JP2013184199A - Nozzle with gas injection function - Google Patents

Nozzle with gas injection function Download PDF

Info

Publication number
JP2013184199A
JP2013184199A JP2012052054A JP2012052054A JP2013184199A JP 2013184199 A JP2013184199 A JP 2013184199A JP 2012052054 A JP2012052054 A JP 2012052054A JP 2012052054 A JP2012052054 A JP 2012052054A JP 2013184199 A JP2013184199 A JP 2013184199A
Authority
JP
Japan
Prior art keywords
nozzle
hole
gas
holes
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012052054A
Other languages
Japanese (ja)
Inventor
Joji Kurisu
譲二 栗栖
Koichi Tachikawa
孝一 立川
Hiroshi Otsuka
大塚  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2012052054A priority Critical patent/JP2013184199A/en
Publication of JP2013184199A publication Critical patent/JP2013184199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a through-hole type nozzle that keeps integrity as a structure adjacent to at least a gas discharge port of a nozzle body formed of refractory and has a gas injection function difficult to break.SOLUTION: In a nozzle 20 that has a function of discharging molten steel in a vessel and injects an inert gas into the molten steel, a through hole 5 as a gas passage route is provided in three-dimensional and nonlinear manner so that the entire through hole may not be included within the same plane in any virtual directions including a virtual straight line connecting an end 5a on the side of a gas pool 2 with a gas discharge port 4.

Description

本発明は、鋼の連続鋳造においてタンディッシュ等の容器内の溶鋼を内孔より排出するノズルであって、その内孔面から不活性ガスを注入する機能を備えたノズル、特に貫通孔式のガス通過経路を備えた耐火物製のノズルに関する。   The present invention is a nozzle that discharges molten steel in a container such as a tundish from an inner hole in continuous casting of steel, and has a function of injecting an inert gas from the inner hole surface, particularly a through-hole type nozzle. The present invention relates to a refractory nozzle having a gas passage.

鋼の連続鋳造用のノズル、特にタンディッシュからモールドに溶鋼を排出するためにタンディッシュの底部に設置されるノズルでは、その内孔面に溶鋼由来のアルミナ等の介在物が付着することによるノズル閉塞が生じやすい。そのため、内孔面への介在物付着防止、その他溶鋼撹拌等の目的で、ノズルの内孔面から不活性ガスを溶鋼中に注入することが多く行われている。   Nozzles for continuous casting of steel, especially nozzles installed at the bottom of the tundish to discharge molten steel from the tundish to the mold, the nozzles due to inclusion of inclusions such as alumina derived from the molten steel on the inner hole surface Obstruction is likely to occur. Therefore, in many cases, an inert gas is injected into the molten steel from the inner hole surface of the nozzle for the purpose of preventing inclusions from adhering to the inner hole surface and stirring the molten steel.

このようなノズルとしては、その本体を多孔質の耐火物で構成し、耐火物内の気孔をガスの通過経路として、内孔面のほぼ全体からガスを溶鋼中に注入するポーラス式のノズルがある。   As such a nozzle, there is a porous nozzle in which the main body is composed of a porous refractory, and the pores in the refractory are used as gas passages to inject gas into the molten steel from almost the entire inner surface. is there.

また、ポーラス式のノズルのほかに、いわゆる貫通孔式のノズルが使用されることもある。この貫通孔式のノズルは、ノズルの耐食性や耐摩耗性等を向上させる等の目的から、ノズル本体を緻密な耐火物で構成し、その耐火物組織内に貫通孔を形成したものである。この貫通孔は、溶鋼が侵入しない程度に小さな断面積のトンネル状の空間であって、ノズル本体の耐火物内部又はノズル本体とその外周面側に配置されたメタルケースとの間に設けたガスプールと、内孔面に設けたガス吐出口との間を貫通するガスの通過経路である。   In addition to a porous nozzle, a so-called through-hole nozzle may be used. In this through-hole type nozzle, for the purpose of improving the corrosion resistance, wear resistance, etc. of the nozzle, the nozzle body is composed of a dense refractory material and a through-hole is formed in the refractory structure. This through-hole is a tunnel-like space with a cross-sectional area that is small enough to prevent molten steel from entering, and is a gas provided inside the refractory of the nozzle body or between the nozzle body and the metal case disposed on the outer peripheral surface side. This is a gas passage route passing between the pool and a gas discharge port provided on the inner hole surface.

このような貫通孔式のノズルは、ノズル本体を緻密な組織の耐火物で構成しているので、ポーラス式のノズルと比較して耐食性や耐摩耗性には優れるが、耐熱衝撃性に劣る傾向がある。更に、貫通孔の部分は構造体の中では「欠陥」でもあり、熱的又は機械的な応力が集中して破壊の起点になりやすいという欠点をも有している。特に、溶鋼の排出開始若しくは停止又は流量制御を内孔上端へのストッパーの嵌合操作で行う場合には、当該ストッパーの操作自体が、ノズルに直接衝撃や圧縮等を加える機械的外力となって、貫通孔式のノズルを破壊する危険性が高くなる。これらの熱的又は機械的な応力によるノズルの破壊は、内孔の溶鋼通過方向を縦軸方向とすると、主としてその縦軸方向に平行な方向、及びその縦軸方向に垂直な方向(横方向)に延びる亀裂等(図4(b)の符号11及び12)として発現しやすい。   Such a through-hole type nozzle is composed of a refractory with a dense structure in the nozzle body, so it has better corrosion resistance and wear resistance than a porous type nozzle, but tends to be inferior in thermal shock resistance. There is. Furthermore, the through-hole portion is also a “defect” in the structure, and has a drawback that thermal or mechanical stress is concentrated and tends to be a starting point of fracture. In particular, when the molten steel discharge is started or stopped or the flow rate is controlled by fitting a stopper to the upper end of the inner hole, the operation of the stopper itself becomes a mechanical external force that directly applies an impact or compression to the nozzle. The risk of destroying the through-hole type nozzle is increased. The destruction of the nozzle due to these thermal or mechanical stresses is mainly caused by the direction parallel to the longitudinal direction and the direction perpendicular to the longitudinal direction (lateral direction), where the molten steel passage direction of the inner hole is the longitudinal direction. ) And the like (symbols 11 and 12 in FIG. 4B).

