JP2013171924A - Light emitting device and method for manufacturing the same - Google Patents

Light emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP2013171924A
JP2013171924A JP2012034038A JP2012034038A JP2013171924A JP 2013171924 A JP2013171924 A JP 2013171924A JP 2012034038 A JP2012034038 A JP 2012034038A JP 2012034038 A JP2012034038 A JP 2012034038A JP 2013171924 A JP2013171924 A JP 2013171924A
Authority
JP
Japan
Prior art keywords
light
mounting plate
light emitting
substrate
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034038A
Other languages
Japanese (ja)
Other versions
JP5965158B2 (en
Inventor
Yuji Shigee
裕司 重枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012034038A priority Critical patent/JP5965158B2/en
Publication of JP2013171924A publication Critical patent/JP2013171924A/en
Application granted granted Critical
Publication of JP5965158B2 publication Critical patent/JP5965158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device capable of efficiently dissipating heat generated by a light emitting element.SOLUTION: A light emitting device 1 comprises: a board 11 having a heat dissipating via 19 penetrating through from an upper surface to a lower surface thereof; a light reflection layer 21 formed on the board 11 so as to cover a boundary 17 between the board 11 and the heat dissipating via 19; a translucent protective layer 23 formed on the light reflection layer 21; an element mounting plate 25 disposed at a position, where at least a part of the element mounting plate overlaps with an upper region of the boundary 17, so as to be partially buried in the upper part of the protective layer 23, and comprising a material having thermal conductivity higher than that of the protective layer 23; and a light emitting element 13 mounted on the element mounting plate 25.

Description

本発明は、配線基板に発光ダイオード(LED:Light Emitting Diode)素子等の発光素子を搭載した半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device in which a light emitting element such as a light emitting diode (LED) element is mounted on a wiring board.

LED素子を配線基板に搭載した発光装置が、照明、バックライト、産業機器等に従来から用いられてきた。このような発光装置では、発光素子の高輝度化が進められている。また、発光装置の高輝度化にともなって、発光装置内での発熱量が増加するため、発光装置内において生じた熱を効率良く発光装置の外部に伝達させ、放熱効率を高める要求が高まっている。   A light-emitting device in which an LED element is mounted on a wiring board has been conventionally used for lighting, backlights, industrial equipment, and the like. In such a light emitting device, the luminance of the light emitting element is being increased. Also, as the brightness of the light emitting device increases, the amount of heat generated in the light emitting device increases, so the demand for increasing the heat dissipation efficiency by efficiently transferring the heat generated in the light emitting device to the outside of the light emitting device has increased. Yes.

発光素子を搭載するセラミック基板の表面に銀からなる反射層を設けて、光取り出し効率を高める技術が知られている。このような装置においては、反射層を形成する銀が反応性の高い硫黄と結合して反射率の低い硫化銀が生成され、反射層の反射率が低下してしまうことを防止するために、反射層を被覆するガラスからなる被覆層が形成されている。また、放熱効率を高めるために、発光素子を搭載する基板上面から裏面に貫通する銀等の熱伝導率の高い材料からなる放熱ビアが形成されている(特許文献1)。   A technique is known in which a reflective layer made of silver is provided on the surface of a ceramic substrate on which a light emitting element is mounted to increase the light extraction efficiency. In such a device, in order to prevent silver forming the reflective layer from combining with highly reactive sulfur to produce low-reflectance silver sulfide, the reflectivity of the reflective layer is reduced. A coating layer made of glass for coating the reflective layer is formed. Further, in order to increase the heat radiation efficiency, a heat radiation via made of a material having high thermal conductivity such as silver penetrating from the upper surface to the rear surface of the substrate on which the light emitting element is mounted is formed (Patent Document 1).

特開2010−34487号公報JP 2010-34487 A

上述したような発光装置においては、ガラスの特性故にガラス層を平坦に形成するのが困難であるため、ガラス被覆層の表面に大きな凹凸が存在していた。特に、放熱ビア上の領域では、セラミック基板とビア内に充填されている銀との熱膨張率の差異によって製造時の焼結工程において発生する凹凸のために、ビア近傍のガラス被覆層表面にさらに大きな凹凸が発生していた。   In the light-emitting device as described above, it is difficult to form a glass layer flat because of the characteristics of glass, and thus there are large irregularities on the surface of the glass coating layer. In particular, in the region on the heat dissipation via, the surface of the glass coating layer in the vicinity of the via is caused by unevenness that occurs in the sintering process during manufacturing due to the difference in the thermal expansion coefficient between the ceramic substrate and the silver filled in the via. Larger irregularities were generated.

これらの凹凸のため、被覆層表面にシリコーン樹脂を介して搭載した発光素子の裏面と基板上面との距離が大きくなってしまい、発光素子と基板裏面との間の熱抵抗が大きくなってしまっていた。   Due to these irregularities, the distance between the back surface of the light emitting element mounted on the surface of the coating layer via the silicone resin and the top surface of the substrate is increased, and the thermal resistance between the light emitting element and the back surface of the substrate is increased. It was.

本発明は、上述した点に鑑みてなされたものであり、発光素子からの発熱を効率的に放熱できる発光装置を提供することを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides a light emitting device that can efficiently dissipate heat generated from a light emitting element.

