JP2013161606A - Liquid type lead acid battery - Google Patents

Liquid type lead acid battery Download PDF

Info

Publication number
JP2013161606A
JP2013161606A JP2012021663A JP2012021663A JP2013161606A JP 2013161606 A JP2013161606 A JP 2013161606A JP 2012021663 A JP2012021663 A JP 2012021663A JP 2012021663 A JP2012021663 A JP 2012021663A JP 2013161606 A JP2013161606 A JP 2013161606A
Authority
JP
Japan
Prior art keywords
mass
acid
carbon black
lead
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012021663A
Other languages
Japanese (ja)
Other versions
JP5884528B2 (en
Inventor
Naohisa Okamoto
直久 岡本
Yoshio Tsutsumi
誉雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012021663A priority Critical patent/JP5884528B2/en
Publication of JP2013161606A publication Critical patent/JP2013161606A/en
Application granted granted Critical
Publication of JP5884528B2 publication Critical patent/JP5884528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid type lead acid battery in which turbidity of the electrolyte is less, and low temperature high rate discharge performance, regenerative charge acceptance performance, and durability performance under insufficient charging state are excellent.SOLUTION: The negative electrode active material of a liquid type lead acid battery contains a water-soluble polymer principally comprising a bisphenol-based condensation product having 0.5-2.5 mass% of carbon black per 100 mass% of spongy lead in transformed state, and a sulfonic acid group as a substituent group, and polycarboxylic acid compound such as poly acrylic acid. The electrolyte has a carbon black concentration of 3 mass ppm or less in transformed state.

Description

この発明は液式鉛蓄電池に関し、特に負極活物質にカーボンブラックを多量に含有し、しかも電解液の濁りが少ない液式鉛蓄電池に関する。   The present invention relates to a liquid lead-acid battery, and more particularly to a liquid lead-acid battery containing a large amount of carbon black in a negative electrode active material and less turbidity of an electrolyte.

液式鉛蓄電池を充電不足な状態(PSOC)で使用することにより、自動車のエネルギー効率を向上させることが行われている。例えばアイドリングストップ車では、停車の都度エンジンを停止することにより燃料消費量を小さくし、発進時に蓄電池からの電力でエンジンを再始動する。このため蓄電池は充電不足の状態で使用される。アイドリングストップ車に限らず、エネルギー効率を向上させるため蓄電池への過充電を避け、しかも蓄電池から取り出す電力が増しているので、蓄電池は充電不足な状態に置かれることが多い。   The use of liquid lead-acid batteries in an undercharged state (PSOC) has improved the energy efficiency of automobiles. For example, in an idling stop vehicle, the fuel consumption is reduced by stopping the engine each time the vehicle stops, and the engine is restarted with the electric power from the storage battery when starting. For this reason, the storage battery is used in a state of insufficient charge. Not only idling stop vehicles, but avoiding overcharging of the storage battery in order to improve energy efficiency, and since the electric power taken out from the storage battery is increasing, the storage battery is often placed in an insufficiently charged state.

鉛蓄電池を充電不足の状態で使用する場合、還元が困難な硫酸鉛が負極活物質中に蓄積するため、耐久性が低下する。硫酸鉛の蓄積は、カーボンブラックを負極活物質に多量に含有させることにより抑制できることが知られている。しかしながらカーボンブラックを負極活物質の海綿状鉛100mass%に対して、例えば0.5mass%を超えて含有させると、使用中にカーボンブラックが電解液中に流出して電槽の内壁に付着し、液面の視認性が低下する。液式鉛蓄電池では水を加えて電解液の減少分を補う必要があるため、液面の視認性が低下すると問題である。液面センサーを設けることも行われているが、カーボンブラックでセンサーが汚染されると、液面の検出が難しくなる。このため、液式鉛蓄電池に対して、電解液の濁りを僅かにしながら、多量のカーボンブラックを添加する必要がある。   When the lead storage battery is used in an insufficiently charged state, lead sulfate, which is difficult to reduce, accumulates in the negative electrode active material, resulting in a decrease in durability. It is known that the accumulation of lead sulfate can be suppressed by containing a large amount of carbon black in the negative electrode active material. However, if carbon black is contained in an amount exceeding 0.5 mass%, for example, with respect to 100 mass% of the spongy lead of the negative electrode active material, the carbon black flows out into the electrolyte during use and adheres to the inner wall of the battery case. The visibility of the surface is reduced. In a liquid type lead-acid battery, it is necessary to compensate for the decrease in the electrolyte by adding water. Although a liquid level sensor is also provided, if the sensor is contaminated with carbon black, it becomes difficult to detect the liquid level. For this reason, it is necessary to add a large amount of carbon black to the liquid lead-acid battery while slightly turbidizing the electrolyte.

ここで関連する先行技術を示す。特許文献1(JP2010-123402A)は、鉛蓄電池の負極活物質を、活性炭100部とカーボンブラック5部とカルボキシメチルセルロース1.5部及びラテックス3部を含むペーストで被覆することを開示している。特許文献1によると、負極活物質をペーストで被覆することにより、充電率が100%と80%との間の充放電を200サイクル繰り返した際の電池の容量低下が小さくなる。特許文献1はさらに、カルボキシメチルセルロースに代えてポリアクリル酸の塩を用いても良いとしている。しかしながら特許文献1は、電解液の液面の視認性についても、ビスフェノール系縮合物の添加についても検討していない。   Here is related prior art. Patent Document 1 (JP2010-123402A) discloses that a negative electrode active material of a lead storage battery is coated with a paste containing 100 parts of activated carbon, 5 parts of carbon black, 1.5 parts of carboxymethylcellulose, and 3 parts of latex. According to Patent Document 1, by covering the negative electrode active material with a paste, a decrease in battery capacity when charging / discharging between 100% and 80% charge cycles is repeated 200 cycles. Patent Document 1 further states that a salt of polyacrylic acid may be used instead of carboxymethylcellulose. However, Patent Document 1 does not examine the visibility of the liquid surface of the electrolytic solution or the addition of a bisphenol-based condensate.