従来、貫通孔式のノズルにおいてその貫通孔の配置構造については、例えば特許文献1及び2のように、ノズルを縦方向(上・下方向)で複数段にグループ分けし、グループごとに複数の貫通孔を配置し、貫通孔自体は直線状の経路とし、また、そのグループごとの複数の貫通孔の各貫通孔のほぼ全体は当該ノズルの横方向の同一平面上に存在し、更にはそのように直線状に存在する各貫通孔が複数存在する場合に、ノズルの縦方向の或る断面及び横方向の或る断面それぞれにつき、同一の平面内にも存在するように配置されることが一般的である(図4(a)及び図5参照)。具体的には、貫通孔を含むノズル横方向の任意の断面(平面)において、その同一断面(平面)内に複数の貫通孔が存在する状態となっている。また、ノズル縦方向の任意の断面においても、前述と同様に同一平面内に配置されていることが多い。なお、ノズルの外周側から内孔側に向かって、いずれかの方向に傾斜(角度)を有する場合にも、例えば特許文献3のように各貫通孔はそのほぼ全体及び複数の貫通孔が、いずれかの方向、少なくともノズル縦方向の任意の断面(平面)においては、同一の断面(平面)内に存在することが多い。   Conventionally, with regard to the arrangement structure of through-holes in a through-hole type nozzle, for example, as in Patent Documents 1 and 2, the nozzles are grouped into a plurality of stages in the vertical direction (up / down direction), and a plurality of nozzles are arranged for each group Through holes are arranged, the through holes themselves are linear paths, and almost all of the through holes of the plurality of through holes in each group exist on the same plane in the lateral direction of the nozzle, and further Thus, when there are a plurality of through holes that exist in a straight line, each of a certain cross section in the vertical direction and a certain cross section in the horizontal direction of the nozzle may be arranged so as to exist in the same plane. It is general (refer FIG. 4 (a) and FIG. 5). Specifically, in an arbitrary cross section (plane) in the lateral direction of the nozzle including the through hole, a plurality of through holes exist in the same cross section (plane). Further, in any cross section in the nozzle vertical direction, they are often arranged in the same plane as described above. In addition, even when it has an inclination (angle) in either direction from the outer peripheral side of the nozzle toward the inner hole side, for example, as in Patent Document 3, each through-hole is substantially the entire and a plurality of through-holes, In any direction, at least in any cross section (plane) in the nozzle longitudinal direction, the same cross section (plane) is often present.

しかしながら前記特許文献1〜3のように、貫通孔を直線状に配置した場合、貫通孔を起点に亀裂ないしは破壊が生じることが多い。また、そのような直線状の貫通孔を同一平面内に包含されるように配置すると、更にその平面に亀裂ないしは破壊が集中して生じ、その貫通孔又は平面からノズル本体の耐火物の広範囲に破壊が進展することが多い。破壊がたとえ亀裂程度であっても、その亀裂を含む破壊部分が新たなガスの通過経路となって、更にその周囲ではガスによる応力が増加し、破壊を助長することになる。   However, when the through holes are arranged linearly as in Patent Documents 1 to 3, cracks or breakage often occurs starting from the through holes. In addition, if such a linear through hole is arranged so as to be included in the same plane, cracks or breakage is further concentrated in the plane, and the refractory material of the nozzle body is spread over a wide range from the through hole or plane. Destruction often progresses. Even if the fracture is about a crack, the fractured portion including the crack becomes a new gas passage, and further, the stress due to the gas increases around the fracture path, thereby promoting the fracture.

一方では、このような亀裂等の破壊部分が新たなガスの通過経路となると、ガスの吐出箇所数、貫通孔端部のガス吐出口の開口面積等が規則性なく増大する。そうすると、ガス吐出口ごとのガスの吐出量、吐出速度、吐出方向・状態等も大きく変動し、更には全ガス吐出量も予測を超えて変動することになる。その結果、意図した設計(当初の仕様)どおりの内孔面からの均一なガス吐出を行うことができず、内孔面への介在物等の付着を招来したり、溶鋼撹拌や介在物浮上等の効果も低下するか不安定になることになる。   On the other hand, when such a broken portion such as a crack becomes a new gas passage, the number of gas discharge locations, the opening area of the gas discharge port at the end of the through hole, etc. increase without regularity. As a result, the gas discharge amount, discharge speed, discharge direction / state, etc. of each gas discharge port greatly fluctuate, and the total gas discharge amount also fluctuates beyond prediction. As a result, uniform gas discharge from the inner hole surface as intended (initial specification) cannot be performed, causing inclusions to adhere to the inner hole surface, stirring of molten steel, and floating of inclusions. Such effects will also be reduced or become unstable.

このように従来技術では、ガス注入機能を備えるノズルの貫通孔は、ほとんどガスの流出機能・特性に重点を置いて配置されることが多く、破壊に対してはノズル本体の耐火物の成分や組成の変更による物性面の最適化等で改善しようとすることはあるものの、破壊防止の観点で貫通孔の配置構造が検討されることはなかった。すなわち、貫通孔式のノズルの破壊防止、ガスの安定供給のための対策は、依然として十分ではない。   As described above, in the prior art, the through hole of the nozzle having the gas injection function is often arranged with an emphasis on the gas outflow function / characteristic, and the refractory component of the nozzle body and Although attempts were made to improve it by optimizing the physical properties by changing the composition, the arrangement structure of the through holes was not studied from the viewpoint of preventing breakage. That is, measures for preventing breakage of the through-hole nozzle and stable gas supply are still insufficient.

特開平11−314142号公報JP-A-11-314142 実開昭60−160965号公報Japanese Utility Model Publication No. 60-160965 特開2005−279729号公報JP 2005-279729 A

本発明が解決しようとする課題は、耐火物からなるノズル本体の少なくともガス吐出口近傍につき構造体としての一体性を保持しつつ、破壊し難いガス注入機能を備えた貫通孔式のノズルを提供することにある。ひいては、ガスの安定供給、及びノズル内孔面への溶鋼等由来の介在物付着ないしはその増大によるノズル閉塞防止に寄与することを目的とする。   The problem to be solved by the present invention is to provide a through-hole type nozzle having a gas injection function that is difficult to break while maintaining the integrity as a structure at least in the vicinity of a gas discharge port of a nozzle body made of a refractory. There is to do. As a result, it aims at contributing to the stable supply of gas and the prevention of nozzle blockage due to the inclusion or the increase of inclusions derived from molten steel on the inner surface of the nozzle.

本発明のガス注入機能を備えたノズルは、次の(1)〜(4)の特徴を備えたノズルである。
(1)容器内の溶鋼を排出すると共に溶鋼内に不活性ガスを注入する機能を備えたノズルであって、
溶鋼が通過する内孔面に、ガス吐出口を一個又は複数個備えており、
前記ガス吐出口は、ノズル本体を貫通する貫通孔でガスプールと連通しており、
前記貫通孔は、立体的な非直線状に設けられていることを特徴とするノズル。
(2)前記立体的な非直線状は、凹凸状又は螺旋状である(1)に記載のノズル。
(3)前記貫通孔が複数個設けられており、前記複数個の貫通孔の前記ガスプール側のそれぞれの端部及び前記複数個の貫通孔にそれぞれ連通するガス吐出口のいずれか又は両方は、前記内孔の縦方向の中心軸を包含する同一の仮想平面上に位置しない、(1)又は(2)に記載のノズル。
(4)前記貫通孔が複数個設けられており、前記複数個の貫通孔の前記ガスプール側のそれぞれの端部及び前記複数個の貫通孔にそれぞれ連通するガス吐出口のいずれか又は両方は、前記内孔の縦方向の中心軸に対し垂直方向の同一の仮想平面上に位置しない、(1)から(3)のいずれかに記載のノズル。
The nozzle having the gas injection function of the present invention is a nozzle having the following features (1) to (4).
(1) A nozzle having a function of discharging molten steel in a container and injecting an inert gas into the molten steel,
One or more gas outlets are provided on the inner hole surface through which the molten steel passes,
The gas discharge port communicates with the gas pool through a through-hole penetrating the nozzle body.
The nozzle is characterized in that the through-hole is provided in a three-dimensional non-linear shape.
(2) The nozzle according to (1), wherein the three-dimensional non-linear shape is an uneven shape or a spiral shape.
(3) A plurality of the through holes are provided, and either or both of the end portions of the plurality of through holes on the gas pool side and the gas discharge ports communicating with the plurality of through holes are respectively The nozzle according to (1) or (2), which is not located on the same virtual plane including the central axis in the longitudinal direction of the inner hole.
(4) A plurality of the through holes are provided, and either or both of the end portions of the plurality of through holes on the gas pool side and the gas discharge ports respectively communicating with the plurality of through holes are The nozzle according to any one of (1) to (3), which is not located on the same virtual plane perpendicular to the longitudinal center axis of the inner hole.

