JP3705779B2 - Power device, manufacturing method thereof, and tin-based solder material - Google Patents

Power device, manufacturing method thereof, and tin-based solder material Download PDF

Info

Publication number
JP3705779B2
JP3705779B2 JP2002084921A JP2002084921A JP3705779B2 JP 3705779 B2 JP3705779 B2 JP 3705779B2 JP 2002084921 A JP2002084921 A JP 2002084921A JP 2002084921 A JP2002084921 A JP 2002084921A JP 3705779 B2 JP3705779 B2 JP 3705779B2
Authority
JP
Japan
Prior art keywords
copper
tin
lead
semiconductor element
based solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002084921A
Other languages
Japanese (ja)
Other versions
JP2003282604A (en
Inventor
和樹 舘山
康成 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002084921A priority Critical patent/JP3705779B2/en
Publication of JP2003282604A publication Critical patent/JP2003282604A/en
Application granted granted Critical
Publication of JP3705779B2 publication Critical patent/JP3705779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛を含まないはんだを用いたダイマウントに関するものであり、特にパワーデバイスに適用されるはんだと製造方法に関わる。
【0002】
【従来の技術】
近年、環境への配慮から、電気部品の接合に用いられるはんだの材料から、環境有害物質とされている鉛の成分が除かれてきている。このような鉛を含まないはんだをPbフリーはんだと呼んでいる。
電気部品と配線基板との接合は、そのほとんどがPbフリーはんだによって行われてきているものの、半導体チップをリードフレームに対して接合するダイマウントに用いられるはんだとしては、そのプロセス上の問題から、鉛を含むはんだ材料が用いられている。
【0003】
【発明が解決しようとする課題】
環境に対する配慮から、ダイマウントに係るはんだ材料に対してもPbフリー化したいという要望がある。
しかしながら、上記した半導体装置の製造方法において示されているように、半導体素子とインナーリードを結線するワイヤボンディング工程においては280℃以上と、一般に使用可能なPbフリーはんだの融点を越える温度にまで接合ポイントを熱する必要が生じるため、これによってはんだ材料が再溶融してしまい、安定したワイヤボンディングを行うことができなくなってしまうという問題があった。
【0004】
一方、ワイヤボンディングのプロセス温度を下げるためにワイヤの接合ポイントにAgめっきを施す方法もあるが、めっきを施すため工数や材料が余計に必要になるため、現実的な方法ではなかった。
【0005】
また、ワイヤボンディングがうまくできても、半導体装置を配線基板にはんだ付けする際に、再度昇温させる必要があるため、結局内部で再溶融が起こり、信頼性を下げる要因となってしまっていた。
【0006】
他の手段として、リードフレームに半導体チップをダイマウントする際に用いられる材料としては、はんだのほかAgペーストが知られているが、Agペーストは熱伝導性が劣る。そのため、熱の発生が著しい半導体素子を用いた半導体装置である場合に、ダイマウントに用いた材料が放熱パスとして機能しにくい問題があるため、パワーデバイスに用いられる半導体素子のダイマウントには、はんだ材料を用いなければならない。
【0007】
本発明は、半導体素子のダイマウントに用いるはんだ材料をPbフリー化したパワーデバイスを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記した課題を解決するために、本発明は、表面に電極を有する半導体素子と、前記半導体素子を支持するダイと、表面が少なくとも銅もしくは銅合金であるインナーリード部を有するリードと、前記インナーリード部と前記電極とを電気的に接続するワイヤと、前記ダイと前記半導体素子とを接合する接合部材とを有し、前記接合部材は、前記半導体素子及び前記ダイ部それぞれとの接合界面に銅と錫との合金による反応層を有するとともに、前記一対の反応層の間に、アンチモンを組成に含む錫基合金であって銅もしくは銅合金の粒を含有した接合部材を有するパワーデバイスを提供する。
【0009】
また、本発明は、アンチモンが組成に含まれる鉛フリー錫基はんだと、前記鉛フリー錫基はんだに対して混練されている銅もしくは銅合金の粒とを具備するダイマウント用の錫基はんだ材料を提供する。
