JP2013159174A - Control system and control method for self-excited rectifier used for feeding substation of dc electric railroad - Google Patents

Control system and control method for self-excited rectifier used for feeding substation of dc electric railroad Download PDF

Info

Publication number
JP2013159174A
JP2013159174A JP2012020930A JP2012020930A JP2013159174A JP 2013159174 A JP2013159174 A JP 2013159174A JP 2012020930 A JP2012020930 A JP 2012020930A JP 2012020930 A JP2012020930 A JP 2012020930A JP 2013159174 A JP2013159174 A JP 2013159174A
Authority
JP
Japan
Prior art keywords
self
excited
output voltage
excited rectifier
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012020930A
Other languages
Japanese (ja)
Other versions
JP5752615B2 (en
Inventor
Ken Yoshii
剣 吉井
Takeshi Konishi
武史 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2012020930A priority Critical patent/JP5752615B2/en
Publication of JP2013159174A publication Critical patent/JP2013159174A/en
Application granted granted Critical
Publication of JP5752615B2 publication Critical patent/JP5752615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a control system or the like for a self-excited rectifier, in which an appropriate output voltage is controlled in accordance with an operation condition of a train traveling along a railroad line.SOLUTION: A plurality of DC substations 7a, 7b, ... are connected to electric train cables 3 and rails 5. On the inside of the DC substations 7a, 7b, ..., a control section 9 and a self-excited rectifier 11 are disposed, respectively. In accordance with a predetermined condition, the control section 9 controls an output voltage command value of the self-excited rectifier. For example, in morning and evening rush hours, the number of trains to travel along a railroad line is increased and in such a case, many trains may be accelerated simultaneously. Therefore, within a predetermined time range where the number of trains is increased, the control section 9 performs control to increase an output voltage of the self-excited rectifier 11. On the other hand, in a time zone where the number of trains is decreased such as in the daytime, the control section 9 performs control to reduce the output voltage of the self-excited rectifier 11. Thus, regenerative brake invalidation is suppressed and regenerative power can be utilized effectively.

Description

本発明は、直流電気鉄道のき電用変電所に用いられ、列車の運行状況に応じて出力電圧を制御する自励式整流器の制御システム等に関するものである。   The present invention relates to a control system for a self-excited rectifier that is used in a feeding substation of a DC electric railway and controls an output voltage according to a train operation state.

従来、直流電気鉄道では、三相交流をシリコン整流器で直流に順変換して電力供給するケースが多かった。しかし、シリコン整流器は、列車が加速(力行)する際、その内部抵抗によって直流出力電圧が低下する。このため、場合によっては列車の運行に対して十分な電力を供給することができず、運行に支障を来す場合があった。   Conventionally, in DC electric railways, there are many cases where power is supplied by converting three-phase alternating current into direct current using a silicon rectifier. However, when the train accelerates (powering), the DC output voltage of the silicon rectifier decreases due to its internal resistance. For this reason, in some cases, sufficient electric power could not be supplied for the operation of the train, which sometimes hindered the operation.

これに対し、直流電気鉄道のき電変電所に自励式整流器を適用する場合がある。自励式整流器は、その出力電圧を一定に制御することが可能であるとともに、交流側(電力系統側)と直流側(列車側)の間で双方に電力の授受が可能である。したがって、列車の減速時(回生ブレーキ時)に生じる余剰電力を電力系統に返すことも可能である。このため、安定したブレーキ動作や電力の有効利用に効果的である。   On the other hand, a self-excited rectifier may be applied to a feeding substation of a DC electric railway. The self-excited rectifier can control the output voltage to be constant, and can exchange power between the AC side (power system side) and the DC side (train side). Therefore, it is possible to return surplus power generated when the train decelerates (during regenerative braking) to the power system. For this reason, it is effective for stable braking operation and effective use of electric power.

直流変電所に自励式整流器を設置する例としては、例えば、沿線に沿って配置された複数の直流変電所に設備される各自励式整流器を、超電導線を用いたき電線に共通に接続し、前記自励式整流器を並列運転してき電線に直流電圧を給電する超電導直流き電システムがある(特許文献1)。   As an example of installing a self-excited rectifier in a DC substation, for example, each self-excited rectifier installed in a plurality of DC substations arranged along a line is commonly connected to a feeder using a superconducting wire, There is a superconducting DC feeding system that operates a self-excited rectifier in parallel and feeds a DC voltage to the electric wire (Patent Document 1).

特開2011−051558号公報JP 2011-051558 A

通常、複数の直流変電所が配置される沿線上に、多くの列車が走行する場合には、各列車の加速のタイミングが重なる場合がある。この場合には、列車の加速に伴い多くの電力を消費するため、一時的に電圧降下が生じる場合がある。   Usually, when many trains travel on a line along which a plurality of DC substations are arranged, the acceleration timing of each train may overlap. In this case, since a lot of electric power is consumed as the train accelerates, a voltage drop may occur temporarily.

また、同様に、複数の直流変電所が配置される沿線上に、ほとんど列車が走行していない場合がある。このような場合には、走行する列車の回生時において、回生車両の近傍に、回生電力を消費する他の加速車両がいない場合がある。   Similarly, there are cases where almost no trains are traveling along a line along which a plurality of DC substations are arranged. In such a case, there may be no other acceleration vehicle that consumes regenerative power near the regenerative vehicle when the traveling train is regenerating.

回生時には、回生車両のパンタ点電圧は、各直流変電所の整流器の出力電圧に加えて、き電回路の抵抗(電力の供給元と消費先の距離が増加するほど高くなる)と、回生電流の掛け算分増加する。この際、パンタ点電圧が高すぎると、列車は、回路保護のために回生ブレーキを抑制し、停止させてしまう場合がある。   During regeneration, the punter voltage of the regenerative vehicle increases in addition to the output voltage of the rectifier of each DC substation, the resistance of the feeder circuit (the higher the distance between the power supply source and the consumption destination), and the regenerative current Increase by the multiplication of At this time, if the punter voltage is too high, the train may suppress and stop the regenerative braking for circuit protection.