以下に詳述する。   This will be described in detail below.

貫通孔は、ガスプールから内孔面上のガス吐出口まで、所定の圧力及び流速でガスを通過させることができるように、所定の大きさで連続して形成される。このような貫通孔は空間であるので、構造体の中では組織の欠陥部分でもあって、応力が集中しやすい部位でもある。   The through hole is continuously formed with a predetermined size so that gas can pass from the gas pool to the gas discharge port on the inner hole surface at a predetermined pressure and flow rate. Since such a through hole is a space, it is a defective part of the tissue in the structure and also a part where stress tends to concentrate.

前記特許文献1〜3に示されているように、従来の貫通孔は凹凸がない直線状であるが、これを凹凸の頂点間長さの観点で言い換えるとその長さは貫通孔径の1倍ということである。このようにガス通過経路として貫通孔を直線状で形成すると、いずれの方向であるかにかかわらず、一の仮想平面内に貫通孔の経路全体が包含されることになる。このように一の平面内に空間すなわち構造体としての欠陥部分が集中して、しかもノズル本体を貫通する構造であると、ノズル本体をその厚さ方向の全長に亘って連続的に分断することになるので、その平面に応力が集中して破壊しやすくなる。また更に、そのような直線状の貫通孔を複数配置する場合に複数の貫通孔を同一仮想平面内に包含されるように配置すると、その平面には更に応力が集中しやすくなり、またその平面内は空間部分が相対的に多くなることから、耐火物組織の結合力も相対的に脆弱となって、更に破壊が生じやすなり、破壊が拡大しやすくもなる。   As shown in Patent Documents 1 to 3, the conventional through-hole is a straight line with no irregularities, but in other words in terms of the length between the vertices of the irregularities, the length is one time the diameter of the through-hole. That's what it means. When the through hole is formed in a straight line as the gas passage path in this way, the entire path of the through hole is included in one virtual plane regardless of which direction it is. In this way, if the space, that is, the defective part as a structure is concentrated in one plane and penetrates the nozzle body, the nozzle body is continuously divided over the entire length in the thickness direction. Therefore, stress concentrates on the plane and it becomes easy to break. Furthermore, when a plurality of such linear through holes are arranged, if the plurality of through holes are arranged so as to be included in the same virtual plane, stress is more likely to concentrate on the plane, and the plane Since the space portion is relatively large in the inside, the bonding force of the refractory structure is also relatively fragile, and breakage is more likely to occur, and breakage is likely to expand.

本発明では貫通孔を立体的な非直線状に形成することで、構造体中では破壊の起点となる可能性のある欠陥部分でもある空間を狭い範囲、特に同一平面内に集中させずに、広い範囲に亘って分散させて配置する。欠陥である空間を立体的に広い範囲に分散させることで、応力をも立体的に広く分散させて集中させないこととする。本発明において立体的な非直線状であるとは、同一の広い平面、特に応力集中が生じて破壊が連続的に生じやすい方向の同一平面内には、空間、すなわち貫通孔を連続的に存在させず、前記平面に対して垂直方向にも3次元の立体的な経路を有することを意味する。   In the present invention, by forming the through-hole in a three-dimensional non-linear shape, without concentrating the space that is also a defective portion that may be a starting point of destruction in the structure in a narrow range, particularly in the same plane, Dispersed over a wide range. By dispersing the space that is a defect in a three-dimensionally wide range, the stress is also three-dimensionally dispersed so as not to be concentrated. In the present invention, a three-dimensional non-linear shape means that a space, that is, a through-hole exists continuously in the same wide plane, particularly in the same plane where stress concentration is likely to cause continuous destruction. In other words, it means that a three-dimensional path is also provided in the direction perpendicular to the plane.

貫通孔がいずれか特定の同一平面内で2次元的に非直線状に変化してその2次元である平面の垂直方向の立体的な方向には変化しない場合は、その平面上に関しては直線状の場合よりも却って空間である欠陥が多く(長く)存在することになり、その平面に応力が集中しやすくなるので、応力分散ないしは破壊防止等の効果は十分ではない。すなわち、3次元的にいずれの方向にも非直線状に配置されていることが必要である。なお、本発明において平面は、ノズル構造体の内部の仮想平面であって、現に組織を分断したものではない。   If the through hole changes two-dimensionally non-linearly in any particular plane and does not change in the three-dimensional direction perpendicular to the two-dimensional plane, it is linear on that plane. On the contrary, there are more (longer) defects in the space than in the case described above, and stress tends to concentrate on the plane, so the effect of stress distribution or prevention of destruction is not sufficient. In other words, it is necessary to arrange them non-linearly in any direction in three dimensions. In the present invention, the plane is a virtual plane inside the nozzle structure, and does not actually divide the tissue.

本発明において「立体的な非直線状」は、凹凸状又は螺旋状であることが好ましい。凹凸は屈曲部の連続でもよいが、それらの頂点付近が鋭角ではなく曲線状であることが、その頂点での応力集中を避けるためには好ましい。また、整然とした一定の規則性を備えることは必要ではない。   In the present invention, the “three-dimensional non-linear shape” is preferably an uneven shape or a spiral shape. The unevenness may be a continuation of the bent portion, but it is preferable that the vicinity of the apex is not an acute angle but a curved shape in order to avoid stress concentration at the apex. Also, it is not necessary to have an orderly and regularity.

また、3次元的に応力を均一性がより高い状態で分散させるためには、貫通孔は、そのガスプール側の端部と内孔面のガス吐出口を結ぶ仮想の直線の周囲に、螺旋を描くように配置することが好ましく、前記仮想の直線に直角な方向からの観たその螺旋の円の径は、一定でないことが更に好ましい。   Further, in order to disperse stress in a three-dimensional manner with higher uniformity, the through hole is spirally wound around a virtual straight line connecting the gas pool side end and the gas discharge port on the inner hole surface. The diameter of the spiral circle viewed from a direction perpendicular to the virtual straight line is more preferably not constant.

本発明が対象とするノズルは、内孔を溶鋼が通過する円筒状構造であって、内孔から受熱して、内孔側から外周側に温度勾配が生ずる。すると、ノズルの内孔側半径方向に強い圧縮応力が、外周側には強い引張り応力が発生し、ノズル縦方向に亀裂ないしは破壊を生じやすい。またその垂直方向にも、内孔側縦軸方向に強い圧縮応力が、外周側縦方向には強い引張り応力が発生し、横方向の亀裂ないしは破壊を生じやすい。   The nozzle targeted by the present invention has a cylindrical structure through which molten steel passes through an inner hole, and receives heat from the inner hole, and a temperature gradient is generated from the inner hole side to the outer peripheral side. Then, a strong compressive stress is generated in the radial direction of the inner hole side of the nozzle, and a strong tensile stress is generated on the outer peripheral side, so that cracks or breakage tends to occur in the vertical direction of the nozzle. Also in the vertical direction, a strong compressive stress is generated in the longitudinal direction on the inner hole side and a strong tensile stress is generated in the vertical direction on the outer peripheral side, which is liable to cause cracks or breaks in the lateral direction.

このような特性を有する構造体としての観点から、応力が集中して亀裂ないしは破壊を生じやすいノズル(内孔)の縦方向中心軸を含む仮想の縦方向同一平面(図2の符号7)内及び前記縦方向中心軸に垂直な横方向の仮想の同一平面(図2の符号8)内には、耐火物組織内の欠陥又は脆弱な部分を集中させずに、分散させることが好ましい。貫通孔は空間であって、構造体の欠陥部分、脆弱部分でもある。したがって、前記縦方向中心軸を含む縦方向の同一平面内に、また前記縦方向中心軸に垂直な横方向の同一平面内に、貫通孔の経路全体が重ならないようにすることが好ましい。   From the viewpoint of a structure having such characteristics, in a virtual vertical coplanar plane (reference numeral 7 in FIG. 2) including the vertical central axis of a nozzle (inner hole) where stress is concentrated and easily cracks or breaks. In addition, it is preferable to disperse without concentrating defects or fragile portions in the refractory structure in a virtual imaginary plane (reference numeral 8 in FIG. 2) in the lateral direction perpendicular to the longitudinal central axis. The through hole is a space, and is also a defective portion or a fragile portion of the structure. Therefore, it is preferable that the entire path of the through hole does not overlap in the same vertical plane including the vertical central axis and in the same horizontal plane perpendicular to the vertical central axis.

このような観点から更に好ましい立体的な非直線状の形態、程度を具体的に例示すると、貫通孔のガスプール側の端部からガス吐出口を直線で結び、その直線を軸とする半径方向の変動長さ、すなわち隣接する屈曲又は凹凸の頂点(図2(b)の符号10)間の前記縦方向又は横方向での半径方向の長さの差(図2(a)のLv又はLh)が、その貫通孔の径(図2(a)のd)の2倍を超えることが好ましく、より確実に空間を仮想の同一平面内に存在しないようにすると共に応力分散程度を高めるためには、貫通孔径の3倍以上であることがより好ましい。   More specifically, a three-dimensional non-linear shape and degree that are more preferable from such a viewpoint are illustrated. The gas discharge port is connected from the end of the through hole on the gas pool side by a straight line, and the radial direction with the straight line as an axis. Variation length, that is, the difference in radial length in the longitudinal direction or the lateral direction between adjacent apexes of bending or unevenness (reference numeral 10 in FIG. 2B) (Lv or Lh in FIG. 2A) ) Is preferably more than twice the diameter of the through hole (d in FIG. 2 (a)) in order to ensure that the space does not exist in the same virtual plane and to increase the degree of stress dispersion. Is more preferably 3 times or more of the through-hole diameter.

また、貫通孔経路が縦方向と横方向同時に同一平面内に存在する確率を最も小さくするためには、凹凸の隣接する凹と凸とを結ぶ仮想平面(図2の符号9)の方向はノズル縦軸方向を含む平面に45°であって、その頂点間の長さ(図2のL)は、貫通孔の径の2倍に√2を乗じた値である貫通孔の径の約2.9倍を超えることが好ましく、貫通孔の径の3倍に√2を乗じた値である貫通孔の径の約4.3倍を超えることがより好ましいことになる。すなわち、前記のような長さにすると、経路全体において、ノズル縦方向中心軸を含む縦方向の同一平面内及びその縦方向に垂直な横方向の平面内に、貫通孔が連続して存在することがなく、また凹凸頂点間が離れることになるので、応力の分散効果を高くすることができる。これを図で説明すると、図2の符号8の線を中心とする凹凸頂点間が長くなることで、経路全体において、図2の符号8の線の方向に貫通孔が連続することがないことになる。   Further, in order to minimize the probability that the through-hole path exists in the same plane at the same time in the vertical direction and the horizontal direction, the direction of the virtual plane (reference numeral 9 in FIG. 2) connecting the concave and convex adjacent to the concave and convex is the nozzle. The plane including the vertical axis direction is 45 °, and the length between the vertices (L in FIG. 2) is about 2 times the diameter of the through hole, which is a value obtained by multiplying the diameter of the through hole by twice √2. It is preferable to exceed .9 times, and it is more preferable to exceed about 4.3 times the diameter of the through hole, which is a value obtained by multiplying the diameter of the through hole by 3 times √2. That is, when the length is as described above, through-holes continuously exist in the entire path in the same vertical plane including the central axis in the nozzle vertical direction and in the horizontal plane perpendicular to the vertical direction. In addition, since the concavo-convex vertices are separated from each other, the stress dispersion effect can be enhanced. This will be explained with reference to the figure. By increasing the length between the concave and convex vertices centered on the line 8 in FIG. 2, there is no possibility that the through-holes continue in the direction of the line 8 in FIG. become.

螺旋状においては、螺旋状にすることで多方向に、またより均一にかつ漸次連続的に応力を分散させることできるので、貫通孔のガスプール側の端部からガス吐出口を直線で結びその直線を軸とする場合のその軸に対する半径方向の螺旋内側の径が、少なくともその貫通孔の径より大きければ前記の軸方向で空間が連続して重なることがない。螺旋状において、より確実に空間を仮想の同一平面内に存在しないようにすると共に応力分散程度を高めるためには、螺旋内側の径が貫通孔径の2倍以上であることがより好ましい。   In a spiral shape, the stress can be distributed in multiple directions, more uniformly and gradually continuously by spiraling, so that the gas discharge port is connected straight from the end of the through hole on the gas pool side. When the diameter inside the spiral in the radial direction with respect to the straight line as an axis is at least larger than the diameter of the through hole, the spaces do not overlap continuously in the axial direction. In the spiral shape, in order to more surely prevent the space from existing in the same virtual plane and to increase the degree of stress dispersion, it is more preferable that the inner diameter of the spiral is twice or more the diameter of the through hole.

