JPH07304353A - Feeding voltage controller for railway substation - Google Patents

Feeding voltage controller for railway substation

Info

Publication number
JPH07304353A
JPH07304353A JP10014694A JP10014694A JPH07304353A JP H07304353 A JPH07304353 A JP H07304353A JP 10014694 A JP10014694 A JP 10014694A JP 10014694 A JP10014694 A JP 10014694A JP H07304353 A JPH07304353 A JP H07304353A
Authority
JP
Japan
Prior art keywords
substation
power
train
distribution
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10014694A
Other languages
Japanese (ja)
Inventor
Kyo Mitsuyoshi
吉 京 三
Naoyuki Ishibashi
橋 尚 之 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10014694A priority Critical patent/JPH07304353A/en
Publication of JPH07304353A publication Critical patent/JPH07304353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the peak electric power quantity at each substation by determining the feeding charge at each substation through the calculation for optimizing the evaluation function and the range for satisfying the restraint condition, by an optimum feeding charge determining means on the basis of the result of a train situation grasping means and setting the sent-out voltage value to a rectifying device at each substation, on the basis of the determination. CONSTITUTION:The on-line situation and the operation state of a power running train and a regenerative train in a railway road line managed by an objective substation are grasped by a train situation grasping means 2. On the basis of the judgement of the train situation grasping means 2, the feeding charge of each substation is determined by an optimum feeding charge determining means 6 by carrying out the optimization calculation for the feeding charge at each substation for optimizing the evaluation function set by an evaluation function setting means 5 and the range for satisfying the restraint condition which is set by a restraint condition setting means 4. On the basis of the determined optimum feeding charge at each station, the sent-out voltage value is set in a rectifying device 27 in the substation by a sent-out voltage setting means 7 in each substation. Accordingly, the peak electric power at each substation is reduced, and the electric power regeneration can be utilized effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の変電所をもち並
列き電を行う電気鉄道き電系統における、各変電所のき
電電圧を制御する鉄道変電所き電電圧制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a railway substation feeding voltage control device for controlling feeding voltage of each substation in an electric railway feeding system having a plurality of substations and performing parallel feeding.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
に、直流電化区間では、図6に示すような隣接変電所間
20a、20bで並列にき電する並列き電方式が採用さ
れている。
2. Description of the Related Art Generally, in a DC electrification section, a parallel feeding method is adopted in which electricity is fed in parallel between adjacent substations 20a and 20b as shown in FIG.

【0003】運転用電力は、一般的には高圧の交流電力
を買電し、変電所20a、20b内の整流器27a、2
7bを用いて直流に整流した後、電車線路にき電され
る。電車線路はトロリー線22と並列に、き電線21を
設けるのが普通である。トロリー線22とき電線21と
は、き電分岐線23によって並列接続される。列車50
は集電装置たとえばパンタグラフ51を介してトロリー
線22から電気を得、電気車を動かす。その後、電力は
レール30などの帰線を経て変電所20a、20bに返
される。また、トロリー線22はセクション25で分割
できる。変電所20a、20b内には、保護装置として
高速度遮断器26a、26bなどが設置されている。
As operating power, generally, high-voltage AC power is purchased, and rectifiers 27a, 2 in the substations 20a, 20b are purchased.
After being rectified into a direct current using 7b, it is fed to a train line. It is usual that a feeder line 21 is provided in parallel with the trolley wire 22 on the train track. The trolley wire 22 and the electric wire 21 are connected in parallel by a feeder branch wire 23. Train 50
Obtains electricity from the trolley wire 22 via a current collector, for example, a pantograph 51, and drives an electric car. After that, the electric power is returned to the substations 20a and 20b via a return line such as the rail 30. Also, the trolley wire 22 can be divided at the section 25. High speed circuit breakers 26a, 26b and the like are installed as protective devices in the substations 20a, 20b.

【0004】最近の電車は、省エネルギーなどを目的と
して、電力回生ブレーキが採用されている。この電力回
生による電気の流れを図7に示す。電力回生ブレーキ
は、列車50aがブレーキをかける際に発生するエネル
ギーを電力に変換して回生し、これを他の列車50bの
力行電力として有効利用したり(図7、電力の流れ42
参照)、変電所20に電力回生設備を設け、駅設備など
の電力として有効利用する(図7、電力の流れ43参
照)ものである。
In recent trains, an electric power regenerative brake is adopted for the purpose of saving energy. The flow of electricity due to this power regeneration is shown in FIG. The electric power regenerative brake converts the energy generated when the train 50a brakes to electric power and regenerates it, and effectively uses it as the power running electric power of the other train 50b (Fig. 7, electric power flow 42).
The electric power regeneration equipment is provided in the substation 20 and is effectively used as electric power for the station equipment (see FIG. 7, electric power flow 43).

【0005】変電所の位置や諸設備の容量は、輸送計
画、路線、車両性能などにより割り出される。各変電所
のき電電圧は、通常は、だいたい共通して一定の値の範
囲で運用されている。しかし、運行ダイヤには時間帯に
よって粗密の差があり、密ダイヤの時間帯には客扱いに
よる慢性的な列車遅れが発生しやすいし、これにより列
車の団子状態が発生し、ある変電所に負荷が集中し、そ
のために不用意な列車のノッチ制限が行われたり、その
ようなことを見越して一部の設備容量を過大にしなけれ
ばならないなどの問題点があった。
The location of the substation and the capacities of various facilities are determined according to transportation plans, routes, vehicle performance, and the like. The feeding voltage of each substation is usually operated in a fixed value range in common. However, there are differences in the operating schedule depending on the time zone, and during the dense schedule time, a chronic train delay due to customer treatment is likely to occur, which causes a train dumpling and loads on a substation. However, there were problems that the notch limit of trains was inadvertently imposed and that some equipment capacity had to be oversized in anticipation of such a situation.

【0006】また、高密度線路においては、負荷がふえ
る程き電電圧やパンタ点電圧が低下するために、電車の
定時性の確保に支障がでる場合もあった。そのため、設
定電圧値を、必要な値に対して高めに設定している場合
もある。
Further, in the high-density line, the feeding voltage and the pantopoint voltage decrease as the load increases, which may hinder the punctuality of the train. Therefore, the set voltage value may be set higher than the required value.

【0007】さらに、電力回生をしようとしても、回生
失効や抑制が生じると回生電力の有効利用が図れないば
かりでなく、電力回生インバータ装置を設置している場
合にはその効果を十分発揮できないという問題も生じ
る。
Furthermore, even if an attempt is made to regenerate electric power, if regenerative invalidation or suppression occurs, not only effective use of regenerative electric power cannot be achieved, but also if an electric power regenerative inverter device is installed, its effect cannot be sufficiently exerted. Problems also arise.