本発明は、このような課題を鑑みてなされたもので、沿線を走行する列車の運行状況に応じて、適切な出力電圧に制御する自励式整流器の制御システム等を提供することを目的とする。   This invention is made in view of such a subject, and it aims at providing the control system of the self-excited rectifier etc. which control to an appropriate output voltage according to the operation condition of the train which runs along a railway line. .

前述した目的を達成するために、第1の発明は、直流電気鉄道のき電用変電所に用いられる自励式整流器の制御システムであって、直流電気鉄道の沿線に沿って配置される複数のき電用変電所のそれぞれに設置される自励式整流器と、前記自励式整流器の出力電圧を制御する制御部と、を具備し、前記制御部は、前記自励式整流器の出力電圧を変化させることが可能であり、直流電気鉄道の沿線における列車の在線状況に応じて、前記複数のき電用変電所のそれぞれに設置される前記自励式整流器の出力電圧を略同時に増減させることを特徴とする直流電気鉄道のき電用変電所に用いられる自励式整流器の制御システムである。   In order to achieve the above-mentioned object, a first invention is a control system for a self-excited rectifier used in a feeding substation of a DC electric railway, and includes a plurality of devices arranged along the line of the DC electric railway. A self-excited rectifier installed in each of the feeding substations, and a control unit that controls the output voltage of the self-excited rectifier, wherein the control unit changes the output voltage of the self-excited rectifier. The output voltage of the self-excited rectifiers installed in each of the plurality of feeder substations is increased or decreased substantially simultaneously according to the status of the train along the DC electric railway. This is a control system for a self-excited rectifier used in a feeding substation of a DC electric railway.

前記制御部はタイマを有し、前記制御部は、前記タイマによって、沿線に列車が混雑すると予測される高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなると予測される低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることが望ましい。   The control unit has a timer, and the control unit increases the output voltage of the self-excited rectifier when the timer is in a high-density operation time zone where a train is expected to be congested along the line, and the number of trains decreases. It is desirable to reduce the output voltage of the self-excited rectifier at the expected low density operation time zone.

この場合、前記制御部は、前記き電用変電所とは別の場所に配置され、前記制御部によって、沿線に沿って配置される複数の前記自励式整流器の出力電圧を一括して制御することが望ましい。   In this case, the control unit is arranged at a place different from the feeding substation, and the control unit collectively controls the output voltages of the plurality of self-excited rectifiers arranged along the railway line. It is desirable.

また、前記自励式整流器毎にそれぞれ前記制御部が設置され、前記自励式整流器毎に前記制御部によって、前記自励式整流器の出力電圧が制御されてもよい。   The control unit may be installed for each self-excited rectifier, and the output voltage of the self-excited rectifier may be controlled by the control unit for each self-excited rectifier.

前記制御部は、前記自励式整流器の出力電圧を増減させる際、前記自励式整流器の出力電圧を所定の変化率で緩やかに変化させ、それぞれの前記自励式整流器の間に生じる出力電圧の差が、前記自励式整流器の横流防止電圧を超えないように設定されることが望ましい。   When increasing or decreasing the output voltage of the self-excited rectifier, the control unit gradually changes the output voltage of the self-excited rectifier at a predetermined rate of change, and a difference in output voltage generated between the self-excited rectifiers Preferably, the self-excited rectifier is set so as not to exceed a cross current prevention voltage.

第1の発明によれば、沿線の列車の運行状況に応じて、自励式整流器の出力電圧を変動させることができる。このため、例えば混雑時(高密度運行時)には、直流変電所における自励式整流器の出力電圧を高めることで、電圧低下に伴う加速低下等を防止し、より安定した運行を得ることができる。また、列車の少ない低密度運行時には、直流変電所における自励式整流器の出力電圧を低めることで、回生失効を抑制し、効率良く回生電力を利用することができる。   According to the first invention, the output voltage of the self-excited rectifier can be varied in accordance with the operation status of the train along the line. For this reason, for example, at the time of congestion (during high-density operation), by increasing the output voltage of the self-excited rectifier in the DC substation, it is possible to prevent a decrease in acceleration due to the voltage decrease and obtain more stable operation. . Moreover, at the time of low-density operation with few trains, by reducing the output voltage of the self-excited rectifier in the DC substation, regenerative invalidation can be suppressed and regenerative power can be used efficiently.

また、複数の直流変電所におけるそれぞれの自励式整流器の出力電圧を、略同時に変動させるため、出力電圧の変化時において、直流変電所間の横流の発生を防止することができる。   In addition, since the output voltages of the self-excited rectifiers in the plurality of DC substations are changed substantially simultaneously, it is possible to prevent the occurrence of cross current between the DC substations when the output voltage changes.

また、制御部をタイマによって動作させれば、あらかじめ設定された混雑時間帯(高密度運行時間帯)になると、直流変電所における自励式整流器の出力電圧を高め、日中などの列車の運行の少ない時間帯(低密度運行時間帯)には、出力電圧を下げるようにすることで、システムを複雑にすることなく、適切な制御を行うことができる。この場合、制御部が、変電所とは別の指令所等に配置され、指令所等において一括して沿線の各変電所の自励式整流器を制御することで、全ての自励式整流器を確実に同時に制御することができる。なお、制御部における制御は、タイマではなく、沿線における在線状況に応じて、作業者によって行ってもよい。このようにすることで、在線状況に応じてより正確な制御を行うことができる。   Also, if the control unit is operated by a timer, the output voltage of the self-excited rectifier at the DC substation will be increased and the operation of the train during the daytime will be increased when the preset congestion time zone (high-density operation time zone) is reached. In a small time zone (low density operation time zone), it is possible to perform appropriate control without complicating the system by lowering the output voltage. In this case, the control unit is placed at a command station other than the substation, and all the self-excited rectifiers are reliably controlled by controlling the self-excited rectifiers at each substation along the line at the command station. It can be controlled simultaneously. In addition, you may perform control in a control part not by a timer but by an operator according to the existing line condition along a railway. By doing in this way, more exact control can be performed according to a standing line situation.

