JP2013165642A - リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置 - Google Patents

リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置 Download PDF

Info

Publication number
JP2013165642A
JP2013165642A JP2013111307A JP2013111307A JP2013165642A JP 2013165642 A JP2013165642 A JP 2013165642A JP 2013111307 A JP2013111307 A JP 2013111307A JP 2013111307 A JP2013111307 A JP 2013111307A JP 2013165642 A JP2013165642 A JP 2013165642A
Authority
JP
Japan
Prior art keywords
linear motor
coil
stage
energization
coil body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013111307A
Other languages
English (en)
Other versions
JP5803978B2 (ja
Inventor
Koji Tanaka
幸次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013111307A priority Critical patent/JP5803978B2/ja
Publication of JP2013165642A publication Critical patent/JP2013165642A/ja
Application granted granted Critical
Publication of JP5803978B2 publication Critical patent/JP5803978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

【課題】円滑な励磁切替が可能なリニアモータを提供する。
【解決手段】所定方向に配列された複数のコイル体63を有するコイルユニット62と発磁ユニットとを有し、駆動時には複数のコイル体に多相の電流が所定周期で順次供給されることで所定の力を発生させる。駆動時には、多相のうちの所定の同一の相の電流が供給される複数のコイル体への通電を独立して制御する制御装置CONTを有する。
【選択図】図5

Description

本発明は、リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置に関するものである。
半導体素子、液晶表示素子、その他のマイクロデバイスの製造工程の1つとして設けられる露光工程においては、露光装置を用いてフォトマスクやレチクル(以下、これらを総称する場合には、マスクという)に形成された微細なパターンをフォトレジスト等の感光剤が塗布された半導体ウェハやガラスプレート等(以下、これらを総称する場合には、感光基板という)に転写する工程が繰り返し行われる。
マスクのパターンを感光基板上に転写する場合には、既に感光基板上に形成されているパターンとこれから転写するパターンとを高い精度をもって重ね合わせる必要があるため、感光基板を保持した状態で移動する基板ステージは極めて精確な移動動作が要求される。このような極めて精確な動作が要求される基板ステージの駆動源(更にはマスクステージの駆動源)としてリニアモータ装置が設けられることが多い。リニアモータ装置は、直線方向の駆動力(推力)を発生するモータであり、構造が簡易で部品点数が少なく、また、駆動における摩擦抵抗が少ないために動作精度が高く、更に直接的に直線駆動するので移動動作を迅速に行うことができるという多くの利点を有する。
この種のリニアモータは、コイルを直線状に配列したコイル列と、コイルの配列方向(例えばY方向)と同方向に極性が交互に変化するように磁石を配列した磁石列とを含んで構成される。かかる構成のリニアモータ装置は、コイル列に正弦波状の三相交流を供給することでコイルの配列方向に推力が発生し、コイル列と磁石列との相対位置に応じて三相交流を印加するコイルを切り替えることにより、コイルの配列方向に沿ってコイル列と磁石列との相対位置を連続的に変化させることができる。
また、特許文献1には、上記コイルの配列方向と直交する方向(例えばZ方向)にもコイルを配列し、当該直交する方向に配列されたコイルに対して異なる電流を供給することにより、この方向(Z方向)にも推力を発生させる2軸制御(2DOF)の技術が開示されている。
米国特許出願公開第2006/0049697号明細書
しかしながら、上述したような従来技術には、以下のような問題が存在する。
例えば2DOFモータにおいて可動子の移動に伴って相毎に励磁切替を行う場合、励磁切替時の電流値をゼロにすることができないため、円滑な制御が困難である。また、補正を伴って励磁切替を行う場合には、誤差が生じて高精度の推力発生に支障を来す虞もある。
本発明は、以上のような点を考慮してなされたもので、円滑な励磁切替が可能なリニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置を提供することを目的とする。
上記の目的を達成するために本発明は、実施の形態を示す図1ないし図10に対応付けした以下の構成を採用している。