【0008】本発明は上記事情を考慮してなされたもの
であり、各変電所のピーク電力量を抑制して、設備容量
をも抑制するとともに、電力回生をできるだけ有効に利
用してランニングコストを抑制することを可能にする鉄
道変電所き電電圧制御装置を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and suppresses the peak amount of electric power of each substation to suppress the installed capacity as well as utilize the electric power regeneration as effectively as possible to reduce the running cost. It is an object of the present invention to provide a railway substation feeding voltage control device that enables suppression.

【0009】[0009]

【課題を解決するための手段】本発明による鉄道変電所
き電電圧制御装置の第1の態様は、複数の変電所をも
ち、並列き電を行なう電気鉄道き電系統において、力行
車、回生車の在線状況および運行状況を把握するための
列車状況把握手段と、制約条件を設定する制約条件設定
手段と、評価関数を設定する評価関数設定手段と、各変
電所のき電電圧分担を、前記制約条件のもとで、前記評
価関数を最適にする各変電所のき電分担を決定する最適
き電分担決定手段と、前記最適き電分担決定手段により
決定したき電分担に基づき、各変電所の送出電圧値を変
電所の整流器に対して設定する送出電圧設定手段と、を
備えていることを特徴とする。
A first aspect of a railway substation feeding voltage control device according to the present invention is a power railway car or regenerative system in an electric railway feeding system having a plurality of substations and performing parallel feeding. Train status grasping means for grasping the on-rail situation and operation status of vehicles, constraint condition setting means for setting constraint conditions, evaluation function setting means for setting evaluation function, and distribution of distribution voltage of each substation, Under the constraint conditions, an optimal power distribution determining unit that determines the power distribution of each substation that optimizes the evaluation function, and based on the power distribution determined by the optimum power distribution determining unit, And a sending voltage setting means for setting the sending voltage value of the substation to the rectifier of the substation.

【0010】又、本発明による鉄道変電所き電電圧制御
装置の第2の態様は上記第1の態様において、列車状況
把握手段によって得られる現在の列車の運行状況を計画
ダイヤに照らし合せて、列車の実際の運行状況を加味し
た単位時間後の電力負荷を予測する電力負荷予測手段
と、を更に有し、変電所き電分担を決定する際に、電力
負荷予測手段により得られた電力負荷予測値に基づきき
電分担を決定することを特徴とする。
A second aspect of the railway substation feeding voltage control device according to the present invention is the above first aspect, in which the current train operation status obtained by the train status grasping means is checked against a plan diagram, An electric power load predicting means for predicting an electric power load after a unit time in consideration of the actual operation status of the train, and an electric power load obtained by the electric power load predicting means when determining the distribution of electric power to the substation. It is characterized in that the power distribution is determined based on the predicted value.

【0011】又、本発明による鉄道変電所き電電圧制御
装置の第3の態様は、上記第2の態様において、各変電
所の使用電力を記録する電力量記録手段と、電力量記録
手段によって記録された各変電所の過去の使用電力量を
用いて電力使用量の推移の特性を学習し、この特性を前
記電力量予測手段に送出する学習手段と、を備えたこと
を特徴とする。
Further, a third aspect of the railway substation feeding voltage control device according to the present invention is the electric power amount recording means for recording the electric power used in each substation and the electric energy recording means in the second aspect. And a learning unit that learns the characteristic of the transition of the power consumption amount by using the recorded past power consumption amount of each substation and sends the characteristic to the power amount prediction unit.

【0012】[0012]

【作用】上述のように構成された本発明の鉄道変電所き
電電圧制御装置の第1の態様によれば、まず、列車状況
把握手段において、対象とする変電所の管轄する鉄道路
線内の力行車、すなわち電力負荷となる列車と、回生
車、すなわち変電所もしくは他の力行車に電力を供給す
る列車の分布・種別・位置が知られる。つぎに、前記列
車の分布・種別・位置に基づき、各変電所のき電分担を
最適き電分担決定手段により、制約条件設定手段で設定
した制約条件を満たす範囲でかつ評価関数設定手段で設
定した評価関数を最適にする変電所き電分担が最適化計
算により決定される。そして、その結果決定した各変電
所最適き電分担に基づき、送り出し電圧値が変電所送り
出し電圧設定手段により変電所の整流器に設定される。
According to the first aspect of the railway substation feeding voltage control device of the present invention configured as described above, first, in the train status grasping means, the railway substation under the jurisdiction of the target substation is controlled. The distribution, type, and position of power trains, that is, trains that become electric loads, and regenerative cars, that is, trains that supply power to substations or other power cars are known. Next, based on the distribution, type, and position of the trains, the power distribution of each substation is set by the optimum power distribution determining means within the range satisfying the constraint conditions set by the constraint condition setting means and by the evaluation function setting means. The substation power distribution that optimizes the evaluated function is determined by the optimization calculation. Then, based on the optimal distribution of power distribution to each substation determined as a result, the output voltage value is set in the rectifier of the substation by the substation output voltage setting means.

【0013】これにより、各変電所の電力供給分担を全
変電所を総合的にみてリアルタイムで調整することが可
能となり、各変電所のピーク電力量を抑制し、設備容量
も抑制できるとともに、電力回生をできるだけ有効に利
用し、ランニングコストを抑制することができる。
As a result, it becomes possible to adjust the power supply sharing of each substation in real time by comprehensively considering all the substations, suppressing the peak power amount of each substation, suppressing the installed capacity, and reducing the power consumption. Regeneration can be used as effectively as possible and running costs can be suppressed.

【0014】ここで、第2の態様の電力負荷予測手段を
使えば、計算時点での列車の分布のみではなく、運行ダ
イヤなどを利用してある時間後までの列車の運行状態を
考慮した変電所のき電分担を決定することが可能とな
る。
Here, if the power load predicting means of the second aspect is used, the substation considering not only the distribution of trains at the time of calculation but also the operation state of the train up to a certain time after using the operation timetable or the like. It becomes possible to determine the distribution of power for each place.

【0015】また、第3の態様の場合では、変電所電力
量記録手段により蓄えられた各変電所の過去の使用電力
量を用いて電力使用量の推移の特性を知ることができ、
この特性を用いて電力負荷予測手段で行なう電力負荷予
測の精度を上げることができる。
Further, in the case of the third mode, it is possible to know the characteristics of the transition of the power consumption amount by using the past power consumption amount of each substation stored by the substation power amount recording means,
This characteristic can be used to improve the accuracy of the power load prediction performed by the power load prediction means.

