川崎重工業株式会社 Support structure for marine tanks
WO2016059661A1 (en) * 2014-10-16 2016-04-21 川崎重工業株式会社 Ship tank support structure
JPWO2016059661A1 (en) * 2014-10-16 2017-08-31 川崎重工業株式会社 Support structure for marine tanks
CN106796000A (en) * 2014-10-16 2017-05-31 川崎重工业株式会社 The support structures of ship storage tank
KR20160002007U (en) * 2014-12-03 2016-06-13 대우조선해양 주식회사 Sump tank and support combination structure for unloading of pressure vessel and the ship or offshore platform including the same
KR200482288Y1 (en) * 2014-12-03 2017-01-06 대우조선해양 주식회사 Sump tank and support combination structure for unloading of pressure vessel and the ship or offshore platform including the same
CN105984563A (en) * 2015-02-03 2016-10-05 中集船舶海洋工程设计研究院有限公司 Two-body liquid cargo tank and liquid cargo ship
JP2017114265A (en) * 2015-12-24 2017-06-29 三井海洋開発株式会社 Tank structure of floating body, ship, floating body facility, tank installation method on floating body, and tank maintenance method on floating body
JP2017114267A (en) * 2015-12-24 2017-06-29 三井海洋開発株式会社 Floating equipment, mooring method of the same, maintenance method of the same, and evacuation method in the same
JP2019500275A (en) * 2016-01-12 2019-01-10 エクセラレイト・リクェファクション・ソリューションズ・エルエルシー Natural gas liquefaction ship
JP2018111485A (en) * 2016-11-07 2018-07-19 アーツェー‐イノックス ゲーエムベーハー Multi-lobe cargo tank
KR102129514B1 (en) * 2017-07-31 2020-07-03 카와사키 주코교 카부시키 카이샤 Bi-lobe tank
JP2019026328A (en) * 2017-07-31 2019-02-21 川崎重工業株式会社 Twin hull type tank
CN109319319A (en) * 2017-07-31 2019-02-12 川崎重工业株式会社 Double body type tank
KR20190013524A (en) 2017-07-31 2019-02-11 카와사키 주코교 카부시키 카이샤 Bi-lobe tank
JP7079574B2 (en) 2017-07-31 2022-06-02 川崎重工業株式会社 Catamaran tank
JP7262216B2 (en) 2017-12-18 2023-04-21 マン・エナジー・ソリューションズ・エスイー marine tank system
JP2019108120A (en) * 2017-12-18 2019-07-04 マン・エナジー・ソリューションズ・エスイー Tank system for vessel
KR102673483B1 (en) * 2017-12-18 2024-06-07 만 에너지 솔루션즈 에스이 Ship tank system
CN110356512A (en) * 2019-07-22 2019-10-22 浙江新乐造船股份有限公司 A kind of liquefied natural gas boat-carrying binary storage tank and its manufacturing method
KR102670659B1 (en) * 2019-08-01 2024-05-30 삼성중공업 주식회사 Support structure for liquified-gas tank
KR20210016174A (en) * 2019-08-01 2021-02-15 삼성중공업 주식회사 Support structure for liquified-gas tank
KR20220086666A (en) 2019-11-29 2022-06-23 미츠비시 조우센 가부시키가이샤 support structure of tanks, ships
NL2027095B1 (en) * 2020-12-11 2022-07-08 Titan Lng B V Liquefied Natural Gas Bunker Ship
WO2023032615A1 (en) * 2021-09-03 2023-03-09 川崎重工業株式会社 Liquefied hydrogen tank and method for designing same

Also Published As

Publication number Publication date
JP5785118B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5785118B2 (en) Ship, offshore floating facility, and liquefied natural gas storage method
US9415841B2 (en) LNG ship
US9545980B2 (en) Ultra large marine floating system
JP5732347B2 (en) Tank support structure and floating structure
JP6496489B2 (en) LNG ship or LPG ship
KR20090130267A (en) Liquefied natural gas carrier vessel, and marine transportation method for liquefied natural gas
NO331660B1 (en) Device for liquid production of LNG and method for converting an LNG ship to such device
CN102149598A (en) Floating unit for storage of gas
KR101041782B1 (en) Floating ocean structure having indenpendent typed lng storage tank
KR102006691B1 (en) Vessel having independent type storage tank
KR101221547B1 (en) Floating structure having roll motion reduction structure
US20170320548A1 (en) Lng ship
KR20130063573A (en) Topside load support structure of floating ocean construct
KR20100133700A (en) Ship type floating ocean structure having improved flat upper deck structure
JP2019523731A (en) Ship equipped with a plurality of storage tanks for transporting fluids
KR20120031045A (en) Topside load support structure of floating ocean construct
US10081412B2 (en) Floating vessel with tank trough deck
KR101686503B1 (en) Floating structure having roll motion reduction structure
JP2020152248A (en) Vessel
KR101180959B1 (en) Ship type floating ocean structure
KR101936909B1 (en) Liquefied gas storage tank of marine structure
KR101337273B1 (en) Topside load support structure of floating ocean construct
KR101498243B1 (en) Floating ocean construct
KR20190058122A (en) Semi-submersible ocean structure having lng storage tank
KR20190079038A (en) Pump Tower Structure and Ship Having the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5785118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350