JP2010-123402AJP2010-123402A

この発明の課題は、電解液の濁りが少なく、かつ低温ハイレート放電性能、回生充電受入性能、及び充電が不十分な状態での耐久性能に優れた、液式鉛蓄電池を提供することにある。   An object of the present invention is to provide a liquid lead-acid battery that has low turbidity of an electrolyte solution and is excellent in low-temperature high-rate discharge performance, regenerative charge acceptance performance, and durability performance in a state where charging is insufficient.

この発明は、海綿状鉛を主成分とする負極活物質と、二酸化鉛を主成分とする正極活物質と、硫酸を含有し流動自在な電解液とを備えた液式鉛蓄電池において、
前記負極活物質は、化成済みの状態において前記海綿状鉛100mass%当たりで、
カーボンブラックを0.5mass%以上2.5mass%以下と、
置換基としてスルホン酸基を有するビスフェノール系縮合物から成る水溶性高分子と、
ポリアクリル酸、ポリメタクリル酸、及びポリマレイン酸及びそれらの塩から成る群の少なくとも一種のポリカルボン酸化合物、とを含有し、
かつ前記電解液は、化成済みの状態において、カーボンブラック濃度が3massppm以下であることを特徴とする。負極活物質の組成について、例えば化成済みの状態において海綿状鉛100mass%当たりで0.5mass%以上2.5mass%以下の含有量であることを、単に0.5mass%以上2.5mass%以下等ということがある。またポリカルボン酸化合物は酸型に換算して含有量を示す。
The present invention relates to a liquid lead-acid battery comprising a negative electrode active material composed mainly of spongy lead, a positive electrode active material composed mainly of lead dioxide, and a flowable electrolyte containing sulfuric acid.
The negative electrode active material, per 100 mass% of the spongy lead in a chemically formed state,
With carbon black 0.5mass% or more and 2.5mass% or less,
A water-soluble polymer comprising a bisphenol-based condensate having a sulfonic acid group as a substituent;
Containing at least one polycarboxylic acid compound of the group consisting of polyacrylic acid, polymethacrylic acid, and polymaleic acid and salts thereof;
In addition, the electrolytic solution is characterized in that the carbon black concentration is 3 mass ppm or less in the already formed state. Regarding the composition of the negative electrode active material, for example, it may be simply referred to as 0.5 mass% or more and 2.5 mass% or less, etc., that the content is 0.5 mass% or more and 2.5 mass% or less per 100 mass% of spongy lead in the already formed state. . The polycarboxylic acid compound indicates the content in terms of acid type.

置換基としてスルホン酸基を有するビスフェノール系縮合物から成る水溶性高分子(以下単にビスフェノール系縮合物という)は、
(-(OH)(RSO3H)Ph-X-Ph(OH)(R'SO3H)CH2-)n (1)
(-(OH)(RSO3H)Ph-X-Ph(OH)CH2-)n (2)
等の化学式で表され、XはSO2基、アルキル基等で、Xを含まずに2個のフェニル基が直接結合していても良い。(1),(2)ではビスフェノール系縮合物の主鎖にモノマー当たり2個のフェニル基が共に組み込まれているが、2個のフェニル基の一方が主鎖に、他方が側鎖に組み込まれていてもよい。さらにビスフェノールとフェノールスルホン酸ナトリウムとがモノマーに含まれていてもよい。また上の例では、ホルムアルデヒドCH2Oとの脱水縮合が用いられ、メチレン基 -CH2-を介してモノマーが重合しているが、縮合反応の相手方は任意である。
A water-soluble polymer composed of a bisphenol-based condensate having a sulfonic acid group as a substituent (hereinafter simply referred to as a bisphenol-based condensate)
(-(OH) (RSO 3 H) Ph-X-Ph (OH) (R'SO 3 H) CH 2- ) n (1)
(-(OH) (RSO 3 H) Ph-X-Ph (OH) CH 2- ) n (2)
X is a SO 2 group, an alkyl group or the like, and two phenyl groups may be directly bonded without containing X. In (1) and (2), two phenyl groups per monomer are incorporated into the main chain of the bisphenol-based condensate, but one of the two phenyl groups is incorporated into the main chain and the other is incorporated into the side chain. It may be. Furthermore, bisphenol and sodium phenolsulfonate may be contained in the monomer. In the above example, dehydration condensation with formaldehyde CH 2 O is used, and the monomer is polymerized via the methylene group —CH 2 —, but the other party of the condensation reaction is arbitrary.

XがSO2基の場合がビスフェノールS、Xが -C(CH3)2- の場合がビスフェノールA、Xが -CH2- の場合がビスフェノールFで、実施例ではビスフェノールSのものを用いるが、ビスフェノールA,ビスフェノールFのものを用いても結果は同等、また(1)式のタイプのものを用いても(2)式のタイプのもの等を用いても良い。ビスフェノール系縮合物の分子量は任意で、例えば4000〜250,000程度とし、分子量の影響は小さい。ビスフェノール系縮合物は、芳香族環を含む水溶性高分子である点で、負極活物質にしばしば添加されるリグニンスルホン酸と類似しているが、ビスフェノール系縮合物はカルボキシ基とエーテル基及びアルコール性水酸基を持たない点と、網状ではなく直鎖状の高分子である点でリグニンスルホン酸と異なる。 Bisphenol S when X is SO 2 group, bisphenol A when X is —C (CH 3 ) 2 —, bisphenol F when X is —CH 2 —, and bisphenol S are used in the examples. Even if bisphenol A or bisphenol F is used, the result is the same, or the type of the formula (1) or the type of the formula (2) may be used. The molecular weight of the bisphenol-based condensate is arbitrary, for example, about 4000 to 250,000, and the influence of the molecular weight is small. Bisphenol condensates are similar to lignin sulfonic acids often added to negative electrode active materials in that they are water-soluble polymers containing aromatic rings, but bisphenol condensates are carboxy groups, ether groups and alcohols. It differs from lignin sulfonic acid in that it does not have a functional hydroxyl group and is a linear polymer rather than a network.

R,R'はメチレン基等の適宜のアルキル基であるが、アルキル基を介さずにスルホン酸基 -SO3Hが直接フェニル基に結合していても良い。さらにスルホン酸基は重合体の水溶性を高めるための置換基で、スルホン酸基を持たないビスフェノールSとフェノールメチレンスルホン酸ナトリウム等との共重合体を用いても良い。また-SO3H基の水素は、負極活物質中でNaイオン等の適宜の陽イオン、特にアルカリ金属イオンにより置換されていても良い。さらに -RSO3H基、 -R'SO3H基、-CH2-基はフェニル基(Ph)の -OH基に対して例えばオルソの位置にあり、ビスフェノールモノマーは脱水縮合の相手方である-CH2-基を介して互いに接続されている。市販のビスフェノール系縮合物はモノマー当たり2個のスルホン酸基を有するものが多いが、モノマー当たりのスルホン酸基の数は任意である。 R and R ′ are appropriate alkyl groups such as a methylene group, but the sulfonic acid group —SO 3 H may be directly bonded to the phenyl group without using an alkyl group. Furthermore, the sulfonic acid group is a substituent for enhancing the water solubility of the polymer, and a copolymer of bisphenol S and sodium phenolmethylene sulfonate having no sulfonic acid group may be used. The hydrogen of the —SO 3 H group may be substituted with an appropriate cation such as Na + ion, particularly an alkali metal ion, in the negative electrode active material. Furthermore, the -RSO 3 H group, -R'SO 3 H group, -CH 2 -group are located, for example, in the ortho position with respect to the -OH group of the phenyl group (Ph), and the bisphenol monomer is the dehydrating condensation partner- They are connected to each other through a CH 2 -group. Many commercially available bisphenol-based condensates have two sulfonic acid groups per monomer, but the number of sulfonic acid groups per monomer is arbitrary.

ポリアクリル酸の化学式は -(CH2=CHCOOH)- で、ポリメタクリル酸は
-(CHCH3=CHCOOH)-、ポリマレイン酸は -(CHCOOH=CHCOOH)- である。鉛蓄電池の電解液は酸性であるため、これらの化合物は主として水に不溶な酸型で存在するが、アルカリ金属塩等の塩として存在していても良い。ポリカルボン酸は他のオレフィンとの共重合体であっても良い。
The chemical formula of polyacrylic acid is-(CH 2 = CHCOOH) -n , and polymethacrylic acid is
- (CHCH 3 = CHCOOH) - n, the polymaleic acid - a n - (CHCOOH = CHCOOH). Since the electrolytic solution of the lead storage battery is acidic, these compounds exist mainly in an acid form that is insoluble in water, but may exist as a salt such as an alkali metal salt. The polycarboxylic acid may be a copolymer with another olefin.

この発明では、負極活物質にビスフェノール系縮合物とポリカルボン酸化合物とを共に存在させることにより、負極活物質にカーボンブラックを0.5mass%以上含有させても、電解液中のカーボンブラック濃度を3massppm以下にできる。ただしカーボンブラックを2.5mass%を越えて含有させると、電解液中のカーボンブラック濃度を3massppm以下にすることが難しくなるので、負極活物質中のカーボンブラック含有量は2.5mass%以下とする。   In the present invention, the presence of both the bisphenol-based condensate and the polycarboxylic acid compound in the negative electrode active material allows the carbon black concentration in the electrolyte to be 3 massppm even if the negative electrode active material contains 0.5 mass% or more of carbon black. You can: However, if carbon black is contained in an amount exceeding 2.5 mass%, it is difficult to make the carbon black concentration in the electrolytic solution 3 mass ppm or less. Therefore, the carbon black content in the negative electrode active material is 2.5 mass% or less.

表1に示すように、負極活物質中にポリカルボン酸化合物を含有させることにより、電解液中のカーボンブラック濃度を例えば数分の一に低下させることができる。そしてポリカルボン酸化合物に加えて、ビスフェノール系縮合物から成る水溶性高分子を含有させることにより、電解液中のカーボンブラックの濃度をさらに低下させて、3massppm以下にできる。なおビスフェノール系縮合物から成る水溶性高分子を単独で含有させても、電解液中のカーボンブラックの濃度を低下させる効果は見られない。なおビスフェノール系縮合物から成る水溶性高分子を、以下では単にビスフェノール系縮合物ということがある。発明者はこれらの現象から、
・ 繊維状の分子であるポリカルボン酸化合物がカーボンブラックを捕捉して、負極活物質の細孔からの流出を抑制し、
・ ビスフェノール系縮合物から成る水溶性高分子が、ポリカルボン酸化合物と何らかの相互作用をし、カーボンブラックの捕捉能力を向上させている、ものと推測した。またビスフェノール系縮合物をリグニンスルホン酸に変更しても、同種ではあるが弱い効果が見られる。
As shown in Table 1, by containing a polycarboxylic acid compound in the negative electrode active material, the carbon black concentration in the electrolytic solution can be reduced to, for example, a fraction. In addition to the polycarboxylic acid compound, the concentration of carbon black in the electrolytic solution can be further reduced to 3 mass ppm or less by including a water-soluble polymer composed of a bisphenol-based condensate. In addition, even if it contains the water-soluble polymer which consists of a bisphenol-type condensate independently, the effect of reducing the density | concentration of carbon black in electrolyte solution is not seen. A water-soluble polymer composed of a bisphenol-based condensate may be simply referred to as a bisphenol-based condensate hereinafter. From these phenomena, the inventor
・ The polycarboxylic acid compound, which is a fibrous molecule, captures carbon black and suppresses the outflow from the pores of the negative electrode active material,
-It was speculated that the water-soluble polymer composed of the bisphenol-based condensate had some interaction with the polycarboxylic acid compound to improve the carbon black capturing ability. Moreover, even if the bisphenol-based condensate is changed to lignin sulfonic acid, a weak effect is seen although it is the same type.

この発明ではさらに、充電不足な状態(PSOC)でのサイクル寿命性能が向上し、かつ低温ハイレート放電性能と回生充電受入性能とに優れた液式鉛蓄電池が得られる。サイクル寿命性能,低温ハイレート放電性能,及び回生充電受入性能の向上は、0.5mass%以上2.5mass%以下のカーボンブラックと、ビスフェノール系縮合物、及びポリカルボン酸化合物の組み合わせによる効果である。   The present invention further provides a liquid lead-acid battery with improved cycle life performance in a state of insufficient charge (PSOC) and excellent low-temperature high-rate discharge performance and regenerative charge acceptance performance. The improvement in cycle life performance, low-temperature high-rate discharge performance, and regenerative charge acceptance performance is an effect of a combination of 0.5 mass% to 2.5 mass% carbon black, a bisphenol-based condensate, and a polycarboxylic acid compound.

好ましくは、負極活物質は、化成済みの状態において海綿状鉛100mass%当たりで、ビスフェノール系縮合物から成る水溶性高分子を0.1mass%以上0.9mass%以下含有する。このようにすると電解液中のカーボンブラック濃度を特に低くできる。また負極活物質は、化成済みの状態において海綿状鉛100mass%当たりで、ポリカルボン酸化合物を0.01mass%以上0.3mass%以下含有する。0.01mass%以上で電解液中のカーボンブラック濃度を特に低くでき、0.3mass%を越えると回生充電受入性能が低下する。   Preferably, the negative electrode active material contains 0.1 mass% or more and 0.9 mass% or less of a water-soluble polymer composed of a bisphenol-based condensate per 100 mass% of spongy lead in a chemically formed state. In this way, the carbon black concentration in the electrolytic solution can be particularly lowered. Further, the negative electrode active material contains 0.01 mass% or more and 0.3 mass% or less of a polycarboxylic acid compound per 100 mass% of spongy lead in the already formed state. The carbon black concentration in the electrolytic solution can be made particularly low at 0.01 mass% or more, and when 0.3 mass% is exceeded, the regenerative charge acceptance performance decreases.

また好ましくは、負極活物質は海綿状鉛100mass%当たりでカーボンブラックを1.0mass%以上2.5mass%以下含有し、カーボンブラックが1.0mass%以上でPSOC下での耐久性能が特に向上する。ポリカルボン酸化合物の種類は任意であるが、ポリアクリル酸またはポリアクリル酸のアルカリ金属塩等の塩は工業用材料として入手が容易で好ましい。   Preferably, the negative electrode active material contains 1.0 mass% to 2.5 mass% of carbon black per 100 mass% of spongy lead, and the durability performance under PSOC is particularly improved when the carbon black is 1.0 mass% or more. Although the kind of polycarboxylic acid compound is arbitrary, salts such as polyacrylic acid or alkali metal salts of polyacrylic acid are easily available as industrial materials and are preferable.

この発明の液式鉛蓄電池は任意の用途に用いることができるが、特にアイドリングストップ車及び充電制御車に適している。ここにアイドリングストップ車は、アイドリング時にエンジンを停止し鉛蓄電池の電力で電装品を動作させると共に、アイドリングからの発進時に鉛蓄電池の電力でエンジンを再始動する自動車をいう。充電制御車は、鉛蓄電池の充電率が低いときにのみオルタネータを動作させ、充電率が高いときは鉛蓄電池を充電せずに、鉛蓄電池の電力により電装品を動作させる自動車をいう。この発明の鉛蓄電池は、電解液の濁りが少ないので補水の要否を容易に判断でき、低温ハイレート放電性能、回生充電受入性能、及び充電が不十分な状態での耐久性能に優れているので、アイドリングストップ車及び充電制御車で特に高い性能を発揮する。   The liquid lead-acid battery of the present invention can be used for any application, but is particularly suitable for an idling stop vehicle and a charge control vehicle. Here, the idling stop vehicle refers to an automobile that stops the engine during idling and operates electrical components with the power of the lead storage battery, and restarts the engine with the power of the lead storage battery when starting from idling. The charge control vehicle refers to an automobile that operates an alternator only when the charge rate of the lead storage battery is low, and operates the electrical component by the power of the lead storage battery without charging the lead storage battery when the charge rate is high. Since the lead acid battery of the present invention has less turbidity in the electrolyte, it can be easily determined whether or not replenishment is necessary, and is excellent in low-temperature high-rate discharge performance, regenerative charge acceptance performance, and durability performance in an insufficiently charged state. It exhibits particularly high performance in idling stop vehicles and charge control vehicles.

実施例での負極活物質ペーストの製造工程図Manufacturing process diagram of negative electrode active material paste in Example 負極活物質中のポリアクリル酸の含有量と、電解液中のカーボン濃度、低温ハイレート放電性能、回生充電受入性能、及びPSOC下での耐久性能を示す特性図で、ビスフェノール系縮合物含有量は0.5mass%、カーボンブラック含有量は1.5mass%に固定A characteristic diagram showing the content of polyacrylic acid in the negative electrode active material, the carbon concentration in the electrolyte, the low-temperature high-rate discharge performance, the regenerative charge acceptance performance, and the durability performance under PSOC. The bisphenol condensate content is 0.5mass%, carbon black content fixed at 1.5mass% 負極活物質中のビスフェノール系縮合物の含有量と、電解液中のカーボン濃度、低温ハイレート放電性能、回生充電受入性能、及びPSOC下での耐久性能を示す特性図で、ポリアクリル酸含有量は0.1mass%、カーボンブラック含有量は1.5mass%に固定A characteristic diagram showing the content of bisphenol-based condensate in the negative electrode active material, carbon concentration in the electrolyte, low-temperature high-rate discharge performance, regenerative charge acceptance performance, and durability performance under PSOC, polyacrylic acid content is 0.1mass%, carbon black content fixed at 1.5mass%

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

図1に負極活物質ペーストの製造工程を示し、以下、負極活物質への添加物の量は化成済みの負極活物質での海綿状鉛100mass%当たりの含有量で示す。ポリアクリル酸を水に溶解させ、次いでアセチレンブラックから成るカーボンブラックをポリアクリル酸の水溶液と練合した。アセチレンブラックに代えてオイルファーネスブラック、ケッチェンブラック等の他のカーボンブラックを用いても良い。ポリアクリル酸に代えて、ポリメタクリル酸、ポリマレイン酸等を用いても良く、これらのポリマーをオレフィンとの共重合体とすることにより分子量当たりのカルボキシ基の数を減らしても良い。ポリカルボン酸は、酸として水に分散させたが、ナトリウム塩、カリウム塩、リチウム塩等、塩の形態で水に溶解させても良い。   FIG. 1 shows a production process of a negative electrode active material paste, and hereinafter, the amount of additive to the negative electrode active material is shown as a content per 100 mass% of spongy lead in the formed negative electrode active material. Polyacrylic acid was dissolved in water, and then carbon black composed of acetylene black was kneaded with an aqueous solution of polyacrylic acid. Instead of acetylene black, other carbon blacks such as oil furnace black and ketjen black may be used. Instead of polyacrylic acid, polymethacrylic acid, polymaleic acid or the like may be used, and the number of carboxy groups per molecular weight may be reduced by making these polymers a copolymer with olefin. The polycarboxylic acid is dispersed in water as an acid, but may be dissolved in water in the form of a salt such as sodium salt, potassium salt or lithium salt.

カーボンブラックとポリアクリル酸との水溶液に、分散剤としてビスフェノールSの縮合物(分子量約100,000)と、海綿状鉛100mass%に対して例えば0.6mass%の硫酸Baと、海綿状鉛100mass%に対して補強剤として例えば0.1mass%の合成繊維とを加えて練合した。ビスフェノールS縮合物に変えて、ビスフェノールA縮合物を用いてもほぼ同等の結果が得られ、さらにビスフェノールS縮合物の分子量を10,000に変えても、結果は同等であった。また硫酸Ba及び合成繊維は加えなくても良い。以上のようにして得られたペーストをカーボンペーストと呼ぶ。   An aqueous solution of carbon black and polyacrylic acid, a condensate of bisphenol S as a dispersing agent (molecular weight of about 100,000), and 0.6 mass% Ba sulfate for 100 mass% sponge-like lead and 100 mass% sponge-like lead As a reinforcing agent, for example, 0.1 mass% synthetic fiber was added and kneaded. Even when the bisphenol A condensate was used instead of the bisphenol S condensate, almost the same results were obtained, and even when the molecular weight of the bisphenol S condensate was changed to 10,000, the results were the same. Further, Ba sulfate and synthetic fiber may not be added. The paste obtained as described above is called a carbon paste.

ボールミル法で製造した鉛粉と、防縮剤としてのリグニンスルホン酸(以下単にリグニンという)0.2mass%と、水と、硫酸とを、カーボンペーストに加えて練合し、負極活物質ペーストとした。鉛粉の種類及び製造方法は任意で、カーボンブラックとポリアクリル酸の水溶液とビスフェノール系縮合物との練合の順序等は任意であるが、鉛粉との練合前にこれらの物質を予め練合しておくことが好ましい。   Lead powder produced by the ball mill method, 0.2 mass% of lignin sulfonic acid (hereinafter simply referred to as lignin) as a shrink-preventing agent, water and sulfuric acid were added to the carbon paste and kneaded to obtain a negative electrode active material paste. The type and production method of the lead powder is arbitrary, and the order of kneading the carbon black, the aqueous solution of polyacrylic acid and the bisphenol-based condensate is arbitrary. It is preferable to knead.

上記の負極活物質に対する従来例及び比較例として、ポリアクリル酸を加えないもの、及びビスフェノール系縮合物を加えないもの、さらにビスフェノール系縮合物の代わりに、リグニンスルホン酸を硫酸Ba及び合成繊維と共に、鉛粉との練合前にカーボンブラック等と練合したものを調製した。カーボンブラック量は0.3mass%から3mass%の範囲で、ビスフェノール系縮合物は0.05mass%から1.0mass%の範囲で、ポリアクリル酸は、0.005mass%から0.4mass%の範囲で変化させた。   As a conventional example and a comparative example for the above negative electrode active material, those that do not add polyacrylic acid, those that do not add bisphenol-based condensate, and lignin sulfonic acid together with Ba sulfate and synthetic fibers instead of bisphenol-based condensate Then, a material kneaded with carbon black or the like before kneading with lead powder was prepared. The amount of carbon black was changed in the range of 0.3 mass% to 3 mass%, the bisphenol-based condensate was changed in the range of 0.05 mass% to 1.0 mass%, and the polyacrylic acid was changed in the range of 0.005 mass% to 0.4 mass%.

鉛粉100kgに補強剤の合成繊維を0.1mass%加え、水と硫酸を加え、正極活物質ペーストを調製した。   A positive electrode active material paste was prepared by adding 0.1 mass% of a reinforcing fiber synthetic fiber to 100 kg of lead powder, and adding water and sulfuric acid.

負極活物質ペーストをPb-Ca-Sn合金系でエキスパンドタイプの負極格子に充填し、熟成と乾燥とを施して負極板とした。負極板は幅が137mm、高さが115mm、厚さが1.3mmで、負極格子の組成、製法等は任意である。正極活物質ペーストをPb-Ca-Sn合金系でエキスパンドタイプの正極格子に充填し、熟成と乾燥とを施して正極板とした。正極板は幅が137mm、高さが115mm、厚さが1.6mmで、正極格子の組成、製法等は任意である。   The negative electrode active material paste was filled in an expandable negative electrode grid with a Pb—Ca—Sn alloy system, and aged and dried to obtain a negative electrode plate. The negative electrode plate has a width of 137 mm, a height of 115 mm, and a thickness of 1.3 mm, and the composition and manufacturing method of the negative electrode grid are arbitrary. The positive electrode active material paste was filled into an expandable positive electrode grid using a Pb—Ca—Sn alloy system, and aged and dried to obtain a positive electrode plate. The positive electrode plate has a width of 137 mm, a height of 115 mm, and a thickness of 1.6 mm, and the composition and manufacturing method of the positive electrode grid are arbitrary.

負極板を微孔質のポリエチレンセパレーターで包み、電解液の濁りと初期性能との評価用に、並列な2枚の正極板とその間の1枚の負極板とを、電槽内にセットした。また耐久性能の評価用に、並列な8枚の負極板(ポリエチレンセパレーターで包んだもの)と並列な7枚の正極板とを電槽内にセットした。電解液として希硫酸を電槽に注いだ後に電槽化成し、液式鉛蓄電池(20℃での電解液比重1.285)とした。液式鉛蓄電池の組成と性能とを表1に示し、負極活物質以外の点では各液式鉛蓄電池は同様である。   The negative electrode plate was wrapped with a microporous polyethylene separator, and two positive electrode plates in parallel and one negative electrode plate therebetween were set in the battery case for evaluation of the turbidity of the electrolyte and the initial performance. For evaluation of durability performance, eight parallel negative electrode plates (wrapped with a polyethylene separator) and seven parallel positive electrode plates were set in a battery case. After pouring dilute sulfuric acid into the battery case as an electrolyte, the battery was formed into a liquid lead-acid battery (electrolyte specific gravity at 1.85) at 20 ° C. The composition and performance of the liquid lead acid battery are shown in Table 1, and each liquid lead acid battery is the same except for the negative electrode active material.

電解液へ1.5massppmから300massppmの濃度でアセチレンブラックを分散させた標準試料を作成し、化成後30分での電解液の濁りの程度を標準試料の濁りの程度と比較し、各液式鉛蓄電池での電解液中のアセチレンブラック含有量を求めた。電解液中のカーボンブラック含有量が3massppmでは液面の視認に支障をきたさないが、6massppmを超えると視認が難しくなる。   Create a standard sample in which acetylene black is dispersed in the electrolyte at a concentration of 1.5 massppm to 300 massppm, compare the turbidity of the electrolyte 30 minutes after conversion with the turbidity of the standard sample, and each liquid lead-acid battery The acetylene black content in the electrolyte solution was determined. If the carbon black content in the electrolyte is 3 massppm, it does not hinder the visual recognition of the liquid level, but if it exceeds 6 massppm, the visual recognition becomes difficult.

低温ハイレート放電性能として、室温が-15℃の環境で、37.5Aの放電電流により蓄電池の端子電圧が1.0Vまで低下するまでの時間(秒単位)を測定した。また回生充電受入性能として、充電状態が90%の蓄電池を25℃の室内に置き、2.4Vの定電圧で最大12.5Aの充電電流により10秒間充電し、この間に蓄電池が受け入れた電気量(A・s単位)を測定した。充電不足な状態での耐久性能を評価するため、50Aで60秒間の放電と、2.33Vの定電圧で最大50Aの充電電流による60秒間の充電とから成るサイクルを繰り返し、蓄電池の端子電圧が放電時に1.0V未満となるまでのサイクル数を測定した。このサイクル数は充電が不十分な状態での耐久性能を表している。   As the low-temperature high-rate discharge performance, the time (seconds) until the terminal voltage of the storage battery dropped to 1.0 V due to the discharge current of 37.5 A in an environment where the room temperature was −15 ° C. was measured. In addition, as a regenerative charge acceptance performance, a 90% charged storage battery is placed in a room at 25 ° C and charged at a constant voltage of 2.4V for 10 seconds with a maximum charging current of 12.5A. The amount of electricity (A -S unit) was measured. In order to evaluate the durability performance in a state of insufficient charging, a cycle consisting of discharging at 50 A for 60 seconds and charging at a constant voltage of 2.33 V for 60 seconds with a charging current of up to 50 A is repeated, and the terminal voltage of the storage battery is discharged. Sometimes the number of cycles to below 1.0V was measured. This cycle number represents the durability performance in a state where charging is insufficient.

測定結果(各3個の鉛蓄電池での平均値)を表1に示し、負極活物質への添加物は負極活物質中の海綿状鉛を100mass%とするmass%単位で示す。リグニンはリグニンスルホン酸を表し、電解液中のカーボンブラック濃度(massppm単位)は前記の比色法で求めた値を示す。判定は、電解液中のカーボンブラック濃度については3massppm以下のものを○とし、初期性能では低温ハイレート放電性能と回生充電受入性能が共に従来例以上のものを○とした。図2にポリアクリル酸含有量の影響を示し、図2ではビスフェノール系縮合物含有量を0.5mass%に、カーボンブラック含有量を1.5mass%に固定した。また図3にビスフェノール系縮合物の含有量の影響を示し、図3ではポリアクリル酸含有量を0.1mass%に、カーボンブラック含有量を1.5mass%に固定した。   The measurement results (average values for each of the three lead storage batteries) are shown in Table 1, and the additive to the negative electrode active material is shown in mass% units where the amount of spongy lead in the negative electrode active material is 100 mass%. Lignin represents lignin sulfonic acid, and the carbon black concentration (mass ppm unit) in the electrolytic solution is a value determined by the above colorimetric method. In the determination, the carbon black concentration in the electrolyte was 3 massppm or less, and the initial performance was that the low temperature high-rate discharge performance and the regenerative charge acceptance performance were both better than the conventional example. FIG. 2 shows the influence of the polyacrylic acid content. In FIG. 2, the bisphenol condensate content is fixed at 0.5 mass% and the carbon black content is fixed at 1.5 mass%. FIG. 3 shows the influence of the content of the bisphenol-based condensate. In FIG. 3, the polyacrylic acid content is fixed at 0.1 mass% and the carbon black content is fixed at 1.5 mass%.

Figure 2013161606
Figure 2013161606

表1から明らかなように、ビスフェノール系縮合物もポリアクリル酸も加えずに、カーボンブラック含有量を増すと電解液の濁りが急増した。ここで例えば0.1mass%のポリアクリル酸を加えると濁りは例えば1/5に低下するが、カーボンブラック濃度は3massppmを越えていた。またビスフェノール系縮合物のみを加えても、電解液の濁りを低下させることはできなかった。なお別に行った実験から、ポリカルボン酸等の水溶性高分子中のカルボキシ基がカーボンブラックの流出を抑制するために必要であることを確認した。そしてポリアクリル酸とビスフェノール系縮合物とを共に含有させると、電解液の濁りをさらに小さくし、例えば電解液中のカーボンブラック含有量を1massppm〜3massppmにできた。ビスフェノール系縮合物の変わりにリグニンをポリアクリル酸と併用しても、電解液の濁りを小さくできるが、ビスフェノール系縮合物程有効ではなかった。さらにカーボンブラックは1.5mass%の含有量で高い耐久性能が得られ、含有量を2.5mass%まで増しても同等であった。   As is apparent from Table 1, the turbidity of the electrolyte increased rapidly when the carbon black content was increased without adding bisphenol-based condensate or polyacrylic acid. Here, for example, when 0.1 mass% polyacrylic acid was added, the turbidity decreased to, for example, 1/5, but the carbon black concentration exceeded 3 massppm. Moreover, even if only the bisphenol-based condensate was added, the turbidity of the electrolytic solution could not be reduced. In addition, from experiments conducted separately, it was confirmed that a carboxy group in a water-soluble polymer such as polycarboxylic acid is necessary for suppressing the outflow of carbon black. When both polyacrylic acid and a bisphenol-based condensate were contained, the turbidity of the electrolytic solution was further reduced, and for example, the carbon black content in the electrolytic solution could be set to 1 massppm to 3 massppm. Even if lignin is used in combination with polyacrylic acid instead of the bisphenol-based condensate, the turbidity of the electrolyte can be reduced, but it is not as effective as the bisphenol-based condensate. Furthermore, high durability performance was obtained with a carbon black content of 1.5 mass%, and it was the same even when the content was increased to 2.5 mass%.

図2に示すように、ビスフェノール系縮合物に加えて、0.01mass%以上のポリアクリル酸を含有させることにより、電解液中のカーボンブラック濃度を3massppm以下にできるが、0.3mass%を越えると回生充電受入性能が低下した。従ってポリカルボン酸含有量は0.01mass%以上0.3mass%以下とする。   As shown in FIG. 2, by adding 0.01 mass% or more of polyacrylic acid in addition to the bisphenol-based condensate, the carbon black concentration in the electrolyte can be reduced to 3 massppm or less, but if it exceeds 0.3 mass%, regeneration is performed. Charge acceptance performance has declined. Therefore, the polycarboxylic acid content is set to 0.01 mass% or more and 0.3 mass% or less.

図3に示すように、ポリアクリル酸に加えて、0.1mass%以上のビスフェノール系縮合物を含有させることにより、電解液中のカーボンブラック濃度を3massppm以下にでき、リグニンに比べてかなり有効であった。ポリアクリル酸と共に、ビスフェノール系縮合物を含有させると、低温ハイレート放電性能も充電受入性能も向上し、耐久性能の向上にも寄与した。しかしビスフェノール系縮合物を1mass%含有させると、電解液の濁りが増加するので、ビスフェノール系縮合物は0.1mass%以上0.9mass%以下含有させる。   As shown in FIG. 3, in addition to polyacrylic acid, the addition of 0.1 mass% or more of a bisphenol-based condensate can reduce the carbon black concentration in the electrolyte to 3 massppm or less, which is much more effective than lignin. It was. Inclusion of a bisphenol-based condensate with polyacrylic acid improved both low-temperature high-rate discharge performance and charge acceptance performance, and contributed to improved durability performance. However, if 1 mass% of the bisphenol condensate is contained, the turbidity of the electrolyte increases, so the bisphenol condensate is contained in the range of 0.1 mass% to 0.9 mass%.

以上のように実施例では、
・ 電解液の濁りを3massppm以下にすることにより液面の視認性を保ち、
・ 低温ハイレート放電性能と回生充電受入性能とを従来例と同等以上に保ち、
・ しかも充電不足な条件での耐久性能を向上させることができる。
As described above, in the embodiment,
・ By keeping the turbidity of the electrolyte below 3 massppm, the visibility of the liquid level is maintained,
・ Keep low-temperature high-rate discharge performance and regenerative charge acceptance performance at or above the conventional level,
・ In addition, durability performance under insufficient charging conditions can be improved.

Claims (4)

海綿状鉛を主成分とする負極活物質と、二酸化鉛を主成分とする正極活物質と、硫酸を含有し流動自在な電解液とを備えた液式鉛蓄電池において、
前記負極活物質は、化成済みの状態において前記海綿状鉛100mass%当たりで、
カーボンブラックを0.5mass%以上2.5mass%以下と、
置換基としてスルホン酸基を有するビスフェノール系縮合物から成る水溶性高分子と、
ポリアクリル酸、ポリメタクリル酸、及びポリマレイン酸及びそれらの塩から成る群の少なくとも一種のポリカルボン酸化合物、とを含有し、
かつ前記電解液は、化成済みの状態において、カーボンブラック濃度が3massppm以下であることを特徴とする、液式鉛蓄電池。
In a liquid lead acid battery comprising a negative electrode active material mainly composed of spongy lead, a positive electrode active material mainly composed of lead dioxide, and a free flowing electrolyte containing sulfuric acid,
The negative electrode active material, per 100 mass% of the spongy lead in a chemically formed state,
With carbon black 0.5mass% or more and 2.5mass% or less,
A water-soluble polymer comprising a bisphenol-based condensate having a sulfonic acid group as a substituent;
Containing at least one polycarboxylic acid compound of the group consisting of polyacrylic acid, polymethacrylic acid, and polymaleic acid and salts thereof;
In addition, the electrolytic solution has a carbon black concentration of 3 mass ppm or less in the already formed state.
前記負極活物質は、化成済みの状態において前記海綿状鉛100mass%当たりで、前記水溶性高分子を0.1mass%以上0.9mass%以下、前記ポリカルボン酸化合物を0.01mass%以上0.3mass%以下含有することを特徴とする、請求項1の液式鉛蓄電池。   The negative electrode active material contains 100 mass% of the water-soluble polymer per 100 mass% of the spongy lead in a formed state, and contains 0.1 mass% or more and 0.9 mass% or less of the water-soluble polymer, and 0.01 mass% or more and 0.3 mass% or less of the polycarboxylic acid compound. The liquid lead-acid battery according to claim 1, wherein: 前記負極活物質は、前記海綿状鉛100mass%当たりで、前記カーボンブラックを1.0mass%以上2.5mass%以下含有し、前記ポリカルボン酸化合物はポリアクリル酸またはポリアクリル酸の塩であることを特徴とする、請求項1または2の液式鉛蓄電池。   The negative electrode active material contains 1.0 mass% to 2.5 mass% of the carbon black per 100 mass% of the spongy lead, and the polycarboxylic acid compound is polyacrylic acid or a salt of polyacrylic acid. The liquid lead-acid battery according to claim 1 or 2. アイドリングストップ車用もしくは充電制御車用であることを特徴とする、請求項1〜3のいずれかの液式鉛蓄電池。   The liquid lead-acid battery according to any one of claims 1 to 3, wherein the liquid lead-acid battery is for an idling stop vehicle or a charge control vehicle.
JP2012021663A 2012-02-03 2012-02-03 Liquid lead-acid battery Active JP5884528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021663A JP5884528B2 (en) 2012-02-03 2012-02-03 Liquid lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021663A JP5884528B2 (en) 2012-02-03 2012-02-03 Liquid lead-acid battery

Publications (2)

Publication Number Publication Date
JP2013161606A true JP2013161606A (en) 2013-08-19
JP5884528B2 JP5884528B2 (en) 2016-03-15

Family

ID=49173710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021663A Active JP5884528B2 (en) 2012-02-03 2012-02-03 Liquid lead-acid battery

Country Status (1)

Country Link
JP (1) JP5884528B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071867A (en) * 2014-07-15 2014-10-01 哈尔滨工程大学 Preparation method for three-dimensional PbO2 electrocatalysis electrode
WO2015079631A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
WO2015079668A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
JP2016189297A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery
JP2017016971A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
WO2018105005A1 (en) * 2016-12-05 2018-06-14 日立化成株式会社 Lead storage battery
WO2021060323A1 (en) * 2019-09-27 2021-04-01 株式会社Gsユアサ Lead-acid battery
WO2021060326A1 (en) * 2019-09-27 2021-04-01 株式会社Gsユアサ Lead-acid battery, power supply, and method for using power supply
WO2021060327A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Lead acid storage battery
US11894560B2 (en) 2019-09-27 2024-02-06 Gs Yuasa International Ltd. Lead-acid battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670757B2 (en) 2018-04-12 2023-06-06 Gs Yuasa International Ltd. Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013005733A1 (en) * 2011-07-05 2013-01-10 株式会社Gsユアサ Flooded lead-acid battery
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
WO2013073420A1 (en) * 2011-11-16 2013-05-23 新神戸電機株式会社 Lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013005733A1 (en) * 2011-07-05 2013-01-10 株式会社Gsユアサ Flooded lead-acid battery
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
WO2013073420A1 (en) * 2011-11-16 2013-05-23 新神戸電機株式会社 Lead storage battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015079668A1 (en) * 2013-11-29 2017-03-16 株式会社Gsユアサ Lead acid battery
WO2015079631A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
WO2015079668A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
CN105794038A (en) * 2013-11-29 2016-07-20 株式会社杰士汤浅国际 Lead-acid battery
US10522837B2 (en) 2013-11-29 2019-12-31 Gs Yuasa International Ltd. Lead-acid battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery
JPWO2015079631A1 (en) * 2013-11-29 2017-03-16 株式会社Gsユアサ Lead acid battery
CN104071867A (en) * 2014-07-15 2014-10-01 哈尔滨工程大学 Preparation method for three-dimensional PbO2 electrocatalysis electrode
JP2016189297A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery
US10622634B2 (en) 2015-05-29 2020-04-14 Gs Yuasa International Ltd. Lead-acid battery and method for producing lead-acid battery
JP2017016971A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
WO2018105005A1 (en) * 2016-12-05 2018-06-14 日立化成株式会社 Lead storage battery
WO2021060323A1 (en) * 2019-09-27 2021-04-01 株式会社Gsユアサ Lead-acid battery
WO2021060326A1 (en) * 2019-09-27 2021-04-01 株式会社Gsユアサ Lead-acid battery, power supply, and method for using power supply
WO2021060327A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Lead acid storage battery
DE112020004567T5 (en) 2019-09-27 2022-06-15 Gs Yuasa International Ltd. LEAD ACID BATTERY
EP4020639A4 (en) * 2019-09-27 2023-01-25 GS Yuasa International Ltd. Lead-acid battery, power supply, and method for using power supply
US11894560B2 (en) 2019-09-27 2024-02-06 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JP5884528B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5884528B2 (en) Liquid lead-acid battery
JP6066119B2 (en) Liquid lead-acid battery
JP5892429B2 (en) Liquid lead-acid battery
JP6153073B2 (en) Lead acid battery
JP6544649B2 (en) Lead storage battery
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
JP5066825B2 (en) Lead acid battery
JP6153072B2 (en) Liquid lead-acid battery
JP6153074B2 (en) Liquid lead-acid battery
JP6400016B2 (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
JP2013084362A (en) Lead battery
JP2008243493A (en) Lead acid storage battery
JPWO2019188056A1 (en) Lead-acid battery
JP6153071B2 (en) Control valve type lead acid battery
JP4509660B2 (en) Lead acid battery
JP2010102922A (en) Control valve type lead-acid battery
JP6056454B2 (en) Lead acid battery
JP6041221B2 (en) Liquid lead-acid battery
JP5708959B2 (en) Lead acid battery
JP6203472B2 (en) Lead acid battery
JP6775764B2 (en) Lead-acid battery
JP2007213896A (en) Lead-acid storage battery
JP4503358B2 (en) Lead acid battery
JP2022187783A (en) Valve-regulated lead-acid battery, manufacturing method thereof, and power storage system including valve-regulated lead-acid battery
JPS649706B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150