【0016】[0016]

【実施例】本発明による鉄道変電所き電電圧制御装置
(以下、単に制御装置という)の第1の実施例の構成を
図1に示す。この実施例の制御装置は列車状況把握手段
2と、制約条件設定手段4と、評価関数設定手段5と、
最適き電分担決定手段6と、送出電圧設定手段7とを備
えており、図4に示す電気鉄道き電系統に用いられるも
のである。この図4に示す電気鉄道き電系統は、複線す
なわち上り線および下り線を有する電気鉄道を対象に
し、n個の変電所SS1 ,…SSn から並列き電を行う
ものである。k番目の変電所SSk とk+1番目の変電
所SSk+1 との間のき電区間をk区間と呼べば、図4に
おいてはk−1区間には下り線に1台の列車50a、上
り線に1台の列車50cの計2台が在線し、k区間には
下り線に1台の列車50bが在線していることを示して
いる。
FIG. 1 shows the configuration of a first embodiment of a railway substation feeding voltage control device (hereinafter, simply referred to as a control device) according to the present invention. The control device of this embodiment includes a train condition grasping unit 2, a constraint condition setting unit 4, an evaluation function setting unit 5,
It is provided with an optimum feeder allocation determining means 6 and a sending voltage setting means 7, and is used in the electric railway feeding system shown in FIG. The electric railway feeding system shown in FIG. 4 is intended for an electric railway having multiple lines, that is, an up line and a down line, and performs parallel feeding from n substations SS 1 , ... SS n . If the feeding section between the k-th substation SS k and the k + 1-th substation SS k + 1 is called a k section, in FIG. 4, one train 50a in the down line in the k-1 section, This shows that two trains, one train 50c, are on the up line, and one train 50b is on the down line in the k section.

【0017】再び図1に戻り、列車状況把握手段2は力
行車、回生車の在線状況および運行状況を把握する。各
列車の位置は軌道回路などにより検知され、列車名とと
もに運行管理システムなどを通じて伝達されるものとす
る。このとき、列車の走行速度も伝達されるとより良
い。列車状況把握手段2によって、対象とする変電所の
管轄する鉄道路線内の力行車および回生車の分布、種
別、位置を知ることができる。
Returning to FIG. 1 again, the train status grasping means 2 grasps the on-rail status and the operating status of the power train and the regenerative car. The position of each train is detected by the track circuit, etc., and transmitted along with the train name through the operation management system. At this time, it is better if the traveling speed of the train is also transmitted. With the train status grasping means 2, it is possible to know the distribution, type, and position of the powering vehicles and regenerative vehicles within the railway line under the control of the target substation.

【0018】制約条件設定手段4は最適き電分担決定手
段6において行われる最適化計算に用いられ制約条件を
設定する。
The constraint condition setting means 4 is used for the optimization calculation performed in the optimum power distribution determining means 6 and sets the constraint condition.

【0019】評価関数設定手段5は最適き電分担決定手
段6において行われる最適化計算に用いられる評価関数
を設定する。
The evaluation function setting means 5 sets the evaluation function used in the optimization calculation performed in the optimum power distribution determining means 6.

【0020】最適き電分担決定手段6は列車の分布・種
別・位置に基づいて上記設定された制約条件のもとで、
上記設定された評価関数を停留させる、各変電所の最適
なき電分担を決定する。
The optimum power distribution determining means 6 is based on the distribution, type and position of trains under the constraint conditions set above.
The optimal distribution of power supply at each substation for stopping the set evaluation function is determined.

【0021】送出電圧設定手段7は決定された最適なき
電分担に基づいて、各変電所の整流器27に送り出し電
圧値を設定する。
The sending voltage setting means 7 sets the sending voltage value to the rectifier 27 of each substation on the basis of the determined optimum power distribution.

【0022】次に、最適き電分担決定手段6によって行
われる変電所最適き電分担問題の定式化について説明す
る。以下の定式化に使用される記号の意味は以下の通り
とする(図5参照)。
Next, the formulation of the substation optimum power distribution problem, which is performed by the optimum power distribution determination means 6, will be described. The symbols used in the following formulation have the following meanings (see FIG. 5).

【0023】(記号の説明) k :変電所もしくはき電区間に対する識別インデッ
クス。
(Explanation of Symbols) k: Identification index for substation or feeding section.

【0024】(k=1,2,…,n) (k−1)−k変電所間が、kき電区間である。(K = 1, 2, ..., N) The section between (k-1) -k substation is the k feeding section.

【0025】 EOk :k変電所無負荷電圧 [V] RSSk :k変電所等価直流抵抗 [Ω] ISSk :k変電所電流 [A] ESSk :k変電所送り出し電圧 [V] rSk :k変電所架線までの抵抗 [Ω] Ifk,a :k変電所方面別き電電流(a=1,2,3,4) [A] ntk1:k区間下り列車内在台数 [台] ntk2:k区間上り列車内在台数 [台] EPk,d,j:k区間列車Dd,j パンタ点電圧 [V] d=1は下りを示し、d=2は上りを示す。E Ok : k substation no-load voltage [V] R SSk : k substation equivalent DC resistance [Ω] I SSk : k substation current [A] E SSk : k substation delivery voltage [V] r Sk : Resistance to overhead line of k substation [Ω] I fk, a : Electric current for each k substation direction (a = 1, 2, 3, 4) [A] ntk1: Number of trains in the down section of k section [unit] ntk2 : K section inbound train in-vehicle [units] E Pk, d, j : k section train D d, j pantopoint voltage [V] d = 1 indicates downhill, d = 2 indicates uphill.

【0026】 j=1,2,…,ntk1 (d=1の場合) j=1,2,…,ntk2 (d=2の場合) IPk,d,j:k区間列車Dd,j 負荷電流 [A] d=1は下りを示し、d=2は上りを示す。J = 1, 2, ..., Ntk1 (when d = 1) j = 1, 2, ..., ntk2 (when d = 2) I Pk, d, j : k section train D d, j load Current [A] d = 1 indicates down, and d = 2 indicates up.

【0027】 j=1,2,…,ntk1 (d=1の場合) j=1,2,…,ntk2 (d=2の場合) r1k,d,j:k区間架線抵抗 [Ω] j=1,2,…,ntk1+1 (d=1の場合) j=1,2,…,ntk2+1 (d=2の場合) I1k,d,j:k区間架線電流 [A] j=1,2,…,ntk1+1 (d=1の場合) j=1,2,…,ntk2+1 (d=2の場合) (決定定数)決定変数としては下記のものがある。J = 1, 2, ..., Ntk1 (when d = 1) j = 1, 2, ..., Ntk2 (when d = 2) r 1k, d, j : k section overhead line resistance [Ω] j = 1, 2, ..., Ntk1 + 1 (when d = 1) j = 1, 2, ..., ntk2 + 1 (when d = 2) I 1k, d, j : k section overhead wire current [A] j = 1, 2 , ..., ntk1 + 1 (when d = 1) j = 1, 2, ..., Ntk2 + 1 (when d = 2) (decision constant) The following are decision variables.

【0028】 変電所k(k=1,2,…,nk)の送り出し電圧ESSk [V] 変電所k等価直流抵抗RSSk [Ω] 変電所k電流ISSk [A] 変電所k方面別き電電流Ifk,a (a=1,2,3,4) [A] k区間列車Dd,j パンタ点電圧EPk,d,j [V] d=1は下りを示し、d=2は上りを示す。 Transmission voltage E SSk [V] of substation k (k = 1, 2, ..., nk) Substation k equivalent DC resistance R SSk [Ω] Substation k current I SSk [A] Substation k direction Feeding current I fk, a (a = 1, 2, 3, 4) [A] k section train D d, j Panto point voltage E Pk, d, j [V] d = 1 indicates down, d = 2 indicates going up.

【0029】 j=1,2,…,ntk1 (d=1の場合) j=1,2,…,ntk2 (d=2の場合) k区間架線電流I1k,d,j [A] d=1は下りを示し、d=2は上りを示す。J = 1, 2, ..., Ntk1 (when d = 1) j = 1, 2, ..., Ntk2 (when d = 2) k section overhead wire current I 1k, d, j [A] d = 1 indicates downlink, and d = 2 indicates uplink.

【0030】 j=1,2,…,ntk1+1 (d=1の場合) j=1,2,…,ntk2+1 (d=2の場合) (既知変数)既知変数としては下記のものがある。J = 1, 2, ..., Ntk1 + 1 (when d = 1) j = 1, 2, ..., Ntk2 + 1 (when d = 2) (known variables) The known variables are as follows.

【0031】 k区間下り列車位置、内在台数 [m][台] k区間上り列車位置、内在台数 [m][台] k区間列車Dd,j の負荷電流IPk,d,j [A] d=1は下りを示し、d=2は上りを示す。K section down train position, number of existing trains [m] [units] k section up train position, number of existing trains [m] [units] load current I Pk, d, j [A] of k section train D d, j d = 1 indicates downlink, and d = 2 indicates uplink.

【0032】 j=1,2,…,ntk1 (d=1の場合) j=1,2,…,ntk2 (d=2の場合) (標準き電電圧に対して、乗車率を考慮して、車両特性
(速度−負荷電流)を用いて決定する。) (評価関数)評価関数Jは
J = 1, 2, ..., Ntk1 (in the case of d = 1) j = 1, 2, ..., Ntk2 (in the case of d = 2) (For the standard feeding voltage, the boarding rate is considered. , Vehicle characteristics (speed-load current) are used for determination.) (Evaluation function) Evaluation function J is

【0033】[0033]

【数1】 と表わされる。ただし、 Pk :変電所kの単位時間あたりの積算電力量 [kWh] (単位時間として、ここでは30分を選ぶ。) Pk =ESSk ・ISSk …(0′) また制約条件には、不等式制約条件と等式制約条件があ
る。
[Equation 1] Is represented. However, P k : integrated electric energy per unit time of the substation k [kWh] (30 minutes is selected here as the unit time.) P k = E SSk · I SSk (0 ′) , There are inequality constraints and equality constraints.

【0034】(制約条件) a) 不等式制約条件 (1) 変電所送り出し電圧範囲設備上の制約 整流器定格上の制約である。すなわち ESSkSmin ≦ESSk ≦ESSkSmax ,k=1,2,…,n …(1) ただし、 ESSkSmin :変電所kの送り出し電圧設定可能最小値 [V] ESSkSmax :変電所kの送り出し電圧設定可能最大値 [V] である。(Constraint conditions) a) Inequality constraint conditions (1) Substation sending voltage range Facility constraint This is a constraint on the rectifier rating. That is, E SSkSmin ≤ E SSk ≤ E SSkSmax , k = 1, 2, ..., n (1) However, E SSkSmin : Minimum settable sending voltage of substation k [V] E SSkSmax : Sending voltage of substation k It is the maximum value [V] that can be set.

【0035】(2) 変電所送り出し電圧運用範囲制約 回生失効低減、力行支障防止のために、運用側が設定す
る制約である。すなわち、 ESSkUmin ≦ESSk ≦ESSkUmax ,k=1,2,…,n …(2) ただし、 ESSkUmin :変電所kの送り出し電圧運用最小値 [V] ESSkUmax :変電所kの送り出し電圧運用最大値 [V] である。
(2) Restriction on operating range of transmission voltage of substation This is a restriction set by the operation side in order to reduce regenerative invalidation and prevent power failure. That is, E SSkUmin ≤ E SSk ≤ E SSkUmax , k = 1, 2, ..., n (2) where, E SSkUmin : minimum output voltage of substation k [V] E SSkUmax : substation voltage of substation k It is the operation maximum value [V].

【0036】(3) 隣接変電所間送り出し電圧差制約 隣接変電所間で送り出し電圧にあまり違いをつけたくな
い場合に設定する。すなわち、 |ESSk −ESSk-1 |≦εEk-1 ,k=2,3,…,n …(3) ただし、 εEk-1 :(k−1)−k変電所間送り出し電圧差しきい値 [V] である。
(3) Restriction on Sending Voltage Difference between Adjacent Substations This is set when it is not desired to make much difference in the sending voltages between adjacent substations. That is, | E SSk −E SSk-1 | ≦ εE k-1 , k = 2, 3, ..., N (3) where, εE k−1 : (k−1) −k Substation feed voltage The threshold value [V].

【0037】(4) パンタ点電圧制約 各列車について実際の力行に支障が生じないようにする
ための余裕代を設定する。すなわち、 EPk,d,jmin ≦Epk,d,j≦EPk,d,jmax ,k=1,2,…,n ただし、d=1は下りを示し、d=2は上りを示す。
(4) Panto Point Voltage Constraint A margin allowance is set for each train so as not to interfere with actual powering. That is, E Pk, d, jmin ≤E pk, d, j ≤E Pk, d, jmax , k = 1,2, ..., n where d = 1 indicates a downlink and d = 2 indicates an uplink.

【0038】 j=1,2,…,ntk1 (d=1の場合) …(4) j=1,2,…,ntk2 (d=2の場合) EPk,d,jmin :k区間列車Dd,j パンタ点電圧運用最小値 [V] EPk,d,jmax :k区間列車Dd,j パンタ点電圧運用最大値 [V] である。J = 1, 2, ..., Ntk1 (when d = 1) (4) j = 1, 2, ..., ntk2 (when d = 2) E Pk, d, jmin : k section train D d, j Panto point voltage operation minimum value [V] E Pk, d, jmax : k section train D d, j Panto point voltage operation maximum value [V].

【0039】(5) デマンド制約 積算電力量を予測し、デマンド制限にかからない範囲の
送り出し電圧設定を行う。すなわち、 PPk≦Pdk …(5) ただし、 PPk:積算電力量予測値 [kWh] Pdk:デマンド制限を考慮した電力しきい値 [kWh] である。ここで、積算電力量予測値PPkは、以下のよう
に算出する。
(5) Demand constraint The integrated electric energy is predicted and the sending voltage is set within a range not subject to the demand limit. That is, P Pk ≦ P dk (5), where P Pk : integrated power amount prediction value [kWh] P dk : power threshold value [kWh] in consideration of demand limitation. Here, the integrated power amount predicted value P Pk is calculated as follows.

【0040】PPk=ESSk ・ISSk b) 等式制約条件 等式制約条件としては下記のものがある。P Pk = E SSk · I SSk b) Equality constraint conditions The following are the equation constraint conditions.

【0041】(1) 電流関係式 k(k=2,3,…n)区間(上り、下り)に流入す
る総電流であり、
(1) Current relational expression k (k = 2, 3, ... N) is the total current flowing into the section (up, down),

【0042】[0042]

【数2】 と表わされる。ただし、IPTk-1 は1〜(k−1)区間
の総列車負荷電流[A]であり、
[Equation 2] Is represented. However, I PTk-1 is the total train load current [A] in the section 1 to (k-1),

【0043】[0043]

【数3】 と表わされる。[Equation 3] Is represented.

【0044】k(k=2,3,…n)区間内での電流
入出力は、
The current input / output in the k (k = 2, 3, ... N) section is

【0045】[0045]

【数4】 と表わされる。[Equation 4] Is represented.

【0046】k(k=2,3,…n)区間架線電流はK (k = 2, 3, ... N) section overhead wire current is

【0047】[0047]

【数5】 と表わされる。[Equation 5] Is represented.

【0048】(2) 電圧関係式 k(k=2,…n)区間の電位差は、(2) Voltage relational expression The potential difference in the section k (k = 2, ... N) is

【0049】[0049]

【数6】 と表わされる。[Equation 6] Is represented.

【0050】(3) 路線抵抗 本実施例においては、き電線や架線および帰線の抵抗の
値は、それぞれ上り下り等しく単位長さあたりの値ar
(arは定数、単位[Ω/km])が与えられているも
のとする。
(3) Line resistance In the present embodiment, the resistance values of the feeder line, the overhead line, and the return line are equal to each other in the upward and downward directions and the value per unit length ar.
(Ar is a constant, unit [Ω / km]).

【0051】したがって、たとえばk区間の列車
1,1 、D1,2 間の線路抵抗r1k,1,2は、 r1k,1,2=ar・(PD1,1−PD1,2)/1000[Ω] …(19) PD1,1、PD1,2:列車D1,1 、D1,2 の位置 [m] で与えることができる。
Therefore, for example, the line resistance r 1k, 1,2 between the trains D 1,1 and D 1,2 in the k section is r 1k, 1,2 = ar · (P D1,1 −P D1,2 ) / 1000 [Ω] (19) P D1,1 , P D1,2 : Can be given at the position [m] of trains D 1,1 and D 1,2 .

【0052】なお、上述の制約条件は制約条件設定手段
4に設定され、評価関数は評価関数設定手段5によって
設定される。
The above constraint conditions are set in the constraint condition setting means 4, and the evaluation function is set by the evaluation function setting means 5.

【0053】上述のように設定された制約条件に基づい
て評価関数Jを最適にする最適化計算が例えば非線形計
画法のアルゴリズムを用いて最適き電分担決定手段6に
おいて行われる。非線形計画法については今野他著、
「非線形計画法」(日科技連出版社、1978、p25
1〜252頁)に開示されている。
Optimization calculation for optimizing the evaluation function J based on the constraint conditions set as described above is performed in the optimum power distribution determining means 6 using, for example, an algorithm of nonlinear programming. Regarding non-linear programming, Konno et al.,
"Nonlinear programming" (Nikka Giren Publishing Co., Ltd., 1978, p25)
Pp. 1-252).

【0054】非線形計画法は、一般に 条件 gi(x)≦0 i=1,…m hj(x)=0 j=1,…l の下で評価関数f(x)を最適(最小)にするものを求
める方法であり、これを変電所最適き電分担問題に適用
することを考える。
Nonlinear programming generally optimizes (minimizes) the evaluation function f (x) under the condition gi (x) ≤0 i = 1, ... m hj (x) = 0 j = 1 ,. It is a method of finding things, and considers applying it to the substation optimal distribution problem.

【0055】まず、決定変数xは、前記変電所k(k=
1,2,…,n)の送り出し電圧ESSk 、変電所k等価
直流抵抗RSSk 、変電所k電流ISSk 、変電所k方面別
き電電流Ifk,a(a=1,2,3,4)、k区間列車D
d,j パンタ点電圧EPk,d,j(d=1,2,j=1,2,
…,ntk1(d=1),j=1,2,…,ntk2
(d=2))、k区間架線電流I1k,d,j(d=1,2,
J=1,2,…,ntk1+1(d=1),j=1,
2,…,ntk2+1(d=2))である。次に、評価
関数f(x)、(0)式がそのまま使用できる。不等式
制約条件gi(x)は(1)〜(5)式に相当する。こ
こで、前記(20)式では、不等式条件は左辺gi
(x)に対して右辺は0で、かつ不等号の向きが≦で揃
っていなければならない。そのためには、例えば(1)
式は以下のように書き換えればよい。
First, the decision variable x is the substation k (k =
1, 2, ..., N) sending voltage E SSk , substation k equivalent DC resistance R SSk , substation k current I SSk , substation k direction-specific current I fk, a (a = 1, 2, 3) , 4), k section train D
d, j Pantopoint voltage E Pk, d, j (d = 1, 2, j = 1, 2,
..., ntk1 (d = 1), j = 1, 2, ..., ntk2
(D = 2)), k section overhead wire current I 1k, d, j (d = 1, 2,
J = 1, 2, ..., Ntk1 + 1 (d = 1), j = 1,
2, ..., Ntk2 + 1 (d = 2)). Next, the evaluation functions f (x) and (0) can be used as they are. The inequality constraint condition gi (x) corresponds to the equations (1) to (5). Here, in the equation (20), the inequality condition is the left side gi
The right side of (x) must be 0, and the inequality signs must be aligned with ≦. To do so, for example, (1)
The formula can be rewritten as follows.

【0056】 gi(x)=(ESSi −ESSiSmin )(ESSi −ESSiSmax )≦0 i=1,…,k …(21) さらに、等式条件hj(x)には、(7)〜(19)式
が相当する。これについても右辺を0とするため、
(7)〜(19)式について、それぞれ fj(x)=左辺−右辺=0 と書き換える。以上で前記の変電所最適き電分担問題の
定式化ができる。
Gi (x) = (E SSi −E SSiSmin ) (E SSi −E SSiSmax ) ≦ 0 i = 1, ..., k (21) Further, the equation condition hj (x) includes (7) ~ (19) Formula is equivalent. Also for this, the right side is set to 0,
The equations (7) to (19) are rewritten as fj (x) = left side−right side = 0. With the above, the above-mentioned substation optimal power distribution problem can be formulated.

【0057】なお、全列車が一斉に運転を開始するよう
な特殊な場合に、不等式制約条件(5)の制約により上
記最適化問題に解がない場合が生ずるなど、解がなく解
けない場合もあり得る。この場合には、前記不等式制約
条件(5)を外すといった特殊処理が必要である。
In a special case where all trains start to operate at the same time, there is no solution to the optimization problem due to the inequality constraint condition (5). possible. In this case, special processing such as removing the inequality constraint condition (5) is required.

【0058】次に、上述のようにして最適き電分担決定
手段6において決定変数として計算された変電所送り出
し電圧値は、送出電圧設定手段7によって適当な丸めや
余裕代がつけられて、その値が各変電所のサイリスタ整
流器27に設定される。これにより、各変電所の電力供
給分担がリアルタイムに最適に調整される。
Next, the substation sending-out voltage value calculated as the decision variable in the optimum power distribution determining means 6 as described above is given appropriate rounding and margin allowance by the sending voltage setting means 7, The value is set in the thyristor rectifier 27 of each substation. As a result, the power supply share of each substation is optimally adjusted in real time.

【0059】以上説明したように第1の実施例の制御装
置によれば、軽負荷時には必要電力量を確保する程度に
き電電圧を低く抑えることが可能となるとともに、列車
台数の多い変電所に負荷を偏らせることなく、全変電所
を見通して負荷配分を行うことができ、総合電力量を削
減することができる。また、電力回生をできるだけ有効
に利用することが可能となりランニングコストを抑制す
ることができる。
As described above, according to the control device of the first embodiment, it is possible to keep the feeding voltage low enough to secure the required amount of power when the load is light, and the substation with many trains. It is possible to distribute the load by looking at all the substations without biasing the load on the whole, and it is possible to reduce the total amount of electric power. In addition, power regeneration can be used as effectively as possible, and running costs can be suppressed.

【0060】次に本発明による制御装置の第2の実施例
の構成を図2に示す。この実施例の制御装置は図1に示
す制御装置において、電力負荷予測手段3を新たに設け
たものである。この電力負荷予測手段3は、計画ダイヤ
に、列車状況把握手段2によって得られた現在の列車の
運行状況を照らし合せて、列車の実際の運行状況を加味
した単位時間(例えば、30分)後の電力負荷を予測す
る。
The configuration of the second embodiment of the control apparatus according to the present invention is shown in FIG. The control device of this embodiment is the same as the control device shown in FIG. 1 except that a power load predicting means 3 is newly provided. The electric power load predicting unit 3 compares the current train operating condition obtained by the train condition grasping unit 2 with the plan timetable, and after a unit time (for example, 30 minutes) in which the actual train operating condition is taken into consideration. Predict the power load of.

【0061】簡便な方法の具体例としては、計画ダイヤ
を早朝時間帯(例えば始発から6時)、朝のラッシュ時
間帯(6時から10時)、昼間時間帯(10時から16
時)、夕方のラッシュ時間帯(16時から20時)、夜
間時間帯(20時から最終まで)の5つの時間帯に分
け、計画ダイヤによりそれぞれの時間帯の電力負荷を予
め固定値で与えておき、列車運行に遅れがなければ前記
固定値を使い、慢性的な遅延が発生する区間では1割増
しなどとし、事故等による回復運転時にはその復旧度合
に応じて前記固定値の割増しを行う方法が考えられる。
As a concrete example of a simple method, the planned timetable is shown in the early morning time zone (for example, from the first train at 6:00), the morning rush hour zone (from 6:00 to 10:00), and the daytime zone (from 10:00 to 16).
Hours), evening rush hours (16:00 to 20:00), and night hours (from 20:00 to the end), and a fixed value is given to the power load in each time zone in advance according to the schedule. The fixed value is used if there is no delay in train operation, and is increased by 10% in a section where a chronic delay occurs, and the fixed value is increased according to the degree of recovery during recovery operation due to an accident or the like. Can be considered.

【0062】そして前述のようにして決定された、単位
時間後、例えば今後30分間の各き電区間の予測負荷に
対して、制約条件設定手段4によって設定された制約条
件のもとで、評価関数設定手段5に設定された評価関数
を最小にするという意味で最適な各変電所の送り出し電
圧値を、最適き電分担決定手段6において最適化計算を
用いて算出する。
Then, under the constraint conditions set by the constraint condition setting means 4, evaluation is performed on the predicted load of each feeding section for the next 30 minutes, for example, after the unit time determined as described above. The optimum delivery voltage value of each substation in the sense that the evaluation function set in the function setting means 5 is minimized is calculated in the optimum power distribution determining means 6 using optimization calculation.

【0063】そして算出された送り出し電圧値は送出電
圧設定手段7によって各変電所の整流器27に設定され
る。
The calculated sending voltage value is set in the rectifier 27 of each substation by the sending voltage setting means 7.

【0064】この第2の実施例の制御装置も第1の実施
例と同様の効果を奏するとともに、列車が遅れている場
合には正常ダイヤに復帰するまでの間の必要な電力量を
予測することが可能となり、より実状に合った省エネを
達成する電力負荷分担を行うことができる。
The control device of the second embodiment has the same effect as that of the first embodiment, and predicts the amount of electric power required until the train returns to the normal timetable when the train is delayed. Therefore, it is possible to share the electric power load to achieve more practical energy saving.

【0065】次に本発明による制御装置の第3の実施例
の構成を図3に示す。この実施例の制御装置は、図2に
示す制御装置において、電力量記録手段8と、学習手段
10とを新たに設けたものである。電力量記録手段8は
各変電所の使用電力量を記録し、これを学習手段10に
送出する。学習手段10は各変電所の過去の使用電力量
を用いて電力使用量の推移の特性を学習し、この特性を
電力負荷予測手段3に送出する。
Next, the configuration of the third embodiment of the control apparatus according to the present invention is shown in FIG. The control device of this embodiment is different from the control device shown in FIG. 2 in that a power amount recording means 8 and a learning means 10 are newly provided. The electric energy recording means 8 records the amount of electric power used in each substation and sends it to the learning means 10. The learning unit 10 learns the characteristic of the transition of the power usage amount by using the past power usage amount of each substation, and sends this characteristic to the power load prediction unit 3.

【0066】これにより、電力負荷予測手段3において
行う電力負荷予測の精度を上げることができる。なお、
第3の実施例の制御装置も第2の実施例の制御装置と同
様の効果を奏することは云うまでもない。
As a result, the accuracy of the power load prediction performed by the power load prediction means 3 can be improved. In addition,
It goes without saying that the control device of the third embodiment also has the same effects as the control device of the second embodiment.

【0067】なお、上記実施例においては、各変電所の
すべての送り出し電圧を調整できる場合を想定したが、
ハード的にもしくは他の系統との兼ね合いにより、送り
出し電圧を調整できない変電所があってもよい。その場
合には、該当変電所の送り出し電圧を決定変数から外し
さえすればよい。
In the above embodiment, it is assumed that all the sending voltage of each substation can be adjusted.
There may be substations where the sending voltage cannot be adjusted, either in hardware or in consideration of other systems. In that case, it suffices to remove the sending voltage of the corresponding substation from the decision variable.

【0068】[0068]

【発明の効果】以上述べたように本発明によれば、各変
電所の電力供給分担を全変電所を総合的にみてリアルタ
イムに調整することにより、各変電所のピーク電力量を
抑制し、これにより設備容量をも抑制することができる
とともに、電力回生をできるだけ有効に利用しランニン
グコストを抑制することができる。
As described above, according to the present invention, the power supply sharing of each substation is adjusted in real time by comprehensively looking at all substations, thereby suppressing the peak power amount of each substation, As a result, it is possible to suppress the installed capacity as well as to utilize the power regeneration as effectively as possible to suppress the running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による鉄道変電所き電電圧制御装置の第
1の実施例の構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of a first embodiment of a railway substation feeding voltage control device according to the present invention.

【図2】本発明による鉄道変電所き電電圧制御装置の第
2の実施例の構成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of a second embodiment of a railway substation feeding voltage control device according to the present invention.

【図3】本発明による鉄道変電所き電電圧制御装置の第
3の実施例の構成を示すブロック図。
FIG. 3 is a block diagram showing the configuration of a third embodiment of the railway substation feeding voltage control device according to the present invention.

【図4】本発明の対象となる電気鉄道き電系統を示す模
式図。
FIG. 4 is a schematic diagram showing an electric railway feeding system to which the present invention is applied.

【図5】図4に示す電力系統の等価回路図。5 is an equivalent circuit diagram of the power system shown in FIG.

【図6】並列き電を説明する模式図。FIG. 6 is a schematic diagram illustrating parallel feeding.

【図7】電力回生エネルギーの流れを説明する模式図。FIG. 7 is a schematic diagram illustrating the flow of power regenerative energy.

【符号の説明】[Explanation of symbols]

2 列車状況把握手段 3 電力負荷予測手段 4 制約条件設定手段 5 評価関数設定手段 6 最適き電分担決定手段 7 送出電圧設定手段 8 電力量記録手段 10 学習手段 27 整流器 2 Train status grasping means 3 Electric power load predicting means 4 Constraint condition setting means 5 Evaluation function setting means 6 Optimal power distribution determining means 7 Sending voltage setting means 8 Electric energy recording means 10 Learning means 27 Rectifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の変電所をもち、並列き電を行なう電
気鉄道き電系統において、 力行車、回生車の在線状況および運行状況を把握するた
めの列車状況把握手段と、 制約条件を設定する制約条件設定手段と、 評価関数を設定する評価関数設定手段と、 各変電所のき電電圧分担を、前記制約条件のもとで、前
記評価関数を最適にする各変電所のき電分担を決定する
最適き電分担決定手段と、 前記最適き電分担決定手段により決定したき電分担に基
づき、各変電所の送出電圧値を変電所の整流器に対して
設定する送出電圧設定手段と、 を備えていることを特徴とする鉄道変電所き電電圧制御
装置。
1. In an electric railway feeding system having a plurality of substations and performing parallel feeding, a train situation grasping means for grasping the on-rail situation and operation situation of a power train and a regenerative car and constraint conditions are set. The constraint condition setting means for setting the evaluation function, the evaluation function setting means for setting the evaluation function, and the distribution of distribution voltage of each substation, the distribution of distribution voltage of each substation that optimizes the evaluation function under the constraint conditions. Optimum power distribution determining means for determining, and based on the power distribution determined by the optimal power distribution determining means, the transmission voltage setting means for setting the transmission voltage value of each substation to the rectifier of the substation, A railway substation feeding voltage control device comprising:
【請求項2】列車状況把握手段によって得られる現在の
列車の運行状況を計画ダイヤに照らし合せて、列車の実
際の運行状況を加味した単位時間後の電力負荷を予測す
る電力負荷予測手段と、 を更に有し、 変電所き電分担を決定する際に、前記電力負荷予測手段
により得られた電力負荷予測値に基づきき電分担を決定
することを特徴とする請求項1記載の鉄道変電所き電電
圧制御装置。
2. A power load predicting means for predicting a power load after a unit time in consideration of the actual operating status of the train by comparing the current operating status of the train obtained by the train status grasping means with a plan diagram, 2. The railway substation according to claim 1, further comprising: when determining the distribution of power distribution to the substation, the distribution of power distribution is determined based on the predicted power load value obtained by the power load prediction means. Feed voltage control device.
【請求項3】各変電所の使用電力を記録する電力量記録
手段と、 前記電力量記録手段によって記録された各変電所の過去
の使用電力量を用いて電力使用量の推移の特性を学習
し、この特性を前記電力量予測手段に送出する学習手段
と、 を備えたことを特徴とする請求項2記載の鉄道変電所き
電電圧制御装置。
3. A power consumption recording unit that records the power consumption of each substation, and a characteristic of the transition of the power consumption is learned using the past power consumption of each substation recorded by the power consumption recording unit. The railway substation feeding voltage control device according to claim 2, further comprising: learning means for sending the characteristic to the power amount predicting means.
JP10014694A 1994-05-13 1994-05-13 Feeding voltage controller for railway substation Pending JPH07304353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10014694A JPH07304353A (en) 1994-05-13 1994-05-13 Feeding voltage controller for railway substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10014694A JPH07304353A (en) 1994-05-13 1994-05-13 Feeding voltage controller for railway substation

Publications (1)

Publication Number Publication Date
JPH07304353A true JPH07304353A (en) 1995-11-21

Family

ID=14266184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10014694A Pending JPH07304353A (en) 1994-05-13 1994-05-13 Feeding voltage controller for railway substation

Country Status (1)

Country Link
JP (1) JPH07304353A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834267A (en) * 1994-07-21 1996-02-06 West Japan Railway Co Railway power load predictor
JPH0834268A (en) * 1994-07-21 1996-02-06 West Japan Railway Co Railway power load predictor
EP0997340A1 (en) * 1998-10-30 2000-05-03 Abb Research Ltd. Method for controlling the power distribution in a railway network
JP2008024206A (en) * 2006-07-24 2008-02-07 Toshiba Corp Control device for controlling power supply of mobile body
EP1538020A3 (en) * 2003-12-04 2008-02-13 Hitachi, Ltd. Railway regenerative power absorption control method, device thereof and power converter control device
WO2010026786A1 (en) * 2008-09-03 2010-03-11 三菱電機株式会社 Power feed control system, and power feed control method
JP2010068625A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Control device and control method of dc transmission/distribution system and program
EP2749447A1 (en) * 2012-12-27 2014-07-02 ALSTOM Transport SA Method for optimising the operation of a reversible traction substation and related devices
US8831801B1 (en) 2013-03-14 2014-09-09 Mitsubishi Electric Research Laboratories, Inc. System and method for optimizing energy consumption in railway systems
KR101486571B1 (en) * 2013-08-22 2015-01-27 한국철도기술연구원 Method for controlling peak power of railway system
JP5705370B2 (en) * 2012-02-22 2015-04-22 三菱電機株式会社 DC feeding voltage control device and DC feeding voltage control system
JP2015168348A (en) * 2014-03-07 2015-09-28 三菱電機株式会社 Direct current feeder voltage control device, direct current feeder voltage control system, and direct current feeder voltage control method
JP6029799B1 (en) * 2016-03-15 2016-11-24 三菱電機株式会社 DC feeding voltage calculation device, DC feeding voltage control system, and DC feeding voltage calculation method
WO2021018278A1 (en) * 2019-07-31 2021-02-04 比亚迪股份有限公司 Train operating control method and apparatus, and non-transitory computer readable storage medium
CN112776831A (en) * 2019-11-06 2021-05-11 庞巴迪运输有限公司 Operating a rail vehicle to limit power peaks in a power supply

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834267A (en) * 1994-07-21 1996-02-06 West Japan Railway Co Railway power load predictor
JPH0834268A (en) * 1994-07-21 1996-02-06 West Japan Railway Co Railway power load predictor
EP0997340A1 (en) * 1998-10-30 2000-05-03 Abb Research Ltd. Method for controlling the power distribution in a railway network
EP1538020A3 (en) * 2003-12-04 2008-02-13 Hitachi, Ltd. Railway regenerative power absorption control method, device thereof and power converter control device
JP2008024206A (en) * 2006-07-24 2008-02-07 Toshiba Corp Control device for controlling power supply of mobile body
WO2010026786A1 (en) * 2008-09-03 2010-03-11 三菱電機株式会社 Power feed control system, and power feed control method
JP2010068625A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Control device and control method of dc transmission/distribution system and program
JP5705370B2 (en) * 2012-02-22 2015-04-22 三菱電機株式会社 DC feeding voltage control device and DC feeding voltage control system
JPWO2013125130A1 (en) * 2012-02-22 2015-07-30 三菱電機株式会社 DC feeding voltage control device and DC feeding voltage control system
US9180790B2 (en) 2012-02-22 2015-11-10 Mitsubishi Electric Corporation DC feeder voltage control apparatus and DC feeder voltage control system
EP2749447A1 (en) * 2012-12-27 2014-07-02 ALSTOM Transport SA Method for optimising the operation of a reversible traction substation and related devices
FR3000443A1 (en) * 2012-12-27 2014-07-04 Alstom Transport Sa METHOD FOR OPTIMIZING THE OPERATION OF A REVERSIBLE TRACTION SUBSTATION AND ASSOCIATED DEVICES
US9038794B2 (en) 2012-12-27 2015-05-26 Alstom Transport Technologies Method for optimizing the operation of a reversible traction substation and associated devices
JP2014177269A (en) * 2013-03-14 2014-09-25 Mitsubishi Electric Corp System and method for optimizing energy consumption in railway system
US8831801B1 (en) 2013-03-14 2014-09-09 Mitsubishi Electric Research Laboratories, Inc. System and method for optimizing energy consumption in railway systems
KR101486571B1 (en) * 2013-08-22 2015-01-27 한국철도기술연구원 Method for controlling peak power of railway system
JP2015168348A (en) * 2014-03-07 2015-09-28 三菱電機株式会社 Direct current feeder voltage control device, direct current feeder voltage control system, and direct current feeder voltage control method
JP6029799B1 (en) * 2016-03-15 2016-11-24 三菱電機株式会社 DC feeding voltage calculation device, DC feeding voltage control system, and DC feeding voltage calculation method
WO2017158728A1 (en) * 2016-03-15 2017-09-21 三菱電機株式会社 Direct current feeder voltage calculation apparatus, direct current feeder voltage control system, and direct current feeder voltage calculation method
CN109070766A (en) * 2016-03-15 2018-12-21 三菱电机株式会社 DC feedback voltage computing device, DC feedback voltage control system and DC feedback voltage calculation method
US10633008B2 (en) 2016-03-15 2020-04-28 Mitsubishi Electric Corporation DC-feeding-voltage calculating apparatus, DC-feeding-voltage control system, and DC-feeding-voltage calculating method
CN109070766B (en) * 2016-03-15 2021-08-03 三菱电机株式会社 DC feed voltage calculation device, DC feed voltage control system, and DC feed voltage calculation method
WO2021018278A1 (en) * 2019-07-31 2021-02-04 比亚迪股份有限公司 Train operating control method and apparatus, and non-transitory computer readable storage medium
CN112776831A (en) * 2019-11-06 2021-05-11 庞巴迪运输有限公司 Operating a rail vehicle to limit power peaks in a power supply
EP3828052A3 (en) * 2019-11-06 2021-08-25 Bombardier Transportation GmbH Operation of railway vehicles for limiting power peaks in a power supply
US11760392B2 (en) 2019-11-06 2023-09-19 Bombardier Transportation Gmbh Operation of rail vehicles to limit power peaks in an electrical supply

Similar Documents

Publication Publication Date Title
KR101478717B1 (en) System, sub-station and method for recovering brake energy of rail vehicles, rail vehicles for this system
JPH07304353A (en) Feeding voltage controller for railway substation
Nasri et al. Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
Domínguez et al. Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles
Bocharnikov et al. Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation
US8112191B2 (en) System and method for monitoring the effectiveness of a brake function in a powered system
US20080021602A1 (en) Electrically Powered Rail Propulsion Vehicle and Method
JP2003324808A (en) Method and system for monitoring and regulating power consumed in transport system
TW201010883A (en) Power supply controlling system and power supply controlling method
JP6055258B2 (en) Railway vehicle
Krueger et al. Vehicle-to-Grid (V2G) as line-side energy storage for support of DC-powered electric railway systems
EP2915693B1 (en) Power management device and power management system
JP2020078124A (en) Charge/discharge control system, battery vehicle, and charge/discharge control method
WO2019040488A1 (en) Hybrid wayside energy recovery systems
Wu et al. Optimization of speed profile and energy interaction at stations for a train vehicle with on-board energy storage device
JP5752615B2 (en) Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.
WO2014002717A1 (en) Railway system
JP4856219B2 (en) Mobile control device
Hoimoja et al. Survey of loss minimization methods in tram systems
Andreotti et al. An Optimal Centralized Control Strategy for Regenerative Braking Energy Flow Exchanges in DC Railway Traction Systems
JPH08205405A (en) Controller for substation
Anderson et al. New traction power technologies to improve the melbourne tram network
Di Pasquale et al. Centralised Control Strategy for an Urban Rail Network in the Presence of Onboard Storage Systems
Spiridonov et al. Classification and evaluation of factors having impact on recuperative braking at urban electric transit
JPH0525690B2 (en)