本発明のリニアモータは、所定方向に配列された複数のコイル体(63、70、80)を有するコイルユニット(62)と発磁ユニット(65)とを有し、駆動時には複数のコイル体に多相の電流が所定周期で順次供給されることで所定の力を発生させるリニアモータ(30)であって、前記駆動時には、多相のうちの所定の同一の相の電流が供給される複数のコイル体への通電を独立して制御する制御装置(CONT)を有するものである。
また、本発明のリニアモータの制御方法は、所定方向に配列された複数のコイル体を有するコイルユニットと発磁ユニットとを有し、駆動時には前記複数のコイル体に多相の電流が所定周期で順次供給されることで所定の力を発生させるリニアモータの制御方法であって、前記駆動時には、多相のうちの所定の同一の相の電流が供給される前記複数のコイル体への通電を独立して制御するものである。
従来では、多相のうち所定の同一相の電流が供給されるコイル体への通電が同一で制御されていたが、本発明では同一相の電流が供給されるコイル体が独立して制御されるため、励磁切替前の通電量に関連性を有することなく励磁切替後の通電量を設定することができる。そのため、本発明では、円滑な励磁切替を容易に実施することができ、高精度の推力発生を実現できる。
また、本発明のステージ装置は、先に記載のリニアモータ(30)を備えるものである。
従って、本発明のステージ装置では、円滑な励磁切替により円滑な推力発生を実現して、所定の物体を高精度で移動させることが可能になる。
また、本発明の露光装置は、先に記載のステージ装置(2)を備えるものである。
従って、本発明の露光装置では、マスクやウエハ等を高精度に移動させることが可能になり、高精度の露光処理を実施することができる。
そして、本発明のデバイスの製造方法は、リソグラフィ工程を有するデバイスの製造法であって、前記リソグラフィ工程は先に記載の露光装置(EX)を用いるものである。
従って、本発明のデバイスの製造方法では、高精度にパターンが形成された高品質のデバイスを得ることができる。
なお、本発明をわかりやすく説明するために、一実施例を示す図面の符号に対応付けて説明したが、本発明が実施例に限定されるものではないことは言うまでもない。
本発明では、円滑な励磁切替が可能になり、高精度の駆動制御を実現することができる。
露光装置の一実施形態を示す概略構成図である。 ステージ装置1の概略斜視図である。 ステージ装置2の概略斜視図である。 Yリニアモータの部分断面図である。 Yリニアモータの制御ブロック図である。 本実施形態に係る励磁切替について説明するための図である。 別形態のYリニアモータの部分断面図である。 別形態のYリニアモータの部分断面図である。 本発明のマイクロデバイスの製造工程の一例を示すフローチャートである。 図9におけるステップS13の詳細工程の一例を示す図である。
以下、本発明のリニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置の実施の形態を、図1ないし図10を参照して説明する。
図1は本発明のリニアモータを駆動装置として備えた露光装置の一実施形態を示す概略構成図である。ここで、本実施形態における露光装置EXは、マスクMと感光基板Pとを同期移動しつつマスクMに設けられているパターンを投影光学系PLを介して感光基板P上に転写する所謂スキャニングステッパである。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内における前記同期移動方向(走査方向)をY軸方向、Z軸方向及びY軸方向と垂直な方向(非走査方向)をX軸方向とする。更に、X軸周り、Y軸周り、及びZ軸周りの回転方向をそれぞれθX方向、θY方向、及びθZ方向とする。また、ここでいう「感光基板」は半導体ウエハ上にレジストが塗布されたものを含み、「マスク」は感光基板上に縮小投影されるデバイスパターンが形成されたレチクルを含む。
図1において、露光装置EXは、マスク(レチクル)Mを保持して移動するマスクステージ(レチクルステージ)MST及びこのマスクステージMSTを支持するマスク定盤3を有するステージ装置1と、光源を有し、マスクステージMSTに支持されているマスクMを露光光で照明する照明光学系ILと、感光基板(基板)Pを保持して移動する基板ステージPST及びこの基板ステージPSTを支持する基板定盤4を有するステージ装置2と、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている感光基板Pに投影する投影光学系PLと、ステージ装置1及び投影光学系PLを支持するリアクションフレーム5と、露光装置EXの動作を統括制御する制御装置CONTとを備えている。リアクションフレーム5は床面に水平に載置されたベースプレート6上に設置されており、このリアクションフレーム5の上部側及び下部側には内側に向けて突出する段部5a及び5bがそれぞれ形成されている。
照明光学系ILはリアクションフレーム5の上面に固定された支持コラム7により支持される。照明光学系ILより射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。
ステージ装置1のうちマスク定盤3は各コーナーにおいてリアクションフレーム5の段部5aに防振ユニット8を介してほぼ水平に支持されており、その中央部にマスクMのパターン像が通過する開口3aを備えている。マスクステージMSTはマスク定盤3上に設けられており、その中央部にマスク定盤3の開口3aと連通しマスクMのパターン像が通過する開口Kを備えている。マスクステージMSTの底面には非接触ベアリングである複数のエアベアリング9が設けられており、マスクステージMSTはエアベアリング9によりマスク定盤3に対して所定のクリアランスを介して浮上支持されている。
図2はマスクステージMSTを有するステージ装置1の概略斜視図である。
図2に示すように、ステージ装置1(マスクステージMST)は、マスク定盤3上に設けられたマスク粗動ステージ16と、マスク粗動ステージ16上に設けられたマスク微動ステージ18と、マスク定盤3上において粗動ステージ16をY軸方向に所定ストロークで移動可能な一対のYリニアモータ20、20と、マスク定盤3の中央部の上部突出部3bの上面に設けられ、Y軸方向に移動する粗動ステージ16を案内する一対のYガイド部24、24と、粗動ステージ16上において微動ステージ18をX軸、Y軸、及びθZ方向に微小移動可能な一対のXボイスコイルモータ17X及び一対のYボイスコイルモータ17Yとを備えている。なお、図1では、粗動ステージ16及び微動ステージ18を簡略化して1つのステージとして図示している。
Yリニアモータ20のそれぞれは、マスク定盤3上においてY軸方向に延びるように設けられたコイルユニット(電機子ユニット)からなる一対の固定子21と、この固定子21に対応して設けられ、連結部材23を介して粗動ステージ16に固定された磁石ユニットからなる可動子22とを備えている。そして、これら固定子21及び可動子22によりムービングマグネット型のリニアモータ20が構成されており、可動子22が固定子21との間の電磁気的相互作用により駆動することで粗動ステージ16(マスクステージMST)がY軸方向に移動する。固定子21のそれぞれは非接触ベアリングである複数のエアベアリング19によりマスク定盤3に対して浮上支持されている。このため、運動量保存の法則により粗動ステージ16の+Y方向の移動に応じて固定子21が−Y方向に移動する。この固定子21の移動により粗動ステージ16の移動に伴う反力が相殺されるとともに重心位置の変化を防ぐことができる。なお、固定子21は、マスク定盤3に変えてリアクションフレーム5に設けられてもよい。固定子21をリアクションフレーム5に設ける場合にはエアベアリング19を省略し、固定子21をリアクションフレーム5に固定して粗動ステージ16の移動により固定子21に作用する反力をリアクションフレーム5を介して床に逃がしてもよい。
Yガイド部24のそれぞれは、Y軸方向に移動する粗動ステージ16を案内するものであって、マスク定盤3の中央部に形成された上部突出部3bの上面においてY軸方向に延びるように固定されている。また、粗動ステージ16とYガイド部24、24との間には非接触ベアリングである不図示のエアベアリングが設けられており、粗動ステージ16はYガイド部24に対して非接触で支持されている。
微動ステージ18は不図示のバキュームチャックを介してマスクMを吸着保持する。微動ステージ18の+Y方向の端部にはコーナーキューブからなる一対のY移動鏡25a、25bが固定され、微動ステージ18の−X方向の端部にはY軸方向に延びる平面ミラーからなるX移動鏡26が固定されている。そして、これら移動鏡25a、25b、26に対して測長ビームを照射する3つのレーザ干渉計(いずれも不図示)が各移動鏡との距離を計測することにより、マスクステージMSTのX軸、Y軸、及びθZ方向の位置が高精度で検出される。制御装置CONTはこれらレーザ干渉計の検出結果に基づいて、Yリニアモータ20、Xボイスコイルモータ17X、及びYボイスコイルモータ17Yを含む各モータを駆動し、微動ステージ18に支持されているマスクM(マスクステージMST)の位置制御を行う。
図1に戻って、開口K及び開口3aを通過したマスクMのパターン像は投影光学系PLに入射する。投影光学系PLは複数の光学素子により構成され、これら光学素子は鏡筒で支持されている。投影光学系PLは、例えば1/4又は1/5の投影倍率を有する縮小系である。なお、投影光学系PLとしては等倍系あるいは拡大系のいずれでもよい。投影光学系PLの鏡筒の外周にはこの鏡筒に一体化されたフランジ部10が設けられている。そして、投影光学系PLはリアクションフレーム5の段部5bに防振ユニット11を介してほぼ水平に支持された鏡筒定盤12にフランジ部10を係合している。
ステージ装置2は、基板ステージPSTと、基板ステージPSTをXY平面に沿った2次元方向に移動可能に支持する基板定盤4と、基板ステージPSTをX軸方向に案内しつつ移動自在に支持するXガイドステージ35と、Xガイドステージ35に設けられ、基板ステージPSTをX軸方向に移動可能なXリニアモータ(リニアモータ装置)40と、Xガイドステージ35をY軸方向に移動可能な一対のYリニアモータ(リニアモータ装置)30、30とを有している。基板ステージPSTは感光基板Pを真空吸着保持する基板ホルダPHを有しており、感光基板Pは基板ホルダPHを介して基板ステージPSTに支持される。また、基板ステージPSTの底面には非接触ベアリングである複数のエアベアリング37が設けられており、これらエアベアリング37により基板ステージPSTは基板定盤4に対して非接触で支持されている。基板定盤4はベースプレート6の上方に防振ユニット13を介してほぼ水平に支持されている。
また、Xガイドステージ35の+X側には、Xトリムモータ84の可動子84aが取り付けられている。また、Xトリムモータ84の固定子(不図示)はリアクションフレーム5に設けられている。このため、基板ステージPSTをX軸方向に駆動する際の反力は、Xトリムモータ84及びリアクションフレーム5を介してベースプレート6に伝達される。
基板ステージPSTの−X側の側縁にはY軸方向に沿って延設されたX移動鏡51が設けられ、X移動鏡51に対向する位置にはレーザ干渉計50が設けられている。レーザ干渉計50はX移動鏡51の反射面と投影光学系PLの鏡筒下端に設けられた参照鏡52とのそれぞれに向けてレーザ光(検出光)を照射するとともに、その反射光と入射光との干渉に基づいてX移動鏡51と参照鏡52との相対変位を計測することにより、基板ステージPST、ひいては感光基板PのX軸方向における位置を所定の分解能でリアルタイムに検出する。同様に、基板ステージPST上の+Y側の側縁にはX軸方向に沿って延設されたY移動鏡(不図示)が設けられ、Y移動鏡に対向する位置にはYレーザ干渉計(不図示)が設けられており、Yレーザ干渉計はY移動鏡の反射面と投影光学系PLの鏡筒下端に設けられた参照鏡(不図示)とのそれぞれに向けてレーザ光を照射するとともに、その反射光と入射光との干渉に基づいてY移動鏡と参照鏡との相対変位を計測することにより、基板ステージPST、ひいては感光基板PのY軸方向における位置を所定の分解能でリアルタイムに検出する。レーザ干渉計の検出結果は制御装置CONTに出力され、制御装置CONTはレーザ干渉計の検出結果に基づいてリニアモータ30、40を介して基板ステージPSTの位置制御を行う。
図3に示すように、Yリニアモータ30のそれぞれは、Xガイドステージ35の長手方向両端に設けられた磁石ユニットからなる可動子32と、この可動子32に対応して設けられコイルユニットからなる固定子31とを備えた三相モータが用いられる。
ここで、固定子31はベースプレート6に突設された支持部36(図1参照)に設けられている。なお、図1では固定子81及び可動子82は簡略化して図示されている。
Yリニアモータ30の可動子32は、Xガイドステージ35の両端に設けられた支持部材60に、図4に示すように、固定子31を挟んだ両側にヨーク64及び永久磁石(発磁体)65がそれぞれ固定子31と隙間をあけて対向して設けられる構成となっている。磁石65は、X方向に延在し、且つY方向に互いに間隔をあけて複数配列されている。なお、図4においては、固定子31は、図示を簡略化してコイルユニットのみが表されている。
Yリニアモータ30の固定子31は、コイルジャケット61(図3参照、図4では不図示)内にコイルユニット62が設けられる構成となっている。コイルユニット62は、Y方向(第1の方向)に沿って配列された複数のコイル体63を合成樹脂等の所定の材料で固着して一体成型したモールド体で形成されている。合成樹脂としては、例えば、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、ガラス繊維充填エポキシ樹脂、ガラス繊維強化熱硬化性プラスチック(GFRP)、炭素繊維強化熱硬化性プラスチック(CFRP)等の合成樹脂が挙げられる。これらは非導電性且つ非磁性材料である。
各コイル体63は、図4に示すように、Z方向に積層状態で配置されたコイル体70とコイル体(第2コイル体)80とから構成される。各コイル体63は、コイル体70とコイル体80とが対向した状態でY方向に複数配列されている。
また、各コイル体70、80には、駆動時に三相の電流を所定周期で順次供給される。各コイル体70、80への通電量及び通電の向きは、図5に示すように、制御装置CONTの制御下でアンプ90により調整される。アンプ90には、複数(ここでは2つ)の三相ドライバ91、92がそれぞれ独立して設けられている。Y方向に沿って配列されたコイル体63(70、80)に対しては、図5に示すように、隣り合うコイル体では互いに異なる3つの相(u相、v相、w相)の電流が3つ毎に供給される(図5では、理解を容易にするために、供給される電流の相を用いた符合u1、v1、w1、u2、v2、w2、…を付している)。換言すると、同一の相が供給されるコイル体63は、Y方向において間に2個のコイル体を介して配置される。
三相ドライバ91は、Y方向に沿って配列されたコイル体63(70、80)のうち、各相に関して奇数番目に位置するコイル体63(70、80)への通電量及び通電の向きを調整する。一方、三相ドライバ92は、コイル体63(70、80)のうち、各相に関して偶数番目に位置するコイル体63(70、80)への通電量及び通電の向きを、三相ドライバ91とは独立して調整する。
そして、可動子32が固定子31に対して移動することによりXガイドステージ35がY軸方向に移動する。また、Yリニアモータ30、30のそれぞれの駆動を調整することでXガイドステージ35はθZ方向にも回転移動可能となっている。したがって、このYリニアモータ30、30により基板ステージPSTがXガイドステージ35とほぼ一体的にY軸方向及びθZ方向に移動可能となっている。
また、Xリニアモータ40は、Xガイドステージ35にX軸方向に延びるように設けられたコイルユニットからなる固定子41と、この固定子41に対応して設けられ、基板ステージPSTに固定された磁石ユニットからなる可動子42とを備えている。そして、可動子42が固定子41に対して移動することで基板ステージPSTがX軸方向に移動する。なお、固定子41には、上述したコイル体63と同様のコイル体が設けられており、Yリニアモータ30と同様の作用・効果を奏するが、以下ではYリニアモータ30についてのみ言及する。
上記の構成のYリニアモータ30においては、固定子31におけるコイル体70に対する通電量及び通電の向きに応じた推力及び方向に可動子32がY方向に移動する。
また、固定子31におけるコイル体80に対する通電量及び通電の向きに応じた推力及び方向に可動子32がZ方向に移動する。
なお、この構成については、米国特許公開2006/0049697号に詳述されている。
ここで、図6(a)〜(d)を参照して、制御装置CONT及び三相ドライバ91、92を用いたZ方向の推力発生と励磁切替について説明する。
なお、図6においては、可動子32(図6では不図示)を+Y側から−Y側に向けて移動させるものとして説明する。また、コイル体63(70、80)に対する通電制御は、全て制御装置CONT及び三相ドライバ91、92によって行われるものとして、各励磁切替ではその説明を省略する。
また、以下の説明では、コイル体63(70、80)に供給される電流の相に応じて、適宜コイル体u1、v1、w1〜コイル体u4、v4、w4と称する。
まず、図6(a)で示すように、可動子32が+Y側の端部に位置している状態では、コイル体v1、w1、u2については、Y方向の推力(以下、単にY推力と称する)及びZ方向の推力(以下、単にZ推力と称する)の双方の推力を発生させる通電が行われる。また、コイル体u1、v2、w2については、Y推力のみを発生させる通電が行われる。
続いて、可動子32の移動に伴い、三相ドライバ91が図6(b)に示すように、Y推力のみを発生させる通電をコイル体u1からコイル体u3に切り替える。
これにより、コイル体v1、w1、u2については、Y推力及びZ推力の双方の推力を発生させる通電が行われ、コイル体v2、w2、u3については、Y推力のみを発生させる通電が行われる。
次に、図6(c)に示すように、三相ドライバ91が、コイル体v1に対してZ推力を発生させる通電を停止するとともに、三相ドライバ92が、コイル体v2に対してZ推力を発生させる通電を開始する。これにより、Z推力を発生するための通電がコイル体v1からコイル体v2に切り替えられる。
このとき、コイル体v2は、コイル体v1の通電を調整する三相ドライバ91とは独立して設けられた三相ドライバ92に通電が調整されるため、コイル体v1への通電に拘束されることなく、例えば電流値がゼロのタイミング等、最適なタイミングでの通電が可能である。
続いて、図6(b)で示した場合と同様に、Y推力のみを発生させる通電をコイル体v1からコイル体v3に切り替える。
これにより、図6(d)に示すように、コイル体w1、u2、v2については、Y推力及びZ推力の双方の推力を発生させる通電が行われ、コイル体w2、u3、v3については、Y推力のみを発生させる通電が行われる。
そして、上記の手順が繰り返して行われることにより、可動子32は、Y方向及びZ方向の推力を制御された状態で移動することになる。
すなわち、可動子32は、リニアモータ30により、Y方向及びZ方向の2方向について移動可能となる。
以上説明したように、本実施形態では、可動子32の駆動時に、三相のうちの同一の相の電流が供給されるコイル体63への通電を三相ドライバ91、92により独立して制御しているため、最適なタイミングで円滑に励磁切替を実施することが可能になり、可動子32(すわなち基板P)を高精度で移動させて、高精度の露光処理を実施することができる。
また、本実施形態では、各相の電流が供給されるコイル体63に対して、三相ドライバ91が奇数番目のコイル体の通電を調整し、三相ドライバ92が偶数番目のコイル体の通電を調整しているため、コイル体への通電を独立して制御するための三相ドライバの数を最小限に抑えることができ、装置の小型化、低価格化に寄与できる。
そして、本実施形態では、コイル体70とコイル体80の通電制御が独立して行われ、またコイル体80においても、三相ドライバ91が奇数番目のコイル体80の通電を調整し、三相ドライバ92が偶数番目のコイル体80の通電をそれぞれ独立して調整しているため、例えば、可動子32をY方向及びZ方向に駆動するだけではなく、X軸周り方向についても駆動することが可能である。具体的には、例えば、図6(a)に示した通電状態において、コイル体80におけるコイル体v1、w1、u2に対する通電により各コイル体の位置でZ方向の同じ推力を出力する場合には可動子32は単にZ方向に移動するだけだが、各コイル体の位置でZ方向の異なる推力を出力する場合には可動子32は各コイル体との相対位置及びその位置における推力に応じた大きさ及び方向で、X軸周り(θX方向)のモーメントが加わる。そのため、コイル体70、80に対する通電を調整・制御することにより、可動子32をY方向、Z方向及びθX方向の3DOFで駆動することが可能になる。すなわち、本実施形態では、リニアモータ30を3DOFの駆動装置として用いることができる。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、コイル体70とコイル体80とがY方向に関し配列の位相が同じで互いに対向して配置される構成としたが、これに限定されるものではなく、例えば図7に示すように、コイル体70とコイル体80とがY方向に関し配列の位相がずれるように配置される構成としてもよい。
また、上記実施形態では、固定子31を挟んだZ方向の両側に可動子32の永久磁石65が設けられる構成としたが、これに限られるものではなく、例えば図8に示すように、固定子31のZ方向一方側にのみ可動子32の永久磁石65が設けられる構成であっても本発明を適用可能である。
また、上記実施形態では、リニアモータに三相の電流が供給される構成としたが
、これに限定されるものではなく、二相の電流が供給される構成や、四相以上の電流が供給される構成であっても本発明を適用可能である。
また、Z方向に沿って配置されるコイル体の数についても、上記実施形態では1層及び2層について例示したが、3層以上に配設する構成であってもよい。
さらに、上記実施形態では、複数のコイル体に対して独立した2つのドライバにより通電を制御する構成としたが、独立した3つ以上のドライバを設けてコイル体の通電を制御する構成としてもよい。
また、上記実施形態では、固定子31にコイルユニット62を設け、可動子32に永久磁石65を設けた、いわゆるムービングマグネット型のリニアモータに本発明を適用するものとして説明したが、可動子32にコイルユニット62を設け、固定子31に永久磁石65を設けた、いわゆるムービングコイル型のリニアモータにも適用可能である。
なお、上記実施形態の感光基板Pとしては、半導体デバイス用の半導体ウエハのみならず、液晶ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
また、例えば米国特許第6,611,316号に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置などにも本発明を適用することができる。
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
また、本実施形態においては、露光光ELがEUV光である場合を例にして説明したが、露光光ELとして、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)等を用いることもできる。その場合、第1空間5は必ずしも真空状態に調整される必要はなく、例えば第1空間5を第1のガスで満たすことができる。第1空間5を第1のガスで満たす場合、第1のガスが満たされた第1空間5の環境を維持するために、本実施形態のガスシール機構10を用いることができる。また、第2部材16で形成される第2空間15を第2のガスで満たすことができる。
また、本発明は、基板ステージ(ウエハステージ)が複数設けられるツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10−163099号公報及び特開平10−214783号公報(対応米国特許6,341,007号、6,400,441号、6,549,269号及び6,590,634号)、特表2000−505958号(対応米国特許5,969,441号)或いは米国特許6,208,407号に開示されている。更に、本発明を本願出願人が先に出願した特願2004−168481号のウエハステージに適用してもよい。
また、本発明が適用される露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
次に、本発明の実施形態による露光装置及び露光方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図9は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
まず、ステップS10(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS11(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクル)を製作する。一方、ステップS12(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップS13(ウエハ処理ステップ)において、ステップS10〜ステップS12で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップS14(デバイス組立ステップ)において、ステップS13で処理されたウエハを用いてデバイス組立を行う。このステップS14には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS15(検査ステップ)において、ステップS14で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
図10は、半導体デバイスの場合におけるステップS13の詳細工程の一例を示す図である。
ステップS21(酸化ステップ)おいては、ウエハの表面を酸化させる。ステップS22(CVDステップ)においては、ウエハ表面に絶縁膜を形成する。ステップS23(電極形成ステップ)においては、ウエハ上に電極を蒸着によって形成する。ステップS24(イオン打込みステップ)においては、ウエハにイオンを打ち込む。以上のステップS21〜ステップS24のそれぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS25(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップS26(露光ステップ)において、上で説明したリソグラフィシステム(露光装置)及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップS27(現像ステップ)においては露光されたウエハを現像し、ステップS28(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS29(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
また、半導体素子等のマイクロデバイスだけではなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置等で使用されるレチクル又はマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハ等ヘ回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(深紫外)やVUV(真空紫外)光等を用いる露光装置では、一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、又は水晶等が用いられる。また、プロキシミティ方式のX線露光装置や電子線露光装置等では、透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウエハ等が用いられる。なお、このような露光装置は、WO99/34255号、WO99/50712号、WO99/66370号、特開平11−194479号、特開2000−12453号、特開2000−29202号等に開示されている。
CONT…制御装置、 EX…露光装置、 30…Yリニアモータ(リニアモータ)、 52…ステージ装置、 62…コイルユニット、 63…コイル体、 65…永久磁石(発磁体)、 70…コイル体(第1コイル体)、 80…コイル体(第2コイル体)

Claims (12)

  1. 所定方向に配列された複数のコイル体を有するコイルユニットと発磁ユニットとを有し、駆動時には前記複数のコイル体に多相の電流が所定周期で順次供給されることで所定の力を発生させるリニアモータであって、
    前記駆動時には、多相のうちの所定の同一の相の電流が供給される前記複数のコイル体への通電を独立して制御する制御装置を有するリニアモータ。
  2. 前記リニアモータは、n相の電流が供給され、
    前記所定の同一の相の電流が供給される複数のコイル体は、前記所定方向において間に(n−1)個のコイル体を介して配列されている請求項1記載のリニアモータ。
  3. 前記リニアモータは、前記所定方向と略直行する方向に、前記コイル体のそれぞれと対向するように配列された複数の第2コイル体を有し、
    前記制御装置は、前記コイル体への通電と前記第2コイル体への通電とを独立して制御する請求項1または2記載のリニアモータ。
  4. 前記コイル体と前記第2コイル体とは、前記所定方向に関し前記配列の位相がずれるように配置されている請求項3記載のリニアモータ。
  5. 請求項1から4のいずれか一項に記載のリニアモータを備えるステージ装置。
  6. 前記コイルユニットと前記発磁ユニットとの一方を含む移動体を有し、
    前記制御装置は、前記移動体に対して前記所定方向と略直交する方向に作用する少なくとも2つの力が前記移動体に互いに異なる大きさで作用するように、前記コイル体および前記第2コイル体への通電を制御する請求項5記載のステージ装置。
  7. 請求項5または請求項6記載のステージ装置を備える露光装置。
  8. リソグラフィ工程を有するデバイスの製造法であって、前記リソグラフィ工程は請求項7記載の露光装置を用いるデバイスの製造方法。
  9. 所定方向に配列された複数のコイル体を有するコイルユニットと発磁ユニットとを有し、駆動時には前記複数のコイル体に多相の電流が所定周期で順次供給されることで所定の力を発生させるリニアモータの制御方法であって、
    前記駆動時には、多相のうちの所定の同一の相の電流が供給される前記複数のコイル体への通電を独立して制御するリニアモータの制御方法。
  10. 前記リニアモータは、n相の電流が供給され、
    前記所定の同一の相の電流が供給される複数のコイル体は、前記所定方向において間に(n−1)個のコイル体を介して配列されている請求項9記載のリニアモータの制御方法。
  11. 前記リニアモータは、前記所定方向と略直行する方向に、前記コイル体のそれぞれと対向するように配列された複数の第2コイルを有し、
    前記コイル体への通電と前記第2コイル体への通電とを独立して制御する請求項9または10記載のリニアモータの制御方法。
  12. 前記コイル体と前記第2コイル体とを、前記所定方向に関し前記配列の位相をずらせて配置する請求項11記載のリニアモータの制御方法。
JP2013111307A 2013-05-27 2013-05-27 リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置 Active JP5803978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013111307A JP5803978B2 (ja) 2013-05-27 2013-05-27 リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013111307A JP5803978B2 (ja) 2013-05-27 2013-05-27 リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008317190A Division JP5499468B2 (ja) 2008-12-12 2008-12-12 リニアモータ、リニアモータの制御方法、ステージ装置、ステージ装置の制御方法及び露光装置並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2013165642A true JP2013165642A (ja) 2013-08-22
JP5803978B2 JP5803978B2 (ja) 2015-11-04

Family

ID=49176658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013111307A Active JP5803978B2 (ja) 2013-05-27 2013-05-27 リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置

Country Status (1)

Country Link
JP (1) JP5803978B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579698A (en) * 1978-12-08 1980-06-16 Hitachi Ltd Power supply system for linear motor
JPS6152186A (ja) * 1984-08-22 1986-03-14 Hitachi Ltd リニアモータの給電装置
JPH08111998A (ja) * 1994-10-11 1996-04-30 Canon Inc 位置決め装置
JP2004023960A (ja) * 2002-06-19 2004-01-22 Nikon Corp リニアモータ装置、ステージ装置及び露光装置
JP2004096813A (ja) * 2002-08-29 2004-03-25 Canon Inc ムービングコイル型多相リニアモータおよびその駆動方法、多相リニアモータおよびその駆動方法、駆動装置、ならびにこれらを備えた露光装置
JP2005137105A (ja) * 2003-10-30 2005-05-26 Yaskawa Electric Corp キャンド・リニアモータ電機子およびキャンド・リニアモータ
US20060049697A1 (en) * 2004-09-08 2006-03-09 Nikon Corporation Split coil linear motor for z force
JP2008022700A (ja) * 2002-12-27 2008-01-31 Canon Inc 位置決め装置、及びその位置決め装置を利用した露光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579698A (en) * 1978-12-08 1980-06-16 Hitachi Ltd Power supply system for linear motor
JPS6152186A (ja) * 1984-08-22 1986-03-14 Hitachi Ltd リニアモータの給電装置
JPH08111998A (ja) * 1994-10-11 1996-04-30 Canon Inc 位置決め装置
JP2004023960A (ja) * 2002-06-19 2004-01-22 Nikon Corp リニアモータ装置、ステージ装置及び露光装置
JP2004096813A (ja) * 2002-08-29 2004-03-25 Canon Inc ムービングコイル型多相リニアモータおよびその駆動方法、多相リニアモータおよびその駆動方法、駆動装置、ならびにこれらを備えた露光装置
JP2008022700A (ja) * 2002-12-27 2008-01-31 Canon Inc 位置決め装置、及びその位置決め装置を利用した露光装置
JP2005137105A (ja) * 2003-10-30 2005-05-26 Yaskawa Electric Corp キャンド・リニアモータ電機子およびキャンド・リニアモータ
US20060049697A1 (en) * 2004-09-08 2006-03-09 Nikon Corporation Split coil linear motor for z force

Also Published As

Publication number Publication date
JP5803978B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
US7656062B2 (en) Split coil linear motor for z force
US7675201B2 (en) Lithographic apparatus with planar motor driven support
JP4446951B2 (ja) 位置決めデバイス、リソグラフィ装置及び駆動ユニット
JP4586367B2 (ja) ステージ装置及び露光装置
EP1830456A1 (en) Magnetic guiding apparatus, stage apparatus, exposure apparatus and device manufacturing method
US7245047B2 (en) Lithographic apparatus and device manufacturing method
JP5192064B2 (ja) 変位デバイス、リソグラフィ装置および位置決め方法
WO2011068254A1 (en) Exposure apparatus and device fabricating method
JP2001267226A (ja) 駆動装置及び露光装置、並びにデバイス及びその製造方法
JP2010154596A (ja) リニアモータ、ステージ装置及び露光装置並びにデバイスの製造方法
JP4487168B2 (ja) ステージ装置及びその駆動方法、並びに露光装置
US8932042B2 (en) Lithographic apparatus and device manufacturing method
US9172294B2 (en) Planar motor and lithographic apparatus comprising such planar motor
JP2007258356A (ja) ステージ装置
WO2013031221A1 (ja) 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP5499468B2 (ja) リニアモータ、リニアモータの制御方法、ステージ装置、ステージ装置の制御方法及び露光装置並びにデバイス製造方法
JP6862543B2 (ja) モータアセンブリ、リソグラフィ装置、及びデバイス製造方法
JP5803978B2 (ja) リニアモータ、リニアモータの制御方法及びステージ装置並びに露光装置
WO2011037277A1 (en) Exposure apparatus and device fabricating method
JP2011115021A (ja) 平面モータ装置及びステージ装置並びに露光装置
JP2014096589A (ja) 駆動装置及び駆動方法、露光装置及び露光方法、並びにデバイス製造方法
JP2011115022A (ja) シャフトモータ及びステージ装置並びに露光装置
US9753381B2 (en) Substrate table system, lithographic apparatus and substrate table swapping method
JP2006165345A (ja) ステージ装置、露光装置、並びにデバイス製造方法
JP2005026288A (ja) 電磁アクチュエータ、ステージ装置、並びに露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250