本発明の発光装置は、上面から下面まで貫通している放熱ビアを有する基板と、基板と放熱ビアとの境界部上を覆うように基板上に形成された光反射層と、光反射層上に形成された透光性の保護層と、保護層の上部に部分的に埋設されるよう、境界部の上方領域に少なくとも一部が重なる位置に配置され、保護層よりも熱伝導率が高い材料から構成される素子搭載板と、素子搭載板上に搭載されている発光素子と、を含むことを特徴とする。   The light-emitting device of the present invention includes a substrate having a heat dissipation via penetrating from the upper surface to the lower surface, a light reflection layer formed on the substrate so as to cover a boundary portion between the substrate and the heat dissipation via, The light-transmitting protective layer formed on the protective layer is disposed at a position at least partially overlapping the upper region of the boundary so as to be partially embedded above the protective layer, and has a higher thermal conductivity than the protective layer. It includes an element mounting plate made of a material and a light emitting element mounted on the element mounting plate.

また、本発明の製造方法は、上面から下面まで貫通している孔部を有し、焼成によって基板を構成するセラミックグリーンシートを用意し、孔部に放熱ビアを形成するための熱伝導性材料を充填し、セラミックグリーンシートと熱伝導性材料との境界部上を覆うようにセラミックグリーンシートの上面に光反射層を形成するための光反射性材料を塗布し、光反射性材料上に透光性の保護層を形成するための透光性材料を塗布し、透光性材料の上部に一部埋設するようにかつ境界部の上方領域に少なくとも一部が重なる位置に、素子搭載板を配置して積層構造体を形成するステップと、積層構造体を焼成して、基板、放熱ビア、光反射層、及び保護層を形成するステップと、素子搭載板上に発光素子を搭載するステップと、を有し、放熱ビアは基板よりも熱伝導率が高く、素子搭載板は保護層よりも熱伝導率が高い、ことを特徴とする。   Also, the manufacturing method of the present invention provides a ceramic green sheet having a hole portion penetrating from the upper surface to the lower surface, and constituting a substrate by firing, and a heat conductive material for forming a heat radiation via in the hole portion. And apply a light reflective material for forming a light reflective layer on the upper surface of the ceramic green sheet so as to cover the boundary between the ceramic green sheet and the heat conductive material. Applying a translucent material for forming a light-sensitive protective layer, and placing the element mounting plate at a position so as to be partially embedded in the upper part of the translucent material and at least partially overlap the upper region of the boundary portion Disposing and forming a laminated structure; firing the laminated structure to form a substrate, a heat dissipation via, a light reflecting layer, and a protective layer; and mounting a light emitting element on the element mounting plate; The heat dissipation via is Higher thermal conductivity than the plate, the element mounting plate has higher thermal conductivity than the protective layer, it is characterized.

本発明の発光装置では、保護層の上部に、保護層内に一部埋設するような態様で、発光素子搭載用の熱伝導率の高い素子搭載板が設けられている。それによって、発光装置の放熱効率を向上させることができる。   In the light emitting device of the present invention, an element mounting plate for mounting a light emitting element is provided above the protective layer in such a manner as to be partially embedded in the protective layer. Thereby, the heat dissipation efficiency of the light emitting device can be improved.

本発明の発光装置の平面図である。It is a top view of the light-emitting device of the present invention. 本発明の発光装置の断面図である。It is sectional drawing of the light-emitting device of this invention. 本発明の発光装置の断面図である。It is sectional drawing of the light-emitting device of this invention. 本発明の発光装置の製造方法の各工程における断面図である。It is sectional drawing in each process of the manufacturing method of the light-emitting device of this invention. 本発明の発光装置の製造方法の各工程における断面図である。It is sectional drawing in each process of the manufacturing method of the light-emitting device of this invention. 本発明の発光装置の製造方法の各工程における断面図である。It is sectional drawing in each process of the manufacturing method of the light-emitting device of this invention. 本発明の発光装置の製造方法の各工程における断面図である。It is sectional drawing in each process of the manufacturing method of the light-emitting device of this invention. 本発明の発光装置の変形例の断面図である。It is sectional drawing of the modification of the light-emitting device of this invention. 本発明の発光装置の変形例の断面図である。It is sectional drawing of the modification of the light-emitting device of this invention. 本発明の発光装置の変形例の断面図である。It is sectional drawing of the modification of the light-emitting device of this invention.

以下に、本発明の発光装置1について、図1a、bを参照しつつ説明する。図1aは、本発明の発光装置1の光放射面側からみた平面図である。図1bは、図1aにおける1b−1b線に沿った断面図である。   Below, the light-emitting device 1 of this invention is demonstrated, referring FIG. FIG. 1a is a plan view of the light emitting device 1 of the present invention as viewed from the light emitting surface side. 1b is a cross-sectional view taken along line 1b-1b in FIG. 1a.

基板11は、Alを主成分とする低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)または高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)等からなる矩形の平面形状を有する基板であり、例えば、Al、ガラス、有機バインダー及び可塑剤からなるグリーンシートを焼成して形成される。基板11上面には、例えば、上記グリーンシート上にAu等のペーストを印刷し、後にグリーンシートともに焼成することによって、LED素子13への電力供給のための電極(図示せず)が形成されている。 The substrate 11 has a rectangular planar shape made of low temperature co-fired ceramics (LTCC) or high temperature co-fired ceramics (HTCC) mainly composed of Al 2 O 3. For example, it is formed by firing a green sheet made of Al 2 O 3 , glass, an organic binder, and a plasticizer. An electrode (not shown) for supplying power to the LED element 13 is formed on the upper surface of the substrate 11 by, for example, printing a paste such as Au on the green sheet and firing the green sheet later. Yes.

基板11の中央には、基板11の上面から下面に貫通している、例えば、直径500μmの円を底面とする円柱状の孔部17に、基板11よりも熱伝導率の良い、例えばAg等を充填した放熱ビア19が形成されている。放熱ビア19は、上記グリーンシートに、例えば、パンチング加工を施して円柱状の孔部17を形成し、孔部17にAgペーストを充填して、グリーンシートと共に焼成することによって形成される。放熱ビア19を形成する材料は、基板11よりも熱伝導率が良い材料ならば他の金属等、様々な材料が利用可能である。   In the center of the substrate 11, a cylindrical hole portion 17 that penetrates from the upper surface to the lower surface of the substrate 11, for example, has a circle having a diameter of 500 μm as a bottom surface, has a thermal conductivity better than that of the substrate 11, such as Ag. The heat dissipation via 19 filled with is formed. The heat dissipation via 19 is formed by, for example, punching the green sheet to form a cylindrical hole 17, filling the hole 17 with an Ag paste, and firing the green sheet together with the green sheet. Various materials such as other metals can be used as the material for forming the heat dissipation via 19 as long as the material has better thermal conductivity than the substrate 11.

反射層21は、基板11の上面を覆うように形成されている。反射層21は、例えば、厚さ20μmの層状のAg等の光反射性部材からなっており、例えば、上記グリーンシート上にAg等のペーストを印刷して、上記グリーンシートと共に焼成することによって形成される。   The reflective layer 21 is formed so as to cover the upper surface of the substrate 11. The reflective layer 21 is made of, for example, a layered light reflective member such as Ag having a thickness of 20 μm. For example, the reflective layer 21 is formed by printing a paste such as Ag on the green sheet and firing the paste together with the green sheet. Is done.

保護層23は、反射層21の上面を覆うように形成されている。保護層23は、例えば、厚さ30μmの層状の透光性部材で有り、ガラス材等からなっている。保護層23は、例えば、反射層21を形成するペースト上にガラス材のペーストを印刷し、上記グリーンシート等と共に焼成することによって形成される。保護層23は、反射層21を外部環境から封止して、反射層21が硫黄等によって劣化することによる、反射層21の反射性の低下を防止する。尚、保護層23は、ガラス以外であっても、反射層21を外部環境から封止可能でありかつ透光性を有するものであれば何でもよい。   The protective layer 23 is formed so as to cover the upper surface of the reflective layer 21. The protective layer 23 is, for example, a layered translucent member having a thickness of 30 μm, and is made of a glass material or the like. The protective layer 23 is formed, for example, by printing a paste of glass material on the paste forming the reflective layer 21 and baking it together with the green sheet or the like. The protective layer 23 seals the reflective layer 21 from the external environment and prevents the reflective layer 21 from being deteriorated in reflectivity due to the reflective layer 21 being deteriorated by sulfur or the like. The protective layer 23 may be anything other than glass as long as the reflective layer 21 can be sealed from the external environment and has translucency.

素子搭載板25は、保護層23を形成する部材より熱伝導率が高い部材、例えば、セラミックからなり、一辺が800μmの正方形の平面形状を有し、30μmの厚さを有する板状部材である。素子搭載板25は、例えば、基板11に使用されるグリーンシートと同様のグリーンシートを焼成し、その後、切断・分割することによって板状に形成される。素子搭載板25は、放熱ビア19の真上の保護層23上に、一部が保護層23内に埋設されかつ反射層から離間するように設けられている。また、基板11の表面に垂直な方向からみた上面視において、放熱ビア19は素子搭載板25によって覆い隠される、または当該上面視において、放熱ビアの上面全体を包含する位置に配されている。すなわち、基板11に平行な面に投影したときに、放熱ビア19が、素子搭載板25の内側にあるように配されている(図1a)。   The element mounting plate 25 is a member having a higher thermal conductivity than the member forming the protective layer 23, for example, ceramic, and has a square planar shape with a side of 800 μm and a thickness of 30 μm. . The element mounting plate 25 is formed in a plate shape by firing a green sheet similar to the green sheet used for the substrate 11 and then cutting and dividing the green sheet. The element mounting plate 25 is provided on the protective layer 23 directly above the heat radiation via 19 so as to be partially embedded in the protective layer 23 and separated from the reflective layer. In addition, the heat dissipation via 19 is covered with the element mounting plate 25 in a top view as viewed from the direction perpendicular to the surface of the substrate 11, or is disposed at a position including the entire top surface of the heat dissipation via in the top view. That is, the heat dissipation via 19 is arranged so as to be inside the element mounting plate 25 when projected onto a plane parallel to the substrate 11 (FIG. 1a).

かかる構成によって、放熱ビア19に起因した反射層21表面の凹凸にかかわらず、保護層23上に、素子搭載板25及び発光素子13を基板11の表面に対して平行に配置することが可能である。そのため、表面に凹凸のある被覆層上に発光素子が搭載された従来の発光装置と比較して、発光素子と基板裏面との間の熱抵抗を小さくすることができる。また、素子搭載板25は、保護層23よりも熱伝導率が高いので、素子搭載板25を用いる本願発光装置1は、保護層23の上面に直接LED素子13を搭載する従来の発光装置よりも、LED素子13と基板11の裏面との間の熱抵抗が低減されている。   With this configuration, it is possible to dispose the element mounting plate 25 and the light emitting element 13 parallel to the surface of the substrate 11 on the protective layer 23 regardless of the unevenness of the surface of the reflective layer 21 caused by the heat dissipation via 19. is there. Therefore, the thermal resistance between the light emitting element and the back surface of the substrate can be reduced as compared with the conventional light emitting device in which the light emitting element is mounted on the coating layer having an uneven surface. In addition, since the element mounting plate 25 has higher thermal conductivity than the protective layer 23, the light emitting device 1 using the element mounting plate 25 is more than the conventional light emitting device in which the LED element 13 is directly mounted on the upper surface of the protective layer 23. In addition, the thermal resistance between the LED element 13 and the back surface of the substrate 11 is reduced.

尚、素子搭載板25に用いられる部材は、保護層23よりも熱伝導率が良い部材であればよく、例えば、Cu、Al等の金属でもよいが、基板11を形成するセラミックグリーンシートを焼成する際の高熱(例えば、約900℃)下での変形が少ない高融点の部材(例えば、MgまたはW)であるのが好ましい。また、素子搭載板25としては、熱伝導性の高い高温焼成セラミックス(HTCC)を用いることも好ましい。また、素子搭載板25は、図2のように、基板11の表面に垂直な方向からみた上面視において、放熱ビア19の一部のみを覆い隠す、または放熱ビアの一部のみと重なる位置に配されていてもよい。すなわち、素子搭載板25は、基板11の表面に垂直な方向からみた上面視において、基板11と放熱ビア19との境界部を覆う位置(すなわち当該境界部の上方領域に重なる位置)に配されていてもよい。この場合でも、放熱ビア19と基板11との境界部上方に生じる光反射層21表面の凹凸にかかわらず、素子搭載板25及びその上に搭載するLED素子13を、基板11の上面と平行に配置しかつ熱抵抗を低下させることができる。また、素子搭載基板25には、光反射率の高い材料を用いることが好ましいが、反射層21での反射を利用できるよう、発光素子が搭載可能な程度の大きさで小さく形成することが好ましい。   In addition, the member used for the element mounting plate 25 may be a member having a thermal conductivity better than that of the protective layer 23, and may be a metal such as Cu or Al. For example, the ceramic green sheet forming the substrate 11 is fired. It is preferable to use a high melting point member (for example, Mg or W) that hardly deforms under high heat (for example, about 900 ° C.). Further, as the element mounting plate 25, it is also preferable to use high-temperature fired ceramics (HTCC) with high thermal conductivity. Further, as shown in FIG. 2, the element mounting plate 25 covers a part of the heat radiating via 19 or overlaps only a part of the heat radiating via in a top view when viewed from the direction perpendicular to the surface of the substrate 11. It may be arranged. That is, the element mounting plate 25 is arranged at a position covering the boundary portion between the substrate 11 and the heat dissipation via 19 (ie, a position overlapping the upper region of the boundary portion) in a top view as viewed from the direction perpendicular to the surface of the substrate 11. It may be. Even in this case, the element mounting plate 25 and the LED element 13 mounted thereon are parallel to the upper surface of the substrate 11 regardless of the unevenness of the surface of the light reflecting layer 21 generated above the boundary between the heat dissipation via 19 and the substrate 11. It can arrange | position and can reduce thermal resistance. The element mounting substrate 25 is preferably made of a material having a high light reflectivity, but is preferably formed to be small enough to mount the light emitting element so that reflection by the reflection layer 21 can be used. .

LED素子13は、一辺が450μmの正方形の平面形状を有し、120μmの厚さを有している。LED素子13は、素子搭載板25の上面に、例えば、シリコーン樹脂系またはエポキシ樹脂系等の接着材を介して搭載されている。接着材は、透光性樹脂に限られず、反射率や熱伝導率を高める材料を添加することができる。LED素子13は、上面にP電極及びN電極を有しており、当該P電極及びN電極は、例えば、Au(Cu、Pt、Al等の導電体でもよい)のボンディングワイヤ(図示せず)を介して電極(図示せず)に電気的に接続されている。   The LED element 13 has a square planar shape with a side of 450 μm and a thickness of 120 μm. The LED element 13 is mounted on the upper surface of the element mounting plate 25 via an adhesive material such as a silicone resin or epoxy resin. The adhesive is not limited to a translucent resin, and a material that increases the reflectance and thermal conductivity can be added. The LED element 13 has a P electrode and an N electrode on the upper surface, and the P electrode and the N electrode are, for example, Au (or conductors such as Cu, Pt, Al) bonding wires (not shown). Is electrically connected to an electrode (not shown).

このように、本発明の発光装置1では、LED素子13を表面に凹凸を有する保護層23に直接搭載せずに、保護層23上に、保護層23内部に一部埋設されておりかつ保護層23よりも熱伝導率の高い素子搭載板25を介して搭載している。素子搭載板25は、反射層21と接しない程度にその下部が保護層23の上部に埋設されて、上部が保護層23の上面から露出している。これにより、放熱ビア19近傍の反射層21表面と保護層23との界面の凹凸が大きい領域、すなわち、素子搭載板25を介さない場合に保護層23表面の凹凸が大きくなってしまっていた放熱ビア19近傍の領域にも、LED素子13を保護層23上に基板11と平行に配置することが可能であり、熱伝導率の高い放熱ビア19による熱消散効果を最大限に利用することが可能である。さらに、基板11と放熱ビア19との境界、あるいは、放熱ビア19の上方に凹凸が生じた場合に懸念される各種不具合のない信頼性の高い発光装置1を提供することができる。というのも、基板と放熱ビアとの境界、あるいは、放熱ビアの上方に凹凸が生じた場合には、LED素子13が基板11の上面に対して傾斜して配置されることが懸念され、LED素子13の上面に形成された電極に対して給電ワイヤを接続するワイヤボンディング工程において、LED素子13を画像認識する際にLED素子13上面の反射状態が通常時と異なるために、ワイヤボンディングができない場合が生じる可能性がある。また、凹凸の程度が大きい場合には、LED素子13の光軸がずれて、所望の輝度や配光が得られなくなる可能性がある。   As described above, in the light emitting device 1 of the present invention, the LED element 13 is not directly mounted on the protective layer 23 having irregularities on the surface, but is partially embedded in the protective layer 23 and protected. It is mounted via an element mounting plate 25 having a higher thermal conductivity than the layer 23. The lower part of the element mounting plate 25 is buried in the upper part of the protective layer 23 so as not to contact the reflective layer 21, and the upper part is exposed from the upper surface of the protective layer 23. As a result, the unevenness of the interface between the reflective layer 21 surface and the protective layer 23 in the vicinity of the heat dissipation via 19, that is, the unevenness of the surface of the protective layer 23 is large when the element mounting plate 25 is not interposed. In the region near the via 19, the LED element 13 can be disposed on the protective layer 23 in parallel with the substrate 11, and the heat dissipation effect by the heat radiating via 19 having a high thermal conductivity can be utilized to the maximum. Is possible. Furthermore, it is possible to provide a highly reliable light-emitting device 1 that is free from various problems that are a concern when irregularities occur at the boundary between the substrate 11 and the heat dissipation via 19 or above the heat dissipation via 19. This is because there is a concern that the LED element 13 may be inclined with respect to the upper surface of the substrate 11 when unevenness occurs at the boundary between the substrate and the heat dissipation via or above the heat dissipation via. In the wire bonding step of connecting a power supply wire to the electrode formed on the upper surface of the element 13, when the image of the LED element 13 is recognized, the reflection state of the upper surface of the LED element 13 is different from the normal state, so that wire bonding cannot be performed. Cases can arise. Further, when the degree of unevenness is large, there is a possibility that the optical axis of the LED element 13 is shifted and desired luminance and light distribution cannot be obtained.

次に、図3a−dを参照して、本発明の発光装置1の製造方法について説明する。尚、焼成前のグリーンシート、ペースト等には、参照符号に「A」を付している。   Next, with reference to FIGS. 3a to 3d, a method for manufacturing the light emitting device 1 of the present invention will be described. Note that “A” is attached to the reference symbol for green sheets, pastes, and the like before firing.

はじめに、例えば、Al、ガラス、有機バインダー及び可塑剤からなるセラミックグリーンシートを基板11の大きさに合わせて切断した基板グリーンシート11Aを用意する。 First, for example, a substrate green sheet 11A prepared by cutting a ceramic green sheet made of Al 2 O 3 , glass, an organic binder, and a plasticizer according to the size of the substrate 11 is prepared.

次に、図3aに示すように、基板グリーンシート11Aの中央に、放熱ビア19を形成するための孔部17を、例えばパンチング加工を用いて形成する。そして、孔部17に、例えばスクリーン印刷で、基板11よりも熱伝導率が高いAg等の材料からなる熱伝導性材料のペースト19Aを充填する。   Next, as shown in FIG. 3a, a hole 17 for forming the heat dissipation via 19 is formed in the center of the substrate green sheet 11A by using, for example, punching. Then, the hole 17 is filled with a thermal conductive material paste 19A made of a material such as Ag having a higher thermal conductivity than the substrate 11 by, for example, screen printing.

次に、図3bに示すように、基板グリーンシート11Aの上面全体に、Agペースト等の光反射性材料のペースト21Aを、例えばスクリーン印刷で塗布し、光反射性材料のペースト21Aを覆うように、ガラスペースト等の透光性材料のペースト23Aをスクリーン印刷で塗布する。   Next, as shown in FIG. 3b, a light reflective material paste 21A such as an Ag paste is applied to the entire upper surface of the substrate green sheet 11A by screen printing, for example, so as to cover the light reflective material paste 21A. Then, a paste 23A of a translucent material such as glass paste is applied by screen printing.

次に、図3cに示すように、透光性材料のペースト23A上に、予め所定の大きさに形成されたセラミックまたは金属等からなる板状部材である素子搭載板25を載置する。素子搭載板25を載置した後、素子搭載板25を上方から基板11の方向に押圧して、素子搭載板25の一部を透光性材料のペースト23A内に埋没させる。この際、押圧は、素子搭載板25が光反射性材料のペースト21Aに接しない程度に行う。   Next, as shown in FIG. 3c, an element mounting plate 25, which is a plate-like member made of ceramic, metal, or the like, previously formed in a predetermined size is placed on the paste 23A of a translucent material. After the element mounting plate 25 is placed, the element mounting plate 25 is pressed from above in the direction of the substrate 11 so that a part of the element mounting plate 25 is embedded in the paste 23A of a translucent material. At this time, the pressing is performed to the extent that the element mounting plate 25 does not contact the paste 21A of the light reflecting material.

次に、必要ならば最終的に製造される装置の厚みに応じてグリーンシートを積層し、窒素雰囲気下で焼成を行い(LTCCの場合、焼成温度は約900度)、グリーンシート11A、熱伝導性材料のペースト19A、光反射性材料のペースト21A、透光性材料のペースト23Aの硬化を行う。その後に、図3dに示すように、素子搭載板25上にシリコーン樹脂等からなる接着剤を塗布し、接着剤上にLED素子13を搭載して接着剤を加熱硬化し、ワイヤボンディングでLED素子13と電極(図示せず)との電気的接続を形成する。その後、必要に応じて、LED素子13上に樹脂を滴下して硬化することでLED素子13を樹脂封止(図示せず)する等の工程を行い、分割・個片化処理を行って発光装置1が完成する。尚、LED素子13を搭載する前に、基板11等の分割・個片化処理を行うこととしてもよい。   Next, if necessary, green sheets are laminated according to the thickness of the final manufactured device, and fired in a nitrogen atmosphere (in the case of LTCC, the firing temperature is about 900 degrees). The transparent material paste 19A, the light reflective material paste 21A, and the light transmissive material paste 23A are cured. Thereafter, as shown in FIG. 3d, an adhesive made of silicone resin or the like is applied onto the element mounting plate 25, the LED element 13 is mounted on the adhesive, the adhesive is heated and cured, and the LED element is formed by wire bonding. 13 and an electrode (not shown) are electrically connected. After that, if necessary, a process such as resin sealing (not shown) of the LED element 13 is performed by dripping and curing a resin on the LED element 13, and light emission is performed by dividing and dividing the LED element 13. The device 1 is completed. In addition, it is good also as performing the division | segmentation and piece-dividing processing of the board | substrate 11 etc. before mounting the LED element 13. FIG.

上記実施例では、1つの放熱ビア19が設けられているが、図4に示す発光装置2のように、複数の放熱ビア19が形成されていてもよい。また、図5に示す発光装置3のように1つの放熱ビア上に複数の素子搭載板25及びLED素子13が配されていてもよい。また、放熱ビア19は、必ずしも素子搭載板25の真下に設ける必要は無い。例えば、図6に示す発光装置4のように、素子搭載板25は、基板11の表面に垂直な方向からみた上面視において、放熱ビア19と全く重なっていない位置に配されていてもよい。この場合であっても、放熱ビア19または保護層23の性質に起因して保護層23の表面に生じる凹凸にかかわらず、素子搭載板25及びLED素子13を基板11の上面に対して平行に載置しかつ熱抵抗を低下させる効果が得られる。   In the above embodiment, one heat dissipation via 19 is provided, but a plurality of heat dissipation vias 19 may be formed as in the light emitting device 2 shown in FIG. Moreover, the several element mounting board 25 and the LED element 13 may be distribute | arranged on one heat dissipation via like the light-emitting device 3 shown in FIG. Further, the heat radiation via 19 is not necessarily provided directly under the element mounting plate 25. For example, as in the light emitting device 4 shown in FIG. 6, the element mounting plate 25 may be arranged at a position that does not overlap the heat dissipating vias 19 in a top view as viewed from the direction perpendicular to the surface of the substrate 11. Even in this case, the element mounting plate 25 and the LED element 13 are parallel to the upper surface of the substrate 11 regardless of the unevenness generated on the surface of the protective layer 23 due to the properties of the heat dissipation via 19 or the protective layer 23. The effect of mounting and lowering the thermal resistance is obtained.

また、上記実施例においては、放熱ビア19の底面よりも素子搭載板25の平面形状が大きい構成となっているが、素子搭載板25の平面形状は、LED素子13の底面よりも大きければよい。また、素子搭載板25は、正方形以外でもよく、例えば、長方形、円形、楕円形等様々な形状をとることが可能である。   Moreover, in the said Example, although the planar shape of the element mounting board 25 is larger than the bottom face of the thermal radiation via 19, the planar shape of the element mounting board 25 should just be larger than the bottom face of the LED element 13. FIG. . The element mounting plate 25 may be other than a square, and may have various shapes such as a rectangle, a circle, and an ellipse.

また、上記実施例においては、光反射層21は、基板上面全体を覆う構成になっているが、LED素子13から射出された光を、発光装置1の光放射方向に反射する機能を果たせるならば、基板上面の一部のみを覆う構成としてもよい。   Moreover, in the said Example, although the light reflection layer 21 is a structure which covers the whole board | substrate upper surface, if the function which reflects the light inject | emitted from the LED element 13 in the light emission direction of the light-emitting device 1 can be fulfilled. For example, only a part of the upper surface of the substrate may be covered.

また、上記実施例においては、光反射層21が放熱ビア19の上面の全体を覆う場合について説明したが、放熱ビア19と基板11との境界部の少なくとも一部を覆うように形成されていてもよい。反射層21表面に生じる凹凸(素子搭載板25を設けない構成においては保護層23表面に生じる凹凸)は、放熱ビア19上方および放熱ビア19と基板11との境界部上方に生じ得るが、特に、放熱ビア19と基板11との境界部上方に生じる凹凸の方が大きいため、放熱ビア19と基板11との境界部とLED素子13底面との間に素子搭載板25を配置することにより、LED素子13を基板11の上面に対してほぼ平行に載置することができるためである。   Moreover, in the said Example, although the case where the light reflection layer 21 covered the whole upper surface of the thermal radiation via 19 was demonstrated, it formed so that at least one part of the boundary part of the thermal radiation via 19 and the board | substrate 11 might be covered. Also good. The unevenness that occurs on the surface of the reflective layer 21 (the unevenness that occurs on the surface of the protective layer 23 in the configuration in which the element mounting plate 25 is not provided) can occur above the heat dissipation via 19 and above the boundary between the heat dissipation via 19 and the substrate 11. Since the unevenness generated above the boundary between the heat dissipation via 19 and the substrate 11 is larger, by disposing the element mounting plate 25 between the boundary between the heat dissipation via 19 and the substrate 11 and the bottom surface of the LED element 13, This is because the LED element 13 can be placed substantially parallel to the upper surface of the substrate 11.

上述した実施例における種々の数値、寸法、材料等は、例示に過ぎず、用途及び使用される発光素子等に応じて、適宜選択することができる。   Various numerical values, dimensions, materials, and the like in the above-described embodiments are merely examples, and can be appropriately selected according to the application and the light-emitting element used.

1、2、3 発光装置
11 基板
11A 基板グリーンシート
13 LED素子
17 孔部
19 放熱ビア
19A 熱伝導性材料のペースト
21 反射層
21A 光反射性材料のペースト
23 保護層
23A 透光性材料のペースト
25 素子搭載板
1, 2, 3 Light-emitting device 11 Substrate 11A Substrate green sheet 13 LED element 17 Hole portion 19 Heat radiation via 19A Thermal conductive material paste 21 Reflective layer 21A Light reflective material paste 23 Protective layer 23A Translucent material paste 25 Element mounting plate

Claims (6)

上面から下面まで貫通している放熱ビアを有する基板と、
前記基板と前記放熱ビアとの境界部上を覆うように前記基板上に形成された光反射層と、
前記光反射層上に形成された透光性の保護層と、
前記保護層の上部に部分的に埋設されるよう、前記境界部の上方領域に少なくとも一部が重なる位置に配置され、前記保護層よりも熱伝導率が高い材料から構成される素子搭載板と、
前記素子搭載板上に搭載されている発光素子と、
を含むことを特徴とする発光装置。
A substrate having a heat dissipation via penetrating from the upper surface to the lower surface;
A light reflecting layer formed on the substrate so as to cover the boundary between the substrate and the heat dissipation via;
A translucent protective layer formed on the light reflecting layer;
An element mounting plate that is disposed at a position at least partially overlapping the upper region of the boundary portion and is made of a material having higher thermal conductivity than the protective layer so as to be partially embedded in the upper portion of the protective layer; ,
A light emitting element mounted on the element mounting plate;
A light emitting device comprising:
前記素子搭載板は、前記基板の上面に垂直な方向からみて、前記放熱ビアの上面全体を包含するように構成されていることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the element mounting plate is configured to include the entire top surface of the heat radiating via when viewed from a direction perpendicular to the top surface of the substrate. 前記素子搭載板は、セラミックまたは金属からなることを特徴とする請求項1または2に記載の発光装置。   The light emitting device according to claim 1, wherein the element mounting plate is made of ceramic or metal. 発光装置の製造方法であって、
上面から下面まで貫通している孔部を有し、焼成によって基板を構成するセラミックグリーンシートを用意し、前記孔部に放熱ビアを形成するための熱伝導性材料を充填し、前記セラミックグリーンシートと前記熱伝導性材料との境界部上を覆うように前記セラミックグリーンシートの上面に光反射層を形成するための光反射性材料を塗布し、前記光反射性材料上に透光性の保護層を形成するための透光性材料を塗布し、前記透光性材料の上部に一部埋設するようにかつ前記境界部の上方領域に少なくとも一部が重なる位置に、素子搭載板を配置して積層構造体を形成するステップと、
前記積層構造体を焼成して、前記基板、前記放熱ビア、前記光反射層、及び前記保護層を形成するステップと、
前記素子搭載板上に発光素子を搭載するステップと、を有し、前記放熱ビアは前記基板よりも熱伝導率が高く、前記素子搭載板は前記保護層よりも熱伝導率が高い、ことを特徴とする発光装置の製造方法。
A method of manufacturing a light emitting device,
A ceramic green sheet having a hole penetrating from the upper surface to the lower surface and forming a substrate by firing is prepared, and the hole is filled with a heat conductive material for forming a heat radiating via, and the ceramic green sheet A light-reflective material for forming a light-reflective layer is applied on the upper surface of the ceramic green sheet so as to cover the boundary between the heat-conductive material and the heat-conductive material, and a light-transmitting protection is applied to the light-reflective material. A light-transmitting material for forming a layer is applied, and an element mounting plate is disposed at a position so as to be partially embedded in the upper part of the light-transmitting material and at least partially overlap the upper region of the boundary portion. A step of forming a laminated structure,
Firing the laminated structure to form the substrate, the heat dissipation via, the light reflecting layer, and the protective layer;
Mounting a light emitting element on the element mounting plate, wherein the heat dissipation via has a higher thermal conductivity than the substrate, and the element mounting plate has a higher thermal conductivity than the protective layer. A method for manufacturing a light emitting device.
前記素子搭載板を、前記セラミックグリーンシートの上面に垂直な方向からみて、前記放熱ビアの上面全体を包含するように構成することを特徴とする請求項4に記載の発光装置の製造方法。   The method of manufacturing a light emitting device according to claim 4, wherein the element mounting plate is configured to include the entire upper surface of the heat dissipation via when viewed from a direction perpendicular to the upper surface of the ceramic green sheet. 前記素子搭載板をセラミックまたは金属から形成すること特徴とする請求項4または5に記載の発光装置の製造方法。   6. The method for manufacturing a light-emitting device according to claim 4, wherein the element mounting plate is made of ceramic or metal.
JP2012034038A 2012-02-20 2012-02-20 Light emitting device and manufacturing method thereof Active JP5965158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034038A JP5965158B2 (en) 2012-02-20 2012-02-20 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034038A JP5965158B2 (en) 2012-02-20 2012-02-20 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013171924A true JP2013171924A (en) 2013-09-02
JP5965158B2 JP5965158B2 (en) 2016-08-03

Family

ID=49265707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034038A Active JP5965158B2 (en) 2012-02-20 2012-02-20 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5965158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201141A (en) * 2018-05-17 2019-11-21 スタンレー電気株式会社 Optically transparent plate having light emitting function and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055632A (en) * 2002-07-17 2004-02-19 Toshiba Corp Semiconductor light-emitting device
JP2005136379A (en) * 2003-10-08 2005-05-26 Nichia Chem Ind Ltd Semiconductor device
JP2006339559A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Led and its manufacturing method
JP2008270607A (en) * 2007-04-23 2008-11-06 Toyoda Gosei Co Ltd Light emitting apparatus and method of manufacturing the same
JP2011192959A (en) * 2010-02-19 2011-09-29 Asahi Glass Co Ltd Substrate mounting light-emitting element and light-emitting device
JP2011211154A (en) * 2010-03-12 2011-10-20 Asahi Glass Co Ltd Light-emitting device
JP2011243733A (en) * 2010-05-18 2011-12-01 Stanley Electric Co Ltd Semiconductor light-emitting device
WO2012050110A1 (en) * 2010-10-12 2012-04-19 ローム株式会社 Led module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055632A (en) * 2002-07-17 2004-02-19 Toshiba Corp Semiconductor light-emitting device
JP2005136379A (en) * 2003-10-08 2005-05-26 Nichia Chem Ind Ltd Semiconductor device
JP2006339559A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Led and its manufacturing method
JP2008270607A (en) * 2007-04-23 2008-11-06 Toyoda Gosei Co Ltd Light emitting apparatus and method of manufacturing the same
JP2011192959A (en) * 2010-02-19 2011-09-29 Asahi Glass Co Ltd Substrate mounting light-emitting element and light-emitting device
JP2011211154A (en) * 2010-03-12 2011-10-20 Asahi Glass Co Ltd Light-emitting device
JP2011243733A (en) * 2010-05-18 2011-12-01 Stanley Electric Co Ltd Semiconductor light-emitting device
WO2012050110A1 (en) * 2010-10-12 2012-04-19 ローム株式会社 Led module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201141A (en) * 2018-05-17 2019-11-21 スタンレー電気株式会社 Optically transparent plate having light emitting function and method for manufacturing the same
JP7085894B2 (en) 2018-05-17 2022-06-17 スタンレー電気株式会社 Light transmission plate with light emitting function and its manufacturing method

Also Published As

Publication number Publication date
JP5965158B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US10429011B2 (en) Method of manufacturing light emitting device
CN110010742B (en) Hermetically sealed LED module with wavelength conversion material
JP5596410B2 (en) Semiconductor light emitting device
TWI683458B (en) Peripheral heat sinking arrangement for high brightness light emitting devices
JP2009295892A (en) Light-emitting device
JP2016066680A (en) Light-emitting device
JP2013038215A (en) Wavelength conversion member
JP6079544B2 (en) Light emitting device and method for manufacturing light emitting device
CN110383510B (en) Substrate for light emitting diode and related method
JP6485503B2 (en) Method for manufacturing light emitting device
JP2007266222A (en) Substrate for loading light emitting element, package for storing light emitting element, light emitting device and light system
JP6172455B2 (en) Light emitting device
JP4659515B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
KR102208504B1 (en) Light-emitting device package with reflective side coating
KR101173398B1 (en) Light Emitting Diode Package and Method for Manufacturing Same
JP5965158B2 (en) Light emitting device and manufacturing method thereof
JP2010080796A (en) Lighting device
EP2713411B1 (en) Luminescence device
JP2014160811A (en) Light-emitting device
JP5130015B2 (en) Light emitting diode package, manufacturing method thereof, and light emitting diode using light emitting diode package
JP3169827U (en) Light emitting device
JP2012119544A (en) Led light emitting body
JP6335638B2 (en) Heat dissipation board, manufacturing method thereof, and LED light emitting device using the heat dissipation board
JP6269356B2 (en) Light emitting device
JP7177336B2 (en) light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250