また、自励式整流器の出力電圧を制御する際、出力電圧を、所定の変化率で所定時間をかけて増減させることで、それぞれの直流変電所における自励式整流器の出力電圧のばらつき(タイマ誤差や機器誤差)によって、変電所間の横流の発生を防止することができる。   Also, when controlling the output voltage of the self-excited rectifier, the output voltage is increased and decreased over a predetermined time at a predetermined rate of change, thereby allowing variations in the output voltage of the self-excited rectifier at each DC substation (timer error and The occurrence of cross current between substations can be prevented by the equipment error).

第2の発明は、直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法であって、直流電気鉄道の沿線に沿って配置される複数のき電用変電所のそれぞれに設置される自励式整流器と、前記自励式整流器の出力電圧を制御する制御部と、を用い、前記制御部により、沿線に列車が混雑する高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなる低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることで、直流電気鉄道の沿線における列車の在線状況に応じて、前記複数のき電用変電所のそれぞれに設置される前記自励式整流器の出力電圧を略同時に増減させることを特徴とする直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法である。   A second invention is a control method for a self-excited rectifier used in a feeding substation of a DC electric railway, and is installed in each of a plurality of feeding substations arranged along the line of the DC electric railway. The self-excited rectifier and a control unit that controls the output voltage of the self-excited rectifier, and the control unit causes the output voltage of the self-excited rectifier to enter a high-density operation time zone in which a train is congested along the line. When the low-density operation time zone in which the number of trains is reduced, the output voltage of the self-excited rectifier is reduced, so that the plurality of feeder substations are changed according to the status of the train along the DC electric railway. A control method for a self-excited rectifier used in a feeding substation of a DC electric railway, wherein the output voltage of the self-excited rectifier installed at each of the stations is increased or decreased substantially simultaneously.

前記制御部に設けられるタイマによって、沿線に列車が混雑すると予測されるあらかじめ設定された高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなると予測されるあらかじめ設定された低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることが望ましい。   The timer provided in the control unit increases the output voltage of the self-excited rectifier and predicts that the number of trains will decrease when it reaches a preset high-density operation time zone where the train is expected to be congested along the line. It is desirable to reduce the output voltage of the self-excited rectifier when the low density operation time period is reached.

前記制御部は、電車線電圧または各き電用変電所における電流に基づいて、沿線に沿って配置される複数の前記自励式整流器の出力電圧を一括して制御することが望ましい。   It is desirable that the control unit collectively controls the output voltages of the plurality of self-excited rectifiers arranged along the railway line based on a train line voltage or a current at each feeding substation.

前記制御部は、前記自励式整流器の出力電圧を増減させる際、それぞれの前記自励式整流器の間に生じる出力電圧の差が、前記自励式整流器の横流防止電圧を超えないように、前記自励式整流器の出力電圧を所定の変化率で緩やかに変化させることが望ましい。   When the control unit increases or decreases the output voltage of the self-excited rectifier, the difference between the output voltages generated between the self-excited rectifiers does not exceed the cross current prevention voltage of the self-excited rectifier. It is desirable to gently change the output voltage of the rectifier at a predetermined rate of change.

第2の発明によれば、周囲の列車の運行状況に応じて、適切な条件で自励式整流器の出力電圧を変動させることができる。   According to the second invention, the output voltage of the self-excited rectifier can be varied under appropriate conditions in accordance with the operation status of surrounding trains.

本発明によれば、沿線を走行する列車の運行状況に応じて、適切な出力電圧に制御する自励式整流器の制御システム等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control system etc. of the self-excitation rectifier which controls to an appropriate output voltage according to the operation condition of the train which runs along a railway line can be provided.

本発明の実施の形態に係る自励式整流器制御システム1の概略構成図。1 is a schematic configuration diagram of a self-excited rectifier control system 1 according to an embodiment of the present invention. 直流出力電圧と直流出力電流との関係を示す図。The figure which shows the relationship between DC output voltage and DC output current. (a)直流出力電圧の変動を示す図、(b)は(a)のD部拡大図。(A) The figure which shows the fluctuation | variation of DC output voltage, (b) is the D section enlarged view of (a). 直流出力電圧の変動を示す図。The figure which shows the fluctuation | variation of DC output voltage. 自励式整流器の制御方法の一例を示すフローチャート。The flowchart which shows an example of the control method of a self-excited rectifier.

以下、図面に基づいて本発明に係る自励式整流器制御システムの実施形態を詳細に説明する。図1は、自励式整流器制御システム1の概略構成図である。   Hereinafter, embodiments of a self-excited rectifier control system according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a self-excited rectifier control system 1.

図1に示すように、電車線3およびレール5には複数のき電用の直流変電所7a、7b、・・・が接続される(図では、直流変電所を2か所のみ図示する)。直流変電所7a、7b、・・・は、交流側(電力系統側)と直流側(列車側)との間に設けられる。直流変電所7a、7b、・・・の内部には、それぞれ自励式整流器11が配置される。また、直流変電所7a、7b、・・・とは異なる位置の、例えば指令所には、制御部9が配置される。   As shown in FIG. 1, a plurality of DC substations 7a, 7b,... For feeding are connected to the train line 3 and the rail 5 (only two DC substations are shown in the figure). . The DC substations 7a, 7b,... Are provided between the AC side (power system side) and the DC side (train side). Self-excited rectifiers 11 are arranged in the DC substations 7a, 7b,. Moreover, the control part 9 is arrange | positioned in the command station of the position different from DC substation 7a, 7b, ..., for example.

制御部9は、所定の条件に応じて、複数の自励式整流器11の出力電圧指令値を同時に制御することができる。制御部9の制御条件としては、例えば、時間によって出力電圧を制御することができる。   The controller 9 can simultaneously control the output voltage command values of the plurality of self-excited rectifiers 11 according to predetermined conditions. As a control condition of the control unit 9, for example, the output voltage can be controlled by time.