【0010】
また、本発明は、半導体素子を、少なくとも表面が銅もしくは銅合金によって形成されているリードフレームに対して、銅もしくは銅合金の粒ならびにアンチモンを組成に含む鉛フリー錫系はんだの粒を有するソルダペーストを介してマウントする工程と、前記半導体素子が前記リードフレームにマウントされた状態でさらに所定の温度で加熱しつづけ、前記ダイ部及び前記半導体素子のそれぞれのソルダペーストとの接合界面に銅と錫の合金層を成長させる熱処理工程と、前記半導体素子表面に形成された電極と前記リードのインナーリード部とを導電性のワイヤによって結線し電気的に接続するワイヤボンディング工程と、すくなくとも前記半導体素子と前記ワイヤとを封止する工程とを具備するパワーデバイスの製造方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明の半導体装置の製造方法の実施形態について図面を参照して詳細に説明する。
図1に、本発明の実施形態のパワーデバイスの断面の模式図を示す。Cu製のリードフレーム1は1mmほどの厚さであり、ダイ部1aとリードの一部としてインナーリード部1bを有している。ダイ部1aには半導体素子2が接合部材3を介して接合されている。リードフレーム1は、放熱性を高めるために、無酸素銅などのCu系材料が用いられている。ダイ部1aは3mm程度の正方形である。
【0012】
接合部材3は、Sn基はんだとCu粉末とが混練されたはんだ材料が溶融されて固化されたことにより形成された40μmの部材であり、10μmの第1のCu-Sn反応層3aと20μmのSn基はんだ部3bと0μmの第2のCu-Sn反応層3cとを有している。Sn基はんだ部3bは、内部に第3のCu-Sn反応層3dにより被覆されたCu粉末3eを有している。半導体素子2は200μmほどの厚さであり、表面に電極2aが形成されており、電極2aとインナーリード部1bのCu表面とは、ボンディングワイヤ4で結線されている。電極2aは、350×500μm程度の大きさである。
【0013】
上記したリードフレームのダイ部1a及びインナーリード部1b,半導体素子2,接合部材3,ボンディングワイヤ4は、封止材料5によって封止されている。放熱性を高めるため、ダイ部1aの半導体素子2が接続されていない方の面は封止材料によって覆われておらず、露出している。
【0014】
図2に、図1のパワーデバイスの製造工程のフロー図を示す。なお、パワーデバイスの各構成については、図1を参照して説明する。
はんだ材料供給工程101は、無酸素銅から構成されるリードフレーム1のダイ部1a上にソルダペーストを供給する工程である。ソルダペーストは、粉末状のSn基はんだとCu粉末とフラックスとが混練されて構成されたペースト状のはんだ材料である。本実施形態のソルダペーストは直径が30μm以下でSn-30wt%Sbの組成を有するSn基はんだ粒からなるSn基はんだ粉末と、直径が10μm以下のCu粒からなるCu粉末とを、9対1の体積比で混合し、これに液状のフラックスを混ぜて均一に混練して作成した。
【0015】
Sn基を有するはんだ材料は上記したSn-Sb系のほか、Sn-Ag系、Sn-Cu系がよく用いられている。このなかでもとくにSn-Sb系のはんだ材料を選択した理由は、溶融開始温度がSn-8.5wt%Sbで245℃前後と、常用されるSn系はんだのなかで最も高く、本発明のプロセスに最も適していると判断されるからである。
【0016】
Sn基はんだ材料であるSn-Sbはんだは、Sbの濃度が35wt%を超えるようになると溶けにくくなり、濡れ性が低下してくる場合がある。濡れ性が極端に低下しているはんだを用いた場合は、このはんだによる接合部にボイドや未接合部による隙間が発生する場合があるため、Sn基はんだ材料に用いるSbの濃度は35%以下とすることが好ましい。本実施形態では、上記したように30wt%の組成比としている。
【0017】
半導体素子接合工程102は、チップ状部品である半導体素子2を、ダイ部1a上に盛られたソルダペースト上にマウントして、320℃還元雰囲気に曝して加熱させてソルダペーストを溶融し、これを還元雰囲気から取り出して放熱させて冷却することにより固化させ、ソルダペーストを接合部材3として接合させる工程である。
【0018】
半導体素子2には一方の主面に電極2aが形成されている。他方の主面ははんだの濡れをよくするために、Ti,Ni,Agの順にスパッタを施してメタライズしており、このメタライズ面をはんだペーストに接触させるようマウントしている。
【0019】
雰囲気は非酸化雰囲気であればよいが、ソルダペースト表面の酸化層を幾ばくかでも還元可能なように還元雰囲気を用いた。還元雰囲気としては、窒素90%と水素10%の体積比の気体を用いた。
【0020】
熱処理工程103は、半導体素子2とリードフレーム1とを接合している接合部材3のCu-Sn反応層を成長させる工程である。具体的には、温度320℃、窒素100%の非酸化雰囲気中に1時間おくことにより、熱処理した。
【0021】
熱処理により、ソルダペースト内のCuあるいはリードフレーム表面のCuが、ソルダペースト内のSnと反応してCuとSnとによる合金を形成する。この合金を熱処理して成長させることによりSn基はんだ材料のSnの濃度が低下し、相対的にSbの濃度が上昇する。Sn-Sbはんだは、Sbの濃度が40%、好ましくは43%を超えると溶融温度域が高温側に遷移していく。したがって、半導体素子2を確実に接合させたあとで熱処理を加えることにより、実質的には、溶融温度の高いはんだ材料によってダイマウントを施した場合と同じように扱うことができるようになる。
【0022】
この熱処理工程103により、接合部材3とダイ部1aとの界面と、Sn基はんだ3b内のCu粉末3eの各粒子の周囲のみならず、半導体素子2と接合部材3との界面に、CuとSnとによる合金によって構成されるCu-Sn反応層3a,3c,3dがそれぞれ形成され成長する。熱処理を続けることによりCu-Sn反応層3a,3c,3dはそれぞれ成長して厚みを増す。また、Cu-Sn反応層3a,3c,3dが成長するにつれてSn基はんだ部3bに占めるSnの組成比は、相対的に低下していく。
【0023】
熱処理の処理条件は、ダイサイズやダイ上に供給されるソルダペーストの体積やダイ及び半導体素子との接触面積に依存するが、そのソルダペーストのはんだ組成物の平衡状態図において、ワイヤボンディング時のプロセス温度である280℃で、用いたはんだ材料がβ’相に変化している濃度となるように合金層を成長させる条件を選び、熱処理を施す。
表1にSn-30wt%Sbの組成比の粉末を用いて作製したはんだ材料について、図1のパワーデバイスでの比較実験例を示す。
【0024】
【表1】

Figure 0003705779
サンプル番号1のはんだ材料はCu粉末を有さず、熱処理も施されていないはんだ材料により構成された接合部材である。また、サンプル番号2のはんだ材料はCu粉末は混練されたが熱処理工程を経ていない接合部材である。サンプル番号3は、Cu粉末を有し熱処理工程を経たあとの接合部材3である。
【0025】
これらのサンプルについてそれぞれ示差走査熱量計により接合部材3の溶融開始温度を測定したところ、表1に示されるように、サンプル番号3の接合部材3については250℃近傍あるいはそれ以下の温度帯に、溶融開始温度が見受けられないことが確認された。サンプル番号1と2については、この温度域で比較的溶融しやすいことが分かる。
【0026】
なお、表1の実験例は本実施形態のパワーデバイスの構成における結果であり、たとえば、接合部材の厚さが30μmに設定されれば、サンプル番号2の接合部材であっても250℃近傍に溶融温度域が現れないことを確認した。
【0027】
ワイヤボンディング工程104は、インナーリード部1bと電極2aとをボンディングワイヤ4によって結線し、電気的に接続する工程である。具体的には、280℃に熱せられた体積比で窒素90%、水素10%の還元雰囲気中にて接続ポイントを熱し、Auの細線をキャピラリから繰り出してワイヤボンディングを行う。ここにおいて通常溶け出す接合部材はCu粉末を含みかつ熱処理されているため、固化したままである。
【0028】
封止工程105は、ダイ部1a、インナーリード部1b、半導体素子2、接合部材3、ボンディングワイヤ4を外囲器5で被覆する工程である。外囲器5は黒色に着色されたエポキシ樹脂組成物が固化したものであり、低圧トランスファモールド法により成形される。金型にてモールディングを行った後、樹脂材料を完全に固化させるために、175℃のもとで8時間の熱処理を行う。
【0029】
このようにして得られたパワーデバイスはさらに他の配線基板などに対してアウターリードにおいてはんだ付けされる。このはんだ付けの際もSn-Sbはんだ材料の溶融温度域である245℃以上のはんだ付けプロセス温度にさらされる場合が多いが、そのような実装工程においても、接合部材3が溶融して信頼性が低下するという事態は発生しない。
【0030】
上記したように本実施形態においては、Cu粉末を混練させたSn系はんだ材料を用いてダイボンディングを行った。これによりCu-Sn反応層の生成を促すことができ、半導体装置の信頼性の向上に寄与することができた。
また、本実施形態では、ダイボンディングのあと、ワイヤボンディング工程の前にCu-Sn反応層を成長させるための熱処理工程を導入した。これによりSn基はんだ部の相対的なSn濃度を下げることができ、接合部材3の溶融温度を高めることができた。
また、ソルダペーストのはんだ材料としてSn-Sb系はんだを用いたことにより、熱処理工程に係る作業時間を短縮することができた。
【0031】
なお、上記実施形態において接合部材3の厚さは40μmに設定したが、20μmから40μmの間で設定することが好ましい。20μm以下であると熱による部材の膨張を接合部材3が吸収できずに、接合部材3にクラックが生じる場合がある。また、40μmよりも厚くなると熱処理に係るタクトタイムが膨大になるため、現実的な時間内で半導体装置を製造することが困難になってしまう。
その他、構造やプロセス条件は本発明の主旨の範囲で種々の変更が可能であることは言うまでもない。
【0032】
【発明の効果】
本発明の半導体装置及びその製造方法によれば、環境影響度の少ない半導体装置を提供することを可能とする。
【図面の簡単な説明】
【図1】 本発明の実施形態のパワーモジュールの断面の模式図。
【図2】 本発明の実施形態のパワーモジュールの製造工程のフロー図。
【符号の説明】
1…リードフレーム、2…半導体素子、3…接合部材、
4…ボンディングワイヤ、5…外囲器、
1a…ダイ部、1b…インナーリード部、2a…電極、
3a,3c,3d…Cu−Sn反応層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a die mount using a lead-free solder, and particularly relates to a solder applied to a power device and a manufacturing method.
[0002]
[Prior art]
In recent years, lead components, which are regarded as environmentally hazardous substances, have been removed from solder materials used for joining electrical components in consideration of the environment. Such lead-free solder is called Pb-free solder.
Most of the bonding between electrical components and wiring boards has been done with Pb-free solder, but as a solder used for die mounting to bond a semiconductor chip to a lead frame, due to its process problems, A solder material containing lead is used.
[0003]
[Problems to be solved by the invention]
Due to environmental considerations, there is a desire to make Pb-free solder materials for die mounts.
However, as shown in the semiconductor device manufacturing method described above, in the wire bonding process for connecting the semiconductor element and the inner lead, the bonding is performed at a temperature exceeding 280 ° C. and exceeding the melting point of generally usable Pb-free solder. Since it is necessary to heat the point, the solder material is remelted by this, and there is a problem that stable wire bonding cannot be performed.
[0004]
On the other hand, there is a method in which Ag plating is performed on the bonding point of the wire in order to lower the wire bonding process temperature. However, since man-hours and materials are necessary for performing the plating, this is not a practical method.
[0005]
Even if wire bonding can be performed successfully, it is necessary to raise the temperature again when soldering the semiconductor device to the wiring board, which eventually causes remelting inside, resulting in reduced reliability. .
[0006]
As other means, Ag paste is known in addition to solder as a material used when die-mounting a semiconductor chip on a lead frame. However, Ag paste has poor thermal conductivity. Therefore, in the case of a semiconductor device using a semiconductor element that generates significant heat, the material used for the die mount has a problem that it is difficult to function as a heat dissipation path. Solder material must be used.
[0007]
An object of this invention is to provide the power device which made Pb free the solder material used for the die mount of a semiconductor element.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a semiconductor element having an electrode on its surface, a die part that supports the semiconductor element, a lead having an inner lead part whose surface is at least copper or a copper alloy, a wire for connecting the inner lead portion electrode electrically, and a joining member for joining the said die portion and the semiconductor element, the bonding member, the bonding between the semiconductor element and the die unit, respectively A power device having a reaction layer made of an alloy of copper and tin at the interface, and having a bonding member between the pair of reaction layers, a tin-based alloy containing antimony in its composition and containing copper or copper alloy particles I will provide a.
[0009]
Further, the present invention provides a tin-based solder material for die mounting comprising a lead-free tin-based solder containing antimony in its composition and copper or copper alloy particles kneaded with the lead-free tin-based solder I will provide a.
[0010]
The present invention also provides a semiconductor element having a solder having lead-free tin-based solder grains containing copper or copper alloy grains and antimony in a lead frame having at least a surface formed of copper or a copper alloy. A step of mounting via a paste, and further heating at a predetermined temperature in a state where the semiconductor element is mounted on the lead frame, and copper at the bonding interface with each solder paste of the die part and the semiconductor element. A heat treatment step for growing an alloy layer of tin, a wire bonding step for connecting and electrically connecting an electrode formed on the surface of the semiconductor element and an inner lead portion of the lead by a conductive wire, and at least the semiconductor element And a method of manufacturing a power device comprising the step of sealing the wire .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for manufacturing a semiconductor device of the present invention will be described below in detail with reference to the drawings.
In FIG. 1, the schematic diagram of the cross section of the power device of embodiment of this invention is shown. The lead frame 1 made of Cu has a thickness of about 1 mm, and has a die portion 1a and an inner lead portion 1b as a part of the lead. A semiconductor element 2 is bonded to the die portion 1 a via a bonding member 3. The lead frame 1 uses a Cu-based material such as oxygen-free copper in order to improve heat dissipation. The die part 1a is a square of about 3 mm 2 .
[0012]
The joining member 3 is a 40 μm member formed by melting and solidifying a solder material in which Sn-based solder and Cu powder are kneaded, and the 10 μm first Cu—Sn reaction layer 3a and 20 μm It has a Sn-based solder part 3b and a 10 μm second Cu—Sn reaction layer 3c. The Sn-based solder portion 3b has Cu powder 3e covered with a third Cu—Sn reaction layer 3d inside. The semiconductor element 2 has a thickness of about 200 μm, and an electrode 2 a is formed on the surface. The electrode 2 a and the Cu surface of the inner lead portion 1 b are connected by a bonding wire 4. The electrode 2a is about 350 × 500 μm 2 in size.
[0013]
The die part 1 a and inner lead part 1 b of the lead frame, the semiconductor element 2, the bonding member 3, and the bonding wire 4 are sealed with a sealing material 5. In order to improve heat dissipation, the surface of the die portion 1a to which the semiconductor element 2 is not connected is not covered with the sealing material and is exposed.
[0014]
FIG. 2 shows a flowchart of the manufacturing process of the power device of FIG. In addition, each structure of a power device is demonstrated with reference to FIG.
The solder material supply step 101 is a step of supplying solder paste onto the die portion 1a of the lead frame 1 made of oxygen-free copper. The solder paste is a paste-like solder material configured by kneading powdered Sn-based solder, Cu powder, and flux. The solder paste of the present embodiment has a 9: 1 ratio of Sn-based solder powder composed of Sn-based solder grains having a diameter of 30 μm or less and Sn-30 wt% Sb and Cu powder composed of Cu grains having a diameter of 10 μm or less. The mixture was mixed at a volume ratio of, and a liquid flux was mixed with the mixture and uniformly kneaded.
[0015]
In addition to the Sn—Sb system described above, Sn—Ag system and Sn—Cu system are often used as solder materials having an Sn group. Among these, the reason for selecting the Sn-Sb solder material is that the melting start temperature is Sn-8.5wt% Sb, around 245 ° C, which is the highest among the commonly used Sn solders. This is because it is judged to be most suitable.
[0016]
Sn—Sb solder, which is a Sn-based solder material, becomes difficult to melt when the Sb concentration exceeds 35 wt%, and the wettability may decrease. If solder with extremely low wettability is used, voids or unjoined gaps may occur at the joints with this solder, so the concentration of Sb used in the Sn-based solder material is 35% or less. It is preferable that In the present embodiment, the composition ratio is 30 wt% as described above.
[0017]
In the semiconductor element bonding step 102, the semiconductor element 2 which is a chip-like component is mounted on a solder paste built up on the die portion 1a, and is heated by exposure to a reducing atmosphere at 320 ° C. to melt the solder paste. In this step, the solder paste is solidified by taking it out from the reducing atmosphere, dissipating heat and cooling it, and joining the solder paste as the joining member 3.
[0018]
The semiconductor element 2 has an electrode 2a formed on one main surface. The other main surface is metallized by sputtering in the order of Ti, Ni, and Ag in order to improve solder wettability, and the metallized surface is mounted so as to contact the solder paste.
[0019]
The atmosphere may be a non-oxidizing atmosphere, but a reducing atmosphere was used so that the oxide layer on the surface of the solder paste could be reduced as much as possible. As the reducing atmosphere, a gas having a volume ratio of 90% nitrogen and 10% hydrogen was used.
[0020]
The heat treatment step 103 is a step of growing a Cu—Sn reaction layer of the joining member 3 joining the semiconductor element 2 and the lead frame 1. Specifically, heat treatment was performed by placing in a non-oxidizing atmosphere at a temperature of 320 ° C. and nitrogen of 100% for 1 hour.
[0021]
By heat treatment, Cu in the solder paste or Cu on the lead frame surface reacts with Sn in the solder paste to form an alloy of Cu and Sn. By growing this alloy by heat treatment, the Sn concentration of the Sn-based solder material is decreased, and the Sb concentration is relatively increased. When the Sb concentration exceeds 40%, and preferably exceeds 43%, the melting temperature region of the Sn—Sb solder transitions to the high temperature side. Therefore, by applying heat treatment after the semiconductor element 2 is securely bonded, it can be handled in the same manner as when die mounting is performed with a solder material having a high melting temperature.
[0022]
By this heat treatment step 103, not only the interface between the bonding member 3 and the die part 1a and the periphery of each particle of the Cu powder 3e in the Sn-based solder 3b but also the interface between the semiconductor element 2 and the bonding member 3 Cu-Sn reaction layers 3a, 3c, 3d composed of an alloy with Sn are formed and grown. By continuing the heat treatment, the Cu—Sn reaction layers 3a, 3c, and 3d grow and increase in thickness. Further, as the Cu—Sn reaction layers 3a, 3c, and 3d grow, the composition ratio of Sn in the Sn-based solder portion 3b relatively decreases.
[0023]
The processing conditions of the heat treatment depend on the die size, the volume of the solder paste supplied onto the die part , and the contact area between the die part and the semiconductor element, but in the equilibrium diagram of the solder composition of the solder paste, wire bonding At the process temperature of 280 ° C., the conditions for growing the alloy layer are selected so that the solder material used has a concentration changing to the β ′ phase, and heat treatment is performed.
Table 1 shows a comparative experimental example using the power device shown in FIG. 1 for a solder material manufactured using a powder having a composition ratio of Sn-30 wt% Sb.
[0024]
[Table 1]
Figure 0003705779
The solder material of sample number 1 is a joining member made of a solder material that does not have Cu powder and is not subjected to heat treatment. The solder material of sample number 2 is a joining member in which Cu powder is kneaded but not subjected to a heat treatment step. Sample number 3 is the bonding member 3 having Cu powder and having undergone a heat treatment process.
[0025]
When the melting start temperature of the joining member 3 was measured with a differential scanning calorimeter for each of these samples, as shown in Table 1, the joining member 3 of sample number 3 was in a temperature range around 250 ° C. or lower, It was confirmed that the melting start temperature was not observed. It can be seen that sample numbers 1 and 2 are relatively easy to melt in this temperature range.
[0026]
In addition, the experimental example of Table 1 is a result in the structure of the power device of this embodiment. For example, if the thickness of the joining member is set to 30 μm, even the joining member of sample number 2 is close to 250 ° C. It was confirmed that no melting temperature range appeared.
[0027]
The wire bonding step 104 is a step of connecting the inner lead portion 1b and the electrode 2a by the bonding wire 4 and electrically connecting them. Specifically, the connection point is heated in a reducing atmosphere of 90% nitrogen and 10% hydrogen at a volume ratio heated to 280 ° C., and a fine wire of Au is drawn out from the capillary to perform wire bonding. Here, the joining member that normally melts out contains Cu powder and is heat-treated, so it remains solidified.
[0028]
The sealing step 105 is a step of covering the die portion 1 a, the inner lead portion 1 b, the semiconductor element 2, the bonding member 3, and the bonding wire 4 with the envelope 5. The envelope 5 is a solidified epoxy resin composition colored in black, and is molded by a low-pressure transfer molding method. After molding with a mold, heat treatment is performed for 8 hours at 175 ° C. in order to completely solidify the resin material.
[0029]
The power device thus obtained is soldered to the other wiring board or the like with the outer leads. Even during this soldering, the soldering process temperature of 245 ° C. or more, which is the melting temperature range of the Sn—Sb solder material, is often exposed. There will be no decline.
[0030]
As described above, in this embodiment, die bonding is performed using an Sn-based solder material in which Cu powder is kneaded. As a result, the formation of the Cu—Sn reaction layer can be promoted, which contributes to the improvement of the reliability of the semiconductor device.
In this embodiment, a heat treatment step for growing the Cu—Sn reaction layer is introduced after the die bonding and before the wire bonding step. As a result, the relative Sn concentration of the Sn-based solder portion could be reduced, and the melting temperature of the joining member 3 could be increased.
In addition, by using Sn—Sb solder as the solder paste solder material, the working time for the heat treatment process could be shortened.
[0031]
In addition, in the said embodiment, although the thickness of the joining member 3 was set to 40 micrometers, it is preferable to set between 20 micrometers and 40 micrometers. If the thickness is 20 μm or less, the joining member 3 may not absorb the expansion of the member due to heat, and a crack may occur in the joining member 3. On the other hand, if the thickness is larger than 40 μm, the tact time for heat treatment becomes enormous, and it becomes difficult to manufacture the semiconductor device within a realistic time.
In addition, it goes without saying that the structure and process conditions can be variously changed within the scope of the present invention.
[0032]
【The invention's effect】
According to the semiconductor device and the manufacturing method thereof of the present invention, it is possible to provide a semiconductor device having a low environmental impact.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a power module according to an embodiment of the present invention.
FIG. 2 is a flowchart of a manufacturing process of the power module according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Lead frame, 2 ... Semiconductor element, 3 ... Joining member,
4 ... bonding wire, 5 ... envelope,
1a ... Die part, 1b ... Inner lead part, 2a ... Electrode,
3a, 3c, 3d ... Cu-Sn reaction layer

Claims (8)

表面に電極を有する半導体素子と、
前記半導体素子を支持するダイ部と、
表面が少なくとも銅もしくは銅合金であるインナーリード部を有するリードと、
前記インナーリード部と前記電極とを電気的に接続するワイヤと、
前記ダイ部と前記半導体素子とを接合する接合部材とを有し、
前記接合部材は、前記半導体素子及び前記ダイそれぞれとの接合界面に銅と錫との合金による反応層を有するとともに、前記一対の反応層の間に、アンチモンを組成に含む錫基合金であって銅もしくは銅合金の粒を含有した接合部材を有することを特徴とするパワーデバイス。
A semiconductor element having an electrode on the surface;
A die portion for supporting the semiconductor element;
A lead having an inner lead portion whose surface is at least copper or a copper alloy;
A wire for electrically connecting the inner lead portion and the electrode;
A bonding member for bonding the die portion and the semiconductor element;
The bonding member is a tin-based alloy having a reaction layer made of an alloy of copper and tin at the bonding interface between the semiconductor element and the die part, and containing antimony in the composition between the pair of reaction layers. A power device comprising a bonding member containing copper or copper alloy particles.
表面に電極を有する半導体素子と、
前記半導体素子を支持するダイ部と、
表面が少なくとも銅もしくは銅合金であるインナーリード部を有するリードと、
前記インナーリード部と前記電極とを電気的に接続するワイヤと、
前記ダイ部と前記半導体素子とを接合する接合部材とを有し、
前記接合部材は、前記半導体素子及び前記ダイそれぞれとの接合界面に銅と錫との合金による反応層を有するとともに、前記一対の反応層の間に、40wt%以上のアンチモンを組成に含む錫基合金であって銅もしくは銅合金の粒を含有した接合部材を有することを特徴とするパワーデバイス。
A semiconductor element having an electrode on the surface;
A die portion for supporting the semiconductor element;
A lead having an inner lead portion whose surface is at least copper or a copper alloy;
A wire for electrically connecting the inner lead portion and the electrode;
A bonding member for bonding the die portion and the semiconductor element;
The bonding member includes a reaction layer made of an alloy of copper and tin at a bonding interface between the semiconductor element and the die part, and includes 40 wt% or more of antimony in the composition between the pair of reaction layers. A power device comprising a joining member which is a tin-based alloy and contains copper or copper alloy particles.
アンチモンが組成に含まれる鉛フリー錫基はんだと、前記鉛フリー錫基はんだに対して混練されている銅もしくは銅合金の粒と、を具備することを特徴とするダイマウント用の錫基はんだ材料。  A tin-based solder material for die mounting, comprising: a lead-free tin-based solder containing antimony in its composition; and copper or copper alloy grains kneaded with the lead-free tin-based solder . アンチモンが35wt%未満で組成に含まれる鉛フリー錫基はんだと、前記鉛フリー錫基はんだに対して混練されている複数の銅もしくは銅合金の粒と、を具備することを特徴とするダイマウント用の錫基はんだ材料。  A die mount comprising: a lead-free tin-based solder containing antimony in an amount of less than 35 wt%; and a plurality of copper or copper alloy grains kneaded with the lead-free tin-based solder Tin-based solder material. アンチモンが30wt%以上35wt%未満で組成に含まれる鉛フリー錫基はんだと、前記鉛フリー錫基はんだに対して混練されている複数の銅もしくは銅合金の粒と、を具備することを特徴とするダイマウント用の錫基はんだ材料。  A lead-free tin-based solder containing antimony in an amount of 30 wt% or more and less than 35 wt%, and a plurality of copper or copper alloy grains kneaded with the lead-free tin-based solder, Tin-based solder material for die mounting. 請求項3乃至5のいずれかに記載の錫基はんだ材料と、フラックスと、を具備することを特徴とするペースト状の錫基はんだ材料。  A paste-based tin-based solder material comprising the tin-based solder material according to any one of claims 3 to 5 and a flux. 銅もしくは銅合金の粒を含有するアンチモンの組成比が35wt%未満の鉛フリー錫基はんだ材料によって半導体素子とリードフレームとを接合し、銅もしくは銅合金の粒子を含有するアンチモン濃度40wt%以上の鉛フリー錫基はんだの接合部材を形成する工程を有することを特徴とするパワーデバイスの製造方法。A semiconductor element and a lead frame are joined by a lead-free tin-based solder material having a composition ratio of antimony containing copper or copper alloy grains of less than 35 wt%, and the concentration of antimony containing copper or copper alloy particles is 40 wt % or more. A method for producing a power device, comprising the step of forming a lead-free tin-based solder joint member. 半導体素子を、少なくとも表面が銅もしくは銅合金によって形成されているリードフレームに対して、銅もしくは銅合金の粒ならびにアンチモンを組成に含む鉛フリー錫系はんだの粒を有するソルダペーストを介してマウントする工程と、
前記半導体素子が前記リードフレームにマウントされた状態でさらに所定の温度で加熱しつづけ、前記ダイ及び前記半導体素子のそれぞれのソルダペーストとの接合界面に銅と錫の合金層を成長させる熱処理工程と、
前記半導体素子表面に形成された電極と前記リードのインナーリード部とを導電性のワイヤによって結線し電気的に接続するワイヤボンディング工程と、
すくなくとも前記半導体素子と前記ワイヤとを封止する工程と、
を具備することを特徴とするパワーデバイスの製造方法。
A semiconductor element is mounted on a lead frame whose surface is formed of at least copper or a copper alloy via a solder paste having copper or copper alloy grains and lead-free tin-based solder grains containing antimony. Process,
A heat treatment step in which the semiconductor element is mounted on the lead frame and is further heated at a predetermined temperature to grow an alloy layer of copper and tin at the bonding interface between the die portion and each solder paste of the semiconductor element. When,
A wire bonding step of electrically connecting the electrode formed on the surface of the semiconductor element and the inner lead portion of the lead by a conductive wire; and
Sealing at least the semiconductor element and the wire;
A method for manufacturing a power device, comprising:
JP2002084921A 2002-03-26 2002-03-26 Power device, manufacturing method thereof, and tin-based solder material Expired - Fee Related JP3705779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084921A JP3705779B2 (en) 2002-03-26 2002-03-26 Power device, manufacturing method thereof, and tin-based solder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084921A JP3705779B2 (en) 2002-03-26 2002-03-26 Power device, manufacturing method thereof, and tin-based solder material

Publications (2)

Publication Number Publication Date
JP2003282604A JP2003282604A (en) 2003-10-03
JP3705779B2 true JP3705779B2 (en) 2005-10-12

Family

ID=29232066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084921A Expired - Fee Related JP3705779B2 (en) 2002-03-26 2002-03-26 Power device, manufacturing method thereof, and tin-based solder material

Country Status (1)

Country Link
JP (1) JP3705779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217369A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Power semiconductor device

Also Published As

Publication number Publication date
JP2003282604A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
KR100548114B1 (en) Solder foil and semiconductor device and electronic device
KR100867871B1 (en) Solder paste and electronic device
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
JP5123633B2 (en) Semiconductor devices and connecting materials
JP3736452B2 (en) Solder foil
CN106660176B (en) Method for producing a welded joint
JP2002307188A (en) PRODUCT USING Zn-Al BASED SOLDER
KR100629826B1 (en) Compound and circuit device using the same
JP2004533327A (en) High temperature lead-free solder compositions, methods and devices
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
JP5031677B2 (en) Manufacturing method of bonded structure
WO2008056676A1 (en) Lead-free solder paste, electronic circuit board using lead-free solder paste, and method for manufacturing electronic circuit board
JP2005129886A (en) Semiconductor device and its manufacturing method
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JP4432541B2 (en) Electronics
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
JP3705779B2 (en) Power device, manufacturing method thereof, and tin-based solder material
JP2005236019A (en) Manufacturing method of semiconductor device
JP2563293B2 (en) Brazing method for composite brazing material
JP4339723B2 (en) Semiconductor device and manufacturing method thereof, electronic device and mounting structure
JP4639607B2 (en) Method for producing lead-free solder material and Pb-free solder material
JP2006054227A (en) Semiconductor power module and semiconductor device
KR102428494B1 (en) Junction layer of semiconductor module, semiconductor module and manufacturing method thereof
JP3596445B2 (en) Soldering method and mounting structure
JP2008270846A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees