JP2013175541A - マスク及びその変形量計測方法、並びに露光方法及び装置 - Google Patents

マスク及びその変形量計測方法、並びに露光方法及び装置 Download PDF

Info

Publication number
JP2013175541A
JP2013175541A JP2012038369A JP2012038369A JP2013175541A JP 2013175541 A JP2013175541 A JP 2013175541A JP 2012038369 A JP2012038369 A JP 2012038369A JP 2012038369 A JP2012038369 A JP 2012038369A JP 2013175541 A JP2013175541 A JP 2013175541A
Authority
JP
Japan
Prior art keywords
pattern
marks
mask
reticle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012038369A
Other languages
English (en)
Inventor
Hajime Yamamoto
一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012038369A priority Critical patent/JP2013175541A/ja
Publication of JP2013175541A publication Critical patent/JP2013175541A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】マスクの熱変形等による転写用のパターンの変形量を、その転写用のパターンに影響を与えることなく高精度に求める。
【解決手段】レチクルRは、デバイス用パターンDPが形成されたパターン面50aにデバイス用パターンDPを囲むように形成された枠状の遮光帯54と、パターン面50aの遮光帯54の外側の領域に形成された複数のレチクルマークRM1,RM2と、パターン面50aに少なくとも一部が遮光帯54にかかるように形成された複数の歪み計測用マーク56と、を備える。
【選択図】図3

Description

本発明は、転写用のパターンが形成されたマスク、このマスクの変形量計測技術、この変形量計測技術を用いる露光技術、及びこの露光技術を用いるデバイス製造方法に関する。
半導体素子等のデバイス(電子デバイス又はマイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光光の積算照射エネルギー及び環境(気圧等)の変動による投影光学系の結像特性の変動を抑制するために、例えば投影光学系中の所定の光学素子の位置等を調整して結像特性を補正する結像特性補正機構が備えられている。
また、最近の露光装置は、スループット(生産性)を高め、微細なパターンを解像させるためのフォトレジスト(感光材料)の低感度化に対応するために、露光光の照度が高くなっている。このため、露光光の照射エネルギーによるレチクルの発熱量が増大し、レチクルのパターンの変形量が大きくなり、この変形量が重ね合わせ精度悪化の要因として無視できないレベルになりつつある。そこで、レチクルの温度を計測し、この温度に基づいてレチクルの変形量を予測し、露光中にその予測されるレチクルの変形量に応じて投影光学系の結像特性を補正するようにした露光装置が提案されている(例えば、特許文献1参照)。
特開2005−184034号公報
従来のようにレチクルの温度からそのパターンの変形量を予測する方法は、そのパターンの実際の変形量とレチクルの温度との関係を求めておくために、例えば最初にレチクルの温度が変化するごとにテスト露光を行い、露光後のウエハを現像してレジストパターンを形成し、重ね合わせ計測装置等でそのレジストパターンの形状を計測する必要があった。そのため、新たなレチクルを用いたプロセスを構築するまでに長い時間と多くの設備が必要になっていた。
また、レチクルに形成されている複数のアライメントマークの位置を計測することで、レチクルのパターンの変形量を計測又は予測することも可能である。しかしながら、通常、レチクルのアライメントマークと転写用のパターンとは離れているとともに、アライメントマークが形成されている位置は特定の位置であるため、複数のアライメントマークの位置のみからでは転写用のパターン全体の変形量を高精度に計測又は予測することは困難である。
さらに、実露光用のレチクルのパターン領域にはデバイス用のパターン及び異なるレイヤ間の位置合わせを行うためのマーク等が配置されているため、そのパターン領域内の特定の位置に別途、変形量計測用のマーク等を付加するのは困難である。
本発明の態様は、このような事情に鑑み、マスクの熱変形等による転写用のパターンの変形量を、その転写用のパターンに影響を与えることなく高精度に求めるか又は予測できるようにすることを目的とする。
本発明の第1の態様によれば、転写用のパターンが形成されたマスクが提供される。このマスクは、その転写用のパターンが形成されたパターン面にそのパターンを囲むように形成された枠状の遮光帯と、そのパターン面のその遮光帯の外側の領域に形成された位置合わせ用の複数の第1マークと、そのパターン面に少なくとも一部がその遮光帯にかかるように形成された位置計測用の複数の第2マークと、を備えるものである。
また、第2の態様によれば、第1の態様のマスクの変形量計測方法が提供される。この変形量計測用は、そのマスクの複数のその第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測することと、複数のその計測対象マーク又はこの像の位置の計測結果からその遮光帯で囲まれたパターンの変形量を求めることと、を含むものである。
また、第3の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影系を介して物体を露光する露光方法が提供される。この露光方法は、そのパターンとして、第1の態様のマスクの転写用のパターンを設置することと、そのマスクの複数のその第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測することと、複数のその計測対象マーク又はこの像の位置の計測結果からその遮光帯で囲まれたパターンの変形量を求めることと、求められたそのパターンの変形量に応じて、その物体に露光されるパターンの形状を補正することと、を含むものである。
また、第4の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影系を介して物体を露光する露光装置が提供される。この露光装置は、第1の態様のマスクを、そのマスクのその転写用のパターンがその露光光の照明領域に配置されるように保持する第1ステージと、その物体を保持して移動する第2ステージと、そのマスクの複数のその第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測するマーク計測系と、そのマーク計測系の計測結果からそのマスクのその遮光帯で囲まれたパターンの変形量を求める演算装置と、その演算装置によって求められたそのパターンの変形量に応じて、その物体に露光されるパターンの形状を補正する補正機構と、を備えるものである。
また、第5の態様によれば、第3の態様の露光方法又は第4の態様の露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成された基板を処理することと、を含むデバイス製造方法が提供される。
本発明の態様によれば、少なくとも一部がその遮光帯にかかるように形成された位置計測用の複数の第2マークの少なくとも一部のマーク又はこの像の位置の計測結果から、その遮光帯で囲まれた転写用のパターンの変形量を求めることができる。従って、マスクの熱変形等による転写用のパターンの変形量を、その転写用のパターンに影響を与えることなく高精度に求めることができる。
実施形態の一例に係る露光装置の概略構成を示す図である。 図1の露光装置の制御系を示すブロック図である。 (A)は実施形態で使用されるレチクルを示す平面図、(B)は図3(A)中の遮光帯54の第3辺部54c中の歪み計測用マーク56を示す拡大図、(C)は図3(A)中の遮光帯54の第1辺部54a中の歪み計測用マーク56を示す拡大図である。 (A)は図1の空間像計測装置を示す拡大斜視図、(B)は空間像計測装置の基準部材に投影される歪み計測用マーク56の像を示す拡大平面図である。 (A)はレチクルのパターンの熱変形の一例を示す平面図、(B)は図5(A)のレチクルのパターンの像の歪みを補正して得られる格子パターン像を示す平面図である。 (A)〜(J)は、レチクルのパターンの変形の状態とこの変形の状態を表す関数との組み合わせの例を示す図である。 全部の歪み計測用マークの像の位置ずれ量に基づいて補正されたレチクルのパターンの像の一例を示す図である。 (A)はウエハの露光枚数とレチクルの熱変形量との関係を求める動作の一例を示すフローチャート、(B)はレチクルの熱変形量を補正しながら露光を行う動作の一例を示すフローチャートである。 (A)はX軸の歪み計測用マークの像の位置ずれ量に基づいて補正されたレチクルのパターンの像の一例を示す図、(B)はY軸の歪み計測用マークの像の位置ずれ量に基づいて補正されたレチクルのパターンの像の一例を示す図である。 最適化した組み合わせの歪み計測用マークの像の位置ずれ量に基づいて補正されたレチクルのパターンの像の一例を示す図である。 電子デバイスの製造工程の一例を示すフローチャートである。
本発明の実施形態の一例につき図1〜図8(B)を参照して説明する。図1は、本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは、一例としてスキャニングステッパー(スキャナー)よりなる走査露光型の投影露光装置である。露光装置EXは投影光学系PL(投影ユニットPU)を備えており、以下においては、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルとウエハとが相対走査される方向(走査方向)に沿ってY軸を、Z軸及びY軸に直交する方向(非走査方向)に沿ってX軸を取り、X軸、Y軸、及びZ軸の回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
露光装置EXは、照明系10、照明系10からの露光用の照明光(露光光)ILにより照明されるレチクルR(マスク)を保持するレチクルステージRST、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWST、及び装置全体の動作を制御するコンピュータよりなる主制御装置20(図2参照)等を備えている。レチクルRは、照明光ILを透過するほぼ正方形(又は矩形でもよい)の平板状のガラス基板50のパターン面50a(ここでは下面)に転写用のパターンを形成したものである。
照明系10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、照明光学系とを含み、照明光学系は、回折光学素子又は空間光変調器等を含み通常照明、複数極照明、又は輪帯照明等のための光量分布を形成する光量分布形成光学系、オプティカルインテグレータを含む照度均一化光学系、視野絞り(固定レチクルブラインド及び可動レチクルブラインド)、及びコンデンサ光学系(いずれも不図示)等を有する。照明系10は、固定レチクルブラインドで規定されたレチクルRのパターン面50aのX方向に細長いスリット状の照明領域IARを照明光ILによりほぼ均一な照度で照明する。可動レチクルブラインドによって、走査露光時にその照明領域IARはY方向(走査方向)に開閉されるとともに、照明領域IARのX方向の幅は調整可能である。
照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。なお、照明光としては、KrFエキシマレーザ光(波長248nm)、YAGレーザ若しくは固体レーザ(半導体レーザなど)の高調波、又は水銀ランプの輝線(i線等)なども使用できる。
レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図4のレチクルステージ駆動系11によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能となっている。
レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計16によって、移動鏡15(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計16の計測値は、図2の主制御装置20に送られる。主制御装置20は、その計測値に基づいてレチクルステージ駆動系11を制御することで、レチクルステージRSTの位置及び速度を制御する。
図1において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒40と、該鏡筒40内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系10からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影ユニットPUを介して照明領域IAR内のレチクルRのデバイス用パターン(回路パターン)の像が、ウエハWの一つのショット領域上の露光領域IA(照明領域IARと共役な領域)に形成される。ウエハWは、例えばシリコン等からなる直径が200mmから450mm程度の円板状の基材の表面に、フォトレジスト(感光剤)を所定の厚さ(例えば200nm程度)で塗布した基板を含む。
また、本実施形態では、投影ユニットPUの結像特性を補正するために、例えば米国特許出願公開第2006/244940号明細書に開示されているように、投影ユニットPU中の所定の複数の光学素子の光軸方向の位置、及び光軸に垂直な平面内の直交する2つの軸の回りの傾斜角を制御する結像特性補正機構43が設けられている。図2の結像特性制御系42が結像特性の補正量に応じて結像特性補正機構43を駆動することで、投影ユニットPUの結像特性が所望の状態に維持される。結像特性制御系42には、一例として、照明系10中にあるインテグレータセンサ(不図示)で計測される照明光ILの積算照射エネルギーの情報が供給されている。
また、露光装置EXは、液浸法を適用した露光を行うため、投影ユニットPUを構成する最も像面側(ウエハW側)の光学素子である先端レンズ41を保持する鏡筒40の下端部の周囲を取り囲むように、局所液浸装置8の一部を構成するノズルユニット32が設けられている。ノズルユニット32は、露光用の液体Lq(例えば純水)を供給可能な供給口と、液体Lqを回収可能な多孔部材(メッシュ)が配置された回収口とを有する。ノズルユニット32の供給口は、供給流路及び供給管31Aを介して、液体Lqを送出可能な液体供給装置86(図2参照)に接続されている。
液浸法によるウエハWの露光時に、液体供給装置86から送出された液体Lqは、図1の供給管31A及びノズルユニット32の供給流路を流れた後、その供給口より照明光ILの光路空間を含むウエハW上の液浸領域に供給される。また、液浸領域からノズルユニット32の回収口を介して回収された液体Lqは、回収流路及び回収管31Bを介して図2の液体回収装置89に回収される。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置8は設けなくともよい。
図1において、ウエハステージWSTは、不図示の複数のエアパッドを介して、ベース盤12のXY面に平行な上面12a上に非接触で支持されている。また、ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系92(図2参照)によってX方向及びY方向に駆動可能である。露光装置EXは、ウエハステージWSTの位置情報を計測するためにレーザ干渉計よりなるウエハ干渉計18及びエンコーダシステム(図2のYリニアエンコーダ70A,70C及びXリニアエンコーダ70B,70D)を含む位置計測システムを備えている。Yリニアエンコーダ70A,70Cは、ウエハステージWSTの上面にウエハWをX方向に挟むように設けられたY方向を周期方向とする1対の回折格子と、これら1対の回折格子に計測光を照射して発生する回折光を検出してその回折格子のY方向の相対変位を検出する2組の検出ヘッドとを有する。そして、Xリニアエンコーダ70B,70Dは、ウエハステージWSTの上面にウエハWをY方向に挟むように設けられたX方向を周期方向とする1対の回折格子と、これら1対の回折格子に計測光を照射して発生する回折光を検出してその回折格子のX方向の相対変位を検出する2組の検出ヘッドとを有する。なお、ウエハ干渉計18及びエンコーダシステムは、そのうちの一方を備えているだけでもよい。
ウエハステージWSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、ウエハ干渉計18及び/又はエンコーダシステムによって例えば0.5〜0.1nm程度の分解能で常時検出され、その計測値は、図2の主制御装置20に送られる。主制御装置20は、その計測値に基づいてステージ駆動系92を制御することで、ウエハステージWSTの位置及び速度を制御する。
ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体91と、ステージ本体91上に搭載されたウエハテーブルWTBと、ステージ本体91内に設けられて、ステージ本体91に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。
また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きい円形の開口が形成された高平面度の平板状のプレート体28が設けられている。
また、ウエハステージWSTの上部に、レチクルRのパターン面に形成されているマーク等の投影ユニットPUによる像の位置を計測するための空間像計測装置45が配置されている。
図4(A)に示すように、空間像計測装置45は、ウエハステージWSTの上面のウエハWに近接した位置に、表面がウエハWの表面と同じ高さになるように固定された基準部材46を有する。基準部材46の表面には、遮光膜中にY方向に平行にスリット状に形成された開口パターン(以下、X軸スリットという)47X、及びX軸スリット47Xを90°回転した形状のY軸スリット47Yが形成されている。また、ウエハステージWST内に、投影ユニットPUから射出されてX軸スリット47X及びY軸スリット47Yを通過した照明光をそれぞれ集光するレンズ48X及び48Yと、レンズ48X及び48Yで集光された照明光を検出する光電検出器49X及び49Yが設けられている。光電検出器49X,49Yの検出信号は、信号ラインを介して外部の信号処理部34に供給されている。基準部材46、レンズ48X,48Y、光電検出器49X,49Y、及び信号処理部34から空間像計測装置45が構成されている。
信号処理部34にはウエハステージWSTのX方向、Y方向の位置を示す位置情報も供給されている。信号処理部34において、一例としてその2つの検出信号を個別に所定の閾値で2値化して、2値化された信号からウエハステージWSTのX方向、Y方向の位置を求めることで、投影ユニットPUによって基準部材46の表面に形成されるマークの像の位置を計測できる。この計測結果は主制御装置20に供給される。
図1において、露光装置EXは、ウエハWの各ショット領域に付設されているアライメントマークの位置を検出するための例えば画像処理方式のアライメント系ALを有する。さらに、露光装置EXは、図2に示すように、照射系90a及び受光系90bから成る、例えば米国特許第5,448,332号明細書に開示されるものと同様の構成の斜入射方式の多点のオートフォーカスセンサ(以下、多点AF系と呼ぶ。)90を備えている。AF系90によって、ウエハWの表面の例えばX方向に配列された複数の計測点でZ方向の位置を計測できる。この計測情報に基づいて、ウエハステージWSTのZ・レベリング機構を駆動することで、露光中にウエハWの表面が投影ユニットPUの像面に合焦される。
ウエハWの露光時に、基本的な動作として、ウエハWのアライメントが行われた後、ウエハステージWSTのX方向、Y方向への移動(ステップ移動)によって、ウエハWの露光対象のショット領域が投影ユニットPUの露光領域の手前に移動する。そして、主制御装置20の制御のもとで、レチクルRのパターンの一部の投影ユニットPUによる像でウエハWの当該ショット領域を露光しつつ、レチクルステージRST及びウエハステージWSTを同期して駆動することによって、投影ユニットPUに対してレチクルR及びウエハWを例えば投影倍率を速度比としてY方向に走査することによって、当該ショット領域の全面にレチクルRの転写用パターンの像が走査露光される。以下、そのステップ移動と走査露光とを繰り返すことによって、ウエハWの全部のショット領域にレチクルRのパターンの像が露光される。
さて、このように例えば複数ロットのウエハを露光していくと、照明光ILの照射エネルギーに起因する熱変形(熱膨張)よってレチクルRの転写用のパターンが次第に変形する。このようにパターンが変形した状態でウエハWを露光すると、ウエハWの各ショット領域に形成される回路パターンの重ね合わせ精度の低下、及びパターン忠実度又は線幅均一性の低下等が生じて、最終的に製造される半導体デバイスの歩留まりの低下等を招く恐れがある。そこで、本実施形態の露光装置EXは、レチクルRの転写用のパターンの変形量を計測又は予測する機構を備えている。なお、照明光ILの積算照射エネルギー及び環境(例えば温度及び気圧)の変動に起因する投影ユニットPU自体の結像特性の変動量は、高精度に予測することが可能であり、その変動に対する補正は、例えば結像特性補正機構43によって高精度に行うことができる。
まず、図3(A)は、本実施形態で半導体デバイス製造用に使用される図1のレチクルRのガラス基板50のパターン面50aを示す。なお、図3(A)は透視図であり、レチクルRのパターン面50aは実際には紙面の裏側の方向の面を表している。また、図3(A)の座標系(X,Y)は、レチクルRを図1のレチクルステージRSTにロードした状態の露光装置EXの座標系と同じであり、Y軸に平行な方向(Y方向)が走査露光時のレチクルRの走査方向である。
レチクルRの一辺の幅LMのほぼ正方形のパターン面50aに、金属膜等の照明光ILを遮光する遮光膜より、X方向の幅LX及びY方向の長さLYで、幅aのY方向に細長い長方形の枠状の遮光帯54が形成され、遮光帯54の内側のパターン領域52に、転写用のパターンとしてのデバイス用パターンDPが形成されている。デバイス用パターンDP内には、このパターンに応じた回路パターンが形成されるレイヤと他のレイヤとの重ね合わせ用のマークを形成するためのパターン又はマーク(不図示)が形成されていてもよい。一例として、パターン面50a(ガラス基板50)の幅LMは152mm程度、遮光帯54の幅LXは110mm程度、長さLYは140mm程度で、遮光帯54の幅aは3〜4mm程度である。以下の説明では、一例として遮光帯54の幅aは3.5mm程度であるとする。
また、レチクルRのパターン面50aの遮光帯54の外側の領域において、遮光帯54をX方向に対称に挟むように、Y方向に沿った第1列の複数のアライメントマークRM1及び第2列の複数のアライメントマークRM2が形成され、遮光帯54をY方向に対称に挟むように、X方向に沿った第3列の2つのアライメントマークRM3及び第4列の2つのアライメントマークRM4が形成されている。レチクルRのアライメントマーク(以下、レチクルマークという。)RM1〜RM4は、それぞれ例えばX方向に周期的なライン・アンド・スペースパターン(以下、L&Sパターンという。)とY方向に周的なL&Sパターンとを組み合わせた2次元マークである。一例として、第1列及び第2列のレチクルマークRM1,RM2は、それぞれ遮光帯54の−Y方向の端部の外側の3箇所、中央の外側の一箇所、及び+Y方向の端部の外側の3箇所に形成されている。なお、レチクルマークRM1〜RM4の配置及びその個数は任意である。
レチクルマークRM1〜RM4の少なくとも一部はレチクルRのアライメントに使用される。レチクルマークRM1〜RM4は、遮光帯54と、パターン領域52に微細な塵等が付着するのを防止するためのペリクル(防塵膜)(不図示)を支持するペリクルフレーム(不図示)の内枠(点線の枠51で示されている)とで囲まれた、幅が数mmの領域に形成されている。なお、遮光帯54をY方向に挟むように形成されている第3列及び第4列のレチクルマークRM3,RM4は、遮光帯54のパターン領域52に対して外側のエッジ部付近に、一部が遮光帯54にかかるように形成されていてもよい。
本実施形態の遮光帯54は、パターン領域52をY方向に挟むようにX方向に平行に配置された幅aの第1辺部54a及び第2辺部54bと、パターン領域52をX方向に挟むようにY方向に平行に配置された幅aの第3辺部54c及び第4辺部54dとを有する。そして、一例として、第1辺部54a及び第2辺部54b内のパターン領域52と反対側のエッジ部の近傍に、それぞれX方向にピッチ(周期)bで第1組55A及び第2組55Bの複数の変形量計測用のマーク(以下、歪み計測用マークという。)56が形成されている。また、一例として、第3辺部54c及び第4辺部54d内に、それぞれY方向にピッチbで第3組55C及び第4組55Dの複数の歪み計測用マーク56が形成されている。
遮光帯54内のデバイス用パターンDPの変形量を多数の評価点で高精度に計測又は予測するためには、第1組55A〜第4組55Dの歪み計測用マーク56の配列のピッチbはできるだけ小さいこと、即ち歪み計測用マーク56の個数はできるだけ多いことが好ましい。このため、歪み計測用マーク56の個数は、デバイス用パターンDPの変形量の必要な計測精度に応じて定められる。一例として、歪み計測用マーク56の配列のピッチbは5〜10mm程度である。なお、第1組55A〜第4組55Dの歪み計測用マーク56の配列のピッチは互いに異なっていてもよく、歪み計測用マーク56は不等間隔で配置されていてもよい。これらの場合、第1組55A〜第4組55Dの歪み計測用マーク56の配列の個数は例えば5〜7個程度であってもよい。
代表的に、図3(A)中の遮光帯54の第3辺部54c中の歪み計測用マーク56は、一例として図3(B)に示すように、第3辺部54cの幅aの範囲内で、Y軸に平行な中心線B1に対してパターン領域52と反対側の−X方向側(幅a/2の範囲内)に形成されている。そして、歪み計測用マーク56は、Y方向に細長い透過部よりなる複数のラインパターン58Xaを、X方向に所定ピッチで、かつX軸(又はY軸)に対して45°で交差する特定方向に沿ってY方向に次第にずらして配列してなるX軸のL&Sパターン58Xと、X方向に細長い透過部よりなる複数のラインパターン58Yaを、Y方向に所定ピッチで、かつその特定方向に沿ってX方向に次第にずらして配列したY軸のL&Sパターン58Yとを対向するように形成したものである。L&Sパターン58X及び58Yのピッチは互いに同じであり、ラインパターン58Xa,58Yaの線幅はそのピッチの1/2である。一例として、ラインパターン58Xa,58Yaの線幅は、それらの像58XaP,58YaP(図4(B)参照)の線幅dの段階で100nm〜1μm程度であり、L&Sパターン58X,58Yを構成するラインパターンの本数は数10本である。
一例として投影ユニットPUの投影倍率を1/4倍、ラインパターンの像の線幅をほぼ最大値の1μm(ピッチで2μm)、L&Sパターン58X,58Yを構成するラインパターンの本数を50本とすると、遮光帯54中でのL&Sパターン58X(ひいては歪み計測用マーク56)のX方向の幅はほぼ400(=2・4・50)μmとなる。本実施形態では、遮光帯54の幅aは3.5mm程度であるため、歪み計測用マーク56は、遮光帯54の幅aの第3辺部54c内で中心線B1に対して−X方向側の領域に容易に形成できる。同様に、図3(A)の第4辺部54d内の歪み計測用マーク56は、第3辺部54c内の歪み計測用マーク56とほぼ対称な位置に、即ち中心線に対して+X方向側に形成されている。なお、遮光帯54の幅aが狭いような場合には、歪み計測用マーク56を第3辺部54c及び第4辺部54dの中央付近に形成することも可能である。
また、図3(A)中の遮光帯54の第1辺部54a中の歪み計測用マーク56は、一例として図3(C)に示すように、第1辺部54aの幅aの範囲内でX軸に平行な中心線B2に対してパターン領域52と反対側である+Y方向側の領域(幅a/2の領域)、及び第1辺部54aのパターン領域52と反対側のエッジ部に設けられた遮光膜よりなる凸部57の中に形成されている。同様に、図3(A)の第2辺部54bに少なくとも一部がかかる歪み計測用マーク56は、図3(C)の歪み計測用マーク56とほぼ対称な位置に、即ち第2辺部54bの中心線に対して−Y方向側の領域、及び第2辺部54bのパターン領域52と反対側のエッジ部に設けられた遮光膜よりなる凸部の中に形成されている。なお、凸部57を省略して、第1辺部54a及び第2辺部54b内の中心線に対してパターン領域52と反対側の領域内に歪み計測用マーク56を形成してもよい。この場合、遮光帯54の幅が狭いときには、歪み計測用マーク56を第1辺部54a及び第2辺部54b内の中心付近に形成することも可能である。
図3(A)において、通常の走査露光時には、図1の照明系10からの照明光ILによる照明領域IARは、レチクルRのパターン面50aで遮光帯54の第3辺部54c及び第4辺部54d内に両端のエッジ部が入る大きさに設定される。そして、照明領域IARに対してレチクルRは走査方向(Y方向)に走査される。この場合、第3辺部54c及び第4辺部54d内の歪み計測用マーク56の像がウエハWに投影されないように、照明領域IARの±X方向の両端のエッジ部は、相対的に第3辺部54c及び第4辺部54d内で歪み計測用マーク56の内側を通ることが好ましい。
また、通常の走査露光時に、照明領域IARの±Y方向の一方のエッジ部が、遮光帯54の第1辺部54a又は第2辺部54b内にかかると、他方のエッジ部は照明領域IARを閉じるように移動する。従って、遮光帯54の第1辺部54a及び第2辺部54bにおいて中心線に関してパターン領域52に対して反対側の領域内にある第1組55A及び第2組55Bの歪み計測用マーク56の像がウエハWに投影されることはない。
また、露光装置EXにおいて、レチクルRのアライメント又はレチクルRの熱変形量を計測する場合には、照明系10中の可動レチクルブラインド(不図示)の制御によって、照明光ILはレチクルRのパターン面50aにおいて、図3(A)に示すように、X方向に広い計測用の照明領域IARAを照明する。照明領域IARAのX方向の幅は、遮光帯54及びレチクルマークRM1,RM2を含む範囲に設定されている。この照明領域IARAに対して、レチクルRをY方向に移動して、目標とするレチクルマークRM1〜RM4又は歪み計測用マーク56を照明領域IARA内に収め、それらのマークの像の位置を空間像計測装置45で計測することで、レチクルRのアライメント又はレチクルRの熱変形量を計測できる。なお、Y方向の外側のレチクルマークRM3,RM4のみを計測する場合には、露光時の照明領域IARを使用することが可能であり、歪み計測用マーク56のみを計測する場合には、照明領域IARのX方向の両端は遮光帯54の±X方向の外側のエッジ部付近まで広げるだけでよい。
空間像計測装置45によって歪み計測用マーク56の像の位置を計測する場合には、ウエハステージWSTの駆動によって、図4(B)に示すように、歪み計測用マーク56の投影ユニットPUによる像56Pが投影される位置に、空間像計測装置45の基準部材46が移動する。なお、説明の便宜上、図4(B)及び以下の説明では、投影ユニットPUによる像は正立像であるものとしている。その状態で、ウエハステージWSTを矢印B3で示すようにX軸に対して45°で交差する方向に移動して、基準部材46のスリット47X及び47Yでそれぞれ歪み計測用マーク56のX軸のL&Sパターン58Xの像58XP及びY軸のL&Sパターン58Yの像58YPを走査しながら、図4(A)の光電検出器49X,49Yの検出信号を信号処理部34に取り込む。そして、信号処理部34で、複数のラインパターンの像58XP及び58YPの位置の例えば平均位置を求めることで、歪み計測用マーク56の像56PのウエハステージWSTの座標系(X,Y)上での位置(DMX,DMY)を求めることができる。この際に、像56Pに対して基準部材46を斜め方向に1回走査するのみで、像56PのX方向及びY方向の位置を求めることができるため、複数の歪み計測用マーク56の像の位置を効率的に計測できる。
次に、図5(A)は、本実施形態において照明光ILの照射エネルギーによる熱膨張によって、パターン領域52のデバイス用パターンDPが大きく変形したレチクルRを示す。なお、図5(A)等では、レチクルR又はこの像RPの変形量を誇張して示している。また、照明光ILの照射エネルギーの積算値がある程度以上になると、レチクルRの変形量は飽和することが知られている。図5(A)において、点線の格子パターン60中のX方向にI列でY方向にJ列(I,Jは2以上の整数)に配列された複数の格子点が、変形する前のデバイス用パターンDPの評価点A(i,j)(i=1〜I,j=1〜J)である。格子パターン60をY方向及びX方向に挟むように配列された遮光帯54の2つの辺部54a,54b及び2つの辺部54c,54dは直線で表され、辺部54a〜54dに沿って第1組55A〜第4組55Dの歪み計測用マーク56が配置されている。この場合、デバイス用パターンDPの評価点A(i,j)の配列数I,Jは、第1組55A(X方向)及び第3組55C(Y方向)の歪み計測用マーク56の配列数と同じである。
また、熱膨張によって変形したデバイス用パターンDPの各評価点B(i,j)は変形する前は評価点A(i,j)の位置にあった点であり、変形後の評価点B(i,j)を格子点とする実線の格子パターン61Aが変形後のデバイス用パターンDPを表している。なお、変形の線形成分は補正済みである。そして、格子パターン61AをY方向に挟む2つの実線の曲線63A,63B(変形後の遮光帯54の辺部54a,54b)に沿って、第1組55A及び第2組55Bの変位した後の歪み計測用マーク56Hが配置され、格子パターン61AをX方向に挟む2つの実線の曲線63C,63D(変形後の遮光帯54の辺部54c,54d)に沿って、第3組55C及び第4組55Dの変位した後の歪み計測用マーク56Hが配置されている。歪み計測用マーク56Hは、デバイス用パターンDPの変形に応じて変位した後の歪み計測用マーク56を表している。
本実施形態では、変形した格子パターン61Aを囲む変位した後の第1組55A〜第4組55Dの歪み計測用マーク56Hの投影ユニットPUによる像の位置を空間像計測装置45によって計測し、この計測結果から計算によって変形後の格子パターン61Aの各評価点B(i,j)の像の位置を求め、求めた位置を図2の演算装置44に供給する。演算装置44では、その求められた像の位置から以下で説明するようにデバイス用パターンDPの変形量を求め、この変形量の情報を結像特性制御系42に供給する。結像特性制御系42では、その変形量を補正(相殺)するように結像特性補正機構43で投影ユニットPUの結像特性を補正する。
本実施形態では、デバイス用パターンDPを複数の評価点A(i,j)で表し、レチクルRの熱変形によって評価点A(i,j)がX方向及びY方向に変位して評価点B(i,j)に移動するものとする。そして、評価点A(i,j)から評価点B(i,j)へのX方向の変位dx及びY変位の分布dyを、それぞれX方向及びY方向の位置x及びyの関数fm(x,y)及びgm(x,y)と係数k(2m−1)及びk2m(mは1以上の整数)とを用いて次のように表す。なお、関数gm(x,y)は関数fm(x,y)において位置x,yを入れ替えたものである。また、実際には、投影像として計測されるため、関数fm(x,y)及びgm(x,y)を投影倍率に応じて縮小した関数が使用される。
dx=k(2m−1)・fm(x,y) …(1A)
dy=k2m・gm(x,y) …(1B)
図6(A)〜(J)は、整数mの値が1〜10の場合の関数fm(x,y)及びgm(x,y)の具体的な形の例を示す。整数mの値が11以上の場合の関数も同様に定義できる。例えば、図6(A)(m=1)では、dx=k1・f1(x,y)=k1,dy=k2・g1(x,y)=k2(オフセット)であり、図6(B)(m=2)では、dx=k3・f2(x,y)=k3・x,dy=k4・g2(x,y)=k4・y(線形倍率誤差)であり、図6(C)(m=3)では、dx=k5・f3(x,y)=k5・y,dy=k6・g3(x,y)=k6・x(横ずれ)であり、図6(D)(m=4)では、dx=k7・f4(x,y)=k7・x2,dy=k8・g4(x,y)=k8・y2(非線形の倍率誤差)であり、図6(E)(m=4)では、dx=k9・f4(x,y)=k9・x・y,dy=k10・g4(x,y)=k10・y・x(ディストーション)である。関数fm(x,y)及びgm(x,y)としては互いに直交している関数を使用してもよい。さらに、関数fm(x,y)及びgm(x,y)としては他の任意の位置x,yの関数を使用可能である。
そして、本実施形態の演算装置44では、一例として、図5(A)のデバイス用パターンDPを囲む第1組55A〜第4組55Dの歪み計測用マーク56H(変位後の歪み計測用マーク56)の像の位置のX方向及びY方向へのずれ量を表す関数F(x,y)及びG(x,y)を、式(1A)及び(1B)の関数fm(x,y)及びgm(x,y)に分解(フィッティング)し、分解された関数fm(x,y)及びgm(x,y)の係数k(2m−1)及びk2m(m=1,2,…)を求める。これらの係数k(2m−1)及びk2mの集合によってレチクルRのデバイス用パターンDPの変形の状態が表されている。
ここでは比較のために、図5(A)の変形した格子パターン61Aの像の全部の位置データに基づいて、関数fm(x,y)及びgm(x,y)の係数k(2m−1)及びk2m(m=1,2,…)を求め、これらの係数に基づいて図1の結像特性補正機構43を用いて投影ユニットPUの結像特性を補正する場合のシミュレーションの結果を示す。このとき、整数mの値が1〜9の範囲の係数k1〜k18の値に基づいて結像特性補正機構43を介して結像特性を補正した投影ユニットPUを用いて、図5(A)のレチクルRのパターンを投影して得られるレチクルRの像RPを図5(B)に示す。なお、図5(B)及び後述の図7等では、説明の便宜上、レチクルRの像RPは等倍の正立像で表されている。図5(B)において、評価点Q(i,j)を格子点とする格子パターン像61AP(パターン領域の像52P内のデバイス用パターンの像DPP)は、図5(A)の変形後の格子パターン61A(デバイス用パターンDP)の、結像特性が補正された投影ユニットPUによる像である。また、格子パターン像61APを囲む実線の曲線63AP,63BP,63CP,63DPに沿った歪み計測用マーク56の像56HPは、図5(A)の格子パターン61Aを囲む歪み計測用マーク56Hの像である。以下では、格子パターン像(以下、「理想格子パターン像」という。)61APを基準として、レチクルRの熱歪みによる投影像の変形を補正した後に得られるレチクルRのパターンの像を説明する。
そして、図5(A)の第1組55A〜第4組55Dの歪み計測用マーク56Hの像の全部の位置のずれ量を表す関数F(x,y)及びG(x,y)から関数fm(x,y)及びgm(x,y)の係数k1〜k18の値を求め、これらの値に基づいて結像特性補正機構43を介して結像特性を補正した投影ユニットPUを用いて、図5(A)のレチクルRのパターンを投影して得られる像RPを図7に示す。図7において、点線の格子パターン像61Cが歪み計測用マーク56Hの像の位置のずれ量に基づいて補正した後のデバイス用パターンDPの像に対応しており、実線の格子パターンが理想格子パターン像61APである。これによって、レチクルRの熱変形によってデバイス用パターンDPが図5(A)のように変形した場合でも、投影ユニットPUの結像特性の補正によってデバイス用パターンDPの像を比較的に理想格子パターン像61APに近い状態まで補正できることが分かる。
このようにレチクルRの遮光帯54中の歪み計測用マーク56の像の位置を計測し、この計測結果に基づいてレチクルRのデバイス用パターンDPの像を補正することは、例えば所定枚数のウエハの露光毎に実行することも可能である。また、実際にウエハを露光する前に予め照明光ILの照射エネルギーの積算値と、レチクルRの熱変形によるデバイス用パターンDPの像の変形量との関係を計測しておいてもよい。この際に、照明光ILの照射エネルギーの積算値は、ウエハの露光枚数にほぼ比例するため、ウエハの露光枚数を照射エネルギーの積算値の代わりに使用することも可能である。
そこで、本実施形態の露光装置EXにおいて、予めレチクルRのパターンの熱変形量の変化をウエハの露光枚数との関係で求めておく動作の一例を図8(A)のフローチャートを参照して説明する。この動作は主制御装置20によって制御される。まず、図8(A)のステップ102において、図1のレチクルステージRSTにレチクルRをロードし、空間像計測装置45を用いてレチクルRのレチクルマークRM1〜RM4のうち所定のマークの像の位置を計測し、この計測結果に基づいてレチクルRのアライメントを行う。次に、ウエハステージWSTに実露光用のウエハWと同じ形状のダミー露光用のウエハ(ダミーウエハ)DWをロードし(ステップ104)、主制御装置20において、ウエハ枚数カウンターをリセットする(ステップ106)。これにより、ウエハ枚数nが0にセットされる。
次のステップ108において、ウエハ枚数nに1を加算した後、ステップ110において、結像特性制御系42は、照明光ILの積算照射エネルギー(露光光の積算エネルギー)及び周囲の気圧等に応じて、予め記憶されている特性に基づいて結像特性補正機構43を介して投影ユニットPU(投影光学系PL)の結像特性を理想状態に設定する。次のステップ112において、実際のウエハWの露光時と同様に、ダミーウエハDWの全部のショット領域に対してn回目(ここでは1回目)の露光を行う。次のステップ114において、レチクルRの変形量(熱歪み)の計測を行うかどうかを判定する。一例として、ダミーウエハDWをk回(kは1以上の整数)露光する毎に熱歪みを計測するものとすると、ウエハ枚数カウンターの計数値(ウエハ枚数)nが(1+n’k)(n’=0,1,2,…)に達する毎に熱歪みが計測される。レチクルRの熱歪みを計測しないときには、動作はステップ108に戻る。
ステップ114でレチクルRの熱歪みを計測すると判定されたときには、動作はステップ116に移行して、空間像計測装置45を用いてレチクルRの第1組55A〜第4組55Dの全部の歪み計測用マーク56の像の位置を計測し、計測結果をウエハ枚数nに対応させて演算装置44の記憶装置に記憶する。次のステップ118において、レチクルRの熱歪みが飽和したかどうかを判定する。熱歪みが飽和すると、デバイス用パターンDPの像の変形量の変化がほとんどなくなり、歪み計測用マーク56の像の位置がほとんど変化しなくなる。そこで、演算装置44は、全部の歪み計測用マーク56の像の位置の前回の計測結果と今回の計測結果との差分の自乗和(位置ずれ量)を計算し、この位置ずれ量が予め定められている許容値より小さくなったときに、熱歪みが飽和したものと判定する。熱歪みが飽和していないときには動作はステップ108に戻り、ウエハ枚数nの加算が行われ、投影ユニットPUの結像特性の理想状態への補正(ステップ110)及びダミーウエハの露光(ステップ112)が行われる。そして、ステップ114でレチクルRの熱歪みを計測すると判定されたときにはステップ116で歪み計測用マーク56の像の位置が計測される。
そして、ステップ118で、レチクルRの熱歪みが飽和したと判定されたときに、動作はステップ120に移行する。そして、演算装置44は、ウエハ枚数nが(1+n’k)に達した毎に計測されて記憶されていたレチクルRの第1組55A〜第4組55Dの歪み計測用マーク56の像の全部の位置の計測結果から、デバイス用パターンDPの変形量を表す式(1A)及び(1B)の関数fm(x,y)及びgm(x,y)の係数(例えば係数k1〜k18)の値を求める。そして、例えば補間によって、レチクルRの熱歪みが飽和するまでの全部のウエハ枚数nに関して、デバイス用パターンDPの変形量を表す係数の値を求め、この係数の値をウエハ枚数nに対応させて結像特性制御系42の記憶装置に記憶させる。これで、レチクルRのパターンの熱変形量の変化の計測が終了する。
次に、ステップ120で記憶したレチクルRのパターンの熱変形量の係数を用いて、レチクルRのパターンの熱変形による投影像の変形を補正しながら、所定ロット数の実際のウエハにレチクルRのパターンの像を露光する動作の一例につき図8(B)のフローチャートを参照して説明する。この動作も主制御装置20によって制御される。図8(B)において、図8(A)と同じ動作の工程には同じ符号を付している。まず、図8(B)のステップ102において、レチクルステージRSTへのレチクルRのロード及びアライメントが行われる。次のステップ106において、ウエハ枚数カウンターをリセットした後、ステップ122において、ウエハステージWSTにフォトレジストが塗布された未露光のウエハWをロードする。そして、ウエハ枚数nに1を加算した後、アライメント系ALを用いてウエハWのアライメントを行う。
次のステップ124において、結像特性制御系42は、照明光ILの積算照射エネルギー(露光光の積算エネルギー)及び周囲の気圧等に応じて、予め記憶されている特性(投影ユニットPU自体の結像特性の変動特性)に基づいて結像特性補正機構43を介して投影ユニットPU(投影光学系PL)の結像特性を補正する。さらに結像特性制御系42は、ステップ120で記憶されたウエハ枚数nに応じたレチクルRの熱変形量を示す係数(例えば係数k1〜k18)の値を用いて、レチクルRの熱変形によるデバイス用パターンDPの像の変形を相殺するように投影ユニットPUの結像特性を補正する。これによって、レチクルRが熱変形していても、レチクルRのパターンの投影ユニットPUによる像は、レチクルRが熱変形する前のデバイス用パターンDPの像と同じになる。この状態で、ステップ126において、ウエハWの全部のショット領域にレチクルRのパターンの像が走査露光される。露光後のウエハWはアンロードされて現像装置(不図示)に搬送される。そして、ステップ128で次のウエハに露光する場合には、動作はステップ122に戻り、結像特性の補正及び次のウエハへの露光が行われる。
このように本実施形態によれば、レチクルRの歪み計測用マーク56の像の位置の計測結果に基づいてデバイス用パターンDPの変形量を算出し(予測し)、そのデバイス用パターンDPの像の変形量を補正するように投影ユニットPUの結像特性を補正している。このため、照明光ILの照射エネルギーによってレチクルRが熱変形しても、常にレチクルRのパターンの像を高精度にウエハに露光できる。従って、ウエハWの各ショット領域に微細な回路パターンを高精度に形成できる。
本実施形態の効果等は以下の通りである。
本実施形態のレチクルRは、デバイス用パターンDPが形成されたパターン面50aにデバイス用パターンDPを囲むように形成された枠状の遮光帯54と、パターン面50aの遮光帯54の外側の領域に形成された複数のレチクルマークRM1,RM2(第1マーク)と、パターン面50aで遮光帯54内に形成された複数の歪み計測用マーク56(第2マーク)と、を備えている。
また、露光装置EXを用いて実行されるレチクルRの変形量計測方法は、レチクルRの全部の歪み計測用マーク56の像の位置を計測するステップ116と、その歪み計測用マーク56の像の位置の計測結果から遮光帯54で囲まれたデバイス用パターンDPの変形量を求めるステップ120と、を含んでいる。
本実施形態によれば、遮光帯56中に形成された歪み計測用マーク56の像の位置の計測結果から遮光帯56で囲まれたデバイス用パターンDPの変形量を求めることができる。従って、レチクルRの熱変形等によるデバイス用パターンDPの変形量を、そのデバイス用パターンDPに影響を与えることなく高精度に求めることができる。
なお、レチクルRの熱歪みを計測する際に、必ずしも遮光帯54中の第1組55A〜第4組55Dの全部の歪み計測用マーク56の像の位置を計測する必要はなく、例えばレチクルRの熱歪みの計測精度が低くともよい場合には、第1組55A〜第4組55Dから選択された複数の歪み計測用マーク56の像の位置を計測するだけでもよい。
また、レチクルRの歪み計測用マーク56の少なくとも一部は、レチクルRのパターン面50aにおいて遮光帯54のデバイス用パターンDP(パターン領域52)に対して反対側のエッジ部に一部がかかるように形成されていてもよい。
また、本実施形態の露光装置EX又は露光方法は、露光用の照明光(露光光)ILでパターンを照明し、照明光ILでそのパターン及び投影ユニットPU(投影光学系PL)を介してウエハW(物体)を露光する装置又は方法である。そして、露光装置EXは、レチクルRをデバイス用パターンDPがそのパターンとなるように保持する(ステップ102を実行する)レチクルステージRSTと、ウエハWを保持して移動するウエハステージWSTと、レチクルRの歪み計測用マーク56の像の位置を計測する(ステップ116を実行する)空間像計測装置45(マーク計測系)と、空間像計測装置45の計測結果からレチクルRの遮光帯54で囲まれたデバイス用パターンDPの変形量を求める(ステップ120を実行する)演算装置44と、演算装置44によって求められたデバイス用パターンDPの変形量に応じて、ウエハWに露光されるパターンの形状を補正する(ステップ124を実行する)結像特性補正機構43と、を備えている。
本実施形態によれば、照明光ILの照射エネルギーによってレチクルRが熱変形した場合でも、その変形量の計測結果に応じて、投影ユニットPUの結像特性を補正することで、常に高精度にレチクルRのパターンの像をウエハWに露光できる。また、レチクルRの熱変形によるデバイス用パターンDPの投影像の変形を投影ユニットPUの結像特性補正機構で補正しているため、別途補正機構を設ける必要がない。
なお、本実施形態では、以下のような変形が可能である。
まず、例えばレチクルRの熱変形がY方向(走査方向)の倍率誤差である場合には、その熱変形によるデバイス用パターンDPの像の変形を補正するために、主制御装置20の制御のもとで走査露光時のレチクルR(レチクルステージRST)とウエハW(ウエハステージWST)とのY方向の走査速度比を調整してもよい。この場合にも、別途補正機構を設ける必要がない。
また、上記の実施形態では、レチクルRの熱歪みを計測するために歪み計測用マーク56の投影ユニットPUによる像の位置を計測している。この他に、例えばレチクルステージRSTの上方にレチクルアライメント顕微鏡のようなマーク計測系を配置して、このマーク計測系で歪み計測用マーク56の変位後の位置を直接計測してもよい。この場合には、投影ユニットPUの結像特性の影響を受けることなく、歪み計測用マーク56の位置の計測結果からより高精度にデバイス用パターンDPの変形量を求めることができる。
また、上記の実施形態では、ステップ120で歪み計測用マーク56の像の位置の計測結果からデバイス用パターンDPの変形量を表す式(1A)及び(1B)の関数の係数(例えばk1〜k18)を求める際に、第1組55A〜第4組55Dの全部の歪み計測用マーク56の像の位置の計測データを用いている。これに関して、実際には、デバイス用パターンDPの変形の状態によっては、図3(A)の第1組55A及び第2組55Bの歪み計測用マーク56、即ちX方向に配列されたX群の歪み計測用マーク56と、第3組55C及び第4組55Dの歪み計測用マーク56、即ちY方向に配列されたY群の歪み計測用マーク56とで、検出感度(変形量に対する係数k1〜k18等の大きさ)が異なる場合がある。
例えば、図6(D)及び図6(G)の変位dyと図6(I)の変位dxとはY群のマークの感度が高く、図6(I)の変位dyはX群のマークの感度が高く、図6(E)の変位dxはX群及びY群のマークの感度が同じ程度である。そこで、ステップ120でデバイス用パターンDPの変形量を表す係数を求める際に、その変形の状態を表す係数k1〜k18等毎にX群及びY群のマークのうちで感度が高い方のマークの計測データのみを用いてもよい。
具体的に、レチクルRが図5(A)のように熱変形している場合に、X群の歪み計測用マーク56の像の位置の計測データのみから係数k1〜k18を求め、この係数に応じて投影ユニットPUの結像特性を補正して得られる格子パターン像が図9(A)の格子パターン像61DXである。同様に、Y群の歪み計測用マーク56の像の位置の計測データのみから求めた係数k1〜k18に応じて投影ユニットPUの結像特性を補正して得られる格子パターン像が図9(B)の格子パターン像61DYである。また、係数k1〜k18毎にX群及びY群のうち感度の高い方の歪み計測用マーク56の計測データを用いて使用するデータを最適化してその係数の値を求め、この係数に応じて投影ユニットPUの結像特性を補正して得られた格子パターン像が、図10の最適化された格子パターン像61Eである。図10には理想格子パターン像61APも示されている。得られた格子パターン像61Eは理想格子パターン像61APに近く、使用するマークの最適化によってより高精度にデバイス用パターンDPの変形量を求めることができることが分かる。
また、上記の実施形態では、レチクルのパターンの変形量を関数の係数で表しているため、変形量の補正が容易である。しかしながら、レチクルのパターンの変形量は、関数にフィッティングすることなく、例えば歪み計測用マークの変形量の補間等で表すことも可能である。
また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図11に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、このデバイスの製造方法は、上記の実施形態の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写することと、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工すること(ステップ224の現像、エッチング等)とを含んでいる。この際に、上記の実施形態によれば、レチクルRの熱変形の影響を軽減して高精度に露光を行うことができるため、電子デバイスを高精度に製造できる。
なお、本発明は、上述のステップ・アンド・スキャン方式の走査露光型の投影露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパ等)にも適用できる。さらに、本発明は、液浸型露光装置以外のドライ露光型の露光装置にも同様に適用することができる。
また、本発明は、半導体デバイス製造用の露光装置に限らず、液晶表示素子やプラズマディスプレイなどを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックスウエハ上に転写する露光装置、並びに撮像素子(CCDなど)、有機EL、マイクロマシーン、MEMS(Microelectromechanical Systems)、及びDNAチップなどの製造に用いられる露光装置などにも適用することができる。
このように、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
EX…露光装置、R…レチクル、W…ウエハ、WST…ウエハステージ、RM1〜RM4…レチクルマーク、43…結像特性補正機構、44…演算装置、45…空間像計測装置、50…マスク基板、52…パターン領域、54…遮光帯、56…歪み計測用マーク、61AP…理想格子像

Claims (16)

  1. 転写用のパターンが形成されたマスクにおいて、
    前記転写用のパターンが形成されたパターン面に前記パターンを囲むように形成された枠状の遮光帯と、
    前記パターン面の前記遮光帯の外側の領域に形成された位置合わせ用の複数の第1マークと、
    前記パターン面に少なくとも一部が前記遮光帯にかかるように形成された位置計測用の複数の第2マークと、
    を備えることを特徴とするマスク。
  2. 前記遮光帯は、第1方向に沿って互いに平行に配置された第1及び第2の辺部と、前記第1方向に直交する第2方向に沿って互いに平行に配置された第3及び第4の辺部と、を有し、
    複数の前記第2マークは、前記第1方向に沿ってそれぞれ前記第1及び第2の辺部に少なくとも一部がかかるように形成された第1組及び第2組の複数のマークと、前記第2方向に沿ってそれぞれ前記第3及び第4の辺部に形成された第3組及び第4組の複数のマークと、を有することを特徴とする請求項1に記載のマスク。
  3. 前記第2マークは、それぞれ前記第1方向に周期的に形成された第1周期パターンと、前記第2方向に周期的に形成された第2周期パターンと、を有することを特徴とする請求項2に記載のマスク。
  4. 前記第2マークは、前記遮光帯中の幅方向の中心よりも前記パターンに対して外側に形成されていることを特徴とする請求項1〜3のいずれか一項に記載のマスク。
  5. 前記第1及び第2の辺部は、前記第3及び第4の辺部よりも短く形成され、
    前記第1組及び第2組の複数のマークは、それぞれ前記第1及び第2の辺部の前記パターンに対して外側の輪郭の近傍に形成されたことを特徴とする請求項2又は3に記載のマスク。
  6. 請求項1〜5のいずれか一項に記載のマスクの変形量計測方法において、
    前記マスクの複数の前記第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測することと、
    複数の前記計測対象マーク又はこの像の位置の計測結果から前記遮光帯で囲まれた前記パターンの変形量を求めることと、
    を含むことを特徴とするマスクの変形量計測方法。
  7. 複数の前記第2マークは、第1方向に沿って形成された第1組及び第2組の複数のマークと、前記第1方向に直交する第2方向に沿って形成された第3組及び第4組の複数のマークとを有し、
    前記遮光帯で囲まれた前記パターンの変形量を求めることは、前記変形量の状態に応じて、前記第1組及び第2組の複数のマークと、前記第3組及び第4組の複数のマークとのうち少なくとも一方のマーク群から前記複数の計測対象マークを選択することを含むことを特徴とする請求項6に記載のマスクの変形量計測方法。
  8. 前記遮光帯で囲まれた前記パターンの変形量を求めることは、複数の前記計測対象マーク又はこの像の位置の計測結果から、前記パターンの変形量を表す関数の係数を求めることを含むことを特徴とする請求項6又は7に記載のマスクの変形量計測方法。
  9. 露光光でパターンを照明し、前記露光光で前記パターン及び投影系を介して物体を露光する露光方法において、
    前記パターンとして、請求項1〜5のいずれか一項に記載のマスクの転写用のパターンを設置することと、
    前記マスクの複数の前記第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測することと、
    複数の前記計測対象マーク又はこの像の位置の計測結果から前記遮光帯で囲まれた前記パターンの変形量を求めることと、
    求められた前記パターンの変形量に応じて、前記物体に露光されるパターンの形状を補正することと、
    を含むことを特徴とする露光方法。
  10. 前記計測対象マーク又はこの像の位置を計測することは、前記物体を移動するステージ側に設けられた検出器と、前記計測対象マークの前記投影系による像とを相対走査して前記計測対象マークの像の位置を計測することを含み、
    前記物体に露光されるパターンの形状を補正することは、前記投影系の結像特性を補正することを含むことを特徴とする請求項9に記載の露光方法。
  11. 前記露光光で前記マスクのパターン及び前記投影系を介して前記物体を露光することは、前記マスクを移動する第1ステージと前記物体を移動する第2ステージとを走査方向に前記投影系の投影倍率に応じた速度比で同期して移動することを含み、
    前記物体に露光されるパターンの形状を補正することは、前記物体の露光時に、前記第1ステージと前記第2ステージとの前記走査方向の速度比を補正することを含むことを特徴とする請求項9に記載の露光方法。
  12. 露光光でパターンを照明し、前記露光光で前記パターン及び投影系を介して物体を露光する露光装置において、
    請求項1〜5のいずれか一項に記載のマスクを、前記マスクの前記転写用のパターンが前記露光光の照明領域に配置されるように保持する第1ステージと、
    前記物体を保持して移動する第2ステージと、
    前記マスクの複数の前記第2マークのうち少なくとも一部の複数の計測対象マーク又はこの像の位置を計測するマーク計測系と、
    前記マーク計測系の計測結果から前記マスクの前記遮光帯で囲まれた前記パターンの変形量を求める演算装置と、
    前記演算装置によって求められた前記パターンの変形量に応じて、前記物体に露光されるパターンの形状を補正する補正機構と、
    を備えることを特徴とする露光装置。
  13. 前記マーク計測系は、前記第2ステージに設けられて、前記計測対象マークの前記投影系による像をスリットを介して検出する検出系を有し、
    前記補正機構は、前記投影系の結像特性を補正すること特徴とする請求項12に記載の露光装置。
  14. 前記露光光で前記マスクのパターン及び前記投影系を介して前記物体を露光するときに、前記第1ステージは、前記第2ステージと同期して走査方向に移動し、
    前記補正機構は、前記第1ステージ及び前記第2ステージの前記走査方向の速度比を補正する機構を有することを特徴とする請求項12に記載の露光装置。
  15. 請求項9〜11のいずれか一項に記載の露光方法を用いて基板上に感光層のパターンを形成することと、
    前記パターンが形成された基板を処理することと、を含むデバイス製造方法。
  16. 請求項12〜14のいずれか一項に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
    前記パターンが形成された基板を処理することと、を含むデバイス製造方法。
JP2012038369A 2012-02-24 2012-02-24 マスク及びその変形量計測方法、並びに露光方法及び装置 Pending JP2013175541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038369A JP2013175541A (ja) 2012-02-24 2012-02-24 マスク及びその変形量計測方法、並びに露光方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038369A JP2013175541A (ja) 2012-02-24 2012-02-24 マスク及びその変形量計測方法、並びに露光方法及び装置

Publications (1)

Publication Number Publication Date
JP2013175541A true JP2013175541A (ja) 2013-09-05

Family

ID=49268214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038369A Pending JP2013175541A (ja) 2012-02-24 2012-02-24 マスク及びその変形量計測方法、並びに露光方法及び装置

Country Status (1)

Country Link
JP (1) JP2013175541A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107976A1 (ja) * 2014-01-16 2015-07-23 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107976A1 (ja) * 2014-01-16 2015-07-23 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
KR20160106733A (ko) * 2014-01-16 2016-09-12 가부시키가이샤 니콘 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
JPWO2015107976A1 (ja) * 2014-01-16 2017-03-23 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US9915878B2 (en) 2014-01-16 2018-03-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2018173663A (ja) * 2014-01-16 2018-11-08 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
KR101963012B1 (ko) 2014-01-16 2019-03-27 가부시키가이샤 니콘 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법

Similar Documents

Publication Publication Date Title
US10571340B2 (en) Method and device for measuring wavefront using diffraction grating, and exposure method and device
CN108613638B (zh) 曝光装置及曝光方法、以及器件制造方法
US8472009B2 (en) Exposure apparatus and device manufacturing method
US20070260419A1 (en) Image Plane Measurement Method, Exposure Method, Device Manufacturing Method, and Exposure Apparatus
KR20080059572A (ko) 광학 특성 계측 방법, 노광 방법 및 디바이스 제조 방법,그리고 검사 장치 및 계측 방법
KR20010085449A (ko) 광학 결상 시스템에서의 광행차 측정 방법
KR20110020813A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
JP2010186918A (ja) アライメント方法、露光方法及び露光装置、デバイス製造方法、並びに露光システム
US8384900B2 (en) Exposure apparatus
JP2008263194A (ja) 露光装置、露光方法、および電子デバイス製造方法
CN113196177B (zh) 量测传感器、照射系统、和产生具有能够配置的照射斑直径的测量照射的方法
JP2010067979A (ja) パターン形成方法及びデバイス製造方法
JP2009054736A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP5494755B2 (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009054737A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
KR100955116B1 (ko) 수차측정방법 및 코마수차측정방법
JP5084432B2 (ja) 露光方法、露光装置およびデバイス製造方法
JP2009054732A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
US20140022377A1 (en) Mark detection method, exposure method and exposure apparatus, and device manufacturing method
JP5120691B2 (ja) マーク検出方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP5057235B2 (ja) 較正方法、露光方法及びデバイス製造方法、並びに露光装置
KR101019389B1 (ko) 노광 장치
JP6727554B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2013175541A (ja) マスク及びその変形量計測方法、並びに露光方法及び装置
JPH11233424A (ja) 投影光学装置、収差測定方法、及び投影方法、並びにデバイス製造方法