例えば、朝夕のラッシュ時においては、沿線を走行する列車本数が多く(高密度運行状態)、この場合には、同時に多くの列車が加速する場合がある。したがって、一時的に大きな電力を消費する恐れがある。このため、列車本数が増える所定時間範囲には、制御部9は、自励式整流器11の出力電圧を増加するように制御する。一方、日中など、列車の本数の少ない時間帯(低密度運行状態)においては、制御部9は、自励式整流器11の出力電圧を低下するように制御する。このようにすることで、回生失効を抑制し、回生電力を有効に利用することができる。   For example, during morning and evening rush hours, the number of trains traveling along the railway is large (high-density operation state), and in this case, many trains may accelerate at the same time. Therefore, there is a risk of temporarily consuming a large amount of power. For this reason, the control part 9 is controlled to increase the output voltage of the self-excited rectifier 11 in the predetermined time range when the number of trains increases. On the other hand, the control unit 9 controls the output voltage of the self-excited rectifier 11 to be reduced in a time zone (low-density operation state) where the number of trains is small, such as during the daytime. By doing in this way, regeneration invalidation can be suppressed and regenerative electric power can be used effectively.

なお、上述したような時間帯による制御を行う場合には、制御部9に設けられるタイマによって、沿線の全ての自励式整流器11の出力電圧が略同時に増減するように制御される。このようにすることで、直流変電所7a、7b、・・・間の横流を防止することができる。   In the case of performing the control in the time zone as described above, the output voltage of all the self-excited rectifiers 11 along the line is controlled so as to increase or decrease substantially simultaneously by a timer provided in the control unit 9. By doing in this way, the cross current between DC substation 7a, 7b, ... can be prevented.

また、制御部9には、あらかじめ高密度運行時間帯および低密度運行時間帯が設定される。また、曜日や休日等に応じてそれぞれの時間帯を設定変化させることもできる。   The control unit 9 is set in advance with a high-density operation time zone and a low-density operation time zone. Also, the respective time zones can be set and changed according to the day of the week or holidays.

また、他の制御方法としては、実際の列車の運行状況を監視するようにしてもよい。例えば、電車線3およびレール5間の電車線電圧を監視する電圧監視部を設け、所定時間におけるその平均電圧から、列車の運行状況を把握してもよい。この場合には、電圧監視部によって高密度運行状態と判定されると、制御部9は、各直流変電所のそれぞれの自励式整流器11に対して、略同時に出力電圧を制御すればよい。また、直流変電所7a、7b、・・・の電流を監視し、その平均電流(電流総和)によって、各直流変電所のそれぞれの自励式整流器11に対して、略同時に出力電圧を制御してもよい。このように、在線状況を監視して各自励式整流器11の出力電圧を制御する場合には、作業者が、制御部9を操作して、自励式整流器11の出力電圧を適宜制御してもよい。   As another control method, the actual operation status of the train may be monitored. For example, a voltage monitoring unit that monitors the train line voltage between the train line 3 and the rail 5 may be provided, and the operation status of the train may be grasped from the average voltage at a predetermined time. In this case, if the voltage monitoring unit determines that the operation state is high density, the control unit 9 may control the output voltage substantially simultaneously with respect to each self-excited rectifier 11 of each DC substation. Further, the current of the DC substations 7a, 7b,... Is monitored, and the output voltage is controlled almost simultaneously with respect to each self-excited rectifier 11 of each DC substation by the average current (current sum). Also good. In this way, when the status of the standing line is monitored and the output voltage of each self-excited rectifier 11 is controlled, the operator may operate the control unit 9 to appropriately control the output voltage of the self-excited rectifier 11. .

また、沿線に一か所配置される制御部9による一括制御ではなく、それぞれの自励式整流器11ごとに制御部9を設置してもよい。この場合には、制御部9は、あらかじめ設定されたタイマによって、それぞれの自励式整流器11を制御することができる。なお、以下の例では、制御部9は、指令所等に配置されるものとして説明する。   Moreover, you may install the control part 9 for every self-excited rectifier 11 instead of the collective control by the control part 9 arrange | positioned at one place along a railway line. In this case, the control unit 9 can control each self-excited rectifier 11 by a preset timer. In the following example, the control unit 9 will be described as being arranged at a command station or the like.

図2は、自励式整流器11の直流出力電流と直流出力電圧の関係を示す図である。通常時(または低密度運行状態)においては、図中Aで示す低電圧側の直流出力電圧とし、高密度運行状態においては、図中Bで示す高電圧側の直流出力電圧となるように制御される。この場合、例えば、通常時(図中A)を1500Vとすると、混雑時(図中B)を1600Vとすればよい。   FIG. 2 is a diagram showing the relationship between the DC output current and DC output voltage of the self-excited rectifier 11. During normal operation (or in a low-density operation state), control is performed so that the DC output voltage is on the low voltage side indicated by A in the figure, and in the high-density operation state, the DC output voltage is on the high voltage side indicated by B in the figure. Is done. In this case, for example, if the normal time (A in the figure) is 1500 V, the crowded time (B in the figure) may be 1600 V.

ここで、直流出力電流の正負の電圧差(力行時出力電圧と回生時出力電圧の差であって、図中Cで示す)は、横流防止電圧であり、直流変電所間での横流を防止するものである。横流防止電圧としては、例えば30V程度に設定される。   Here, the positive / negative voltage difference of the DC output current (the difference between the output voltage during power running and the output voltage during regeneration, indicated by C in the figure) is a cross current prevention voltage, and prevents a cross current between DC substations. To do. The cross current prevention voltage is set to about 30 V, for example.

次に、自励式整流器11の直流出力電圧の変更方法について説明する。図3(a)は、例えば、直流出力電圧の1日の変動例を示す図、図3(b)は図3(a)のD部拡大図である。前述の通り、自励式整流器11の直流出力電圧は、周囲の在線状況に応じて変動する。   Next, a method for changing the DC output voltage of the self-excited rectifier 11 will be described. FIG. 3A is a diagram showing an example of a daily fluctuation of the DC output voltage, and FIG. 3B is an enlarged view of a portion D in FIG. 3A. As described above, the DC output voltage of the self-excited rectifier 11 varies depending on the surrounding line condition.

例えば、図3(a)のFは朝のラッシュ時間帯であり、Gは日中の低密度運行時間帯、Hは夕方のラッシュ時間帯である。制御部9は、在線状況に応じて自励式整流器11の直流出力電圧を制御する。例えば、制御部9がそれぞれタイマによって制御される場合には、沿線に配置される全ての直流変電所7a、7b、・・・のそれぞれの自励式整流器11の直流出力電圧が、所定時刻になると同時に増減する。タイマとしては、電波時計やGPSの時刻信号等を用いることができる。   For example, F in FIG. 3A is a morning rush hour, G is a daytime low-density operation hour, and H is an evening rush hour. The control unit 9 controls the direct-current output voltage of the self-excited rectifier 11 according to the on-line condition. For example, when each control unit 9 is controlled by a timer, when the DC output voltage of each self-excited rectifier 11 of all DC substations 7a, 7b,. Increase or decrease at the same time. As the timer, a radio clock or a GPS time signal can be used.

直流出力電圧の増減の際には、制御部9は、所定の変化率で直流出力電圧を制御する。例えば、図3(b)に示すように、ある自励式整流器11の直流出力電圧(図中K)は、時間Iをかけて増加される。なお、直流出力電圧を低下させる際にも逆の制御で行われる。   When increasing or decreasing the DC output voltage, the control unit 9 controls the DC output voltage at a predetermined rate of change. For example, as shown in FIG. 3B, the DC output voltage (K in the figure) of a certain self-excited rectifier 11 is increased over time I. The reverse control is also performed when the DC output voltage is lowered.

前述の通り、沿線上のそれぞれの直流変電所の自励式整流器11は、全て同時に制御される。しかし、機器の誤差や、タイマの誤差などによって、直流出力電圧の変化が、全て完全に一致せず、多少のずれを生じる場合がある(例えば、図3(b)のKに対するL)。この場合、ある時点でのそれぞれの直流出力電圧には、電圧差(図中J)が生じる恐れがある。   As described above, all the self-excited rectifiers 11 of the DC substations along the railway line are controlled simultaneously. However, due to device errors, timer errors, etc., the changes in the DC output voltage may not all coincide completely and may cause a slight shift (for example, L with respect to K in FIG. 3B). In this case, there is a possibility that a voltage difference (J in the figure) occurs in each DC output voltage at a certain time.

本発明では、このような誤差によって横流が生じることを防止するため、この誤差が横流防止電圧(図2の電圧C)よりも小さくなるように設定される。このように制御することで、直流出力電圧を変動させる際に、直流変電所7a、7b、・・・間における横流を防止することができる。   In the present invention, in order to prevent the occurrence of cross current due to such an error, this error is set to be smaller than the cross current prevention voltage (voltage C in FIG. 2). By controlling in this way, it is possible to prevent a cross current between the DC substations 7a, 7b,.

例えば、通常時と混雑時(図2のAとB)の電圧差が100Vの場合、制御部9は、例えば10分(図3(b)の時間I)程度の時間をかけて直流出力電圧を変化させる。このようにすることで、多少の誤差が生じた場合であっても、自励式整流器11間の電圧差(図3(b)の電圧J)が、横流防止電圧(例えば30V)を超えることがない。また、直流出力電圧の変動を緩やかに行うことで、より安定した電圧制御を行うことができる。   For example, when the voltage difference between the normal time and the crowded time (A and B in FIG. 2) is 100 V, the control unit 9 takes about 10 minutes (time I in FIG. 3B) for the DC output voltage. To change. By doing so, even if some error occurs, the voltage difference between the self-excited rectifiers 11 (voltage J in FIG. 3B) may exceed the cross current prevention voltage (for example, 30 V). Absent. Moreover, more stable voltage control can be performed by gently changing the DC output voltage.

なお、システムが複雑にはなるが、それぞれの自励式整流器11の直流出力電圧を全て監視し、この最大差があらかじめ設定された横流防止電圧以下となるように、それぞれの自励式整流器11を個々に制御することも可能である。   Although the system becomes complicated, each DC output voltage of each self-excited rectifier 11 is monitored, and each self-excited rectifier 11 is individually set so that the maximum difference is equal to or less than a preset cross current prevention voltage. It is also possible to control it.

図4は、時間帯による制御のみではなく、時間帯による制御に加え、さらに実際の在線状況に応じて、自励式整流器11の直流出力電圧を制御する状態を示す。なお、図4におけるF、G、Hは、図3(a)と同様に、Fは朝のラッシュ時間帯であり、Gは日中の低密度運行時間帯、Hは夕方のラッシュ時間帯である。   FIG. 4 shows a state in which the direct-current output voltage of the self-excited rectifier 11 is controlled in accordance with not only the control based on the time zone but also the control based on the time zone, and in addition to the actual standing line condition. Note that F, G, and H in FIG. 4 are the morning rush hours, G is the low-density operation hours during the day, and H is the evening rush hours, as in FIG. is there.

図4に示す例では、例えば、ラッシュ時において、自励式整流器11の直流出力電圧を増加させた後においても、さらに、その直流出力電圧が増加される(図4のM部)。例えば、ラッシュ時において、予定よりも列車が混雑することによって、一時的に大きな電力が消費されるような場合には、混雑時に増加された直流出力電圧に対し、さらに沿線の各自励式整流器11の直流出力電圧を全て同時にさらに増加させてもよい。この場合には、混雑時を1600Vとした場合には、さらに100V増加させて1700Vとすればよい。   In the example illustrated in FIG. 4, for example, even after the DC output voltage of the self-excited rectifier 11 is increased during a rush hour, the DC output voltage is further increased (M portion in FIG. 4). For example, when a large amount of electric power is temporarily consumed due to the congestion of the train during the rush hour, the self-excited rectifiers 11 along the line are further protected against the DC output voltage increased during the congestion. The DC output voltages may all be increased further at the same time. In this case, when the congestion time is set to 1600V, the voltage may be further increased by 100V to 1700V.

同様に、例えば、日中の低密度運行時間帯において、自励式整流器11の直流出力電圧を通常状態に制御した後において、予定よりも列車が混雑することによって、一時的に大きな電力が消費されるような場合には、通常状態の直流出力電圧に対し、沿線の各自励式整流器11の直流出力電圧を全て同時に増加させてもよい(図中L部)。この場合には、通常時を1500Vとした場合には、100V増加させて1600Vとすればよい。   Similarly, for example, in the low-density operation hours during the daytime, after controlling the DC output voltage of the self-excited rectifier 11 to the normal state, a large amount of power is temporarily consumed due to congestion of the train than planned. In such a case, all the DC output voltages of the self-excited rectifiers 11 along the line may be increased simultaneously with respect to the DC output voltage in the normal state (L portion in the figure). In this case, when the normal time is 1500 V, the voltage may be increased by 100 V to 1600 V.

また、例えば、ラッシュ時において、自励式整流器11の直流出力電圧を増加させた後においても、予定よりも列車が混雑しない場合には、混雑時に増加された直流出力電圧に対し、沿線の各自励式整流器11の直流出力電圧を全て同時にさらに低減させてもよい。この場合には、混雑時を1600Vとした場合には、100V低下させて1500Vとすればよい。   In addition, for example, when the train is not congested more than planned even after the DC output voltage of the self-excited rectifier 11 is increased during rush hours, each self-excited system along the line with respect to the DC output voltage increased at the time of congestion. All the DC output voltages of the rectifier 11 may be further reduced simultaneously. In this case, when the congestion time is set to 1600V, the voltage may be reduced by 100V to 1500V.

なお、上述の制御は、例えば、時間帯による制御をタイマによって行い、その他の制御(図中M部、L部、N部の制御)は、作業者による判断や、他の電圧監視部などによって制御すればよい。   In addition, the above-mentioned control performs control by a time zone, for example by a timer, and other control (control of M part, L part, and N part in a figure) is judged by an operator, other voltage monitoring parts, etc. Control is sufficient.

図5は、自励式整流器11の制御方法の一例を示す図である。例えば、制御部9は、次のように自励式整流器11を制御する。まず、通常状態(低密度運行状態)において、制御部9は、自励式整流器11の直流出力電圧を低電圧側(図2のA)に設定する(ステップ101)。   FIG. 5 is a diagram illustrating an example of a method for controlling the self-excited rectifier 11. For example, the control unit 9 controls the self-excited rectifier 11 as follows. First, in the normal state (low density operation state), the control unit 9 sets the DC output voltage of the self-excited rectifier 11 to the low voltage side (A in FIG. 2) (step 101).

高密度運行状態ではない場合には(ステップ102)、低電圧側で保持されるが、指令所等から別途出力電圧変更指示があれば(ステップ105)、直流出力電圧が指示によって制御される(ステップ106)。例えば、低電圧側の時間帯においても、電力消費が多い場合には、電圧を増加し、増加した状態において、電力の消費が低下すれば、通常電圧に戻るように指示される(図4のL部)。なお、低電圧側の状態から、さらに電圧を低減することはない。   When not in a high-density operation state (step 102), it is held on the low voltage side, but if there is a separate output voltage change instruction from the command center (step 105), the DC output voltage is controlled by the instruction (step 105). Step 106). For example, even in the time zone on the low voltage side, if the power consumption is large, the voltage is increased, and if the power consumption decreases in the increased state, an instruction is given to return to the normal voltage (FIG. 4). L part). Note that the voltage is not further reduced from the low voltage side state.

この状態から、高密度運行状態となると、制御部9は、自励式整流器11の直流出力電圧を増加させ、高電圧側(図2のB)に設定する(ステップ102、103)。なお、高密度運行状態であるかどうかの判断は、前述したように、タイマによって行ってもよく、電車線電圧の変動を監視して、電車線電圧の所定時間の平均電圧が、閾値を下回った場合に高密度運行状態であると判断してもよい。   When the high-density operation state is reached from this state, the control unit 9 increases the DC output voltage of the self-excited rectifier 11 and sets it to the high voltage side (B in FIG. 2) (steps 102 and 103). Note that, as described above, the determination as to whether the vehicle is in a high-density operation state may be made by using a timer. The variation in the train line voltage is monitored, and the average voltage of the train line voltage for a predetermined time falls below a threshold value. It may be determined that the vehicle is in a high-density operation state.

高密度運行状態においては、高電圧側で保持されるが、指令所等から別途出力電圧変更指示があれば(ステップ107)、直流出力電圧が指示によって制御される(ステップ108)。例えば、高電圧側の時間帯においても、電力消費が少ない場合には、電圧を低下させ、低下した状態において、電力の消費が増加すれば、高電圧側に戻るように指示される(図4のN部)。また、高電圧側の時間帯において、予定以上に電力消費が多い場合には、電圧を一時的にさらに増加させてもよい。この状態において、電力の消費が予定量になれば、通常の高電圧状態に戻るように指示される(図4のM部)。   In the high-density operation state, it is held on the high voltage side, but if there is a separate output voltage change instruction from the command center or the like (step 107), the DC output voltage is controlled by the instruction (step 108). For example, when the power consumption is small even in the time zone on the high voltage side, the voltage is lowered, and if the power consumption increases in the lowered state, an instruction is given to return to the high voltage side (FIG. 4). N part). Further, in the time zone on the high voltage side, when the power consumption is higher than planned, the voltage may be further increased temporarily. In this state, if the power consumption reaches a predetermined amount, an instruction is given to return to the normal high voltage state (M portion in FIG. 4).

さらに、この状態から、再度低密度運行状態となると、制御部9は、自励式整流器11の直流出力電圧を低下させ、低電圧側(図2のA)に設定する(ステップ104)。なお、低密度運行状態であるかどうかの判断は、前述したように、タイマによって行ってもよく、電車線電圧の変動を監視して、電車線電圧の所定時間の平均電圧が、閾値を上回った場合に低密度運行状態であると判断してもよい。以上によって、沿線の列車の運行状況に合わせて適切な直流出力電圧制御を行う。   Further, when the low density operation state is entered again from this state, the control unit 9 reduces the DC output voltage of the self-excited rectifier 11 and sets it to the low voltage side (A in FIG. 2) (step 104). As described above, the determination as to whether or not the vehicle is in a low-density operation state may be performed by a timer. The variation in the train line voltage is monitored, and the average voltage of the train line voltage for a predetermined time exceeds the threshold value. It may be determined that the vehicle is in a low density operation state. As described above, appropriate DC output voltage control is performed in accordance with the operation status of the train along the line.

以上説明したように、本実施の形態の自励式整流器制御システム1によれば、沿線の列車の運行状況に応じて、適切な出力電圧となるように自励式整流器11が制御される。したがって、各列車のパンタ点電圧が低下することにより、保護装置が作動し、加速や速度が低下することを防止することができる。また、同様に、パンタ点電圧が上昇することで、回生失効等の発生を防止することができる。   As described above, according to the self-excited rectifier control system 1 of the present embodiment, the self-excited rectifier 11 is controlled so as to have an appropriate output voltage according to the operation status of the train along the line. Therefore, it is possible to prevent the acceleration device and the speed from being lowered due to the protection device operating due to a decrease in the punter voltage of each train. Similarly, the rise of the punter point voltage can prevent the occurrence of regeneration invalidation and the like.

また、全直流変電所7a、7b、・・・において自励式整流器11の直流出力電圧を同時に制御するため、変電所間の横流の発生を防止することができる。さらに、直流出力電圧の変更は、所定の変化率で所定時間以上をかけて緩やかに行われる。したがって、機器間誤差等により、変電所間に横流が生じることを防止することができるとともに、安定して制御を行うことができる。   Further, since the DC output voltage of the self-excited rectifier 11 is simultaneously controlled in all the DC substations 7a, 7b,..., It is possible to prevent the occurrence of cross current between the substations. Furthermore, the change of the DC output voltage is gradually performed at a predetermined change rate over a predetermined time. Therefore, it is possible to prevent a cross current from being generated between substations due to an error between devices, and to perform stable control.

また、タイマによってそれぞれの自励式整流器を制御することで、一括して全ての自励式整流器11を同時に制御することができる。   Moreover, by controlling each self-excited rectifier by the timer, all the self-excited rectifiers 11 can be controlled simultaneously.

以上、添付図面を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1………自励式整流器制御システム
3………電車線
5………レール
7a、7b………直流変電所
9………制御部
11………自励式整流器
1 ... Self-excited rectifier control system 3 ... Train line 5 ... Rails 7a, 7b ... DC substation 9 ... Control unit 11 ... Self-excited rectifier

Claims (9)

直流電気鉄道のき電用変電所に用いられる自励式整流器の制御システムであって、
直流電気鉄道の沿線に沿って配置される複数のき電用変電所のそれぞれに設置される自励式整流器と、
前記自励式整流器の出力電圧を制御する制御部と、
を具備し、
前記制御部は、前記自励式整流器の出力電圧を変化させることが可能であり、
直流電気鉄道の沿線における列車の在線状況に応じて、前記複数のき電用変電所のそれぞれに設置される前記自励式整流器の出力電圧を略同時に増減させることを特徴とする直流電気鉄道のき電用変電所に用いられる自励式整流器の制御システム。
A control system for a self-excited rectifier used in a feeding substation of a DC electric railway,
A self-excited rectifier installed at each of a plurality of feeder substations arranged along the line of the DC electric railway,
A control unit for controlling the output voltage of the self-excited rectifier;
Comprising
The control unit can change the output voltage of the self-excited rectifier,
A DC electric railway system characterized in that the output voltage of the self-excited rectifiers installed at each of the plurality of feeder substations is increased or decreased substantially simultaneously according to the status of the train along the DC electric railway. Control system for self-excited rectifiers used in electrical substations.
前記制御部はタイマを有し、
前記制御部は、前記タイマによって、沿線に列車が混雑すると予測される高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなると予測される低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることを特徴とする請求項1記載の自励式整流器の制御システム。
The control unit has a timer,
The control unit increases the output voltage of the self-excited rectifier when the timer is in a high-density operation time zone where the train is expected to be congested along the line, and in the low-density operation time zone in which the train is expected to decrease. The control system of the self-excited rectifier according to claim 1, wherein the output voltage of the self-excited rectifier is reduced.
前記制御部は、前記き電用変電所とは別の場所に配置され、
前記制御部によって、沿線に沿って配置される複数の前記自励式整流器の出力電圧を一括して制御することを特徴とする請求項1または請求項2に記載の自励式整流器の制御システム。
The control unit is arranged at a location different from the feeder substation,
The control system for a self-excited rectifier according to claim 1 or 2, wherein the control unit collectively controls output voltages of a plurality of the self-excited rectifiers arranged along a railway line.
前記自励式整流器毎にそれぞれ前記制御部が設置され、
前記自励式整流器毎に前記制御部によって、前記自励式整流器の出力電圧が制御されることを特徴とする請求項2記載の自励式整流器の制御システム。
The control unit is installed for each self-excited rectifier,
3. The self-excited rectifier control system according to claim 2, wherein an output voltage of the self-excited rectifier is controlled by the control unit for each self-excited rectifier.
前記制御部は、前記自励式整流器の出力電圧を増減させる際、前記自励式整流器の出力電圧を所定の変化率で緩やかに変化させ、それぞれの前記自励式整流器の間に生じる出力電圧の差が、前記自励式整流器の横流防止電圧を超えないように設定されることを特徴とする請求項1から請求項4のいずれかに記載の自励式整流器の制御システム。   When increasing or decreasing the output voltage of the self-excited rectifier, the control unit gradually changes the output voltage of the self-excited rectifier at a predetermined rate of change, and a difference in output voltage generated between the self-excited rectifiers The self-excited rectifier control system according to any one of claims 1 to 4, wherein the control system is set so as not to exceed a cross-current preventing voltage of the self-excited rectifier. 直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法であって、
直流電気鉄道の沿線に沿って配置される複数のき電用変電所のそれぞれに設置される自励式整流器と、
前記自励式整流器の出力電圧を制御する制御部と、を用い、
前記制御部により、沿線に列車が混雑する高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなる低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることで、直流電気鉄道の沿線における列車の在線状況に応じて、前記複数のき電用変電所のそれぞれに設置される前記自励式整流器の出力電圧を略同時に増減させることを特徴とする直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法。
A control method for a self-excited rectifier used in a feeding substation of a DC electric railway,
A self-excited rectifier installed at each of a plurality of feeder substations arranged along the line of the DC electric railway,
A controller that controls the output voltage of the self-excited rectifier, and
The control unit increases the output voltage of the self-excited rectifier when it is in a high-density operation time zone where the train is congested along the line, and the output voltage of the self-excited rectifier is increased in the low-density operation time zone where the train is reduced. By decreasing, the output voltage of the self-excited rectifier installed at each of the plurality of feeder substations is increased or decreased substantially simultaneously in accordance with the status of the train along the DC electric railway. A control method for a self-excited rectifier used in a feeding substation of a DC electric railway.
前記制御部に設けられるタイマによって、沿線に列車が混雑すると予測されるあらかじめ設定された高密度運行時間帯になると、前記自励式整流器の出力電圧を上昇させ、列車が少なくなると予測されるあらかじめ設定された低密度運行時間帯になると、前記自励式整流器の出力電圧を減少させることを特徴とする請求項6記載の直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法。   The timer provided in the control unit increases the output voltage of the self-excited rectifier and predicts that the number of trains will decrease when it reaches a preset high-density operation time zone where the train is expected to be congested along the line. 7. The method of controlling a self-excited rectifier used in a feeding substation of a DC electric railway according to claim 6, wherein the output voltage of the self-excited rectifier is reduced when the low density operation time period is reached. 前記制御部は、電車線電圧または各き電用変電所における電流に基づいて、沿線に沿って配置される複数の前記自励式整流器の出力電圧を一括して制御することを特徴とする請求項6記載の直流電気鉄道のき電用変電所に用いられる自励式整流器の制御方法。   The control unit collectively controls output voltages of a plurality of the self-excited rectifiers arranged along a railway line based on a train line voltage or a current in each feeding substation. 6. A control method for a self-excited rectifier used in a feeding substation of a DC electric railway according to 6. 前記制御部は、前記自励式整流器の出力電圧を増減させる際、それぞれの前記自励式整流器の間に生じる出力電圧の差が、前記自励式整流器の横流防止電圧を超えないように、前記自励式整流器の出力電圧を所定の変化率で緩やかに変化させることを特徴とする請求項6から請求項8のいずれかに記載の自励式整流器の制御方法。

When the control unit increases or decreases the output voltage of the self-excited rectifier, the difference between the output voltages generated between the self-excited rectifiers does not exceed the cross current prevention voltage of the self-excited rectifier. 9. The self-excited rectifier control method according to claim 6, wherein the output voltage of the rectifier is gradually changed at a predetermined rate of change.

JP2012020930A 2012-02-02 2012-02-02 Control system and control method for self-excited rectifier used in feeding substation of DC electric railway. Expired - Fee Related JP5752615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020930A JP5752615B2 (en) 2012-02-02 2012-02-02 Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020930A JP5752615B2 (en) 2012-02-02 2012-02-02 Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.

Publications (2)

Publication Number Publication Date
JP2013159174A true JP2013159174A (en) 2013-08-19
JP5752615B2 JP5752615B2 (en) 2015-07-22

Family

ID=49171801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020930A Expired - Fee Related JP5752615B2 (en) 2012-02-02 2012-02-02 Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.

Country Status (1)

Country Link
JP (1) JP5752615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225194A1 (en) * 2017-06-07 2018-12-13 三菱電機株式会社 Dc feed voltage calculation apparatus, dc feed voltage control system, dc feed voltage calculation program, and dc feed voltage calculation method
KR20210048355A (en) * 2019-10-23 2021-05-03 한국철도기술연구원 Direct current rail system and operating method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843652B1 (en) * 2016-10-25 2018-03-29 한국철도기술연구원 AC railway supply grid feed device using phase-shift transformer and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176457A (en) * 1991-09-11 1993-07-13 Toshiba Corp Power system controller for railway
JPH08205405A (en) * 1995-01-19 1996-08-09 Toshiba Corp Controller for substation
JP2004351952A (en) * 2003-05-27 2004-12-16 Meidensha Corp Dc feeding system
JP2011051558A (en) * 2009-09-04 2011-03-17 Railway Technical Res Inst Superconductive direct current feeding system and direct current feeding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176457A (en) * 1991-09-11 1993-07-13 Toshiba Corp Power system controller for railway
JPH08205405A (en) * 1995-01-19 1996-08-09 Toshiba Corp Controller for substation
JP2004351952A (en) * 2003-05-27 2004-12-16 Meidensha Corp Dc feeding system
JP2011051558A (en) * 2009-09-04 2011-03-17 Railway Technical Res Inst Superconductive direct current feeding system and direct current feeding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225194A1 (en) * 2017-06-07 2018-12-13 三菱電機株式会社 Dc feed voltage calculation apparatus, dc feed voltage control system, dc feed voltage calculation program, and dc feed voltage calculation method
KR20210048355A (en) * 2019-10-23 2021-05-03 한국철도기술연구원 Direct current rail system and operating method thereof
KR102291641B1 (en) * 2019-10-23 2021-08-20 한국철도기술연구원 Direct current rail system and operating method thereof

Also Published As

Publication number Publication date
JP5752615B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR101478717B1 (en) System, sub-station and method for recovering brake energy of rail vehicles, rail vehicles for this system
JP5377538B2 (en) Power storage device and its installation / operation method
US9180790B2 (en) DC feeder voltage control apparatus and DC feeder voltage control system
JP5752562B2 (en) Control system for power storage device for DC electric railway
KR20110038046A (en) Power adjustment system adapted for powering an electric line for supplying power to vehicles
JP2005162076A (en) Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
JP2013023074A (en) Railway feeding system
JP2013230775A (en) Apparatus and method for controlling operation, and control program
US10195955B2 (en) System and method for reducing the electric power consumption of railway system
JP2014075864A (en) Railway vehicle
EP2915693B1 (en) Power management device and power management system
JP5752615B2 (en) Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.
EP3556604B1 (en) Station building power supply device
JP2006280113A (en) Control unit for railway vehicle
JP2008154355A (en) Accumulation equipment
JP2017158356A (en) Power supply system
JPH07304353A (en) Feeding voltage controller for railway substation
JP2016032950A (en) Control device
JP7120853B2 (en) Power supply system and power supply method
WO2014002717A1 (en) Railway system
JP5922555B2 (en) Operation management system
JP4856219B2 (en) Mobile control device
JP5509442B2 (en) Power converter and electric railway system
JP2015030406A (en) Electric power feeding system and power supply method
JP7059627B2 (en) Railway power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees