JP2013171927A - Method of manufacturing electronic apparatus - Google Patents

Method of manufacturing electronic apparatus Download PDF

Info

Publication number
JP2013171927A
JP2013171927A JP2012034074A JP2012034074A JP2013171927A JP 2013171927 A JP2013171927 A JP 2013171927A JP 2012034074 A JP2012034074 A JP 2012034074A JP 2012034074 A JP2012034074 A JP 2012034074A JP 2013171927 A JP2013171927 A JP 2013171927A
Authority
JP
Japan
Prior art keywords
melting point
electrode
point metal
conductive adhesive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012034074A
Other languages
Japanese (ja)
Inventor
Takamitsu Sakai
孝充 坂井
Hirokazu Imai
今井  博和
Takao Izumi
隆夫 泉
Shinji Mizumura
宜司 水村
Takashi Yamaguchi
喬 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Denso Corp
Original Assignee
Namics Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp, Denso Corp filed Critical Namics Corp
Priority to JP2012034074A priority Critical patent/JP2013171927A/en
Publication of JP2013171927A publication Critical patent/JP2013171927A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic apparatus which can ensure excellent connection strength and connection resistance, when connecting the electrode of an electronic component with the electrode of a circuit board.SOLUTION: A conductive adhesive 30 contains 1.5-3.9 wt% of reductant, i.e., 8-quinolinol, relative to the whole conductive adhesive; a high melting point metal, and a low melting point metal having a melting point lower than that of the high melting point metal and higher than that of the reductant. The method of manufacturing an electronic apparatus includes a step for bringing an electrode 21 of an electronic component 20 into contact with an electrode 11 of a circuit board 10 via the conductive adhesive 30, a step for melting the low melting point metal by heating the conductive adhesive 30 at a temperature equal to or higher than 180°C and equal to or higher than the melting point of the low melting point metal, and a step for completing hardening of a thermosetting resin by lowering the temperature subsequently.

Description

本発明は、電子装置の製造方法に関するものである。   The present invention relates to an electronic device manufacturing method.

導電性フィラーと熱硬化性樹脂とを配合してなる導電性接着剤を介して、電子部品の電極と回路基板の電極とを電気的に接続された電子装置の製造方法として、特許文献1には、電子部品の電極の表面がSn系金属からなり、導電性フィラーとして、Agのような高融点金属とBi、In等の低融点金属とを用い、180℃以上の高温で導電性接着剤を加熱して低融点金属を溶融させた後、熱硬化性樹脂の硬化を完了させることが記載されている。   Patent Document 1 discloses a method for manufacturing an electronic device in which an electrode of an electronic component and an electrode of a circuit board are electrically connected via a conductive adhesive formed by blending a conductive filler and a thermosetting resin. Is a conductive adhesive at a high temperature of 180 ° C. or higher using a high melting point metal such as Ag and a low melting point metal such as Bi or In as the conductive filler. Is heated to melt the low melting point metal, and then the curing of the thermosetting resin is completed.

また、特許文献2には、導電性フィラーと樹脂とを配合してなる導電性接着剤において、導電性フィラーとしてAgSnを含み、さらに、酸化防止剤として8−ヒドロキシキノリン(8−HQL、8−キノリノールとも呼ぶ)を含むものが記載されている。この8−キノリノールは、還元剤として機能するものである。なお、特許文献2の実施例では、8−HQLを含む導電性接着剤の加熱温度を150℃としている。   Patent Document 2 discloses that a conductive adhesive comprising a conductive filler and a resin contains AgSn as a conductive filler, and further includes 8-hydroxyquinoline (8-HQL, 8- Those containing quinolinol are also described. This 8-quinolinol functions as a reducing agent. In addition, in the Example of patent document 2, the heating temperature of the conductive adhesive containing 8-HQL is 150 degreeC.

特開2005−89559号公報JP 2005-89559 A 特開2006−225426号公報JP 2006-225426 A

ところで、本願発明者らが、実際に、特許文献1のように、電極の表面がSnからなる電子部品と、高融点金属であるAgSnおよび低融点金属であるInを含む導電性接着剤とを用いて、電子部品の電極と回路基板の電極とを接着する際に、180℃以上の高温で導電性接着剤を加熱して低融点金属を溶融させた後、熱硬化性樹脂の硬化を完了させて、電子装置を製造したところ、電子部品の電極と回路基板の電極との間の接続抵抗が目標値よりも高く、接続抵抗の更なる低下が必要であった。   By the way, the inventors of the present application actually made an electronic component whose surface of the electrode is made of Sn and a conductive adhesive containing AgSn, which is a high melting point metal, and In, which is a low melting point metal, as in Patent Document 1. Used to bond the electrode of the electronic component and the electrode of the circuit board, heat the conductive adhesive at a high temperature of 180 ° C or higher to melt the low melting point metal, and then complete the curing of the thermosetting resin Then, when the electronic device was manufactured, the connection resistance between the electrode of the electronic component and the electrode of the circuit board was higher than the target value, and further reduction of the connection resistance was necessary.

このため、接続抵抗の更なる低下の可能性を探るために、接着後の回路基板と電子部品とを分析したところ、電子部品の電極の表面に酸化膜が形成されていることがわかった。   For this reason, in order to investigate the possibility of further reduction in connection resistance, the circuit board after bonding and the electronic component were analyzed, and it was found that an oxide film was formed on the surface of the electrode of the electronic component.

そこで、特許文献2に記載の還元剤(8−キノリノール)を導電性接着剤に添加すれば、還元剤の還元作用により、電子部品の電極等の表面の酸化膜を除去でき、接続抵抗の更なる低下が可能と考えられる。   Therefore, if the reducing agent (8-quinolinol) described in Patent Document 2 is added to the conductive adhesive, the oxide film on the surface of the electronic component electrode and the like can be removed by the reducing action of the reducing agent, and the connection resistance can be further increased. It is considered that a decrease is possible.

しかし、実際に、導電性接着剤に還元剤(8−キノリノール)を配合して、上述の方法と同様に、電子部品の電極と回路基板の電極とを接着したところ、導電性接着剤の加熱温度が180℃以上であり、特許文献2に記載の温度よりも高温のため、導電性接着剤中に還元剤の気化によるボイド(空隙)が発生しやすくなり、還元剤の配合量が多すぎると、ボイドの存在により接続強度が低下してしまうことがわかった。また、還元剤の配合量が少なすぎると、酸化膜が十分に除去されず、接続抵抗の低下効果が得られないこともわかった。   However, actually, when a reducing agent (8-quinolinol) is blended in the conductive adhesive and the electrodes of the electronic component and the circuit board are bonded in the same manner as described above, the heating of the conductive adhesive is performed. Since the temperature is 180 ° C. or higher and higher than the temperature described in Patent Document 2, voids (voids) due to evaporation of the reducing agent are likely to occur in the conductive adhesive, and the amount of the reducing agent is too large. It was found that the connection strength was lowered due to the presence of voids. It was also found that if the amount of the reducing agent is too small, the oxide film is not sufficiently removed and the effect of reducing the connection resistance cannot be obtained.

本発明は上記点に鑑みて、電子部品の電極と回路基板の電極との接続において、良好な接続強度および接続抵抗が得られる電子装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing an electronic device in which good connection strength and connection resistance are obtained in connection between an electrode of an electronic component and an electrode of a circuit board.

上記目的を達成するため、請求項1に記載の発明では、
電子部品(20)および回路基板(10)を用意するとともに、導電性接着剤(30)として、還元剤(32)である8−キノリノールを導電性接着剤全体の1.5〜3.9wt%含むとともに、導電性フィラーとしての高融点金属(34)および高融点金属よりも融点が低く、かつ、還元剤よりも融点が高い低融点金属(33)を含むものを用意する工程と、
導電性接着剤(30)を介して、電子部品(20)の電極(21)と回路基板(10)の電極(11)とを接触させる工程と、
導電性接着剤(30)を180℃以上かつ低融点金属(33)の融点以上の温度で加熱して低融点金属(33)を溶融する工程と、
その後、温度を下げて熱硬化性樹脂(31)の硬化を完了させる工程とを行うことを特徴としている。
In order to achieve the above object, in the invention described in claim 1,
While preparing an electronic component (20) and a circuit board (10), 8-quinolinol which is a reducing agent (32) is used as the conductive adhesive (30) in an amount of 1.5 to 3.9 wt% of the entire conductive adhesive. And a step of preparing a high melting point metal (34) as a conductive filler and a low melting point metal (33) having a melting point lower than that of the high melting point metal and higher than that of the reducing agent.
Contacting the electrode (21) of the electronic component (20) and the electrode (11) of the circuit board (10) via the conductive adhesive (30);
Heating the conductive adhesive (30) at a temperature not lower than 180 ° C. and not lower than the melting point of the low melting point metal (33) to melt the low melting point metal (33);
Thereafter, the temperature is lowered to complete the curing of the thermosetting resin (31).

このように、熱硬化性樹脂(31)と高融点金属(34)と低融点金属(33)とを含むとともに、8−キノリノールを1.5〜3.9wt%含む導電性接着剤を用いて、導電性接着剤(30)を180℃以上の温度で加熱して低融点金属(33)を溶融した後、熱硬化性樹脂(31)の硬化を完了させることで、電子部品の電極と回路基板の電極との接続において、良好な接続抵抗および接続強度を得ることができる。   As described above, the conductive adhesive containing the thermosetting resin (31), the high melting point metal (34), and the low melting point metal (33) and containing 1.5 to 3.9 wt% of 8-quinolinol is used. After heating the conductive adhesive (30) at a temperature of 180 ° C. or higher to melt the low melting point metal (33), the thermosetting resin (31) is completely cured, so that the electrodes and circuits of the electronic component Good connection resistance and connection strength can be obtained in connection with the electrodes of the substrate.

請求項1に係る発明は、請求項2、3に記載の発明のような加熱温度の場合に特に有効である。   The invention according to claim 1 is particularly effective in the case of the heating temperature as in the inventions according to claims 2 and 3.

すなわち、請求項2に記載の発明は、高融点金属(34)はAgSnであり、低融点金属(33)はInであり、低融点金属(33)を溶融する工程での加熱温度は、AgSnの融点以上であることを特徴としている。   That is, in the invention described in claim 2, the high melting point metal (34) is AgSn, the low melting point metal (33) is In, and the heating temperature in the step of melting the low melting point metal (33) is AgSn. It is characterized by having a melting point or higher.

また、請求項3に記載の発明は、低融点金属(33)を溶融する工程での加熱温度は、電子部品(20)の電極(21)の表面を構成するSnもしくはSn合金の融点以上であることを特徴としている。   According to a third aspect of the present invention, the heating temperature in the step of melting the low melting point metal (33) is equal to or higher than the melting point of Sn or Sn alloy constituting the surface of the electrode (21) of the electronic component (20). It is characterized by being.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の一実施形態における電子装置の概略断面図である。It is a schematic sectional drawing of the electronic device in one Embodiment of this invention. 本発明の一実施形態における樹脂硬化工程での加熱温度のプロファイルを示す図である。It is a figure which shows the profile of the heating temperature in the resin hardening process in one Embodiment of this invention. 図2のプロファイルで加熱したときの導電性接着剤30および部品電極21の状態を示す模式図である。It is a schematic diagram which shows the state of the conductive adhesive 30 and the component electrode 21 when it heats with the profile of FIG. 還元剤の配合量と接続抵抗値との関係を示す図である。It is a figure which shows the relationship between the compounding quantity of a reducing agent, and connection resistance value. 還元剤の配合量と接続強度との関係を示す図である。It is a figure which shows the relationship between the compounding quantity of a reducing agent, and connection strength.

以下、本発明の実施形態について図に基づいて説明する。図1に、一実施形態における電子装置1の概略断面図を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an electronic device 1 according to an embodiment.

図1に示すように、回路基板10の上に電子部品20が搭載され、回路基板10の電極11と電子部品20の電極21とが導電性接着剤30を介して電気的に接続されている。なお、以下においては、回路基板10の電極11を基板電極11、電子部品20の電極21を部品電極21という。   As shown in FIG. 1, the electronic component 20 is mounted on the circuit board 10, and the electrode 11 of the circuit board 10 and the electrode 21 of the electronic component 20 are electrically connected via a conductive adhesive 30. . Hereinafter, the electrode 11 of the circuit board 10 is referred to as a substrate electrode 11, and the electrode 21 of the electronic component 20 is referred to as a component electrode 21.

回路基板10としては、セラミック基板(例えば、積層アルミナ基板、厚膜基板)やプリント基板(樹脂基板)等を採用することができる。   As the circuit board 10, a ceramic board (for example, a laminated alumina board or a thick film board), a printed board (resin board), or the like can be used.

基板電極11は、回路基板10の一面に形成されており、例えば、Ag(銀)、AgSn(銀とスズの合金)およびAgPd(銀とパラジウムの合金)等のAg系金属や、Cu(銅)およびCuNi(銅とニッケルの合金)等のCu系金属や、Ni系金属、あるいはAu(金)等の材料を用いた厚膜やめっきから構成されたものである。図1に示す例では、回路基板10としてセラミック基板を用い、基板電極11がCuめっき層12上にAuめっき層13が形成された電極構造となっている。   The substrate electrode 11 is formed on one surface of the circuit board 10, and includes, for example, Ag-based metals such as Ag (silver), AgSn (silver and tin alloy), and AgPd (silver and palladium alloy), Cu (copper), and the like. ) And CuNi (alloy of copper and nickel), a thick film or plating using a material such as Cu-based metal, Ni-based metal, or Au (gold). In the example shown in FIG. 1, a ceramic substrate is used as the circuit substrate 10, and the substrate electrode 11 has an electrode structure in which an Au plating layer 13 is formed on a Cu plating layer 12.

電子部品20としては、コンデンサ、抵抗、コイル、水晶振動子、サーミスタ、その他半導体素子等の表面実装部品を採用することができる。図1に示す例では、電子部品20としてチップコンデンサを用いている。   As the electronic component 20, a surface mount component such as a capacitor, a resistor, a coil, a crystal resonator, a thermistor, and other semiconductor elements can be employed. In the example shown in FIG. 1, a chip capacitor is used as the electronic component 20.

部品電極21は、少なくとも表面が卑金属であるSnもしくはSn合金からなるものである。図1に示す例では、部品電極21は、Cu/Ni/Snで構成され、部品電極21の表面がSnめっきからなるものである。   The component electrode 21 is made of Sn or an Sn alloy whose surface is at least a base metal. In the example shown in FIG. 1, the component electrode 21 is made of Cu / Ni / Sn, and the surface of the component electrode 21 is made of Sn plating.

次に、導電性接着剤30を介して、電子部品20の部品電極21と回路基板10の基板電極11とが電気的に接続された電子装置1の製造方法について説明する。   Next, a method for manufacturing the electronic device 1 in which the component electrode 21 of the electronic component 20 and the substrate electrode 11 of the circuit board 10 are electrically connected via the conductive adhesive 30 will be described.

まず、基板電極11が形成された回路基板10と部品電極21が形成された電子部品20とを用意するとともに、導電性接着剤30を用意する(用意工程)。   First, the circuit board 10 on which the substrate electrode 11 is formed and the electronic component 20 on which the component electrode 21 is formed are prepared, and a conductive adhesive 30 is prepared (preparation process).

導電性接着剤30は、導電性フィラーと熱硬化性樹脂とを配合してなるものであり、本実施形態では、導電性接着剤30として、還元剤としての8−キノリノールを含むとともに、導電性フィラーとしての高融点金属および低融点金属を含むものを用意する。   The conductive adhesive 30 is formed by blending a conductive filler and a thermosetting resin. In the present embodiment, the conductive adhesive 30 contains 8-quinolinol as a reducing agent as the conductive adhesive 30 and is conductive. A material containing a high melting point metal and a low melting point metal as a filler is prepared.

8−キノリノールは、次の式(I)で示されるものであり、融点が76℃である。   8-Quinolinol is represented by the following formula (I) and has a melting point of 76 ° C.

Figure 2013171927

8−キノリノールの含有量は、後述する実施例および比較例からわかるように、導電性接着剤全体に対して1.5〜3.9wt%の範囲内とする。
Figure 2013171927

The content of 8-quinolinol is within the range of 1.5 to 3.9 wt% with respect to the entire conductive adhesive, as can be seen from Examples and Comparative Examples described later.

高融点金属は、その融点が低融点金属の融点よりも高い金属である。高融点金属としては、Ag、AgSn、Cu、Ni等が挙げられる。ただし、後述する樹脂硬化工程での加熱によって、部品電極21の表面のSnめっき層とともに溶融させる場合は、高融点金属として、Snの融点以下の金属を用いることが好ましく、例えば、融点がSnの融点以下となるように組成(成分割合)が設定されたAgSnを用いることが好ましい。また、高融点金属は、後述する樹脂硬化工程での加熱によって溶融しないものであっても良い。   The high melting point metal is a metal whose melting point is higher than that of the low melting point metal. Examples of the refractory metal include Ag, AgSn, Cu, and Ni. However, when melting together with the Sn plating layer on the surface of the component electrode 21 by heating in the resin curing step described later, it is preferable to use a metal having a melting point of Sn or lower as the high melting point metal. It is preferable to use AgSn whose composition (component ratio) is set so as to be equal to or lower than the melting point. Further, the refractory metal may not be melted by heating in the resin curing step described later.

低融点金属は、その融点が、高融点金属の融点よりも低く、かつ、還元剤の融点よりも高い金属である。低融点金属としては、In、Bi等の単体やIn、Bi等を含む合金が挙げられる。   The low melting point metal is a metal whose melting point is lower than that of the high melting point metal and higher than that of the reducing agent. Examples of the low melting point metal include simple substances such as In and Bi and alloys containing In and Bi.

また、熱硬化性樹脂としては、100℃〜200℃程度の温度にて硬化するものが用いられる。このような熱硬化性樹脂としては、エポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ウレタン系樹脂、アクリル系樹脂等を採用することができる。特に、エポキシ系樹脂は、硬化収縮が比較的小さく接着力が高いため、有用である。   Moreover, as a thermosetting resin, what hardens | cures at the temperature of about 100 to 200 degreeC is used. As such a thermosetting resin, an epoxy resin, a silicone resin, a polyimide resin, a urethane resin, an acrylic resin, or the like can be used. In particular, an epoxy resin is useful because it has a relatively small curing shrinkage and a high adhesive force.

そして、導電性接着剤30を介して、部品電極21と基板電極11とを接触させる(接触工程)。この接触工程では、具体的には、導電性接着剤30を、マスク印刷またはディスペンス等により回路基板10の基板電極11上に供給する(導電性接着剤供給工程)。   Then, the component electrode 21 and the substrate electrode 11 are brought into contact with each other through the conductive adhesive 30 (contact process). Specifically, in this contact step, the conductive adhesive 30 is supplied onto the substrate electrode 11 of the circuit board 10 by mask printing or dispensing (conductive adhesive supply step).

続いて、基板電極11と部品電極21とを位置あわせした状態で回路基板10の上に電子部品20を搭載する(部品組み付け工程)。   Subsequently, the electronic component 20 is mounted on the circuit board 10 in a state where the substrate electrode 11 and the component electrode 21 are aligned (component assembly step).

その後、導電性接着剤30を加熱し、熱硬化性樹脂31を硬化させる(樹脂硬化工程)。 この樹脂硬化工程は、導電性接着剤30を180℃以上かつ低融点金属の融点以上の温度で加熱して少なくとも低融点金属を溶融する工程(金属溶融工程)と、その後、金属溶融工程よりも温度を下げて熱硬化樹脂の硬化を完了させる工程(樹脂硬化完了工程)とに分かれて実行される。   Thereafter, the conductive adhesive 30 is heated to cure the thermosetting resin 31 (resin curing step). The resin curing step includes heating the conductive adhesive 30 at a temperature of 180 ° C. or higher and a melting point of the low melting point metal to melt at least the low melting point metal (metal melting step), and then the metal melting step. The process is divided into a process of lowering the temperature and completing the curing of the thermosetting resin (resin curing completion process).

ここで、図2に樹脂硬化工程における加熱温度のプロファイル(加熱プロファイル)の一例を示す。この加熱プロファイルは、温度制御が可能な加熱炉等を用いることで実現可能である。   Here, FIG. 2 shows an example of a heating temperature profile (heating profile) in the resin curing step. This heating profile can be realized by using a heating furnace capable of controlling the temperature.

この図2に示される加熱プロファイルは、部品電極21の表面がSnめっきで構成され、導電性接着剤30中の高融点金属として融点がSnの融点よりも低い組成のAgSnを採用し、低融点金属としてInを採用し、導電性接着剤30中の熱硬化性樹脂として、エポキシ樹脂を採用した場合のものである。   In the heating profile shown in FIG. 2, the surface of the component electrode 21 is composed of Sn plating, and AgSn having a lower melting point than that of Sn is adopted as the high melting point metal in the conductive adhesive 30, and the low melting point is adopted. This is a case where In is used as the metal and an epoxy resin is used as the thermosetting resin in the conductive adhesive 30.

この図2に示される加熱プロファイルでは、室温からピーク温度まで、50℃/min〜500℃/minの昇温スピードで昇温させ、ピーク温度で40〜80秒間保持する(金属溶融工程)。このピーク温度は、Snの融点(232℃)以上電子部品の耐熱温度以下(例えば、250℃以下)である。その後、加熱炉を停止することにより、ピーク温度よりも温度を下げる(樹脂硬化完了工程)。   In the heating profile shown in FIG. 2, the temperature is increased from room temperature to the peak temperature at a temperature increase rate of 50 ° C./min to 500 ° C./min, and held at the peak temperature for 40 to 80 seconds (metal melting step). This peak temperature is not lower than the melting point of Sn (232 ° C.) and not higher than the heat resistance temperature of the electronic component (for example, 250 ° C. or lower). Then, the temperature is lowered from the peak temperature by stopping the heating furnace (resin curing completion step).

図3(a)〜(d)に図2の加熱プロファイルで加熱したときの導電性接着剤30および部品電極21の状態を示す。   3A to 3D show the state of the conductive adhesive 30 and the component electrode 21 when heated with the heating profile of FIG.

図3(a)に示すように、部品電極21は、図1に示す例の通り、図示しないCu層、Ni層22、Snめっき層23によって構成されている。加熱前の状態では、Snめっき層23の表面に酸化膜24が形成されている。   As shown in FIG. 3A, the component electrode 21 includes a Cu layer, a Ni layer 22, and a Sn plating layer 23 (not shown) as shown in the example shown in FIG. In the state before heating, an oxide film 24 is formed on the surface of the Sn plating layer 23.

そして、図2に示すように、金属溶融工程では、室温から温度上昇すると、樹脂粘度が低下して導電性接着剤30中の熱硬化性樹脂31がゲル化し、加熱温度が還元剤(8−キノリノール)の融点(76℃)に達すると、還元剤が溶融する。このとき、図3(b)に示すように、溶融した還元剤32によって、Snめっき層23の表面の酸化膜24が還元され除去される(酸化膜除去)。   As shown in FIG. 2, in the metal melting step, when the temperature rises from room temperature, the resin viscosity decreases, the thermosetting resin 31 in the conductive adhesive 30 gels, and the heating temperature becomes the reducing agent (8- When the melting point (76 ° C.) of quinolinol is reached, the reducing agent melts. At this time, as shown in FIG. 3B, the oxide film 24 on the surface of the Sn plating layer 23 is reduced and removed by the molten reducing agent 32 (oxide film removal).

さらに、温度上昇して、加熱温度がInの融点(156℃)に達すると、Inフィラーが溶融する。このとき、図3(c)に示すように、Inフィラー33がAgSnフィラー34やSnめっき層23と融着することによって、AgSnフィラー34同士が接合されるとともに、AgSnフィラー34とSnめっき層23が接合される(Inの溶融/融着)。   Furthermore, when the temperature rises and the heating temperature reaches the melting point of In (156 ° C.), the In filler melts. At this time, as shown in FIG. 3C, the In filler 33 is fused to the AgSn filler 34 and the Sn plating layer 23, whereby the AgSn fillers 34 are joined together, and the AgSn filler 34 and the Sn plating layer 23. Are joined (In melting / fusion).

さらに、温度上昇して、加熱温度がAgSnの融点(218℃)に達するとAgSnフィラーが溶融し、加熱温度がSnの融点(232℃)に達すると、Snめっき層23が溶融する。このとき、図3(d)に示すように、Snめっき層23、AgSnフィラー34、Inフィラー33が合金化して、導電性フィラー同士や導電性フィラーと部品電極との導通形態が形成される(AgSn、Snの溶融)。   Further, when the temperature rises and the heating temperature reaches the melting point of AgSn (218 ° C.), the AgSn filler melts, and when the heating temperature reaches the melting point of Sn (232 ° C.), the Sn plating layer 23 melts. At this time, as shown in FIG. 3 (d), the Sn plating layer 23, the AgSn filler 34, and the In filler 33 are alloyed to form a conductive form between the conductive fillers or between the conductive filler and the component electrode ( AgSn, melting of Sn).

また、ピーク温度で保持している期間に、熱硬化性樹脂31の粘度が上昇する。   Further, the viscosity of the thermosetting resin 31 increases during the period of holding at the peak temperature.

その後、樹脂硬化完了工程では、ピーク温度よりも低い温度にて熱硬化性樹脂31が加熱し続けられ、熱硬化性樹脂31の硬化が完了する。このようにして、部品電極21と基板電極11との接続が完了し、上記図1に示す電子装置1ができあがる。   Thereafter, in the resin curing completion step, the thermosetting resin 31 is continuously heated at a temperature lower than the peak temperature, and the curing of the thermosetting resin 31 is completed. In this way, the connection between the component electrode 21 and the substrate electrode 11 is completed, and the electronic device 1 shown in FIG. 1 is completed.

上述の通り、本実施形態の樹脂硬化工程では、ピーク温度まで急激に温度を上昇させて、ピーク温度で短時間保持することで、熱硬化性樹脂31が硬化する前に、還元剤32によってSnめっき層23の表面の酸化膜24を除去し、Inフィラー33、AgSnフィラー34および部品電極21のSnめっき層23を溶融させて合金化させた後、熱硬化性樹脂31の硬化を完了させる。   As described above, in the resin curing step of the present embodiment, the temperature is rapidly increased to the peak temperature and held at the peak temperature for a short time, so that the reducing agent 32 can Sn before the thermosetting resin 31 is cured. The oxide film 24 on the surface of the plating layer 23 is removed, and the In filler 33, the AgSn filler 34, and the Sn plating layer 23 of the component electrode 21 are melted and alloyed, and then the curing of the thermosetting resin 31 is completed.

ここで、発明が解決しようとする課題の欄に記載の通り、本実施形態の樹脂硬化工程でのピーク温度が特許文献2に記載の加熱温度(150℃)よりも高温のため、導電性接着剤30中に還元剤32の気化によるボイド(空隙)が発生しやすくなる。このため、還元剤32の配合量が多すぎると、熱硬化性樹脂31中に余った還元剤32が気化してボイドとして残ることで、部品電極21と基板電極11の接続面積が減少し、接続強度が低下してしまう。   Here, as described in the column of the problem to be solved by the invention, since the peak temperature in the resin curing step of this embodiment is higher than the heating temperature (150 ° C.) described in Patent Document 2, the conductive adhesion is performed. Voids (voids) due to vaporization of the reducing agent 32 are likely to occur in the agent 30. For this reason, when there are too many compounding quantities of the reducing agent 32, the reducing agent 32 which remained in the thermosetting resin 31 vaporizes and remains as a void, and the connection area of the component electrode 21 and the board | substrate electrode 11 reduces, Connection strength is reduced.

また、還元剤32の配合量が少なすぎると、Snめっき層23の表面の酸化膜24が十分に除去されず、接続抵抗の低下効果が得られない。   Moreover, when there are too few compounding quantities of the reducing agent 32, the oxide film 24 on the surface of Sn plating layer 23 will not fully be removed, but the fall effect of connection resistance will not be acquired.

これに対して、本実施形態によれば、還元剤32の配合量を1.5〜3.9wt%とすることで、部品電極21と基板電極11との接続において、良好な接続抵抗および接続強度を得ることができる。   On the other hand, according to the present embodiment, by setting the blending amount of the reducing agent 32 to 1.5 to 3.9 wt%, in the connection between the component electrode 21 and the substrate electrode 11, good connection resistance and connection Strength can be obtained.

なお、図3(b)では、溶融した還元剤32によって、Snめっき層23の表面の酸化膜24が除去される様子を示しているが、Snめっき層23の表面の酸化膜24だけでなく、AgSnフィラー34、Inフィラー33および基板電極の表面に形成されている酸化膜も除去される。   FIG. 3B shows a state in which the oxide film 24 on the surface of the Sn plating layer 23 is removed by the molten reducing agent 32, but not only the oxide film 24 on the surface of the Sn plating layer 23. Further, the AgSn filler 34, the In filler 33, and the oxide film formed on the surface of the substrate electrode are also removed.

また、図2の加熱プロファイルでは、樹脂硬化完了工程を、ピーク温度に保持された加熱炉を停止し、加熱炉の余熱による加熱を行っていたが、ピーク温度よりも低い温度範囲内であれば、加熱制御を行っても良い。例えば、所定温度で一定時間保持したり、温度低下速度を加熱炉の停止時よりも遅くしたりしても良い。   In the heating profile of FIG. 2, the resin curing completion process was performed by stopping the heating furnace maintained at the peak temperature and performing heating by the residual heat of the heating furnace, but if it is within a temperature range lower than the peak temperature Heating control may be performed. For example, the temperature may be maintained at a predetermined temperature for a certain time, or the rate of temperature decrease may be slower than when the heating furnace is stopped.

また、図2の加熱プロファイルでは、AgSnフィラー34とSnめっき層23を溶融させるために、ピーク温度をSnの融点(232℃)以上としたが、AgSnフィラー34やSnめっき層23を溶融させなくても良く、少なくとも低融点金属を溶融させることができる温度であれば、ピーク温度を他の温度に変更しても良い。例えば、ピーク温度を、Snの融点未満、かつ、AgSn(融点がSnの融点よりも低温である高融点金属)の融点以上としても良い。また、ピーク温度を、AgSn(融点がSnの融点よりも低温である高融点金属)の融点未満、かつ、In(低融点金属)の融点以上の温度としても良く、例えば、180℃超、200℃以下の温度としても良い。   In the heating profile of FIG. 2, the peak temperature is set to the melting point of Sn (232 ° C.) or more in order to melt the AgSn filler 34 and the Sn plating layer 23, but the AgSn filler 34 and the Sn plating layer 23 are not melted. The peak temperature may be changed to another temperature as long as at least the low melting point metal can be melted. For example, the peak temperature may be lower than the melting point of Sn and higher than the melting point of AgSn (a high melting point metal whose melting point is lower than the melting point of Sn). The peak temperature may be a temperature lower than the melting point of AgSn (high melting point metal whose melting point is lower than the melting point of Sn) and higher than the melting point of In (low melting point metal). It is good also as temperature below ° C.

なお、上述の実施形態では、樹脂硬化工程で、導電性接着剤30を180℃以上かつ低融点金属の融点以上の温度で加熱するが、低融点金属としてInを用いる場合では、Inの融点(158℃)以上の温度であれば、180℃未満の温度で加熱するようにしても良い。   In the above-described embodiment, in the resin curing step, the conductive adhesive 30 is heated at a temperature equal to or higher than 180 ° C. and equal to or higher than the melting point of the low melting point metal. If it is a temperature of 158 ° C. or higher, it may be heated at a temperature of less than 180 ° C.

導電性接着剤として下記の材料組成のものを用いて、図1に示すように、回路基板10の基板電極11と電子部品20の部品電極21とを接着した後、導電性接着剤30の接続抵抗値と接続強度を測定した。基板電極11および部品電極21の構成は、上述の通りである。   As shown in FIG. 1, the conductive adhesive having the following material composition is used to bond the substrate electrode 11 of the circuit board 10 and the component electrode 21 of the electronic component 20, and then the connection of the conductive adhesive 30. Resistance value and connection strength were measured. The configurations of the substrate electrode 11 and the component electrode 21 are as described above.

用いた導電性接着剤は、熱硬化性樹脂としてのビスフェノールF型エポキシ樹脂(主剤)、ビフェニル型エポキシ樹脂(主剤)、3官能エポキシ樹脂(主剤)およびフェノール樹脂(硬化剤)と、導電性フィラーとしてのAgSnフィラー(高融点金属)およびInフィラー(低融点金属)と、還元剤としての8−キノリノールとを含むものである。AgSnフィラーは、融点が218℃となるようにAgSn合金の組成が設定されたものである。   The conductive adhesive used was bisphenol F type epoxy resin (main agent), biphenyl type epoxy resin (main agent), trifunctional epoxy resin (main agent) and phenol resin (curing agent) as thermosetting resin, and conductive filler. As a filler, AgSn filler (high melting point metal) and In filler (low melting point metal) and 8-quinolinol as a reducing agent are included. In the AgSn filler, the composition of the AgSn alloy is set so that the melting point is 218 ° C.

各材料の配合量は、実施例1〜7では、導電性接着剤全体に対して、導電性フィラー合計を85wt%とし、還元剤を1.5〜3.9wt%とし、残部を熱硬化性樹脂とした。   In Examples 1 to 7, the blending amount of each material is 85 wt% of the total conductive filler, 1.5 to 3.9 wt% of the reducing agent, and the remainder is thermosetting with respect to the entire conductive adhesive. Resin was used.

また、比較例1では、導電性フィラー合計を85wt%とし、還元剤を0%とし、熱硬化性樹脂を15wt%とした。比較例2では、導電性フィラー合計を85wt%とし、還元剤を4.5%とし、熱硬化性樹脂を10.5wt%とした。   Moreover, in the comparative example 1, the electroconductive filler total was 85 wt%, the reducing agent was 0%, and the thermosetting resin was 15 wt%. In Comparative Example 2, the total amount of conductive filler was 85 wt%, the reducing agent was 4.5%, and the thermosetting resin was 10.5 wt%.

なお、実施例1〜7および比較例1、2において、導電性フィラー合計が85wt%の内訳は、AgSnフィラーが80wt%、Inフィラーが5wt%である。   In Examples 1 to 7 and Comparative Examples 1 and 2, the breakdown of the total conductive filler of 85 wt% is 80 wt% for the AgSn filler and 5 wt% for the In filler.

樹脂硬化工程での加熱条件は、ピーク温度:235℃、ピーク保持時間:1min、昇温速度:100℃/minとした。   The heating conditions in the resin curing step were as follows: peak temperature: 235 ° C., peak holding time: 1 min, temperature increase rate: 100 ° C./min.

接続抵抗値の測定は、1608サイズのコンデンサチップを用い、四端子法にて実施した。また、接続強度の測定は、1608サイズのコンデンサチップを用い、せん断試験を実施した。   The connection resistance value was measured by a four-terminal method using a 1608 size capacitor chip. The connection strength was measured using a 1608 size capacitor chip and a shear test.

図4、5に、実施例1〜7および比較例1、2における接続抵抗値、接続強度の測定結果を示す。   4 and 5 show measurement results of connection resistance values and connection strengths in Examples 1 to 7 and Comparative Examples 1 and 2. FIG.

図4に示すように、接続抵抗値については、8−キノリノールの配合量が1.5wt%以上のとき(実施例1〜7、比較例2)、8−キノリノールが0wt%(比較例1)のときと比較して、接続抵抗値を低下させて、車載用デバイスで一般的に望まれる10mΩ以下とすることができる。   As shown in FIG. 4, about connection resistance value, when the compounding quantity of 8-quinolinol is 1.5 wt% or more (Examples 1-7, Comparative Example 2), 8-quinolinol is 0 wt% (Comparative Example 1). As compared with the above, the connection resistance value can be lowered to 10 mΩ or less, which is generally desired for in-vehicle devices.

図5に示すように、接続強度については、8−キノリノールの配合量が増加するにつれて、8−キノリノールが0wt%(比較例1)のときと比較して、接続強度が低下してしまうが、8−キノリノールの配合量が3.9wt%以下であれば(実施例1〜7)、10N以上の接続強度を確保できる。ちなみに、本願発明者らの知見によれば、接続強度が10N以上であれば、樹脂硬化工程後のモールド封止工程での電子部品と回路基板の接続不良(接着剤の剥離)の発生を防止できることがわかっている。   As shown in FIG. 5, as for the connection strength, as the compounding amount of 8-quinolinol increases, the connection strength decreases compared to when 8-quinolinol is 0 wt% (Comparative Example 1). If the compounding quantity of 8-quinolinol is 3.9 wt% or less (Examples 1-7), the connection strength of 10N or more can be ensured. By the way, according to the knowledge of the present inventors, if the connection strength is 10 N or more, the occurrence of poor connection (separation of adhesive) between the electronic component and the circuit board in the mold sealing process after the resin curing process is prevented. I know I can.

1 電子装置
10 回路基板
11 基板電極(回路基板の電極)
20 電子部品
21 部品電極(電子部品の電極)
30 導電性接着剤
31 熱硬化性樹脂
32 8−キノリノール(還元剤)
33 Inフィラー(低融点金属)
34 AgSnフィラー(高融点金属)
1 Electronic Device 10 Circuit Board 11 Board Electrode (Circuit Board Electrode)
20 Electronic component 21 Component electrode (Electronic component electrode)
30 conductive adhesive 31 thermosetting resin 32 8-quinolinol (reducing agent)
33 In filler (low melting point metal)
34 AgSn filler (high melting point metal)

Claims (3)

導電性フィラー(33、34)と熱硬化性樹脂(31)とを配合してなる導電性接着剤(30)を介して、電子部品(20)の電極(21)と回路基板(10)の電極(11)とが電気的に接続され、前記電子部品の電極(21)の表面がSnもしくはSn合金からなる電子装置の製造方法において、
前記電子部品(20)および前記回路基板(10)を用意するとともに、前記導電性接着剤(30)として、還元剤(32)である8−キノリノールを前記導電性接着剤全体の1.5〜3.9wt%含むとともに、前記導電性フィラーとしての高融点金属(34)および前記高融点金属よりも融点が低く、かつ、前記還元剤よりも融点が高い低融点金属(33)を含むものを用意する工程と、
前記導電性接着剤(30)を介して、前記電子部品(20)の電極(21)と前記回路基板(10)の電極(11)とを接触させる工程と、
前記導電性接着剤(30)を180℃以上かつ前記低融点金属(33)の融点以上の温度で加熱して前記低融点金属(33)を溶融する工程と、
その後、温度を下げて前記熱硬化性樹脂(31)の硬化を完了させる工程とを行うことを特徴とする電子装置の製造方法。
The electrode (21) of the electronic component (20) and the circuit board (10) are connected via a conductive adhesive (30) formed by blending the conductive filler (33, 34) and the thermosetting resin (31). In the method of manufacturing an electronic device in which the electrode (11) is electrically connected and the surface of the electrode (21) of the electronic component is made of Sn or Sn alloy,
While preparing the said electronic component (20) and the said circuit board (10), as the said electrically conductive adhesive (30), 8-quinolinol which is a reducing agent (32) is 1.5- of the whole said electrically conductive adhesive. 3.9 wt% and a high melting point metal (34) as the conductive filler and a low melting point metal (33) having a lower melting point than the high melting point metal and a higher melting point than the reducing agent A process to prepare;
Contacting the electrode (21) of the electronic component (20) and the electrode (11) of the circuit board (10) via the conductive adhesive (30);
Heating the conductive adhesive (30) at a temperature not lower than 180 ° C. and not lower than the melting point of the low melting point metal (33) to melt the low melting point metal (33);
Then, the process of lowering temperature and completing the hardening of the said thermosetting resin (31) is performed, The manufacturing method of the electronic device characterized by the above-mentioned.
前記高融点金属(34)はAgSnであり、前記低融点金属(33)はInであり、
前記低融点金属(33)を溶融する工程での加熱温度は、AgSnの融点以上であることを特徴とする請求項1に記載の電子装置の製造方法。
The high melting point metal (34) is AgSn, the low melting point metal (33) is In,
The method for manufacturing an electronic device according to claim 1, wherein the heating temperature in the step of melting the low melting point metal (33) is equal to or higher than the melting point of AgSn.
前記低融点金属(33)を溶融する工程での加熱温度は、前記電子部品(20)の電極(21)の表面を構成するSnもしくはSn合金の融点以上であることを特徴とする請求項2に記載の電子装置の製造方法。
The heating temperature in the step of melting the low melting point metal (33) is equal to or higher than the melting point of Sn or Sn alloy constituting the surface of the electrode (21) of the electronic component (20). The manufacturing method of the electronic device as described in any one of Claims 1-3.
JP2012034074A 2012-02-20 2012-02-20 Method of manufacturing electronic apparatus Pending JP2013171927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034074A JP2013171927A (en) 2012-02-20 2012-02-20 Method of manufacturing electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034074A JP2013171927A (en) 2012-02-20 2012-02-20 Method of manufacturing electronic apparatus

Publications (1)

Publication Number Publication Date
JP2013171927A true JP2013171927A (en) 2013-09-02

Family

ID=49265709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034074A Pending JP2013171927A (en) 2012-02-20 2012-02-20 Method of manufacturing electronic apparatus

Country Status (1)

Country Link
JP (1) JP2013171927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145455A (en) * 2014-02-03 2015-08-13 ナミックス株式会社 Conductive adhesive, semiconductor device and method of producing conductive adhesive
WO2016056619A1 (en) * 2014-10-10 2016-04-14 ナミックス株式会社 Thermosetting resin composition and manufacturing method therefor
JP2016141739A (en) * 2015-02-02 2016-08-08 ナミックス株式会社 Film adhesive and semiconductor device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124755A (en) * 2000-08-09 2002-04-26 Murata Mfg Co Ltd Method and structure for bonding conductive adhesive and electrode
JP2005089559A (en) * 2003-09-16 2005-04-07 Denso Corp Method for connecting members using conductive adhesive
JP2009298951A (en) * 2008-06-16 2009-12-24 Denso Corp Electroconductive adhesive and connection method of components using the same
WO2011096505A1 (en) * 2010-02-05 2011-08-11 ナミックス株式会社 Reducing agent composition for conductive metal paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124755A (en) * 2000-08-09 2002-04-26 Murata Mfg Co Ltd Method and structure for bonding conductive adhesive and electrode
JP2005089559A (en) * 2003-09-16 2005-04-07 Denso Corp Method for connecting members using conductive adhesive
JP2009298951A (en) * 2008-06-16 2009-12-24 Denso Corp Electroconductive adhesive and connection method of components using the same
WO2011096505A1 (en) * 2010-02-05 2011-08-11 ナミックス株式会社 Reducing agent composition for conductive metal paste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145455A (en) * 2014-02-03 2015-08-13 ナミックス株式会社 Conductive adhesive, semiconductor device and method of producing conductive adhesive
WO2016056619A1 (en) * 2014-10-10 2016-04-14 ナミックス株式会社 Thermosetting resin composition and manufacturing method therefor
JPWO2016056619A1 (en) * 2014-10-10 2017-07-27 ナミックス株式会社 Thermosetting resin composition and method for producing the same
US10388583B2 (en) 2014-10-10 2019-08-20 Namics Corporation Thermosetting resin composition and method of producing same
JP2016141739A (en) * 2015-02-02 2016-08-08 ナミックス株式会社 Film adhesive and semiconductor device using the same
WO2016125537A1 (en) * 2015-02-02 2016-08-11 ナミックス株式会社 Film-shaped adhesive and semiconductor device using same
US10023775B2 (en) 2015-02-02 2018-07-17 Namics Corporation Film adhesive and semiconductor device including the same

Similar Documents

Publication Publication Date Title
JP5170685B2 (en) Conductive bonding material and electronic device
KR101300384B1 (en) Conductive material, conductive paste, circuit board, and semiconductor device
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
JP6226424B2 (en) Bonding material and method for manufacturing electronic component
KR20090052300A (en) Electronic components mounting adhesive and electronic components mounting structure
JPWO2014002893A1 (en) Anisotropic conductive sheet and electrode joining method using the same
JP4134878B2 (en) Conductor composition, mounting substrate using the conductor composition, and mounting structure
JP2013171927A (en) Method of manufacturing electronic apparatus
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP4676907B2 (en) Electronic component mounting structure using solder adhesive and solder adhesive
JP2014072308A (en) Manufacturing method of semiconductor device and semiconductor device
JP2016087691A (en) Pb-FREE SOLDER AND ELECTRONIC PARTS BUILT-IN MODULE
JP5113390B2 (en) Wiring connection method
JP6561453B2 (en) Method for manufacturing electronic circuit module component
JP2002176248A (en) Bonding material of electronic device and method and structure for mounting electronic device
JP2013219393A (en) Mount structure of semiconductor part
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
KR102038377B1 (en) Electrical connection tape
JP2005089559A (en) Method for connecting members using conductive adhesive
JP2006059905A (en) Semiconductor device manufacturing method
CN107369631B (en) Method for connecting circuit components
KR101892468B1 (en) Board mounting module and producing method thereof
JP2006124607A (en) Conductive adhesive and electronic device using the same
JP3705779B2 (en) Power device, manufacturing method thereof, and tin-based solder material
JP2005302845A (en) Electronic parts mounter, manufacturing method thereof, and conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616