JP2013163112A - 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用 - Google Patents

神経回復指令及び臨床効果を制御するための刺激パルス形状の使用 Download PDF

Info

Publication number
JP2013163112A
JP2013163112A JP2013114262A JP2013114262A JP2013163112A JP 2013163112 A JP2013163112 A JP 2013163112A JP 2013114262 A JP2013114262 A JP 2013114262A JP 2013114262 A JP2013114262 A JP 2013114262A JP 2013163112 A JP2013163112 A JP 2013163112A
Authority
JP
Japan
Prior art keywords
pulse
electrical
stimulation
electrical stimulation
stimulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013114262A
Other languages
English (en)
Other versions
JP5930473B2 (ja
Inventor
Dongchul Lee
ドンチュル リー
Michael Adam Moffitt
マイケル アダム モフィット
Christopher Ewan Gillespie
クリストファー ユアン ギレスピー
Kerry Bradley
ケリー ブラッドレー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Neuromodulation Corp
Original Assignee
Boston Scientific Neuromodulation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corp filed Critical Boston Scientific Neuromodulation Corp
Publication of JP2013163112A publication Critical patent/JP2013163112A/ja
Application granted granted Critical
Publication of JP5930473B2 publication Critical patent/JP5930473B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/3614Control systems using physiological parameters based on impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37247User interfaces, e.g. input or presentation means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3906Heart defibrillators characterised by the form of the shockwave

Abstract

【課題】制御された方法で異なる大きさの神経線維を回復する能力に関係なく、刺激の治療効果を更に最大に活用するように調整する。
【解決手段】電気組織刺激システム、及び患者に治療を施すプログラマーを示している。電極が患者の組織(例えば、脊髄組織)に近接して設置され、電気刺激エネルギーが定められた波形にしたがって電極から組織に供給されて、定められた波形のパルス形状が修正され、これにより、電極から組織に供給される電気刺激エネルギーの特性を変化させる。パルス形状は、複数の異なるパルス形状タイプの1つを選択するか、又はパルス形状の時定数を調整することにより修正することができる。
【選択図】図1

Description

本発明は、組織刺激システム、より特定的には、治療効果を最大にするために組織に付与される刺激を調整するためのシステム及び方法に関する。
埋め込み型神経刺激システムは、広い範囲の疾病及び障害において、治療効果が証明されてきた。ペースメーカー及び埋め込み型除細動器(ICD)は、多くの心臓病(例えば、不整脈)の治療に、高い効果を有することが示されてきた。脊髄刺激(SCS)システムは、慢性病症候群の治療のための治療方針として受け入れられてきており、組織刺激の用途は、狭心症及び失禁などの別の用途に拡大され始めている。脳深部電気刺激療法(DBS)も又、難治のパーキンソン病の治療に10年以上にわたって治療法として施されており、最近では、真性震顫及び癲癇など、別の領域において使用されてきた。更に、最近の研究においては、抹消神経刺激(PNS)システムは、慢性病症候群及び失禁の治療に効果があることが示されており、多くの別の用途が、近年研究されている。更に、NeuroControl(オハイオ州クリーブランド)によるフリーハンドシステムなどの機能性電気刺激(FES)システムが、脊髄損傷患者の四肢麻痺に対する機能回復のために施されてきた。
これらの埋め込み型神経刺激システムの各々は、典型的には、望まれる刺激部位に埋め込まれる、1又はそれ以上の電極をもった刺激用導線と、刺激部位から離れた位置に埋め込まれ、引き出し用導線を介して刺激用導線と直接的又は間接的に結合された、神経刺激付与器とを含む。この場合、電気パルスが神経刺激付与器から刺激電極に供給され、刺激パラメータの設定値にしたがって、たくさんの組織を刺激又は活性化し、患者に望まれる有効な治療を施す。典型的な刺激パラメータ設定値は、与えられた時間で刺激電流のソース(陽極)又はリターン(陰極)となる電極、並びに振幅、持続時間、及び刺激パルスのパルス率を含むことができる。現在の神経刺激システムにより出される電気パルスの形状は、正方形であることが理想的であるが、非線形電気特性を有する受動回路部品と生体組織の両方により成形されたものとなることが多い。神経刺激システムは、神経刺激付与器に遠隔的に指令して、選択された刺激パラメータにしたがって電気刺激パルスを発生する手持ち式患者プログラマーを更に含むことができる。遠隔操作(RC)形態の手持ち式プログラマーは、これ自体、例えば臨床医のプログラマー(CP)を使用して、臨床医によりプログラムすることができ、この臨床医のプログラマー(CP)は、典型的には、プログラム用ソフトウエアパッケージがインストールされた、ラップトップなどの汎用コンピューターとすることができる。
典型的には、問題となる神経刺激用途に対する治療効果は、刺激パラメータを調整することにより最適化することができる。これらの治療効果は、刺激される多くの組織を刺激する神経線維の直径に相関することが多い。例えば、SCSにおいては、直径の大きい感覚線維を活性化(すなわち、回復)すると、脊髄の後角における介在神経の相互作用を介して直径の小さい痛む線維の伝送が行われるのを減少させ/妨げると考えられる。大きい感覚線維が活性すると、患者が感じる痛みの信号に代わる代替的感覚として特徴付けることができる感覚を形成するようになり、この感覚は、感覚異常として知られている。したがって、直径の大きい神経線維が、SCSの主な目的であると考えられてきた。しかしながら、直径の大きい神経線維を過度に刺激することは、望まれない領域に、他の不快で、強い感覚を引き起こし、副作用を発生することもあるので、SCSの場合は治療範囲が限定される。したがって、大きさに基づく神経線維回復の制御は、SCSの治療効果を最大にするために非常に重要である。一時的同期(単一パルスで同時に神経線維を回復する)だけでなく、非同期(単一パルスで異なる時間に神経線維を回復する)で異なる大きさの神経線維を回復させる指令の制御は、SCSの治療効果を最大にすることができると考えられる。
このように、制御可能な方法で異なる直径の繊維を選択して活性化する神経刺激システムは、SCSなどの神経刺激付与の望ましい治療効果を「調和させる」ために有効なものである。制御された方法で異なる大きさの神経線維を回復する能力に関係なく、刺激の治療効果を更に最大に活用するように調整することができる、更なる刺激パラメータを付与することが有効である。
米国特許第6,895,280号公報 米国特許第6,516,227号公報 米国特許第6,993,384号公報 米国特許第7,317,948号公報 米国特許出願公開番号2007/0038250 米国特許公開番号2003/0139781 米国特許公開番号2005−0267546 米国特許第6,393,325号公報 米国特許第6,909,917号公報
本発明の第一態様によると、患者に治療を施す方法が提供される。該方法は、1又はそれ以上の電極を患者の組織(例えば脊髄組織)の近くに設置し、定められた波形にしたがって、電極から組織に電気刺激エネルギーを供給し、形成された波形のパルス形状を修正し、これにより電極から組織に供給される電気刺激エネルギーの特性を変化させることを含む。
一方法においては、パルス形状は、複数の異なるパルス形状の形式(例えば、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、又はこれらの組み合わせ)の1つを選択することにより修正される。異なるパルスの形式は、例えば、減少勾配指数曲線型パルス又は減少勾配直線傾斜型パルスなどの減少勾配パルス、及び増加勾配指数曲線型パルス又は増加勾配直線傾斜型パルスなどの増加勾配パルスを含むことができる。別の方法においては、パルス形状は、パルス形状の時定数を調整することにより修正される。
定められた波形のパルス形状及び他のパルスパラメータ(例えば、パルス振幅、パルス持続時間、及びパルス率)は、互いに独立に、又は互いに依存した形で修正することができる。後者の場合には、パルス形状の修正に対応して他のパルスパラメータの少なくとも1つを修正して、電気刺激エネルギーの実質的に均一な電荷を維持する、という効果を得ることができる。任意の方法では、組織の1又はそれ以上の電気特性(例えば、インピーダンス)を測定することが含まれ、この場合、パルス形状は、測定された電気特性に基づいて修正される。一実施例として、パルス形状は、測定された電気特性の変化に対応して修正することができる。
本発明の第二の態様によると、神経刺激システムが提供される。神経刺激システムは、1又はそれ以上の刺激用導線と結合するように構成された1又はそれ以上の電気端子、定められた波形にしたがって電気端子に電気刺激エネルギーを出力することが可能な出力刺激回路、及び定められた波形のパルス形状を修正して、これにより電気端子に出力される電気刺激エネルギーの特性を変化させるように構成された制御回路を含む。一実施形態においては、この制御回路は、複数の異なるパルス形状の形式の1つ、例えば、上記した異なる形式のパルス形状のいずれかを選択することにより、パルス形状を修正するように構成される。別の実施形態においては、制御回路は、パルス形状の時定数を調整することにより、パルス形状を修正するように構成される。
制御回路は、定められた波形のパルス形状及び他のパルスパラメータを、互いに独立に、又は互いに依存した形で修正するように構成することができる。後者の場合には、制御回路は、パルス形状の修正に対応して、他のパラメータの少なくとも1つを修正して、電気刺激エネルギーの実質的に均一な電荷を維持するように構成することができる。任意の実施形態においては、神経刺激システムは、組織の1又はそれ以上の電気特性(例えば、インピーダンス)を測定するように形成されるモニター回路を更に含み、該制御回路は、測定された電気特性に基づいてパルス形状を修正するように構成される。例えば、制御回路は、測定された1又はそれ以上の電気特性における変化に対応して、パルス形状を修正するように構成することができる。
定められた波形のパルス形状は、種々異なる手法のいずれか1つ又はそれ以上で修正することができる。例えば、出力刺激回路は、複数の異なるアナログ成形回路から構成することができ、この場合には、制御回路は、異なるアナログ成形回路の1つを選択することによりパルス形状を修正するように構成することができる。制御回路は又、出力刺激回路において少なくとも1つのアナログ電気部品の特性を調整することにより、パルス形状を修正するように構成することもできる。一実施形態においては、パルス状波形は、振幅レベルの階段状機能又はサブパルス持続時間により形成され、この場合には、制御回路は、振幅レベル又はサブパルス持続時間を調整することによりパルス形状を修正するように構成することができる。
一実施形態においては、神経刺激システムは、電気端子に電気的に結合される少なくとも1つの電極をもった刺激用導線を更に含む。別の実施形態においては、神経刺激システムは、パルス形状を定めるパラメータを記憶することが可能なメモリーを更に含む。更に別の実施形態においては、神経刺激システムは、パルス形状を修正するために、外部プログラマーからの指令を無線で受信することが可能な遠隔測定回路を含む。更に別の実施形態においては、神経刺激システムは、電気端子、出力刺激回路、及び制御回路を収容して神経刺激付与器(例えば、埋め込み型神経刺激付与器)を形成するケースを含む。
本発明の第三の態様によると、神経刺激付与器のプログラマーが提供される。プログラマーは、使用者からの入力を受信することが可能な使用者インターフェース、使用者の入力に対応して複数の異なるパルス形状を定める複数の刺激パラメータ設定値を発生するように構成されたプロセッサー、及び複数の刺激パラメータ設定値を神経刺激付与器に伝送するように構成された出力回路を含む。一実施形態においては、複数の異なるパルス形状は、複数の異なる形式のパルス形状、例えば、上記した異なる形式のパルス形状のいずれかを含む。別の実施形態においては、複数の異なるパルス形状は、異なる時定数を有するが、同じ形式(例えば、指数曲線型減衰パルス振幅)である複数のパルス形状を含む。
プロセッサーは、各々の刺激パラメータ設定値において、互いに独立して、又は互いに依存した形で、パルス形状及び他のパルスパラメータを定めるように構成することができる。後者の場合には、プロセッサーは、パルス形状の設定に対応して他のパルスパラメータの少なくとも1つを定めるように構成され、それぞれの刺激パラメータ設定値間で、実質的に均一な電荷を維持することができる。一実施形態においては、複数の異なるパルス形状は、例えば測定された電気特性の変化に対応してパルス形状を定めることにより、組織の1又はそれ以上の測定された電気特性(例えば、インピーダンス)に基づいて定められる。別の実施形態においては、プログラマーは、作動装置を含む使用者インターフェースを含むことができ、この場合には、該プロセッサーは、作動装置の作動に対応して、複数の刺激パラメータ設定値(例えば、異なるパルス形状)を発生するように構成することができる。更に別の実施形態においては、出力回路は、複数の刺激パラメータ設定値を神経刺激付与器に無線で伝送することが可能な遠隔測定回路である。
本発明の他の及び更なる態様及び特徴は、好ましい実施形態の以下の詳細な説明を読むことにより明らかになるが、これは本発明についての説明を意図したものであり、限定するものではない。
図面は、本発明の好ましい実施形態の意図及び有用性を示すもので、類似した要素は、共通の参照番号により表される。本発明の上記及び他の利点及び目的がどのようにして得られたかを更に認識できるようにするために、簡単に上記した本発明について、添付図面に示す特定の実施形態を参照して一層具体的に説明する。これらの図面は、本発明の典型的実施形態のみを示したものであり、その範囲を限定するものとみなされるものではないという理解のもとで、添付図面を使用して、付加的特定事項及び詳細を示し、本発明を説明する。
本発明により配列された脊髄刺激(SCS)システムの一実施形態の平面図である。 図1のSCSシステムで使用される埋め込み型パルス発生器(IPG)の側面図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 図1のシステムにより発生することができる様々な刺激パルス形状の図である。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径8.7μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスに対応する、時間と共に回復する直径11.5μmの神経線維の数の棒グラフである。 正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスの付与に対応する、直径8.7μmの神経線維の総数対直径11.5μmの神経線維の総数の時間による回復比の図である。 図1のシステムにより発生することができる刺激パルスの図であり、ここで刺激パルスは、特定的に負に分極された部分と正に分極された部分を有するように示されている。 図1のシステムにより発生することができる異なるパルス形状タイプのパルス列の図である。 図1のシステムにより、単一の電極群に対して発生することができる刺激パルスの図である。 図1のシステムにより、電極に対して独立して発生することができる異なる刺激パルスの図である。 システムにより、単一の電極群に対して発生することができる刺激パルス及び再電荷パルスの図である。 図2のIPGの内部部品のブロック図である。 階段状振幅レベルを使用して発生する減少勾配指数曲線型パルス及び増加勾配指数曲線型パルスの図である。 階段状振幅レベルを使用して発生する減少勾配指数曲線型パルス及び増加勾配指数曲線型パルスの図である。 種々異なる持続時間のサブパルスを使用して発生する増加勾配指数曲線型パルスの図である。 異なるパルス形状を発生するために使用される、図12のIPGで使用される出力刺激回路の一部のブロック図である。 正方形パルスが増加勾配指数曲線型パルスに変化するのを示した図である。 組織電極インターフェースで形成することができる例示的等価回路である。 図2の神経刺激システムにおいて使用することができる手持ち式リモートコントロール(RC)の平面図である。 パルス形状タイプを選択するために、使用者に手段を提供するための図17のRCにより発生されるディスプレイスクリーンの平面図である。 図2のIPGにより発生される電流パルス形状を表す、図17のRFにより発生されるディスプレイスクリーンの平面図である。 図17のRCの内部部品のブロック図である。 患者に使用する場合の図1のSCSシステムの平面図である。
以下に続く説明は、脊髄刺激(SCS)システムに関する。しかしながら、本発明自体は、SCSにおける用途に好適なものであるが、最も広い態様においては、本発明はそれに限定されるものではないことが理解されるべきである。むしろ本発明は、組織を刺激するために使用されるあらゆる型の埋め込み型電気回路に使用することができる。例えば、本発明は、ペースメーカー、除細動器、蝸牛刺激付与器、網膜刺激付与器、調和した四肢運動を行うために形成される刺激付与器、皮質刺激付与器、脳深部刺激付与器、末梢神経刺激付与器、マイクロ刺激付与器、又は尿失禁、睡眠時無呼吸、不全脱臼、頭痛などに対処するように構成される、あらゆる他の神経刺激付与器の部分として使用することができる。
最初に図1を参照すると、例示的SCSシステム10は、一般的には1又はそれ以上の(この場合は、2つ)埋め込み型刺激用導線12、埋め込み型パルス発生器(IPG)14、外部遠隔制御器RC16、臨床医プログラマー(CP)18、外部トライアル刺激付与器(ETS)20、及び外部充電器22を含む。
IPG14は、1又はそれ以上の経皮引き出し用導線24を介して刺激用導線12に物理的に接続されており、この刺激用導線12は、列状に配列された複数の電極26を有する。図示した実施形態においては、刺激用導線12は経皮導線であり、その端部に、電極26が刺激用導線12に沿って直列に配列される。代替的実施形態においては、電極26は、単一パドル導線上に二次元パターンで配列することができる。更なる詳細を以下に示すように、IPG14は、刺激パラメータの設定値にしたがって、パルス状電気波形(すなわち、電気パルスの一時的系列)の形態で電気刺激エネルギーを電極列26に供給するパルス発生回路を含む。
ETS20は、経皮引き出し用導線28及び外部ケーブル30を介して、刺激用導線12に物理的に接続することができる。IPG14と類似したパルス発生回路を有するETS20は、刺激パラメータの設定値にしたがって、パルス状電気波形の形態で電気刺激エネルギーを電極列26に供給する。ETS20とIPG14との主な違いは、ETS20は、トライアルを基準に使用される非埋め込み型装置であり、刺激用導線12が埋め込まれた後、IPG14の埋め込みの前に、付与される刺激の反応をテストする。例示的ETSの更なる詳細は、米国特許第6,895,280号に記載されている。
RC16は、二方向RF通信リンク32を介して、ETS20を遠隔測定により制御するように使用することができる。IPG14及び刺激用導線12が埋め込まれると、RC16は、二方向RF通信リンク34を介して、IPG14を遠隔測定により制御するように使用することができる。このような制御は、IPGのスイッチをオン・オフし、更に異なる刺激パラメータ設定値でプログラムさせることができる。IPG14は、プログラムされた刺激パラメータを修正するように作動させて、該IPG14による電気刺激エネルギー出力の特性を能動的に制御することができる。CP18は、作業部屋及び後続のセッションにおいて、IPG14及びETS20をプログラムするために詳細な刺激パラメータを臨床医に提供する。CP18は、IR通信リンク36を介して、RC16を通じてIPG14又はETS20と間接的に通信することにより、この機能を実行することができる。代替的には、CP18は、RF通信リンク(図示されず)を介して、IPG14又はETS20と直接通信することができる。外部充電器22は、誘導リンク38を介して、IPG14を経皮により充電するために使用される運搬可能な装置である。簡潔にするために、外部充電器22の詳細は、ここには示されない。外部充電器の例示的実施形態の詳細は、米国特許第6,895,280号に記載されている。IPG14がプログラムされ、その電源が外部充電器22から充電されるか、或いは補充されると、IPG14は、存在するRC16又はCP18なしでプログラムされるように機能することができる。
図2を参照すると、刺激用導線12及びIPG14の外部特性が簡潔に示されている。
刺激用導線12の1つは8個の電極26(E1−E8とラベルを付されている)を有し、他方の刺激用導線12は8個の電極26(E9−E16とラベルを付されている)を有する。導線及び電極の実際の数及び形状は、もちろん意図される用途によって変えることができる。IPG14は、電子機器及び他の部品(以下に更なる詳細を示している)を収容する外側ケース40、及びコネクタ42を含み、該コネクタ42には、刺激用導線12の末端部が嵌合して、外側ケース40内で電極26を電子機器に電気的に結合する。外側ケース40は、チタニウムなどの導電性で、生物学的適合性を有する材料から成り、気密状態で密封された室を形成して、内部電子機器を身体組織及び流体から保護する。幾つかの場合においては、外側ケース40は、電極として機能することができる。
以下に更に詳細に説明するように、IPG14は、刺激パラメータ設定値に応じて、パルス状電気波形の形態で、電気刺激エネルギーを電極列26に供給するパルス発生回路を含む。このような刺激パラメータは、作動時に陽極(正)、陰極(負)となり、オフ切換え(ゼロ)することができる電極を定める電極組み合わせを備えることができ、この電極組み合わせは、更に、電気パルスパラメータを定めるものとすることができ、この電気パルスパラメータは、パルス振幅(IPG14が、電極列26に一定の電流或いは一定の電圧のいずれを供給するかに応じて、ミリアンプ又はボルトで測定される)、パルス持続時間(マイクロ秒で測定される)、及びパルス率(毎秒当たりのパルスで測定される)、並びに、以下に更に詳細に説明するパルス形状を定めることができる。
電気刺激は、2(又はそれ以上)の作動状態の電極の間で起こるものであり、それら電極の1つは、IPGケースとすることができる。刺激エネルギーは、単一極性又は多極性(例えば、ニ極性、三極性など)の形態で組織に伝送することができる。単一極性刺激は、導線電極26の選択された1つが、IPG14のケースと共に作動される時に起こり、刺激エネルギーは、選択された電極26とケースとの間を伝送される。二極性刺激は、2つの導線電極26が、陽極及び陰極として作動する時に起こり、刺激エネルギーは、選択された電極26の間を伝送される。例えば、第一導線12の電極E3が陽極として作動し、同時に第二導線12の電極E11が陰極として作動する。三極性刺激は、3つの導線電極26が作動し、そのうちの2つが陽極、残りの1つが陰極として、又は2つが陰極、残りの1つが陽極として作動する時に起きる。例えば、第一導線12の電極E4及びE5が陽極として作動し、同時に第二導線12の電極E12が陰極として作動する場合である。
本発明にとって重要なことは、刺激パラメータ、特に電気パルスパラメータが、パルス形状(パルス振幅及びパルス幅又は持続時間を含むパルス大きさとは異なり)を更に含むことである。パルス形状は、パルス形状の形式により定めることができる。図3A−3Iは、IPG14により発生させることができる異なる例示的パルス形状の形式を示している。例えば、パルス状波形は、正方形パルス(図3A)、減少勾配指数曲線型パルス(図3B)、増加勾配指数曲線型パルス(図3C)、減少勾配対数曲線型パルス(図3D)、増加勾配対数曲線型パルス(図3E)、減少勾配傾斜型パルス(図3F)、増加勾配傾斜型パルス(図3G)、台形波形(図3H)、正弦曲線波形(図3I)、又は例えば、増加勾配指数曲線型/正方形パルス(図3J)のような前述したもののいずれかの組み合わせとすることができる。パルス形状は、同じ形式のパルス形状の中の勾配特性により定めることができる。図3K及び3Lは、同じ形式のパルス形状に対して異なる勾配変化、特に減少勾配指数曲線型パルスに対する異なる時定数t1−t3(図3K)、及び増加勾配指数曲線型パルスに対する異なる時定数t1−t3(図3L)を示している。このように、パルスの形状は、パルス形式を修正するか又はパルスの勾配特性を修正することにより変化させることができる。(これは単に、パルスの振幅又は持続時間を変化させることによるものではない。)
パルス形状と組織に対する臨床効果との間の関係はよく知られていないが、異なるパルス形状が、異なる大きさの神経線維に対し異なる神経回復指令を生じ、神経線維の作動の潜在的開始(すなわち回復)に対して異なる一時的同期を生じさせ、これにより電気刺激エネルギーの治療効果を制御するようになることが発見された。例えば、従来の神経線維の典型的技術を使用することにより、付与された電気パルスの形状に応じて、直径が8.7μmの神経線維と直径が11.5μmの神経線維とでは、一次的回復反応が異なることが発見された。
特に、図4A−4Cのそれぞれは、正方形パルス(図4A)、減少勾配指数曲線型パルス(図4B)、及び増加勾配指数曲線型パルス(図4C)に対応する、時間と共に回復する直径8.7μmの神経線維の棒状グラフであり、図5A−5Cのそれぞれは、同じ正方形パルス(図5A)、減少勾配指数曲線型パルス(図5B)、及び増加勾配指数曲線型パルス(図5C)に対応する、時間と共に回復する直径11.5μmの神経線維の棒状グラフを示している。
図4A及び図5Aから推測すると、正方形パルスの場合には、比較的多くの数の大きい神経線維がパルスの初期に回復するが、その数は時間と共に次第に減少し、実質的に均一の数の小さい神経線維がパルスの持続時間にわたって回復する。図4B及び図5Bから推測すると、減少勾配指数曲線型パルスの場合には、比較的多くの数の大きい神経線維と小さい神経線維の両方がパルスの初期に回復するが、その数は時間と共に次第に減少する。
図4C及び図5Cから推測すると、増加勾配指数曲線型パルスは、比較的小さい数の大きい神経線維と小さい神経線維の両方がパルスの初期に回復するが、その数は時間と共に次第に増加する。
図6は、正方形パルス、減少勾配指数曲線型パルス、及び増加勾配指数曲線型パルスの付与に対応して、時間と共に、直径8.7μmの神経線維総数対直径11.5μmの神経線維総数の回復比を示している。図6におけるデータの直線的適合に基づけば、この回復比は、正方形パルスに対しては時間と共に比較的均一であり、減少勾配指数曲線型パルスに対しては時間と共に回復比は増加し、増加勾配指数曲線型パルスに対しては時間と共に回復比は減少する。このように、大きい神経線維及び小さい神経線維の時間による指令回復は、パルス形状によるものであり、これによってパルス振幅、パルス率、及びパルス持続時間の修正に加えて、IPG14による刺激エネルギー出力を最大に活用する別の手段を提供することが、これらのことから明らかである。
上記したパルス形状の形式は、単一極性(この場合は、正)を有するものとして説明されているが、パルス形状の形式は、一極性より多い極性を有するものとすることができることに留意するべきである。例えば、図7は、負に分極された部分n、その後、正に分極された部分pを有するパルス、具体的には増加勾配対数曲線型パルスを示している。一極性から次の極性に遷移するパルスは、線維形式の識別を改善できると考えられる。更に、上記した一連のパルス(すなわち、パルス列)は、均一なパルス形式を有するものとして説明されているが、単一パルス列は種々異なるパルス形式を有するものとすることができる。例えば、図8は、正方形パルス、その後に増加勾配傾斜型パルス、その後に減少勾配傾斜型パルスを有するパルス列を示している。SCSにおいては、単一電極組み合わせを有する多パルス形式の列を使用すると、異なる神経集団を興奮させることにより、感覚異常の範囲が広がる可能性があると考えられる。
単一のパルス形式は、電極の群によって発生することができることが認識されるべきである。例えば、図9に示されているように、電極E1及びE2を陽極とし、電極E3を陰極として有する電極組み合わせE1−E3の場合は、単一増加勾配陽極傾斜型パルスを電極E1及びE2上に群として発生させることができる。電極E1−E3を通って流れる電流の総計は、ゼロ(保存電流に基づいて)でなければならないので、大きい減少勾配陰極傾斜型パルス(電極E1とE2で発生する電流と等しい量)が電極E3に発生する。異なる形式のパルス形状は、単一群に構成された電極に対して、独立に発生させることができることも認識するべきである。例えば、図10に示されるように、増加勾配陽極傾斜型パルスが電極E1に発生し、同時に減少勾配陽極傾斜型パルスが電極E2に発生するようにすることができる。電極E1−E3の電極全体を通って流れる電流の総計はゼロでなければならないので、陰極正方形パルスが電極E3に発生する。
パルス形状は、刺激パルス(すなわち、実際の刺激を実行するパルス)として使用されるときに修正することができるが、パルス形状は又、再荷電パルス(すなわち、組織を通して直流電荷が移動することを防止して電極の劣化及び細胞損傷を避けるために刺激パルスの後に行われる荷電)として使用される時にも修正することができる。すなわち、電荷は、刺激期間中に電極において電流により電極・組織間インターフェースを通して伝えられ、再荷電期間中に同じ電極において反対に分極された電流により電極・組織間インターフェースを引き戻される。例えば、図9に示されているように、刺激期間中に電極E1−E3に電流が供給されると、図11に示されているように、電極E1−E3に再荷電パルスが発生することになる。再荷電パルスの形状は、刺激パルスと同じ方法で修正することができる。SCSの内容においては、再荷電パルスの形状の修正は、刺激パルスの形状修正が生成するのと同じ形で、感覚異常の差を生成すると考えられる。
ここで、図12を参照して、IPG14の1つの例示的実施形態を説明する。IPG14は、特定のパルス振幅、パルス率、パルス幅、及びデータバス54の制御ロジック52によって制御されるパルス形状を有する定められたパルス状波形にしたがって、電気刺激エネルギーを発生するように形成された刺激出力回路50を含む。電気波形のパルス率及びパルス幅の制御は、適当な解像度、例えば10μsを有するものとすることができるタイマーロジック回路56により促進される。刺激出力回路50により発生する刺激エネルギーは、蓄電器C1−C16を介して電極E1−E16に対応する電気端子58に与えられる出力である。
図示した実施形態においては、刺激出力回路50は、特定の周知の電流量で、刺激エネルギーを電気端子58に供給することが可能な複数の独立したm対の電源60を含む。各々の対60の1つの電源62は正(+)すなわち陽極電源として機能し、各々の対60の他方の電源64は、負(−)すなわち陰極電源として機能する。各々の対60の陽極電源62及び陰極電源64の出力は、共通のノード66に結合される。この刺激出力回路50は、低インピーダンス切り替え用マトリックス68を含み、これを通して各々の電源対60の共通ノード66が、蓄電器C1−C16を介していずれかの電気端子58に結合される。
したがって、例えば、+4mAのピーク振幅(特定の率、及び特定の持続期間で)を有するパルスを形成するように第一陽極電源62(+I1)をプログラムし、−4mAのピーク振幅(同じ率及びパルス幅)を有するパルスを同様に形成するように第二陰極電源64(−I2)を同期的にプログラムし、次に陽極電源62(+I1)のノード86を電極E3に対応する電気端子58に結合し、更に陰極電源64(−I2)のノード66を電極E1に対応する電気端子58に結合することが可能である。
プログラム可能な電気端子58の各々は、正極(ソース電流)、負極(シンク電流)を有するか、又は極なし(電流がない)とするようにプログラムすることができることがわかる。更に、所定の電気端子58からのソース又はシンクとなる電流パルスの振幅は、区分された幾つかのレベルの1つにプログラムすることができる。一実施形態においては、各々の電気端子58を流れる電流は、IPG14の必要とされる出力電圧/電流の範囲内で、0から±10mAまで100μAごとの段階で個々に設定することができる。更に、一実施形態においては、一群の電気端子58による総電流出力は、±20mAまで(群に含まれる電極間に供給される)とすることができる。更に、電気端子58の各々は、多極性モードで作動することができ、例えば2つ又はそれ以上の電気端子が、同時に電流をソース/シンクするために群となることがわかる。代替的には、電気端子58の各々は、単一極性モードで作動することができ、この場合には、例えば電気端子58は陰極(負)として形成され、IPG14のケースは陽極(正)として形成される。
電気端子58は、振幅を割り当てることができ、チャンネルの数に対応する整数であるk個までのいずれかの数の群に分けることができ、ここでkは、一実施形態においては4であり、各々のチャンネルkは、定められたパルス振幅、パルス幅、パルス率、及びパルス形状を有するものとすることができる。他のチャンネルも、同様の方法で実施することができる。このようにして、各々のチャンネルは、どの電気端子58(及びその電極)が電流ソース又は電流シンクとなるように同期的に選択されるかを特定し、これらの電気端子の各々におけるパルス振幅、パルス幅、パルス率、及びパルス形状を特定する。
代替的実施形態においては、制御された独立の電源を使用するのではなく、独立に制御される電圧源を設けて電気端子58において特定の及び周知の電圧の刺激パルスを与えるようにすることができる。前述した振幅及び幅の刺激パルスを発生するのと同じ機能を実行するための適当な出力回路の代替的実施形態を含む、この出力刺激回路の作動は、米国特許第6,516,227号及び第6,993,384号により詳細に示されている。
以上により、出力刺激回路50による刺激パルス出力の各々の形状は、振幅レベルの階段状機能で形成することができることが、認識できる。例えば、図13Aに示されているように、減少勾配指数曲線型パルスは、一連の次第に減少する振幅レベルで形成することができ、図13Bに示されているように、増加勾配指数曲線型パルスは、一連の次第に増加する振幅レベルで形成することができる。10μsの解像度でパルス幅が100μsの場合には、図13A及び図13Bに示すパルス状波形の各々は、10個の別個の振幅段階で形成することができる。更に、図13Cで示されているように、パルス全体は、種々異なる振幅のサブパルス及びサブパルス持続時間で形成することができる。これは、使用するサブパルスが僅かであっても、幾つかの波形に良好な近似を与えることができる。
代替的には、出力刺激回路50は、振幅レベルの階段状機能を使用してパルス状波形を形成するのではなく、1又はそれ以上のアナログ回路により、各々の電源62からの刺激パルス出力を成形するように形成することができる。例えば、図14に示されているように、出力刺激回路50は、スイッチ71を介して各々の電源62の出力に結合された複数の異なるアナログ成形回路69(1)−69(3)を含み、正方形出力をそれぞれの電源62から選択された異なる形式のパルス形状の1つに成形するように構成することができる。例えば、成形回路69(1)は、修正なしに正方形パルスを通過させ、成形回路69(2)が、正方形パルスを減少勾配指数曲線型パルスに変換し、更に成形回路69(3)が、正方形パルスを増加勾配指数曲線型パルスに変換するようにすることができる。成形回路69(2)及び69(3)の各々は、電気特性(例えば、電気容量又はインダクタンス)を有する少なくとも1つのアナログ電気部品73を含むものとすることができ、例えばパルス形状の時定数を修正することにより、パルス形状タイプを修正するように調整することができる。
IPG14全体、例えば供給電圧、温度、バッテリー電圧、及び同様のものの全体にわたって様々なノード又は他の点72の状態をモニターするために、IPG14は、モニター回路70を更に含む。モニター回路70は、電気パラメータデータ(例えば、電極インピーダンス及び/又は電極の場電位)を測定するように形成される。埋め込み型電気刺激システムは、周知のエネルギーの電気刺激パルスを、目標とする興奮させる組織に伝達することを可能とする装置の安定性に依存するので、電極インピーダンスの測定は重要である。目標とする組織は、周知の電気負荷を表し、そこに刺激パルスと組み合わされた電気エネルギーが供給される。インピーダンスがあまりに大き過ぎる場合には、電極26に結合されるコネクタ42及び/又は導線12(図2に示されている)が、開路となっているか又は破壊されることになる。インピーダンスがあまりに小さ過ぎる場合には、コネクタ42及び/又は導線12の中のどこかが短絡している可能性がある。いずれの場合においても(インピーダンスが大き過ぎるか又は小さ過ぎる)、IPG14は、その意図する機能を実行することができない。
電気パラメータデータの測定は、以下に詳細に述べるように、出力回路50によるパルス形状出力の制御を理想的に助長する。電気パラメータデータは、種々異なる手段のいずれかを使用して測定することができる。例えば、電気パラメータデータの測定は、米国特許第7,317,948号に示されているように、電気刺激パルスが組織に付与されている間の一時点で、又は刺激のすぐ後に、サンプル基準で行うことができる。代替的には、電気パラメータデータの測定は、米国特許第6,516,227号及び第6,993,384号に示されているように、電気刺激パルスとは独立して行うことができる。
IPG14は、マイクロコントローラー(μC)74の形態の処理回路を更に含み、データバス76の制御ロジック52を制御し、データバス78を介してモニター回路70から状態データを得る。IPG14は、更にタイマーロジック56を制御する。IPG14は、マイクロコントローラー74に結合されたメモリー80及び発振器及びクロック回路82を更に含む。すなわち、メモリー80及び発振器及びクロック回路82と組み合わせたマイクロコントローラー74は、メモリー80に記憶された適当なプログラムにしたがって、プログラム機能を実行するマイクロプロセッサーシステムを含む。代替的には、幾つかの用途に対して、マイクロプロセッサーシステムにより与えられた機能は、適当な状態の機械により実行することができる。
マイクロコントローラー74は、必要な制御信号及び状態信号を発生し、メモリー80に記憶された作動プログラム及び刺激パラメータにしたがって、マイクロコントローラー74にIPG14の作動を制御させる。IPG14の作動を制御する時に、マイクロコントローラー74は、制御ロジック52及びタイマーロジック56と組み合わせて、刺激出力回路50を使用して電極26において刺激パルスを個々に発生することができ、これにより、各々の電極26が、単一極性ケース電極を含む他の電極26と対になるか又は群になることができ、極性、パルス振幅、パルス率、パルス幅、パルス形状、及び電流刺激パルスが付与されるチャンネルを制御し、修正することができる。
刺激パルスの形状が、振幅レベルの階段状機能を使用して定められる場合には、マイクロコントローラー74は、刺激パルスを成形するために、制御ロジック52及びタイマーロジック56と組み合わせて刺激出力回路50を使用し、電極26で振幅段階(例えば、固定した10μs段階か又は種々異なるサブパルス持続時間を有する段階のいずれか)を発生する。刺激パルスの形状が、アナログ成形回路69を使用して定められる場合には、マイクロコントローラー74は、制御ロジック52を使用して、スイッチ71を介して望ましいパルス形状タイプに対応する成形回路69を選択し、成形回路69がアナログ電気回路73を含む場合には、その電気特性を適合させる。
図示した実施形態においては、マイクロコントローラー74は、パルス形状及び他のパルスパラメータ(すなわち、パルス振幅、パルス幅、及びパルス率)を、互いに独立に修正する。特に有益な実施形態においては、マイクロコントローラー74は、パルス形状及び他のパルスパラメータを、互いに依存する形で修正する、すなわち、マイクロコントローラー74は、パルス形状の修正に対応して他のパルスパラメータを修正するか、又は他のパルスパラメータの修正に対応して、パルス形状を修正することができる。例えば、マイクロコントローラー74は、電気刺激エネルギーの実質的に均一な電荷を維持するために、パルス形状の修正に対応して他のパルスパラメータを修正することができる。この修正は、パルス状態の領域(例えば、パルスを定めるために式を積分することにより)が、パルス形状が変化した場合でも一定に保てる(例えば、パルス振幅又はパルス幅を変化させて)ことを確実にすることにより達成することができる。
例えば、図15に示すように、パルス形状が正方形パルス形状から増加勾配指数曲線型パルス形状に変化すると、パルス状態の領域、及び刺激エネルギーの印加は、パルスパラメータのいずれかを修正することなく減少させることができる。しかしながら、パルスの振幅及び/又は持続時間が増加すると、パルス状態の領域、及び刺激エネルギーの印加は維持することができる。図示された実施形態においては、以下に詳細に示されているように、パルス形状の変化に対応して、パルスの振幅及び/又は持続時間を計算するのはRC16であるが、このような計算は、代替的にはマイクロコントローラー74により実施することができる。
理想的な実施形態においては、マイクロコントローラー74は、モニター回路70により測定される組織の電気特性に基づいてパルス形状を修正するように形成される。すなわち、電気刺激エネルギーを電極26間に伝達する組織の電気特性は、意図するパルス形状から出力刺激回路50により発生される刺激パルス、特にパルスの形状の特性を変えることができる(特に電圧源を利用する出力刺激回路で)ので、実際のパルス形状を意図する形状と適合させるか、又は望まれる臨床効果を達成するために、組織の電気特性を考慮して、パルス形状を変化させることが望ましい。
例えば、マイクロコントローラー74は、図16に示されているように、モニター回路70により計測された組織インピーダンスに基づいて、電極Ea、Ebと組織との間のインターフェース(すなわち、電極・組織間インターフェース)で、等価抵抗及び電気容量回路を形成することができる。この等価回路における抵抗値Rと電気容量値C1、C2を知ることにより、マイクロコントローラー74は、望ましいパルス形状を出力するか、或いは望ましい臨床効果を達成するために、等価回路に入力すべきパルス形状を計算することができる。一実施形態においては、マイクロコントローラー74は、組織の電気特性、特にモニター回路70により測定される組織インピーダンスの変化(例えば、繊維症の増加、患者の動き、導線の移動などによる)に対応して、このパルス形状調整を自動的に実行する。別の実施形態においては、マイクロコントローラー74は、ある時間、例えば、刺激パラメータでIPG14のプログラムをしている間に、このパルス形状調整を実行するだけである。この場合、RC16は、測定された組織インピーダンスに基づいた等価抵抗及び電気容量回路を代替的に形成し、この等価回路に基づいてパルス形状を計算することができる。
IPG14は、適切に変調されたキャリア信号に含まれるRC16からのプログラム用データ(例えば、作動プログラム及び/又は刺激パラメータ)を受信するための交流(AC)受信コイル84、及びプログラム用データを回復するためにAC受信コイル84を通して受信されるキャリア信号を復調するための充電及び前部遠隔測定回路86を含み、該プログラム用データは、メモリー80又はIPG14を通して伝達される他のメモリー要素(図示されず)内に記憶される。
IPG14は、モニター回路70を通して読み取られた情報データを、RC16に送るための後部遠隔測定回路88及び交流AC伝送コイル90を更に含む。IPG14の後部遠隔測定の特徴は、自身の状態を点検させることができることである。例えば、刺激パラメータに及ぼされる如何なる変化も後部遠隔測定を通して確認され、これにより、これらの変化がIPG14内に正確に受信され、実現されることを確実にする。更に、RC16によって問い合わせを行うことにより、IPG14内に記憶されたすべてのプログラム可能な設定値を、RC16にアップロードすることができる。
IPG14は、作動電力をIPG14に供給するための再充電可能な電力源92及び電源回路94を更に含む。再充電可能な電力源92は、例えば、リチウム・イオン電池又はリチウム・イオンポリマー電池を含むことができる。再充電可能な電池92は、未調整電圧を電源回路94に供給する。次に電源回路94は様々な電圧96を発生し、IPG14内に配置される様々な回路が必要とするように、その幾つかは調整され、幾つかは調整されない。再充電可能な電力源92は、AC受信コイル84により受信される整流されたAC電力(すなわち、例えば「インバータ回路」として知られている効率的なACからDCへの変換回路などの他の手段を通して、AC電力から変換されたDC電力)を使用して再充電される。電力源92を再充電するために、AC磁場を発生する外部充電器(図示されず)が、埋め込まれたIPG14の上に位置する患者の皮膚に接触して、又は皮膚の近傍に設置される。外部充電器により供給されるAC磁場は、AC受信コイル84のAC電流を減少する。充電及び前部遠隔測定回路86は、DC電流を形成するためにAC電流を整流し、電力源92を充電するために使用される。AC受信コイル84は、無線で通信(例えば、プログラム用データ及び制御データ)を受信し、外部装置からエネルギーを充電するために使用されるものとして示されているが、AC受信コイル84は充電専用コイルとして配列することができ、コイル90などの別のコイルを、二方向遠隔測定のために使用することができることを認識すべきである。
図12に示すように、IPG14内に含まれる多くの回路は、単一の用途特定の集積回路(ASIC)98として実施することができる。これは、IPG14全体の大きさをかなり小さくすることができ、適当に密閉されてシールされたケース内に収容することができる。代替的には、IPG14内に含まれる回路のほとんどは、米国特許出願公開番号2007−0038250に示されているように、多数のデジタル及びアナログダイに設置することができる。例えば、用途特定の集積回路(ASIC)のようなプロセッサーチップは、内蔵されたソフトウエアで処理機能を実行するように形成することができる。アナログIC(AIC)は、電力調整、刺激出力、インピーダンス測定の付与及びモニターを含む、IPG14の機能に対して必要な幾つかの作動を実行するように形成することができる。デジタルIC(DiglC)は、プロセッサーICにより促されて、アナログICの刺激回路による電流出力の刺激レベル及び順序を制御し、変化させて、プロセッサーICとアナログICとの間の一次インターフェースとして機能するように形成することができる。
図12の略図は、機能てきなものであって、限定することを意図するものではないことに留意するべきである。ここでの説明を受けた当業者は、図示し、説明した機能を実行するために、多くの種類のIPG回路又は等価回路を容易に構成することができる。上記したもの及び他のIPGに関する追加の詳細は、米国特許第6,516,227号、米国特許公開番号2003/0139781、及び2005−0267546に示されている。
IPGだけでなくSCSシステム10は、代替的に、刺激用導線12と結合した埋め込み型レシーバー・刺激付与器(図示されず)を利用することができる。この場合には、レシーバー・刺激付与器に命令するように埋め込まれたレシーバー並びに制御回路を作動させるために、電池などの電源が、電磁的リンクを介してレシーバー・刺激付与器に誘導結合した外部コントローラーに収容される。データ/電力信号は、埋め込まれたレシーバー・刺激付与器の上に設置されるケーブルで結合された伝送コイルから経皮状態で取り付けられる。埋め込まれたレシーバー・刺激付与器は信号を受信して、制御信号にしたがって刺激を発生する。
簡潔に述べてきたように、刺激パラメータは、RC16及び/又はCP18により、IPG14に、或いはIPG14内に修正されてプログラムし、これによって、IPG14により電極26に発生し、出力された電気刺激エネルギーの特性を設定又は変化させることができ。図示した実施形態においては、これは、IPG14及び/又はCP18からIPG14への刺激パラメータを含む遠隔測定による伝送指令により達成される。代替的には、刺激パラメータなしの指令は、IPG14に記憶された刺激パラメータを変化させるために、RC16及び/又はCP18からIPG14に伝送することができる。
図17を参照すると、RC16の1つの例示的実施形態が示されている。前述したように、RC16は、IPG14、CP18又はETS20と通信することが可能である。RC16は、内部部品(印刷回路板(PCB)を含む)を収容するケース100、及び該ケース100の外側に支持される照明付きディスプレイスクリーン102及びボタンパッド104を含む。図示した実施形態においては、ディスプレイスクリーン102は、照明付きの平坦なパネルのディスプレイスクリーンであり、ボタンパッド104は、可撓性回路の上に配置される金属でドーム状に覆われた薄膜スイッチ、及びPCBに直接結合されるキーパッドコネクタを含む。任意の実施形態においては、ディスプレイスクリーン102は、タッチスクリーンの性能を有する。ボタンパッド104は、多数のボタン106、108、110及び112を含み、IPG14をON及びOFFにすることができ、IPG14内の刺激パラメータの調整又は設定値を付与し、更にスクリーン間の選択を付与することができる。
図示した実施形態においては、ボタン106は、ON/OFFボタンとして機能し、IPG14をON及びOFFに作動することができる。ボタン108は、RC16にスクリーンディスプレイ及び/又はパラメータの間で切換え可能な選択ボタンとして機能する。
ボタン110及び112は、パルス振幅、パルス幅、パルス率、及びパルス形状を含む、IPG14により発生するパルスのあらゆる刺激パラメータを増加させ又は減少させるように作動することができる、アップ/ダウンボタンとして機能する。例えば、選択ボタン108は、RC16を「パルス振幅調整モード」に設置するように作動することができ、その間に、パルス振幅は、アップ/ダウンボタン110、112を介して調整することができ、「パルス幅調整モード」の間は、パルス幅は、アップ/ダウンボタン110、112を介して調整することができ、「パルス率調整モード」の間は、パルス率は、アップ/ダウンボタン110、112を介して調整することができ、更に「パルス形状調整モード」の間は、パルス形状は、アップ/ダウンボタン110、112を介して調整することができる。代替的には、アップ/ダウン専用ボタンは、各々の刺激パラメータに付与するものとすることができる。アップ/ダウンボタンの使用だけでなく、ダイアル、スライダーバー、又はキーパッドなどのあらゆる他の型の作動装置を、刺激パラメータを増加又は減少させるために使用することができる。
本発明にとって重要な事項として、パルス形状調整モードでRC16を設置することにより、パルス形状のタイプ、及び勾配特性、更に特に選択したパルスタイプの時定数を使用者に選択させることができることがある。例えば図18は、アイコンの形態の識別子を有する例示的ディスプレイスクリーンを示しているが、これは代替的な手段として、又は任意の手段として使用することができる。特に、ディスプレイスクリーンは、正方形パルスアイコン113(1)、減少勾配指数曲線型パルスアイコン113(2)、増加勾配指数曲線型パルスアイコン113(3)、減少勾配対数曲線型パルスアイコン113(4)、増加勾配対数曲線型パルスアイコン113(5)、減少勾配傾斜型パルスアイコン113(6)、増加勾配傾斜型パルスアイコン113(7)、台形波形アイコン113(8)、及び正弦曲線型波形アイコン113(9)を含み、使用者は、アップ/ダウンボタン110、112を作動させながらスクロールし、強調表示する(減少勾配指数曲線型パルスアイコン113(2)に示している)ことができる。ボタン108は、強調表示したパルス形状の形式を選択するために作動させることができる。代替的には、アップ/ダウンボタン110、112を使用して上/下にスクロールすることによって、パルスアイコン113を強調するより、例えば、ディスプレイスクリーン102がタッチスクリーン性能を有する場合には、各々の形式のパルス形状に連結されたチェックケース(図示されず)を、スタイレット又は指で触ることにより確かめることができる。代替的には、単一ボタン型トグルスイッチを、異なる形式のパルス形状の間で切換えるのに使用することができる。各々の選択された形式のパルス形状の中で、勾配変化特性は、アップ/ダウンボタン110、112を作動させることにより変化させることができる(例えば、時定数を増加又は減少させることにより)。例えば、図19は、アップ/ダウンボタン110、112がパルスの時間勾配を変化させるように作動する時(前のパルス形状は想像線で示されている)、電流パルス形状(この場合は、減少勾配指数曲線型パルス)を表す例示的ディスプレイスクリーンを示している。任意の実施形態において、形状・サイクルモードが、一サイクル中の異なるパルス形状を自動的に示すことができ(例えば、3−5秒おきに変化する)、これにより使用者が、多くの異なるパルス形状を迅速に認識することができる。使用者が最適条件の刺激を認識した時に、使用者は、その時表されているパルス形状を選択するボタンを作動させることができる。パルス形状は、提示される時に使用者に表示するか、又は代替的には、使用者に常に分かる状態にすることができる。
図20を参照すると、例示的RC16の内部部品が示されている。RC16は、一般的には、プロセッサー114(例えばマイクロコントローラー)、プロセッサー114により実行される作動プログラム並びに刺激パラメータを記憶するメモリー116、入/出力回路、及び特定的にはIPG14に刺激パラメータを出力してIPG14から状態情報を受信するための遠隔測定回路118、及び、ボタンパッド104から刺激制御信号を受信して、ディスプレイスクリーン102(図18に示されている)に状態情報を伝送するための入力/出力回路120を含む。簡潔にするためにここには示されていないが、プロセッサー114は、RC16の他の機能を制御するだけでなく、パルス振幅、パルス幅、パルス率、及び使用者のボタンパッド104の操作に対応するパルス形状を定める複数の刺激パラメータ設定値を発生する。これらの新しい刺激パラメータ設定値は、遠隔測定回路118を介してIPG14に伝送され、これによりIPG14に記憶された刺激パラメータを調整し、及び/又はIPG14をプログラムする。遠隔測定回路118は、CP18から刺激パラメータを受信するために使用することができる。RC16の機能性及び内部部品の更なる詳細は、米国特許第6,895,280号に記載されている。
IPG14に関して上記したように、図示した実施形態におけるパルス形状及び他のパルスパラメータは、互いに独立に修正される。この場合は、プロセッサー114は、互いが独立した各々の刺激パラメータ設定値で、パルス形状及び他のパルスパラメータを定めるように形成される。しかしながら、パルス形状及び他のパルスパラメータが、互いに依存する形で修正される方が有利な場合には、プロセッサー114は、例えば、一つのパルス形状の設定に応じて他のパルスパラメータを設定して、刺激パラメータの組の間で電気的荷電が均一になるようにすることにより、各々の刺激パラメータ設定値において互いに依存する形になるように、パルス形状及び他のパルスパラメータを定める構成とすることができる。
簡潔に上記したように、埋め込んだ後、プログラム可能なIPG14のメモリーにおいて、刺激パラメータを修正し、プログラムすることは、CP18を使用して、医者又は臨床医により実行することができ、IPG14と直接通信するか又はRC16を介してIPG14と間接的に通信することができる。すなわち、CP18は、脊髄の近くで電極列26の作動パラメータを修正するために、医者又は臨床医により使用することができる。図1に示すように、CP18の外観の全体は、ラップトップ式の個人用コンピューター(PC)と同じであり、事実、指向性プログラム用デバイスを含むように適切に構成され、ここに述べた機能を実行するようにプログラムされたPCを使用して、実施することができる。このように、プログラムの方法論は、CP18内に含まれるソフトウエア指令を実行することにより遂行することができる。代替的には、このようなプログラムの方法論は、ファームウエア又はハードウエアを使用して実行することができる。どのような場合においても、CP18は、IPG14(又はETS20)により発生された電気刺激の特性を能動的に制御し、最適条件の刺激パラメータを患者のフィードバックに基づいて決定し、その後最適条件の刺激パラメータでIPG14(又はETS20)をプログラムすることを可能とする。このように、CP18の機能性は、RC18のそれと類似しているが、最適条件の刺激パラメータのプログラムを大幅に単純化しているところが異なる。CP及び他のプログラム用デバイスの更なる詳細は、米国特許第6,393,325号及び第6,909,917号に示されている。
SCSシステム10の構造及び機能を説明してきたが、システム10を埋め込み、作動させる方法をこれより示す。図21を参照すると、刺激用導線12は、患者140の脊柱142内に埋め込まれる。刺激用導線12の好ましい位置は、刺激される脊髄領域に隣接する位置、すなわち脊髄領域の上の硬膜外空間である。ETS20は、経皮引き出し線28及び外部ケーブル30(図21には示されず)を介して刺激用導線12に結合され、定められた波形にしたがって電極26に電気刺激エネルギーを供給するように作動することができる。波形のパルスパラメータ(パルス振幅、パルス持続時間、パルス率、及びパルス形状を含む)は、CP18の制御のもとで修正することができ、これにより電極26から組織に供給される電気刺激エネルギーの特性を変化させ、患者140に施される刺激の効能をテストすることができる。CP18は、最適条件の刺激パラメータをETS20にプログラムするために使用することができる。
トライアル期間が終了した後(典型的には1−2週間)、IPG14が、患者140内に埋め込まれ、刺激用導線12に結合される。刺激用導線12が脊柱140を出る位置の近くには空間がないので、IPG14は、一般的には腹部内か、又は臀部の上部のいずれかの外科的に形成されたポケットに埋め込まれる。もちろんIPG14は、患者の身体の他の位置に埋め込むこともできる。引き出し用導線24は、刺激用導線12が出る地点から離れてIPG14を設置することの助けとなる。ETS20に関して簡潔に上記したのと同じ方法で、IPG14は、CP18の制御のもとで、最適条件の刺激パラメータで作動し、プログラムさせることができる。患者の制御の下、RC16はその後、刺激プログラムを選択するために使用するか、或いは治療を変化させるために、IPG14に以前にプログラムされていた刺激パラメータを修正するために使用することができる。
本発明の特定の実施形態が示されて、説明されたが、好ましい実施形態に本発明を限定するものではないことを理解すべきであり、当業者には、様々な変更及び修正が本発明の意図及び範囲から外れることなく成すことができることは明らかである。したがって、本発明は、代替的手法、修正、及び均等手段を含むことを意図しており、これらは、特許請求の範囲により定められる本発明の意図及び範囲内に含むことができるものである。
以下に本発明の実施形態を記載する。
(実施形態1)1又はそれ以上の刺激用導線に結合されるように構成された1又はそれ以上の電気端子と、
定められた波形にしたがって、前記1又はそれ以上の電気端子に電気刺激エネルギーを出力することが可能な出力刺激回路と、
使用者の入力に対応する前記定められた波形のパルス形状を修正し、これにより前記1又はそれ以上の電極に出力された前記電気刺激エネルギーの特性を変更するように構成された制御回路と、
から成ることを特徴とする埋め込み型電気組織刺激システム。
(実施形態2)前記制御回路は、複数の異なる形式のパルス形状の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態3)前記異なる形式のパルス形状は、正方形パルスと、指数曲線型パルスとを含むことを特徴とする実施形態2に記載の電気刺激システム。
(実施形態4)前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらに組み合わせの中の少なくとも2つを含むことを特徴とする実施形態2に記載の電気刺激システム。
(実施形態5)前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする実施形態2に記載の電気刺激システム。
(実施形態6)前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする実施形態5に記載の電気刺激システム。
(実施形態7)前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする実施形態5に記載の電気刺激システム。
(実施形態8)前記制御回路は、前記パルス形状の時定数を調整することにより、前記パルス形状を修正するように形成されることを特徴とする実施形態1に記載の電気刺激システム。
(実施形態9)前記制御回路は、互いに独立に、前記定められた波形の前記パルス形状と、他のパルスパラメータを修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態10)前記制御回路は、互いに依存する形で、前記パルス形状と少なくとも1つの他のパルスパラメータとを修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態11)前記制御回路は、前記パルス形状の前記修正に対応して、前記少なくとも1つの他のパルスパラメータを修正するように構成され、前記電気刺激エネルギーの実質的に均一な印加を維持することを特徴とする実施形態10に記載の電気刺激システム。
(実施形態12)前記組織の1又はそれ以上の電気特性を測定するように形成されるモニター回路を更に含み、前記制御回路は、前記測定された1又はそれ以上の電気特性に基づいて、前記パルス形状を修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態13)前記制御回路は、前記測定された1又はそれ以上の電気特性の変化に対応して、前記パルス形状を修正するように構成されたことを特徴とする実施形態12に記載の電気刺激システム。
(実施形態14)前記出力刺激回路は、複数の異なるアナログ成形回路を含み、前記制御回路は、前記異なるアナログ成形回路の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態15)前記制御回路は、前記出力刺激回路において、少なくとも1つのアナログ電気部品の特性を調整することにより、前記パルス形状を修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態16)前記パルス状波形は、振幅レベル又はサブパルス持続時間の階段状機能で形成され、前記制御回路は、前記振幅レベル又はサブパルス持続時間を調整することにより、前記パルス形状を修正するように構成されたことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態17)前記1又はそれ以上の電気端子に電気結合された少なくとも1つの電極を保有する刺激用導線を更に含むことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態18)前記パルス形状を定めるパラメータを記憶することが可能なメモリーを更に含むことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態19)前記パルス形状を修正するために、外部プログラマーから指令を無線で受信することが可能な遠隔測定回路を更に含むことを特徴とする実施形態1に記載の電気刺激システム。
(実施形態20)1又はそれ以上の電気端子、出力刺激回路を収容するケースを更に含み、制御回路が、神経刺激付与器を形成するために収容されることを特徴とする実施形態1に記載の電気刺激システム。
(実施形態21)前記神経刺激付与器は、埋め込み型であることを特徴とする実施形態20に記載の電気刺激システム。
(実施形態22)使用者からの入力を受信することが可能な使用者インターフェースと、
前記使用者の入力に対応して、複数の異なるパルス形状を定める複数の刺激パラメータ設定値を発生するように形成されるプロセッサーと、
前記複数の刺激パラメータ設定値を前記神経刺激付与器に伝送するように形成される出力回路と、
から成ることを特徴とする電気組織刺激付与器のためのプログラマー。
(実施形態23)前記複数の異なるパルス形状は、複数の異なる形式のパルス形状を含むことを特徴とする実施形態22に記載のプログラマー。
(実施形態24)前記異なる形式のパルス形状は、正方形パルスと指数曲線型パルスとを含むことを特徴とする実施形態23に記載のプログラマー。
(実施形態25)前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらの組み合わせの少なくとも2つを含むことを特徴とする実施形態23に記載のプログラマー。
(実施形態26)前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする実施形態23に記載のプログラマー。
(実施形態27)前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする実施形態26に記載のプログラマー。
(実施形態28)前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする実施形態26に記載のプログラマー。
(実施形態29)前記複数の異なる形式のパルス形状は、同じタイプではあるが異なる時定数を有する複数のパルス形状を含むことを特徴とする実施形態23に記載のプログラマー。
(実施形態30)前記プロセッサーは、互いに独立して、各々の刺激パラメータ設定値で、前記パルス形状と他のパルスパラメータを定めるように形成されることを特徴とする実施形態23に記載のプログラマー。
(実施形態31)前記プロセッサーは、互いに応じて各々の刺激パラメータ設定値で、前記パルス形状と他のパルスパラメータを定めるように構成されたことを特徴とする実施形態23に記載のプログラマー。
(実施形態32)前記プロセッサーは、前記パルス形状の前記定義に対応して、前記他のパルスパラメータの少なくとも1つを定めるように構成され、前記それぞれの刺激パラメータ設定値間に実質的に均一な荷電を維持することを特徴とする実施形態31に記載のプログラマー。
(実施形態33)前記複数の異なる形式のパルス形状は、組織の1又はそれ以上の測定された電気特性に基づいて定められることを特徴とする実施形態21に記載のプログラマー。
(実施形態34)前記複数の異なる形式のパルス形状は、前記測定された1又はそれ以上の電気特性における変化に対応して定められることを特徴とする実施形態33に記載のプログラマー。
(実施形態35)前記使用者インターフェースは、作動装置を含み、前記プロセッサーは、前記作動装置の作動に対応して、前記複数の刺激パラメータ設定値を発生するように形成されることを特徴とする実施形態23に記載のプログラマー。
(実施形態36)前記プロセッサーは、前記作動装置の作動に対応して、前記複数の異なるパルス形状を定めるように形成されることを特徴とする実施形態35に記載のプログラマー。
(実施形態37)前記出力回路は、前記複数の刺激パラメータ設定値を前記神経刺激付与器に無線で伝送することが可能な遠隔測定回路であることを特徴とする実施形態23に記載のプログラマー。
(実施形態38)患者の組織に近位に1又はそれ以上の電極を設置し、
定められた波形にしたがって、前記1又はそれ以上の電極から前記組織に電気刺激エネルギーを供給し、
使用者入力に対応して前記定められた波形のパルス形状を修正し、これにより前記1又はそれ以上の電極から前記組織に供給される前記電気刺激エネルギーの前記特性を変化させる、ことを特徴とする、患者に治療を施す方法。
(実施形態39)前記パルス形状の修正は、複数の異なるパルス形状タイプの1つを選択することを含むことを特徴とする実施形態38に記載の方法。
(実施形態40)前記異なる形式のパルス形状は、正方形パルスと指数曲線型パルスとを含むことを特徴とする実施形態39に記載の方法。
(実施形態41)前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらの組み合わせの少なくとも2つを含むことを特徴とする実施形態39に記載の方法。
(実施形態42)前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする実施形態39に記載の方法。
(実施形態43)前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする実施形態42に記載の方法。
(実施形態44)前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする実施形態42に記載の方法。
(実施形態45)パルス形状の修正は、前記パルス形状の時定数を調整することを含むことを特徴とする実施形態38に記載の方法。
(実施形態46)前記定められた波形の前記パルス形状と他のパルスパラメータは、互いに独立に修正されることを特徴とする実施形態38に記載の方法。
(実施形態47)前記定められた波形の前記パルス形状と少なくとも1つの他のパルスパラメータは、互いに依存する形修正されることを特徴とする実施形態38に記載の方法。
(実施形態48)前記少なくとも1つの他のパルスパラメータは、前記パルス形状の前記修正に対応して修正され、前記電気刺激エネルギーの実質的には均一な電荷を維持することを特徴とする実施形態47に記載の方法。
(実施形態49)前記組織の1又はそれ以上の電気特性の測定を更に含み、前記パルス形状は、前記測定された1又はそれ以上の電気特性に基づいて修正されることを特徴とする実施形態38に記載の方法。
(実施形態50)前記パルス形状は、前記測定された1又はそれ以上の電気特性における変化に対応して修正されることを特徴とする実施形態48に記載の方法。
(実施形態51)前記組織は、脊髄組織であることを特徴とする実施形態38に記載の方法。
10 SCSシステム
12 刺激用導線
14 埋め込み型パルス発生器
16 外部遠隔操作器
18 臨床医プログラマー
20 外部トライアル刺激付与器
22 外部充電器
24 経皮引き出し用導線
26 電極
28 経皮引き出し用導線
30 外部ケーブル
40 外側ケース

Claims (18)

  1. 1又はそれ以上の刺激用導線(12)に結合された1又はそれ以上の電気端子(58)と、
    定められた波形にしたがって、電気刺激エネルギーを前記1又はそれ以上の電気端子(58)に出力するように構成された出力刺激回路(50)と、
    使用者入力に対応して、互いに依存する前記定められた波形のパルス形状及び少なくとも1つの他のパルスパラメータを修正して、前記1又はそれ以上の電気端子(58)に出力される前記電気刺激エネルギーの特性を変化させるように構成された制御回路(74)と、
    を備えることを特徴とする埋め込み型電気組織刺激システム(10)。
  2. 前記制御回路(74)は、前記パルス形状の前記修正に対応して、前記少なくとも1つの他のパルスパラメータを修正するように構成され、前記電気刺激エネルギーの実質的に均一な印加を維持することを特徴とする請求項1に記載の電気刺激システム(10)。
  3. 組織の1又はそれ以上の電気特性を測定するように構成されたモニター回路(70)を更に含み、前記制御回路(74)は、測定された1又はそれ以上の電気特性に基づいて、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム(10)。
  4. 前記制御回路(74)は、前記測定された1又はそれ以上の電気特性の変化に対応して前記パルス形状を修正するように構成されたことを特徴とする請求項3に記載の電気刺激システム(10)。
  5. 前記制御回路(74)は、複数の異なる形式のパルス形状の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム(10)。
  6. 前記異なる形式のパルス形状は、正方形パルスと、指数曲線型パルスとを含むことを特徴とする請求項5に記載の電気刺激システム(10)。
  7. 前記異なる形式のパルス形状は、正方形パルス、指数曲線型パルス、対数曲線型パルス、傾斜型パルス、台形パルス、及びこれらに組み合わせの中の少なくとも2つを含むことを特徴とする請求項5に記載の電気刺激システム(10)。
  8. 前記異なる形式のパルス形状は、減少勾配パルスと増加勾配パルスとを含むことを特徴とする請求項5に記載の電気刺激システム(10)。
  9. 前記減少勾配パルスは、減少勾配指数曲線型パルスであり、前記増加勾配パルスは、増加勾配指数曲線型パルスであることを特徴とする請求項8に記載の電気刺激システム(10)。
  10. 前記減少勾配パルスは、減少勾配直線傾斜型パルスであり、前記増加勾配パルスは、増加勾配直線傾斜型パルスであることを特徴とする請求項8に記載の電気刺激システム(10)。
  11. 前記出力刺激回路(50)は、複数の異なるアナログ成形回路(69)を含み、前記制御回路(74)は、前記異なるアナログ成形回路(69)の1つを選択することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム(10)。
  12. 前記制御回路(74)は、前記出力刺激回路(50)において、少なくとも1つのアナログ電気部品の特性を調整することにより、前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム(10)。
  13. 前記定められた波形は、振幅レベル又はサブパルス持続時間の階段状関数で形成され、前記制御回路(74)は、前記振幅レベル又はサブパルス持続時間を調整することにより前記パルス形状を修正するように構成されたことを特徴とする請求項1に記載の電気刺激システム(10)。
  14. 前記1又はそれ以上の電気端子(58)に電気的に結合される少なくとも1つの電極(26)を支持する刺激用導線(12)を更に含むことを特徴とする請求項1に記載の電気刺激システム(10)。
  15. 前記パルス形状を定めるパラメータを記憶することが可能なメモリー(80)を更に含むことを特徴とする請求項1に記載の電気刺激システム(10)。
  16. 前記パルス形状を修正するために、外部プログラマー(16、18)から指令を無線で受信することが可能な遠隔測定回路(86)を更に含むことを特徴とする請求項1に記載の電気刺激システム(10)。
  17. 神経刺激付与器(14)を形成するために、1又はそれ以上の電気端子(58)と、出力刺激回路(50)と、制御回路(74)とを収容する箱(40)を更に含むことを特徴とする請求項1に記載の電気刺激システム(10)。
  18. 前記神経刺激付与器(14)は埋め込み型であることを特徴とする請求項17に記載の電気刺激システム(10)。
JP2013114262A 2007-07-20 2013-05-30 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用 Active JP5930473B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95117707P 2007-07-20 2007-07-20
US60/951,177 2007-07-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010518306A Division JP2010534114A (ja) 2007-07-20 2008-07-18 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用

Publications (2)

Publication Number Publication Date
JP2013163112A true JP2013163112A (ja) 2013-08-22
JP5930473B2 JP5930473B2 (ja) 2016-06-08

Family

ID=39768831

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010518306A Pending JP2010534114A (ja) 2007-07-20 2008-07-18 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用
JP2013114262A Active JP5930473B2 (ja) 2007-07-20 2013-05-30 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010518306A Pending JP2010534114A (ja) 2007-07-20 2008-07-18 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用

Country Status (6)

Country Link
US (6) US8036754B2 (ja)
EP (4) EP3088045B1 (ja)
JP (2) JP2010534114A (ja)
CA (1) CA2694498C (ja)
ES (3) ES2602989T3 (ja)
WO (1) WO2009015005A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238138B2 (en) 2007-07-20 2016-01-19 Boston Scientific Neuromodulation Corporation Use of stimulation pulse shape to control neural recruitment order and clinical effect
US11376435B2 (en) 2007-07-20 2022-07-05 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US8396560B2 (en) 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US7509166B2 (en) 2003-12-24 2009-03-24 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US8175705B2 (en) 2004-10-12 2012-05-08 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US20080071315A1 (en) * 2006-08-31 2008-03-20 Tamara Colette Baynham Integrated catheter and pulse generator systems and methods
US20130304152A1 (en) * 2012-05-14 2013-11-14 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
US20110106219A1 (en) * 2009-11-02 2011-05-05 Lawrence J Cauller Short-pulse neural stimulation systems, devices and methods
DE112008003194T5 (de) * 2007-11-26 2011-02-24 MicroTransponder, Inc., DALLAS Implantierter Treiber mit resistivem Ladungsausgleich
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US7890182B2 (en) 2008-05-15 2011-02-15 Boston Scientific Neuromodulation Corporation Current steering for an implantable stimulator device involving fractionalized stimulation pulses
EP3586923B1 (en) 2008-07-14 2021-06-16 Arizona Board Of Regents For And On Behalf Of Arizona State University Devices for modulating cellular activity using ultrasound
CA2739401C (en) 2008-10-03 2021-01-12 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US8923981B2 (en) 2008-10-03 2014-12-30 Duke University Non-regular electrical stimulation patterns designed with a cost function for treating neurological disorders
US9802046B2 (en) 2008-10-03 2017-10-31 Duke University Non-regular electrical stimulation patterns for improved efficiency in treating Parkinson's Disease
US11013924B2 (en) 2008-10-03 2021-05-25 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US8798755B2 (en) 2008-10-03 2014-08-05 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
WO2010056580A1 (en) * 2008-11-11 2010-05-20 Boston Scientific Neuromodulation Corporation System and method for increasing relative intensity between cathodes and anodes of neurostimulation system using pulse slicing
US9463321B2 (en) 2008-11-14 2016-10-11 Boston Scientific Neuromodulation Corporation System and method for adjusting automatic pulse parameters to selectively activate nerve fibers
US8504160B2 (en) 2008-11-14 2013-08-06 Boston Scientific Neuromodulation Corporation System and method for modulating action potential propagation during spinal cord stimulation
US20130110195A1 (en) * 2009-01-15 2013-05-02 Autonomic Technologies, Inc. Neurostimulator system, apparatus, and method
EP2408521B1 (en) 2009-03-17 2014-06-25 Cardio Thrive, Inc External defibrillator
EP2756864B1 (en) 2009-04-22 2023-03-15 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
DE202010018338U1 (de) 2009-04-22 2015-10-12 Nevro Corporation Rückenmarksmodulationsystem zur Linderung chronischer Schmerzen
US20100331926A1 (en) * 2009-06-24 2010-12-30 Boston Scientific Neuromodulation Corporation Reversing recruitment order by anode intensification
US9492664B2 (en) * 2009-06-24 2016-11-15 Boston Scientific Neuromodulation Corporation System and method for performing percutaneous nerve field stimulation with concurrent anode intensified spinal cord stimulation
US9399132B2 (en) * 2009-06-30 2016-07-26 Boston Scientific Neuromodulation Corporation Method and device for acquiring physiological data during tissue stimulation procedure
US20150321021A1 (en) 2009-09-03 2015-11-12 The Johns Hopkins University Method and device for treating cardiac arrhythmias
US9409013B2 (en) 2009-10-20 2016-08-09 Nyxoah SA Method for controlling energy delivery as a function of degree of coupling
US8577465B2 (en) * 2011-09-30 2013-11-05 Nyxoah SA Modulator apparatus configured for implantation
US20110093042A1 (en) * 2009-10-21 2011-04-21 Medtronic, Inc. Stimulation with utilization of case electrode
US8996123B2 (en) * 2009-10-21 2015-03-31 Medtronic, Inc. Managing electrical stimulation therapy based on variable electrode combinations
US8571677B2 (en) * 2009-10-21 2013-10-29 Medtronic, Inc. Programming techniques for stimulation with utilization of case electrode
US20110130615A1 (en) * 2009-12-02 2011-06-02 Mishelevich David J Multi-modality neuromodulation of brain targets
US20110112394A1 (en) * 2009-11-11 2011-05-12 Mishelevich David J Neuromodulation of deep-brain targets using focused ultrasound
US20110178442A1 (en) * 2010-01-18 2011-07-21 Mishelevich David J Patient feedback for control of ultrasound deep-brain neuromodulation
US20110190668A1 (en) * 2010-02-03 2011-08-04 Mishelevich David J Ultrasound neuromodulation of the sphenopalatine ganglion
US20110270138A1 (en) * 2010-05-02 2011-11-03 Mishelevich David J Ultrasound macro-pulse and micro-pulse shapes for neuromodulation
US8543202B2 (en) * 2009-11-25 2013-09-24 Steven M. Goetz Medical electrical stimulation with external simulated case electrode
EP2585824A4 (en) * 2010-04-22 2014-01-01 Kenber Llc ANALYSIS OF GENETIC RISK IN REWARDS DEFICIT SYNDROME
US9320901B2 (en) 2010-04-28 2016-04-26 Medtronic, Inc. Stimulation with utilization of non-selected electrode
CN103108670B (zh) 2010-05-27 2016-10-12 Ndi医疗公司 用于治疗神经系统紊乱的对于能量效率最优化的波形形状
US8560080B2 (en) 2010-06-11 2013-10-15 Medtronic, Inc. Programming techniques for controlling rate of change of electrical stimulation therapy
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
AU2011328900B2 (en) 2010-11-16 2015-03-19 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US10085670B2 (en) 2010-11-30 2018-10-02 Newlife Sciences Llc Apparatus and method for treatment of pain with body impedance analyzer
US9669213B2 (en) 2011-01-24 2017-06-06 David Tsai Stimulation method for maintaining the responsiveness of electrically excitable cells to repeated electrical stimulation
CN106902457B (zh) * 2011-01-28 2022-10-21 斯蒂维科技公司 神经刺激器系统
AU2012240239B2 (en) 2011-04-04 2017-01-05 Curonix Llc Implantable lead
US8874219B2 (en) * 2011-04-07 2014-10-28 Greatbatch, Ltd. Arbitrary waveform generator and neural stimulation application
US9656076B2 (en) * 2011-04-07 2017-05-23 Nuvectra Corporation Arbitrary waveform generator and neural stimulation application with scalable waveform feature and charge balancing
JP6243328B2 (ja) * 2011-05-13 2017-12-06 サルーダ・メディカル・ピーティーワイ・リミテッド 神経刺激を制御するための方法および装置
US20120300953A1 (en) * 2011-05-24 2012-11-29 Herbert Mauch Integrity evaluation system in an implantable hearing prosthesis
AU2012304370B2 (en) 2011-09-08 2016-01-28 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
EP2755718B8 (en) 2011-09-15 2018-06-06 Micron Devices LLC Relay module for implant
WO2013059833A1 (en) 2011-10-21 2013-04-25 Neurotrek, Inc. Method and system for direct communication
US20130184794A1 (en) * 2012-01-16 2013-07-18 Boston Scientific Neuromodulation Corporation Architectures for an Implantable Stimulator Device Having a Plurality of Electrode Driver Integrated Circuits with Shorted Electrode Outputs
WO2013111137A2 (en) 2012-01-26 2013-08-01 Rainbow Medical Ltd. Wireless neurqstimulatqrs
US9149635B2 (en) 2012-04-27 2015-10-06 Medtronic, Inc. Stimulation waveform generator for an implantable medical device
WO2014036170A1 (en) 2012-08-29 2014-03-06 Thync, Inc. Systems and devices for coupling ultrasound energy to a body
WO2014087337A1 (en) 2012-12-06 2014-06-12 Bluewind Medical Ltd. Delivery of implantable neurostimulators
US9446243B2 (en) * 2012-12-07 2016-09-20 Boston Scientific Neuromodulation Corporation Patient posture determination and stimulation program adjustment in an implantable stimulator device using impedance fingerprinting
WO2014105973A1 (en) 2012-12-26 2014-07-03 Micron Devices, LLC Wearable antenna assembly
US9174053B2 (en) 2013-03-08 2015-11-03 Boston Scientific Neuromodulation Corporation Neuromodulation using modulated pulse train
EP2967817B1 (en) 2013-03-12 2021-03-10 Oculeve, Inc. Implant delivery devices and systems
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9440076B2 (en) 2013-03-15 2016-09-13 Globus Medical, Inc. Spinal cord stimulator system
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
CA2883874A1 (en) 2013-04-19 2014-10-23 Oculeve, Inc. Nasal stimulation devices and methods
CA3198714A1 (en) 2013-05-22 2014-11-27 Deep Brain Innovations LLC Deep brain stimulator and method of use
US9616243B2 (en) 2013-06-14 2017-04-11 Cardiothrive, Inc. Dynamically adjustable multiphasic defibrillator pulse system and method
US9833630B2 (en) * 2013-06-14 2017-12-05 Cardiothrive, Inc. Biphasic or multiphasic pulse waveform and method
US10149973B2 (en) 2013-06-14 2018-12-11 Cardiothrive, Inc. Multipart non-uniform patient contact interface and method of use
US10279189B2 (en) 2013-06-14 2019-05-07 Cardiothrive, Inc. Wearable multiphasic cardioverter defibrillator system and method
CN111569263B (zh) * 2013-12-23 2024-04-26 脑深部创新有限责任公司 用于深部脑刺激器系统的编程系统
ES2812752T3 (es) 2014-02-25 2021-03-18 Oculeve Inc Formulaciones de polímeros para estimulación nasolagrimal
AU2015249832B2 (en) * 2014-04-25 2017-08-24 Boston Scientific Neuromodulation Corporation System and method for electrical pulse charge compensation for implantable medical device capacitance loading effects
AU2015264561B2 (en) 2014-05-20 2020-02-20 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
EP2959939A3 (en) 2014-06-26 2016-04-13 Oticon Medical A/S A hearing assistance device comprising an implantable part
WO2016004230A1 (en) * 2014-07-03 2016-01-07 Boston Scientific Neuromodulation Corporation Neurostimulation system with flexible patterning and waveforms
EP3171928B1 (en) * 2014-07-25 2020-02-26 Oculeve, Inc. Stimulation patterns for treating dry eye
CN106687173A (zh) 2014-09-15 2017-05-17 波士顿科学神经调制公司 用于对神经刺激脉冲模式进行编程的图形用户界面
AU2015339870B2 (en) * 2014-09-26 2019-07-25 Duke University Systems and methods for spinal cord stimulation
DE102014014942A1 (de) * 2014-10-07 2016-04-07 Neuroloop GmbH Implantierbare Anordnung
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods
EP3209370A4 (en) 2014-10-22 2018-05-30 Oculeve, Inc. Contact lens for increasing tear production
CN107106843A (zh) 2014-10-22 2017-08-29 奥库利维公司 用于治疗干眼症的刺激装置和方法
AU2015343483B2 (en) * 2014-11-04 2018-03-01 Boston Scientific Neuromodulation Corporation Method and apparatus for programming complex neurostimulation patterns
EP3777964A1 (en) 2015-02-16 2021-02-17 Newronika S.p.A. Apparatus for treating neurological disorders
WO2016191055A1 (en) 2015-05-28 2016-12-01 Boston Scientific Neuromodulation Corporation Neuromodulation using stochastically-modulated stimulation parameters
CN107921255B (zh) 2015-07-30 2021-02-26 波士顿科学神经调制公司 用于定制模式的电刺激的用户界面
WO2017066187A1 (en) 2015-10-15 2017-04-20 Boston Scientific Neuromodulation Corporation User interface for neurostimulation waveform composition
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10391313B2 (en) 2015-12-04 2019-08-27 Boston Scientific Neuromodulation Corporation Systems and methods for the development of therapy paradigms for neurological treatments
US10300277B1 (en) 2015-12-14 2019-05-28 Nevro Corp. Variable amplitude signals for neurological therapy, and associated systems and methods
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
CA3022683A1 (en) 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
JP2020500609A (ja) 2016-12-02 2020-01-16 オキュリーブ, インコーポレイテッド ドライアイ予測及び治療勧告のための装置及び方法
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
US10737100B2 (en) * 2017-11-28 2020-08-11 Medtronic, Inc. Scalable stimulation waveform scheduler
IT201800002962A1 (it) 2018-02-22 2019-08-22 Newronika Srl Apparato per il trattamento di disordini neurologici mediante elettrostimolazione e metodo di elaborazione del segnale neurologico raccolto da detto apparato
US20190329039A1 (en) * 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Anodic Stimulation in an Implantable Stimulator System Using Asymmetric Anodic and Cathodic Stimulation Pulses
US11058875B1 (en) 2018-09-19 2021-07-13 Nevro Corp. Motor function in spinal cord injury patients via electrical stimulation, and associated systems and methods
US11318309B2 (en) 2018-12-13 2022-05-03 Newronika S.P.A. Method and apparatus for treating Tourette Syndrome by brain stimulation
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
US11135439B2 (en) * 2019-03-29 2021-10-05 Advanced Neuromodulation Systems, Inc. Implantable pulse generator for providing a neurostimulation therapy using complex impedance measurements and methods of operation
US11738198B2 (en) 2019-05-10 2023-08-29 The Freestate Of Bavaria Represented By The Julius Maximilians-Universität Würzbrg System to optimize anodic stimulation modes
WO2020243096A1 (en) * 2019-05-30 2020-12-03 Boston Scientific Neuromodulation Corporation Methods and systems for discrete measurement of electrical characteristics
WO2020252406A1 (en) 2019-06-12 2020-12-17 Truerelief, Llc System and method for delivering pulsed electric current to living tissue
AU2020298313B2 (en) 2019-06-20 2023-06-08 Boston Scientific Neuromodulation Corporation Methods and systems for interleaving waveforms for electrical stimulation and measurement
CA3159295A1 (en) * 2019-11-24 2021-05-27 Douglas Michael Ackermann Current bias as a control mechanism for electrode operation
US11413461B2 (en) 2019-11-25 2022-08-16 Medtronic, Inc. Independent control of electrical stimulation amplitude for electrodes for delivery of electrical stimulation therapy
WO2021194684A1 (en) * 2020-03-26 2021-09-30 Boston Scientific Neuromodulation Corporation Graphical user interface for adjusting current magnitude in a stimulator device
US11911605B2 (en) 2021-03-05 2024-02-27 Truerelief Llc Method and apparatus for injury treatment
EP4347001A1 (en) * 2021-05-25 2024-04-10 Nevro Corp. Modified high frequency neuromodulation signals, and associated systems and methods
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
EP4166189A1 (en) * 2021-10-15 2023-04-19 Oticon Medical A/S Active control of intracochlear stimulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184616A (en) * 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
JPH11504479A (ja) * 1995-04-26 1999-04-20 アドヴァンスド バイオニクス コーポレイション 刺激波形の柔軟な制御を行なうマルチチャンネル蝸牛補助具
US20040186521A1 (en) * 1999-08-10 2004-09-23 Intermedics Inc. Methods and apparatus for treating fibrillation and creating defibrillation waveforms
JP2005511164A (ja) * 2001-12-03 2005-04-28 メドトロニック・インコーポレーテッド 一定の送出エネルギー用の任意波形の制御
US6934580B1 (en) * 2002-07-20 2005-08-23 Flint Hills Scientific, L.L.C. Stimulation methodologies and apparatus for control of brain states
JP2005279001A (ja) * 2004-03-30 2005-10-13 Nidek Co Ltd 視覚再生補助装置

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119792A (en) 1978-03-03 1979-09-17 Iriyou Kougaku Kenkiyuushiyo K Electric stimulation device for removing pain
US4612934A (en) * 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
BR8707351A (pt) * 1986-06-16 1988-09-13 Zion Educational Found Aparelho e processo para emissao de forma de onda de sinal prescritivo,aparelho e processo aplicador de sinais eletricos,processo para emissao de forma de onda eletrica prescritiva e processo para emissao de sinal eletrico prescritivo
US4821724A (en) * 1986-08-01 1989-04-18 Telectronics N.V. Pacing pulse compensation
US5222494A (en) * 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5300096A (en) * 1992-06-03 1994-04-05 Hall H Eugene Electromyographic treatment device
US5782874A (en) 1993-05-28 1998-07-21 Loos; Hendricus G. Method and apparatus for manipulating nervous systems
US5443486A (en) 1994-09-26 1995-08-22 Medtronic, Inc. Method and apparatus to limit control of parameters of electrical tissue stimulators
WO1997015351A1 (en) 1995-10-25 1997-05-01 Galvani Ltd. Method and apparatus for temporarily electrically forcing cardiac output as a backup for tachycardia patients
EP0910429B1 (en) * 1996-01-08 2005-03-16 Impulse Dynamics N.V. Heart activity control apparatus using synchronized non-excitatory pre-stimulation
CA2171067A1 (en) * 1996-03-05 1997-09-06 Brian J. Andrews Neural prosthesis
US5725560A (en) * 1996-06-20 1998-03-10 Hewlett-Packard Company Defibrillator with waveform selection circuitry
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US6029090A (en) * 1997-01-27 2000-02-22 Herbst; Ewa Multi-functional electrical stimulation system
SE9703932D0 (sv) * 1997-10-28 1997-10-28 Pacesetter Ab Heart stimulator
US6091989A (en) * 1998-04-08 2000-07-18 Swerdlow; Charles D. Method and apparatus for reduction of pain from electric shock therapies
US6421566B1 (en) * 1998-04-30 2002-07-16 Medtronic, Inc. Selective dorsal column stimulation in SCS, using conditioning pulses
US6845271B2 (en) * 1998-06-03 2005-01-18 Neurocontrol Corporation Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US7076307B2 (en) 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6909917B2 (en) 1999-01-07 2005-06-21 Advanced Bionics Corporation Implantable generator having current steering means
US6052624A (en) * 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6341236B1 (en) * 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US20020019650A1 (en) * 2000-07-05 2002-02-14 Michael Craggs Method of controlling spasticity by implants in spinal cord injury
US6662053B2 (en) * 2000-08-17 2003-12-09 William N. Borkan Multichannel stimulator electronics and methods
US6560490B2 (en) * 2000-09-26 2003-05-06 Case Western Reserve University Waveforms for selective stimulation of central nervous system neurons
US6484057B2 (en) * 2000-12-21 2002-11-19 Uab Research Foundation Pacing methods and devices for treating cardiac arrhythmias and fibrillation
WO2002065896A2 (en) 2001-02-20 2002-08-29 Case Western Reserve University Systems and methods for reversibly blocking nerve activity
US20030100931A1 (en) 2001-11-28 2003-05-29 Keith Mullett Brain signal feedback for pain management
US6993384B2 (en) 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US7593775B2 (en) * 2002-01-15 2009-09-22 Therapeutic Innovations Sports equipment with resonant muscle stimulator for developing muscle strength
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US8347891B2 (en) * 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7228179B2 (en) * 2002-07-26 2007-06-05 Advanced Neuromodulation Systems, Inc. Method and apparatus for providing complex tissue stimulation patterns
EP1578266B1 (en) * 2002-12-12 2015-04-29 Biocontrol Medical (B.C.M.) Ltd. Efficient dynamic stimulation in an implanted device
US7149579B1 (en) * 2002-12-23 2006-12-12 Pacesetter, Inc. System and method for determining patient posture based on 3-D trajectory using an implantable medical device
CN1842356B (zh) 2003-06-24 2011-05-04 康奥尼斯有限公司 生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法
US20060069415A1 (en) * 2003-11-20 2006-03-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing modified reduced neuroplasticity effect
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
GB0411610D0 (en) * 2004-05-24 2004-06-30 Bioinduction Ltd Electrotherapy apparatus
US7539538B2 (en) 2004-05-28 2009-05-26 Boston Science Neuromodulation Corporation Low power loss current digital-to-analog converter used in an implantable pulse generator
US20080071321A1 (en) * 2004-06-10 2008-03-20 Ndi Medical, Inc. Systems and methods of neuromodulation stimulation for the restoration of sexual function
US7894913B2 (en) * 2004-06-10 2011-02-22 Medtronic Urinary Solutions, Inc. Systems and methods of neuromodulation stimulation for the restoration of sexual function
US8175705B2 (en) 2004-10-12 2012-05-08 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US8825166B2 (en) 2005-01-21 2014-09-02 John Sasha John Multiple-symptom medical treatment with roving-based neurostimulation
US7894903B2 (en) * 2005-03-24 2011-02-22 Michael Sasha John Systems and methods for treating disorders of the central nervous system by modulation of brain networks
US8788044B2 (en) * 2005-01-21 2014-07-22 Michael Sasha John Systems and methods for tissue stimulation in medical treatment
US7454245B2 (en) * 2005-01-28 2008-11-18 Cyberonics, Inc. Trained and adaptive response in a neurostimulator
US20060173493A1 (en) * 2005-01-28 2006-08-03 Cyberonics, Inc. Multi-phasic signal for stimulation by an implantable device
US8606362B2 (en) 2005-07-08 2013-12-10 Boston Scientific Neuromodulation Corporation Current output architecture for an implantable stimulator device
US20070025608A1 (en) 2005-07-29 2007-02-01 Cyberonics, Inc. Enhancing intrinsic neural activity using a medical device to treat a patient
US8634908B2 (en) * 2005-08-01 2014-01-21 Ebr Systems, Inc. Efficiently delivering acoustic stimulation energy to tissue
US20070066971A1 (en) * 2005-09-21 2007-03-22 Podhajsky Ronald J Method and system for treating pain during an electrosurgical procedure
US8041429B2 (en) * 2005-10-18 2011-10-18 Ric Investments, Llc System and method for controlling hypothalamic function via vestibular stimulation
US8694118B2 (en) * 2005-10-28 2014-04-08 Cyberonics, Inc. Variable output ramping for an implantable medical device
US7894905B2 (en) 2006-03-13 2011-02-22 Neuropace, Inc. Implantable system enabling responsive therapy for pain
US7689289B2 (en) * 2006-03-22 2010-03-30 Medtronic, Inc. Technique for adjusting the locus of excitation of electrically excitable tissue with paired pulses
US20070293917A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
US20080103548A1 (en) 2006-08-02 2008-05-01 Northstar Neuroscience, Inc. Methods for treating neurological disorders, including neuropsychiatric and neuropsychological disorders, and associated systems
DE102006036895A1 (de) 2006-08-04 2008-02-07 Henkel Kgaa Teilchenförmiges Wasch- oder Reinigunsmittel
US8103341B2 (en) 2006-08-25 2012-01-24 Cardiac Pacemakers, Inc. System for abating neural stimulation side effects
WO2008121703A1 (en) 2007-03-28 2008-10-09 University Of Florida Research Foundation, Inc. Variational parameter neurostimulation paradigm for treatment of neurologic disease
ES2602989T3 (es) * 2007-07-20 2017-02-23 Boston Scientific Neuromodulation Corporation Sistema de estimulación para controlar el orden de reclutamiento neuronal y el efecto clínico
US11376435B2 (en) 2007-07-20 2022-07-05 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US20130304152A1 (en) 2012-05-14 2013-11-14 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
AU2008297476B2 (en) 2007-09-13 2011-09-15 Cardiac Pacemakers, Inc. Systems for avoiding neural stimulation habituation
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
DE202010018338U1 (de) 2009-04-22 2015-10-12 Nevro Corporation Rückenmarksmodulationsystem zur Linderung chronischer Schmerzen
US8812115B2 (en) 2009-07-10 2014-08-19 Boston Scientific Neuromodulation Corporation System and method for reducing excitability of dorsal root fiber by introducing stochastic background noise
US8788048B2 (en) 2010-11-11 2014-07-22 Spr Therapeutics, Llc Systems and methods for the treatment of pain through neural fiber stimulation
US8706250B2 (en) 2010-12-23 2014-04-22 Boston Scientific Neuromodulation Corporation Neurostimulation system for implementing model-based estimate of neurostimulation effects
EP2654879B1 (en) 2010-12-23 2018-06-27 Boston Scientific Neuromodulation Corporation Neurostimulation system for estimating desired stimulation amplitude for electrode configuration
US8909350B2 (en) 2011-03-15 2014-12-09 Boston Scientific Neuromodulation Corporation Neurostimulation system for defining a generalized ideal multipole configuration
ES2637383T3 (es) 2011-11-18 2017-10-13 Boston Scientific Neuromodulation Corporation Interfaz de usuario de vinculación de electrodos entre sí durante la programación de un sistema de neuroestimulación
KR20140003056A (ko) 2012-06-29 2014-01-09 삼성전기주식회사 파워 인덕터 및 그 제조방법
WO2014035733A1 (en) 2012-08-29 2014-03-06 Boston Scientific Neuromodulation Corporation System and method for connecting devices to a neurostimulator
US8923988B2 (en) 2012-09-21 2014-12-30 Boston Scientific Neuromodulation Corporation Method for epidural stimulation of neural structures
CN105163801B (zh) 2013-02-22 2017-11-07 波士顿科学神经调制公司 具有用于组合脉冲串的装置的多通道神经调制系统
EP2958617A1 (en) 2013-02-22 2015-12-30 Boston Scientific Neuromodulation Corporation Neuromodulation system and method for automatically adjusting stimulation parameters to optimize power consumption
US9174053B2 (en) 2013-03-08 2015-11-03 Boston Scientific Neuromodulation Corporation Neuromodulation using modulated pulse train
WO2014197596A1 (en) 2013-06-06 2014-12-11 Doan Que T System for delivering modulated sub-threshold therapy
FR3006596A1 (fr) 2013-06-11 2014-12-12 Sorin Crm Sas Dispositif medical implantable actif pour le traitement de l'insuffisance cardiaque avec stimulation stochastique du nerf vague
WO2016004230A1 (en) 2014-07-03 2016-01-07 Boston Scientific Neuromodulation Corporation Neurostimulation system with flexible patterning and waveforms
WO2016191055A1 (en) 2015-05-28 2016-12-01 Boston Scientific Neuromodulation Corporation Neuromodulation using stochastically-modulated stimulation parameters
US10506804B2 (en) 2015-07-02 2019-12-17 Rutgers, The State University Of New Jersey Collapsible stackable disposable inexpensive pesticide free traps and attractant for surveillance and control of Aedes container breeding mosquitos and other container breeding insects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184616A (en) * 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
JPH11504479A (ja) * 1995-04-26 1999-04-20 アドヴァンスド バイオニクス コーポレイション 刺激波形の柔軟な制御を行なうマルチチャンネル蝸牛補助具
US20040186521A1 (en) * 1999-08-10 2004-09-23 Intermedics Inc. Methods and apparatus for treating fibrillation and creating defibrillation waveforms
JP2005511164A (ja) * 2001-12-03 2005-04-28 メドトロニック・インコーポレーテッド 一定の送出エネルギー用の任意波形の制御
US6934580B1 (en) * 2002-07-20 2005-08-23 Flint Hills Scientific, L.L.C. Stimulation methodologies and apparatus for control of brain states
JP2005279001A (ja) * 2004-03-30 2005-10-13 Nidek Co Ltd 視覚再生補助装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238138B2 (en) 2007-07-20 2016-01-19 Boston Scientific Neuromodulation Corporation Use of stimulation pulse shape to control neural recruitment order and clinical effect
US9849285B2 (en) 2007-07-20 2017-12-26 Boston Scientific Neuromodulation Corporation Neural stimulation system to deliver different pulse types
US10589099B2 (en) 2007-07-20 2020-03-17 Boston Scientific Neuromodulation Corporation Neural stimulation system to deliver different pulse types
US11376435B2 (en) 2007-07-20 2022-07-05 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US11420065B2 (en) 2007-07-20 2022-08-23 Boston Scientific Neuromodulation Corporation Neural stimulation system to deliver different pulse types

Also Published As

Publication number Publication date
ES2422181T3 (es) 2013-09-09
EP3088045B1 (en) 2019-06-19
WO2009015005A1 (en) 2009-01-29
US20090024189A1 (en) 2009-01-22
CA2694498A1 (en) 2009-01-29
US10589099B2 (en) 2020-03-17
US11420065B2 (en) 2022-08-23
ES2566537T3 (es) 2016-04-13
CA2694498C (en) 2014-12-02
JP2010534114A (ja) 2010-11-04
US20120004707A1 (en) 2012-01-05
US9238138B2 (en) 2016-01-19
US20190381319A1 (en) 2019-12-19
EP2586490B1 (en) 2016-02-24
EP2586491B1 (en) 2016-08-17
EP3088045A1 (en) 2016-11-02
JP5930473B2 (ja) 2016-06-08
US9849285B2 (en) 2017-12-26
EP2190527A1 (en) 2010-06-02
US20160129247A1 (en) 2016-05-12
ES2602989T3 (es) 2017-02-23
EP2190527B1 (en) 2013-07-03
US20220355106A1 (en) 2022-11-10
US20170136243A1 (en) 2017-05-18
EP2586491A1 (en) 2013-05-01
EP2586490A1 (en) 2013-05-01
US8036754B2 (en) 2011-10-11

Similar Documents

Publication Publication Date Title
JP5930473B2 (ja) 神経回復指令及び臨床効果を制御するための刺激パルス形状の使用
US11497917B2 (en) System and method for adjusting automatic pulse parameters
US11224750B2 (en) Neuromodulation using modulated pulse train
US9480841B2 (en) Neuromodulation system and method for reducing energy requirements using feedback
US20090157155A1 (en) Graphical display of environmental measurements for implantable therapies
US20100023090A1 (en) System and method for avoiding, reversing, and managing neurological accomodation to eletrical stimulation
JP2016507336A (ja) 電力消費を最適化するために刺激パラメータを自動的に調節する神経変調システム及び方法
AU2013282405B2 (en) High frequency neuromodulation system for reducing energy requirements
US20130150918A1 (en) System and method for automatically training a neurostimulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160422

R150 Certificate of patent or registration of utility model

Ref document number: 5930473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250