前述の個々の貫通孔の配置方法に加え、複数個の貫通孔を配置する場合にも、ノズル内での貫通孔相互の相対的な配置位置を、より応力が集中しにくい構造とすること、すなわち、ノズル(内孔)の縦方向中心軸を含む仮想の縦方向同一平面内及び前記縦方向中心軸に垂直な横方向の仮想の同一平面内には貫通孔を集中させずに分散させることが好ましい。   In addition to the arrangement method of the individual through-holes described above, when arranging a plurality of through-holes, the relative arrangement position of the through-holes in the nozzle should be a structure in which stress is less likely to concentrate, That is, the through-holes are dispersed without concentrating in a virtual longitudinal same plane including the vertical center axis of the nozzle (inner hole) and in a horizontal virtual same plane perpendicular to the vertical center axis. Is preferred.

そこで、まずはノズル縦方向の貫通孔の配置において、貫通孔の複数個のガス吐出口及び複数個のガスプール側端部の少なくともいずれか一方が前記縦方向中心軸を包含する同一の仮想平面上に包含されない配置構造にすることが好ましい。例えば、3個の貫通孔を配置する場合、3個のガス吐出口及び3個のガスプール側端部の少なくともいずれか一方が前記縦方向中心軸を包含する同一の仮想平面上に包含されない配置構造にすることが好ましい。また、複数個のガス吐出口及びガスプール側端部の両方が、それぞれ前記縦方向中心軸を包含する同一の仮想平面上に包含されない配置構造にすることが、その分散効果が大きくなるので、更に好ましい。   Therefore, first, in the arrangement of the through holes in the nozzle vertical direction, at least one of the plurality of gas discharge ports and the plurality of gas pool side ends of the through holes is on the same virtual plane including the vertical center axis. It is preferable that the arrangement structure is not included in the structure. For example, when three through holes are arranged, an arrangement in which at least one of the three gas discharge ports and the three gas pool side ends is not included on the same virtual plane including the longitudinal central axis. A structure is preferred. In addition, since the dispersive effect is increased by making the arrangement structure in which both of the plurality of gas discharge ports and the gas pool side end portions are not included on the same virtual plane including the longitudinal center axis, respectively. Further preferred.

ノズル横方向の貫通孔の配置においても同様に、複数個のガス吐出口及び複数個のガスプール側端部の少なくともいずれか一方が前記縦方向中心軸に対し垂直方向の同一の仮想平面上に包含されない配置構造にすることが好ましく、両方がそれぞれ前記縦方向中心軸に対し垂直方向の同一の仮想平面上に包含されない配置構造にすることが、その分散効果が大きくなるので、更に好ましい。   Similarly, in the arrangement of the through holes in the nozzle lateral direction, at least one of the plurality of gas discharge ports and the plurality of gas pool side ends is on the same virtual plane perpendicular to the longitudinal central axis. It is preferable that the arrangement structure is not included, and it is more preferable that both are not included on the same virtual plane perpendicular to the longitudinal central axis because the dispersion effect is increased.

なお、円筒状構造であるノズルの縦方向又は横方向のどちらの方向がより破壊しやすくなるかは、形状面ではその径、耐火物の厚さ、長さ等の要因があり、個別の設計及び操業条件に依存する。したがって、前述の貫通孔の凹凸の方向や複数個の貫通孔を配置する場合の同一平面内に配列しないこととする方向等に関して、縦方向若しくは横方向のどちらの方向を優先するか又は両方とするか等も、個別の設計条件や操業条件に応じて決定すればよい。   Whether the longitudinal direction or the lateral direction of a nozzle having a cylindrical structure is more likely to break depends on factors such as the diameter, the thickness of the refractory, and the length of the shape surface. And depends on operating conditions. Therefore, regarding the direction of unevenness of the above-described through holes, the direction not to be arranged in the same plane when arranging a plurality of through holes, etc., either the vertical direction or the horizontal direction has priority, or both Whether or not to do so may be determined according to individual design conditions and operation conditions.

本発明によれば、ノズル本体に緻密質の耐火物を適用し、かつ構造体としての一体性を保持しつつ、更にガスの注入量を制御しつつ、破壊し難い貫通孔式のノズルを得ることができる。そして、ノズルの破壊に起因する漏鋼事故を防止することができ、ガス注入を安定化させることができ、鋼の品質の安定化や連続鋳造用諸ノズルの内孔面へのアルミナ等介在物の付着を抑制することもできる。   According to the present invention, a dense refractory material is applied to the nozzle body, and while maintaining the integrity as a structure, the gas injection amount is controlled, and a through-hole type nozzle that is difficult to break is obtained. be able to. And steel leakage accidents due to nozzle breakage can be prevented, gas injection can be stabilized, steel quality can be stabilized, and inclusions such as alumina on the inner surface of various nozzles for continuous casting Can also be suppressed.

本発明のノズルの一例で、(a)はノズル縦軸方向断面の貫通孔部分を示し、(b)はノズル縦軸方向に対する垂直(横)方向断面の貫通孔部分を示し、(c)は貫通孔の形状例(螺旋状)を示す。In an example of the nozzle of the present invention, (a) shows a through-hole part in the nozzle longitudinal section, (b) shows a through-hole part in a vertical (lateral) direction section with respect to the nozzle longitudinal direction, (c) An example of the shape of a through hole (spiral) is shown. 本発明のノズルの貫通孔の一例を示し、(a)は貫通孔をノズルの内孔側から貫通孔を観た場合の貫通孔の凹凸頂点間の相対的な位置関係を概念的に示し、(b)は(a)貫通孔をノズル上側から観た場合の貫通孔の凹凸頂点間の相対的な位置関係を概念的に示す。An example of the through hole of the nozzle of the present invention is shown, (a) conceptually shows the relative positional relationship between the concavo-convex vertices of the through hole when the through hole is viewed from the inner hole side of the nozzle, (B) conceptually shows the relative positional relationship between the concavo-convex vertices of the through hole when the through hole is viewed from above the nozzle. 本発明のノズルであって複数の貫通孔を有する例を示し、(a)はガスプールがノズル本体の耐火物外周面とメタルケースの間に設けられている場合、(b)はガスプールがノズル本体の耐火物内部に設けられている場合を示す。An example of the nozzle of the present invention having a plurality of through-holes, wherein (a) shows a case where a gas pool is provided between the refractory outer peripheral surface of the nozzle body and a metal case, and (b) shows a gas pool. The case where it is provided inside the refractory of the nozzle body is shown. 従来のガス注入用のノズルの一例を縦軸方向断面で示しており、(a)は貫通孔の配列を示し、(b)は貫通孔がノズル縦方向又は横方向の仮想同一平面に複数存在する場合の、亀裂・破壊の発生状態を概念的に示す。An example of a conventional nozzle for gas injection is shown in a cross section in the vertical axis direction, (a) shows an array of through holes, and (b) shows a plurality of through holes in a virtual same plane in the vertical or horizontal direction of the nozzle. In this case, the state of occurrence of cracks and fractures is conceptually shown. 従来のガス注入用のノズルの一例で、(a)はノズル縦軸方向断面の貫通孔部分を示し、(b)はノズル縦軸方向に対する垂直(横)方向断面の貫通孔部分を示し、(c)は貫通孔の形状例(直線状)を示す。An example of a conventional nozzle for gas injection, (a) shows a through-hole portion in the nozzle longitudinal section, (b) shows a through-hole portion in a vertical (lateral) direction cross section with respect to the nozzle longitudinal direction, c) shows an example of the shape of a through-hole (linear shape).

図1は、本発明のノズルの一例で、(a)はノズル縦軸方向断面の貫通孔部分を示し、(b)はノズル縦軸方向に対する垂直(横)方向断面の貫通孔部分を示し、(c)は貫通孔の形状例(螺旋状)を示す。   FIG. 1 shows an example of a nozzle according to the present invention, in which (a) shows a through-hole portion in the nozzle longitudinal section, (b) shows a through-hole portion in a vertical (lateral) direction section with respect to the nozzle longitudinal direction, (C) shows a shape example (spiral) of the through hole.

図1に示すノズル20において、ノズル本体1は連続した一体(緻密質)の耐火物からなり、その内部にガスプール2が設けられている。ガスプール2は、不活性ガス供給源に通じるガス導入孔(図2の符号3)に連通している。そして、ノズル本体1の内孔面1aにガス吐出口4が設けられ、ガスプール2とガス吐出口4との間に貫通孔5がノズル本体1を貫通して設けられている。本発明において貫通孔5は、そのガスプール2側の端部5aとガス吐出口4(ガス吐出口4側の端部5b)とを結ぶ仮想の直線を包含する仮想のいかなる方向の同一平面内にも貫通孔5全体が包含されず、立体的な非直線状に設けられる。図1の例においては、図1(c)に示すように貫通孔5は螺旋状に設けられている。なお、ノズル本体1には、溶鋼を排出するために上方の一端を溶鋼流入口、下方の一端を溶鋼流出口とする縦軸方向に連通する内孔1bが形成されている。   In the nozzle 20 shown in FIG. 1, the nozzle main body 1 is made of a continuous and integral (refined) refractory, and a gas pool 2 is provided therein. The gas pool 2 communicates with a gas introduction hole (reference numeral 3 in FIG. 2) leading to an inert gas supply source. A gas discharge port 4 is provided in the inner hole surface 1 a of the nozzle body 1, and a through hole 5 is provided between the gas pool 2 and the gas discharge port 4 so as to penetrate the nozzle body 1. In the present invention, the through-hole 5 is in the same plane in any virtual direction including a virtual straight line connecting the end 5a on the gas pool 2 side and the gas discharge port 4 (end 5b on the gas discharge port 4 side). Also, the entire through-hole 5 is not included and is provided in a three-dimensional non-linear shape. In the example of FIG. 1, the through hole 5 is provided in a spiral shape as shown in FIG. The nozzle body 1 is formed with an inner hole 1b that communicates in the longitudinal direction with the upper end as a molten steel inlet and the lower end as a molten steel outlet for discharging molten steel.

図3に、複数の貫通孔5を有する例を示す。図3(a)は、ノズル本体1の外周側にメタルケース6を配置し、ノズル本体1とメタルケース6との間にガスプール2を設けた例で、図3(b)は図1と同様にガスプール2をノズル本体1の内部に設けた例である。いずれの例においても、複数個の貫通孔5のガスプール2側のそれぞれの端部5a及び複数個の貫通孔5にそれぞれ連通するガス吐出口4の両方が、内孔1bの縦方向の中心軸を包含する同一の仮想平面上及び前記中心軸に対し垂直方向の同一の仮想平面上に位置しないように配置されている。   FIG. 3 shows an example having a plurality of through holes 5. FIG. 3A shows an example in which a metal case 6 is disposed on the outer peripheral side of the nozzle body 1 and a gas pool 2 is provided between the nozzle body 1 and the metal case 6. FIG. Similarly, the gas pool 2 is provided inside the nozzle body 1. In any example, both the end portions 5a on the gas pool 2 side of the plurality of through holes 5 and the gas discharge ports 4 respectively communicating with the plurality of through holes 5 are the center in the vertical direction of the inner hole 1b. They are arranged so as not to be located on the same virtual plane including the axis and on the same virtual plane perpendicular to the central axis.

次に本発明のノズルの製造方法を述べる。その要旨は次のとおりである。   Next, the manufacturing method of the nozzle of this invention is described. The summary is as follows.

可燃性物質により、ノズル内孔面に相当する内筒とガスプール内面に相当する外筒を同心上に配置した二重筒状体を形成し、この二重筒状体の内筒と外筒間に可燃性の糸を貫通させるように架橋し、前記の外筒の外側に更に、内側面全体に可燃物層をコーティング等により設置した型を設置する。前記の可燃性の糸を設置する際には、この糸を予め凹凸状又は螺旋状に成形しておく。複数の貫通孔を形成する場合は、ノズル縦方向及び横方向の同一の仮想平面上に貫通孔が配列しないように、各貫通孔のガス吐出口側及びガスプール側の端部のいずれか又は両方の位置を相対的にずらす。   A combustible material forms a double cylindrical body in which an inner cylinder corresponding to the inner surface of the nozzle and an outer cylinder corresponding to the gas pool inner surface are arranged concentrically, and the inner cylinder and the outer cylinder of this double cylindrical body A mold in which a combustible yarn is bridged between them and cross-linked, and a combustible material layer is installed on the entire inner surface by coating or the like is further installed outside the outer cylinder. When the flammable yarn is installed, the yarn is previously formed into an uneven shape or a spiral shape. When forming a plurality of through-holes, either the end of each through-hole on the gas discharge port side or the gas pool side, or so as not to arrange the through-holes on the same virtual plane in the nozzle vertical direction and the horizontal direction, Relatively shift both positions.

このように形成した前記の成形用筒体等の空間内に、ノズル本体となる耐火物を充填しし、乾燥、焼成を行う。この焼成等工程により、前記の糸、ガスプールとなる可燃性物質は消失して、貫通孔及びガスプールを形成することができる。   A space such as the molding cylinder thus formed is filled with a refractory serving as a nozzle body, and then dried and fired. By this firing or the like process, the combustible material that becomes the yarn and the gas pool disappears, and a through hole and a gas pool can be formed.

ノズル本体を成す耐火物層は、連続鋳造用のノズルに一般的に使用されるアルミナ−黒鉛質等のはい土をCIPにより成形する、キャスタブル耐火物を流し込みないし硬化させることで形成する、等の任意の方法により形成することができる。   The refractory layer forming the nozzle body is formed by forming a clay such as alumina-graphite that is generally used for nozzles for continuous casting by CIP, pouring or hardening a castable refractory, etc. It can be formed by any method.

貫通孔の断面形状は、前述では説明の便宜上、円形状とみなしているが、必ずしも円形に限る必要はない。ただし、鋭角屈曲するような部分を含む形状は、その屈曲部分を起点に亀裂や破壊が発生することもあるので、避けることが好ましい。貫通孔の断面の大きさは、安定したガスの供給をしつつも溶鋼進入を防止する、吐出したガスの径を粗大化させない等の観点から、約0.3mm以上約0.5mm以下であることが好ましい。0.3mm未満であると、ガス通過の際の抵抗が大きく、また耐火物の熱膨張によって更にその大きさが小さくなって、十分なガスの吐出量を得にくくなる虞があり、約0.5mmを超えると、溶鋼の成分や温度によっても異なるが、溶鋼が貫通孔内に進入して、貫通孔を閉塞させる虞がある。   In the above description, the cross-sectional shape of the through-hole is regarded as a circular shape for convenience of explanation, but is not necessarily limited to a circular shape. However, it is preferable to avoid a shape including a portion that bends at an acute angle because cracks and breakage may occur starting from the bent portion. The cross-sectional size of the through hole is about 0.3 mm or more and about 0.5 mm or less from the viewpoint of preventing molten steel from entering while supplying a stable gas and preventing the diameter of the discharged gas from becoming coarse. It is preferable. If it is less than 0.3 mm, the resistance during gas passage is large, and the size of the refractory is further reduced by thermal expansion, which may make it difficult to obtain a sufficient gas discharge amount. If it exceeds 5 mm, the molten steel may enter the through hole and close the through hole, although it varies depending on the composition and temperature of the molten steel.

なお、前述のように、貫通孔の凹凸の頂点間の長さ(図2(a)のLv及びLh)は貫通孔の直径の2又は3倍以上であることが好ましい。また、貫通孔を複数有する場合、隣接する貫通孔間の最短距離も、貫通孔の直径の3倍以上であることが好ましい。更に、本発明において貫通孔は、ガス吐出口とガスプール側の端部とを結ぶ方向を中心軸とする、螺旋状に設けることが好ましい。この螺旋の内側の直径は前述のとおり、貫通孔の径の2倍又は3倍以上が好ましく、ガス吐出口とガスプール側の端部とを結ぶ方向、すなわちいわゆるピッチ(図1の符号Lp)も、隣接する貫通孔間として、貫通孔の径の2倍を超えることが好ましく、3倍以上であることがより好ましい。   In addition, as mentioned above, it is preferable that the length (Lv and Lh in FIG. 2A) between the vertices of the concave and convex portions of the through hole is two or three times the diameter of the through hole. Moreover, when it has two or more through-holes, it is preferable that the shortest distance between adjacent through-holes is also 3 times or more of the diameter of a through-hole. Furthermore, in the present invention, it is preferable that the through hole is provided in a spiral shape with a central axis in a direction connecting the gas discharge port and the end portion on the gas pool side. As described above, the inner diameter of the spiral is preferably twice or three times the diameter of the through hole, and the direction connecting the gas discharge port and the end of the gas pool, that is, the so-called pitch (reference numeral Lp in FIG. 1). However, the distance between adjacent through holes is preferably more than twice the diameter of the through hole, more preferably three times or more.

ガス注入用のノズルにつき、破壊する危険性を低減する程度、すなわち応力集中を緩和する効果を評価するために、試験片で曲げ強度測定を行った。   In order to evaluate the effect of reducing the risk of breaking the gas injection nozzle, that is, the effect of relaxing the stress concentration, a bending strength measurement was performed on the test piece.

試験片は、40mm×40mm×160mmとし、試験片中央部の内部に、試験片を横方向に横断するように、0.5mm径の貫通孔を形成した。貫通孔の形状は、実施例は螺旋状とし、内側の径を5mm、ピッチを約5mmをとした。比較例は直線状とした。   The test piece was 40 mm × 40 mm × 160 mm, and a 0.5 mm diameter through hole was formed in the center of the test piece so as to cross the test piece in the lateral direction. As for the shape of the through-hole, the embodiment had a spiral shape, the inner diameter was 5 mm, and the pitch was about 5 mm. The comparative example was linear.

曲げ試験は、支持ロール長さ(支点間の距離)を100mmとし、室温における3点曲げ方法にて行った。   The bending test was performed by a three-point bending method at room temperature with the support roll length (distance between fulcrums) being 100 mm.

この曲げ試験の結果、曲げ強度(測定値)は、比較例が6.5MPa(平均値)であったのに対し、実施例は7.7MPa(平均値)と、実施例は比較例に対し約18.4%の向上が観られた。このことから、貫通孔を螺旋状に配置した本発明の実施例では、破壊に対する抵抗性が高くなっていること、及び、R値も小さく、強度のばらつきも小さくなっていることがわかる。   As a result of this bending test, the bending strength (measured value) of the comparative example was 6.5 MPa (average value), whereas the example was 7.7 MPa (average value), and the example was compared to the comparative example. An improvement of about 18.4% was observed. From this, it can be seen that in the embodiment of the present invention in which the through holes are arranged in a spiral shape, the resistance to destruction is high, the R value is small, and the variation in strength is also small.

また、0.5mm径の貫通孔を円周方向に4つ、縦方向に3段均等に配置した、内孔径90mm〜120mm、長さ310mmの実形状のノズルを用いて、横方向から機械的衝撃を加え、亀裂、破壊の発生状態を観察した。貫通孔の形状は、実施例は内側の径を5mm、ピッチを約5mmの螺旋状とし、更に複数の貫通孔の経路全体がノズル縦方向中心軸を含む同一仮想平面内及びノズル縦方向中心軸に垂直な方向の同一仮想平面内に存在しないように配列し、比較例は直線状とし、縦方向及び横方向を同一仮想平面内に配置した。   In addition, a mechanical nozzle is used from the lateral direction by using a real-shaped nozzle having an inner hole diameter of 90 mm to 120 mm and a length of 310 mm, in which four through holes having a diameter of 0.5 mm are arranged evenly in three stages in the circumferential direction and in the vertical direction. An impact was applied, and the occurrence of cracks and fractures was observed. As for the shape of the through holes, the embodiment has a spiral shape with an inner diameter of 5 mm and a pitch of about 5 mm, and the entire path of the plurality of through holes is in the same virtual plane including the nozzle vertical center axis and the nozzle vertical center axis They were arranged so as not to exist in the same virtual plane in the direction perpendicular to the vertical direction, the comparative example was linear, and the vertical and horizontal directions were arranged in the same virtual plane.

その結果、比較例は縦方向及び横方向に、貫通孔に沿った亀裂が発生した。これに対し、実施例では、亀裂が集中せずに、斜め方向にしかもそれぞれが比較例に比較して小さい亀裂が部分的に発生するにとどまった。   As a result, in the comparative example, cracks along the through holes occurred in the vertical direction and the horizontal direction. On the other hand, in the example, cracks were not concentrated, but only small cracks were generated in the diagonal direction, compared with the comparative example.

20 ノズル
1 ノズル本体
1a 内孔面
1b 内孔
2 ガスプール
3 ガス導入孔
4 ガス吐出口
5 貫通孔
5a ガスプール側の端部
5b ガス吐出口側の端部
6 メタルケース
7 ノズル縦方向中心軸を含む仮想の縦方向平面
8 ノズル縦方向中心軸に垂直な方向の仮想の横方向平面
9 凹凸の隣接する凹と凸とを結ぶ仮想平面
10 隣接する凹凸の頂点
11 ノズル縦方向の亀裂・破壊部分(イメージ)
12 ノズル横方向の亀裂・破壊部分(イメージ)
DESCRIPTION OF SYMBOLS 20 Nozzle 1 Nozzle body 1a Inner hole surface 1b Inner hole 2 Gas pool 3 Gas introduction hole 4 Gas discharge port 5 Through-hole 5a Gas pool side end 5b Gas discharge port side end 6 Metal case 7 Nozzle longitudinal center axis 8 Virtual vertical plane including the nozzle 8 Virtual horizontal plane perpendicular to the central axis of the nozzle vertical direction 9 Virtual plane connecting the concave and convex adjacent concave and convex 10 Vertex of adjacent concave and convex 11 Crack and break in the vertical direction of the nozzle Part (image)
12 Nozzle lateral crack and fracture (image)

Claims (4)

容器内の溶鋼を排出すると共に溶鋼内に不活性ガスを注入する機能を備えたノズルであって、
溶鋼が通過する内孔面に、ガス吐出口を一個又は複数個備えており、
前記ガス吐出口は、ノズル本体を貫通する貫通孔でガスプールと連通しており、
前記貫通孔は、立体的な非直線状に設けられていることを特徴とするノズル。
A nozzle having a function of discharging molten steel in a container and injecting an inert gas into the molten steel,
One or more gas outlets are provided on the inner hole surface through which the molten steel passes,
The gas discharge port communicates with the gas pool through a through-hole penetrating the nozzle body.
The nozzle is characterized in that the through-hole is provided in a three-dimensional non-linear shape.
前記立体的な非直線状は、凹凸状又は螺旋状である請求項1に記載のノズル。   The nozzle according to claim 1, wherein the three-dimensional non-linear shape is an uneven shape or a spiral shape. 前記貫通孔が複数個設けられており、前記複数個の貫通孔の前記ガスプール側のそれぞれの端部及び前記複数個の貫通孔にそれぞれ連通するガス吐出口のいずれか又は両方は、前記内孔の縦方向の中心軸を包含する同一の仮想平面上に位置しない、請求項1又は請求項2に記載のノズル。   A plurality of the through holes are provided, and either or both of the end portions of the plurality of through holes on the gas pool side and the gas discharge ports respectively communicating with the plurality of through holes are the inner holes. The nozzle according to claim 1 or 2, wherein the nozzle is not located on the same virtual plane including the central axis in the vertical direction of the hole. 前記貫通孔が複数個設けられており、前記複数個の貫通孔の前記ガスプール側のそれぞれの端部及び前記複数個の貫通孔にそれぞれ連通するガス吐出口のいずれか又は両方は、前記内孔の縦方向の中心軸に対し垂直方向の同一の仮想平面上に位置しない、請求項1から請求項3のいずれかに記載のノズル。   A plurality of the through holes are provided, and either or both of the end portions of the plurality of through holes on the gas pool side and the gas discharge ports respectively communicating with the plurality of through holes are the inner holes. The nozzle according to any one of claims 1 to 3, wherein the nozzle is not located on the same virtual plane perpendicular to the longitudinal central axis of the hole.
JP2012052054A 2012-03-08 2012-03-08 Nozzle with gas injection function Pending JP2013184199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052054A JP2013184199A (en) 2012-03-08 2012-03-08 Nozzle with gas injection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052054A JP2013184199A (en) 2012-03-08 2012-03-08 Nozzle with gas injection function

Publications (1)

Publication Number Publication Date
JP2013184199A true JP2013184199A (en) 2013-09-19

Family

ID=49386120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052054A Pending JP2013184199A (en) 2012-03-08 2012-03-08 Nozzle with gas injection function

Country Status (1)

Country Link
JP (1) JP2013184199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158393A1 (en) * 2019-01-30 2020-08-06 黒崎播磨株式会社 Method for manufacturing stopper, etc.
WO2020184320A1 (en) 2019-03-12 2020-09-17 黒崎播磨株式会社 Nozzle and structure of nozzle and stopper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168859A (en) * 1995-12-19 1997-06-30 Toshiba Ceramics Co Ltd Slide gate plate for gas blowing, and its manufacture
JPH11314142A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Nozzle for continuous casting
JP2005279729A (en) * 2004-03-30 2005-10-13 Akechi Ceramics Co Ltd Upper nozzle for tundish

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168859A (en) * 1995-12-19 1997-06-30 Toshiba Ceramics Co Ltd Slide gate plate for gas blowing, and its manufacture
JPH11314142A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Nozzle for continuous casting
JP2005279729A (en) * 2004-03-30 2005-10-13 Akechi Ceramics Co Ltd Upper nozzle for tundish

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158393A1 (en) * 2019-01-30 2020-08-06 黒崎播磨株式会社 Method for manufacturing stopper, etc.
JP2020121324A (en) * 2019-01-30 2020-08-13 黒崎播磨株式会社 Method for producing stopper or the like
JP7134108B2 (en) 2019-01-30 2022-09-09 黒崎播磨株式会社 Manufacturing method for stoppers, etc.
WO2020184320A1 (en) 2019-03-12 2020-09-17 黒崎播磨株式会社 Nozzle and structure of nozzle and stopper
US11745257B2 (en) 2019-03-12 2023-09-05 Krosakiharima Corporation Nozzle, and nozzle and stopper combination

Similar Documents

Publication Publication Date Title
JP2013184199A (en) Nozzle with gas injection function
KR101850238B1 (en) Bushing for manufacturing glass fiber
KR900005272B1 (en) Gas-blow casting nozzle
AU2012331052B2 (en) Refractory purging devices
JP2012041618A (en) Gas blowing plug and production method thereof
JP6122393B2 (en) Immersion nozzle
JP5129636B2 (en) Continuous casting nozzle
CA3011206C (en) Nozzle structure
JP2019524449A (en) Collision pad
JP7182496B2 (en) Nozzle and structure of nozzle and stopper
KR102228648B1 (en) Sliding nozzle
JP5697193B2 (en) Nozzle for gas injection
JP6630157B2 (en) Immersion nozzle
KR101240500B1 (en) Extrusion die enable to minimize thickness deviation and welding lines
US11117187B2 (en) Casting nozzle
TW201330952A (en) Gas purging plug for metal casting vessel comprising anti-clogging system and method for the production thereof
RU2659507C2 (en) Blowing device, blowing composite brick and method for manufacturing a blowing composite brick
TWI837692B (en) Stopper rod for continuous casting
WO2020158393A1 (en) Method for manufacturing stopper, etc.
KR100704853B1 (en) Well-brick upholding nozzle for casting of molden metal
BRPI1102228A2 (en) top injection lance in metallurgical vessels and method of manufacture of this lance
JP6292869B2 (en) Long nozzle manufacturing method
KR101363924B1 (en) Treatment apparatus for molten metal
JP2010255074A (en) Gas-blowing part structure in molten metal vessel
JPH0510183B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027