JP2013155254A - Rubber-reinforcing material and rubber composition - Google Patents
Rubber-reinforcing material and rubber composition Download PDFInfo
- Publication number
- JP2013155254A JP2013155254A JP2012015812A JP2012015812A JP2013155254A JP 2013155254 A JP2013155254 A JP 2013155254A JP 2012015812 A JP2012015812 A JP 2012015812A JP 2012015812 A JP2012015812 A JP 2012015812A JP 2013155254 A JP2013155254 A JP 2013155254A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- rice husk
- reinforcing material
- husk charcoal
- rubber composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 97
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 239000012779 reinforcing material Substances 0.000 title claims abstract description 36
- 239000003610 charcoal Substances 0.000 claims abstract description 87
- 238000010000 carbonizing Methods 0.000 claims abstract description 6
- 244000043261 Hevea brasiliensis Species 0.000 claims abstract description 3
- 229920003052 natural elastomer Polymers 0.000 claims abstract description 3
- 229920001194 natural rubber Polymers 0.000 claims abstract description 3
- 239000010903 husk Substances 0.000 claims description 83
- 241000209094 Oryza Species 0.000 claims description 82
- 235000007164 Oryza sativa Nutrition 0.000 claims description 82
- 235000009566 rice Nutrition 0.000 claims description 82
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 7
- 229920003244 diene elastomer Polymers 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 150000001993 dienes Chemical class 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000012744 reinforcing agent Substances 0.000 abstract 1
- 238000003763 carbonization Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- PFFIDZXUXFLSSR-UHFFFAOYSA-N 1-methyl-N-[2-(4-methylpentan-2-yl)-3-thienyl]-3-(trifluoromethyl)pyrazole-4-carboxamide Chemical compound S1C=CC(NC(=O)C=2C(=NN(C)C=2)C(F)(F)F)=C1C(C)CC(C)C PFFIDZXUXFLSSR-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001441571 Hiodontidae Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明はタイヤ及びスタッドレスタイヤトレッド、タイヤサイドウォール他、ベルト、防振、ブレーキパッド、靴底、パッキン、ホース、電線、電気部品、ロール用ゴムのゴム補強材として用いる高品質の籾殻炭に関し、特に前記籾殻炭が、無酸素囲気中にて、撹拌しながら300〜700℃の範囲の温度にて籾殻を炭化して作製された籾殻炭であることを特徴とする。 The present invention relates to high-quality rice husk charcoal used as a rubber reinforcement for tires, studless tire treads, tire sidewalls, belts, vibration proofs, brake pads, shoe soles, packings, hoses, electric wires, electrical parts, rubber for rolls, In particular, the rice husk charcoal is charcoal charcoal produced by carbonizing rice husk at a temperature in the range of 300 to 700 ° C. with stirring in an oxygen-free atmosphere.
一般に、ゴムはカーボンブラックを添加することによって補強され、耐疲労性、耐摩耗性等が大幅に改善することが知られている。また、カーボンブラック以外にシリカや炭酸カルシウム等の、いわゆる白色フィラーによる補強効果もよく知られている。
このようなゴム補強材となる炭素とシリカを豊富に含むものに籾殻がある。
In general, it is known that rubber is reinforced by adding carbon black, and fatigue resistance, wear resistance, and the like are greatly improved. In addition to carbon black, the reinforcing effect of so-called white fillers such as silica and calcium carbonate is also well known.
A rice husk is a material containing abundant carbon and silica as a rubber reinforcing material.
我が国では、毎年およそ200万トンもの籾殻が発生し続けており、その内の約4割は未活用で、処分に苦慮している。一方で、籾殻はJA等に集約されるため、他のバイオマス種と比較して収集コストが低く、食糧資源と競合しないバイオマスであり、その利用用途の拡大は社会的な課題となっている。 In Japan, about 2 million tons of rice husks continue to be generated every year, of which about 40% are unused and difficult to dispose of. On the other hand, rice husks are concentrated in JA, etc., so the collection cost is low compared to other biomass species, and the biomass does not compete with food resources.
籾殻は炭素とシリカを豊富に含み、硬く、摩耗特性が良いことから、高分子やゴム材料への充填材として利用することが試みられた。(非特許文献1)しかし、籾殻の状態では粉末状に粉砕しても50μm以下にすることは難しいため、補強効果は認められなかった。 The rice husk contains abundant carbon and silica, is hard, and has good wear characteristics. Therefore, it has been attempted to use it as a filler for polymers and rubber materials. (Non-Patent Document 1) However, in the rice husk state, even if pulverized into a powder form, it is difficult to reduce it to 50 μm or less, and thus the reinforcing effect was not recognized.
そこで、籾殻を炭化した籾殻炭の利用が検討された。(非特許文献2)
研究の結果、1)籾殻炭はシランカップリング処理することによって、カーボンブラックとほぼ同等の補強効果を発揮し、2)破断強度の向上には粉砕籾殻炭の粒径が重要であることが明らかになった。
Therefore, the use of rice husk charcoal obtained by carbonizing rice husk was examined. (Non Patent Literature 2)
As a result of research, 1) Rice husk charcoal is treated with silane coupling to exert almost the same reinforcing effect as carbon black. 2) It is clear that the grain size of crushed rice husk charcoal is important for improving the breaking strength. Became.
このような背景から、籾殻炭をタイヤ用ゴムに添加し、耐摩耗性や転がり抵抗の向上、またはスタッドレスタイヤの氷上性能の向上を狙った方法が提案されている。(特許文献4〜10) Against this background, a method has been proposed in which rice husk charcoal is added to tire rubber to improve wear resistance and rolling resistance, or to improve performance on ice of a studless tire. (Patent Documents 4 to 10)
また、ゴム添加物による補強効果においては、ゴム材と炭素との親和性を高め、高次ネットワーク構造の形成に寄与するために、添加材料の多孔質性が重要であることが指摘されている。(特許文献1〜3) In addition, it is pointed out that the porous nature of the additive material is important for the reinforcement effect of rubber additives in order to increase the affinity between the rubber material and carbon and contribute to the formation of higher-order network structures. . (Patent Documents 1 to 3)
従来知られている籾殻の炭化方法では、炭素及びシリカの純度が高く、粉砕し易く、発達した多孔質性を有する籾殻炭を効率よく、安定して製造することは難しいという問題点があった。 In the conventionally known rice husk carbonization method, there is a problem that it is difficult to efficiently and stably produce rice husk charcoal having high purity of carbon and silica, easy to pulverize, and developed porosity. .
特許文献4〜10において、試験に用いられた籾殻炭は関西産業株式会社製「バイオ炭」であるが、本籾殻炭は低酸素かつ不均一加熱状態で製造されるため、一定品質を保つことが困難であり、多孔質の発達した籾殻炭を安定的に製造することができない。このような比較的比表面積の小さい籾殻炭はゴム材との親和性が弱く、結果的に製品としてのゴムの耐久性が低く留まる傾向がある。 In Patent Documents 4 to 10, the rice husk charcoal used in the test is “bio charcoal” manufactured by Kansai Sangyo Co., Ltd., but this rice husk charcoal is manufactured in a low oxygen and non-uniform heating state, so it must maintain a certain quality. Therefore, it is difficult to stably produce porous rice husk charcoal. Such rice husk charcoal having a relatively small specific surface area has a weak affinity with the rubber material, and as a result, the durability of the rubber as a product tends to remain low.
また、このような製法で製造された籾殻炭は、組成を一定に保つことが困難であるため、籾殻炭を粉砕した場合に粉体の粒径を小さくすることが困難であり、かつ粒度にバラつきが生じてしまう。このような籾殻炭粉をゴム補強材として用いた場合、粒径の大きな粉体が破断の核となり、製品としてのゴムの破断強度が低くなるため、製品化の大きな障害となっていた。 In addition, it is difficult to keep the composition of rice husk charcoal produced by such a manufacturing method, so it is difficult to reduce the particle size of the powder when pulverized rice husk charcoal and Variations will occur. When such rice husk charcoal powder is used as a rubber reinforcing material, a powder having a large particle diameter becomes the core of rupture, and the rupture strength of rubber as a product is lowered, which has been a major obstacle to commercialization.
本発明の課題は、耐久性がよく、環境に配慮したゴム組成物のためのゴム補強材を提供することであり、特に前記ゴム補強材を含有するゴム組成物の耐摩耗性、破断強度を向上できるゴム補強材、およびそれを用いたゴム組成物を提供することである。 An object of the present invention is to provide a rubber reinforcing material for a rubber composition having good durability and considering the environment, and in particular, the wear resistance and breaking strength of the rubber composition containing the rubber reinforcing material. It is to provide a rubber reinforcing material that can be improved, and a rubber composition using the same.
本発明は、ゴム補強材、およびそれを用いたゴム組成物に関し、特にゴム補強材を、籾殻炭とし、特に前記籾殻炭は、籾殻が無酸素囲気中にて、撹拌しながら300℃〜700℃の範囲の温度にて炭化されたことを特徴とする。 The present invention relates to a rubber reinforcing material and a rubber composition using the same, and particularly the rubber reinforcing material is rice husk charcoal. In particular, the rice husk charcoal is heated at 300 ° C. to 700 ° C. with stirring in an oxygen-free atmosphere. Carbonized at a temperature in the range of ° C.
請求項1に係る発明は、無酸素囲気中にて、撹拌しながら300℃〜700℃の範囲の温度にて、籾殻が炭化された籾殻炭を主成分とすることを特徴とするゴム補強材である。 The invention according to claim 1 is characterized by comprising a rubber reinforcing material comprising, as a main component, rice husk charcoal obtained by carbonizing rice husk at a temperature in the range of 300 ° C. to 700 ° C. with stirring in an oxygen-free atmosphere. It is.
請求項2に係る発明は、前記籾殻炭は、500℃〜700℃の範囲の温度にて炭化されて、炭素を60〜70重量%、シリカを30〜40重量%含有する不純物の少ない、かつ比表面積200m2/g以上の多孔質の籾殻炭であることを特徴とする請求項1記載のゴム補強材である。
The invention according to
請求項3に係る発明は、前記籾殻炭は、500℃〜700℃の範囲の温度にて炭化されて、平均粒径20μm以下に粉砕されていることを特徴とする請求項1または2のゴム補強材である。 The invention according to claim 3 is characterized in that the rice husk charcoal is carbonized at a temperature in the range of 500 ° C. to 700 ° C. and pulverized to an average particle size of 20 μm or less. It is a reinforcing material.
請求項4に係る発明は、請求項1記載のゴム補強材が、天然ゴムとジエン系ゴムとのブレンドからなるゴム100質量部に対して、1〜50質量部混合されたことを特徴とするゴム組成物である。 The invention according to claim 4 is characterized in that 1 to 50 parts by mass of the rubber reinforcing material according to claim 1 is mixed with 100 parts by mass of rubber made of a blend of natural rubber and diene rubber. It is a rubber composition.
請求項1〜3に係るゴム補強材によれば、耐久性がよく、環境に配慮したゴム組成物のためのゴム補強材を提供することでができる。 According to the rubber reinforcing material according to the first to third aspects, it is possible to provide a rubber reinforcing material for a rubber composition which has good durability and is environmentally friendly.
請求項4に係るゴム組成物によれば、耐摩耗性、破断強度を向上できるゴム組成物を提供できる。 According to the rubber composition concerning Claim 4, the rubber composition which can improve wear resistance and breaking strength can be provided.
本発明によれば、耐久性がよく、環境に配慮したゴム組成物のためのゴム補強材を提供することであり、特に前記ゴム補強材を含有するゴム組成物の耐摩耗性、破断強度を向上できるゴム補強材、およびそれを用いたゴム組成物を提供することでができる。 According to the present invention, it is to provide a rubber reinforcing material for a rubber composition having good durability and considering the environment. Particularly, the rubber composition containing the rubber reinforcing material has wear resistance and breaking strength. A rubber reinforcing material that can be improved and a rubber composition using the same can be provided.
本発明では、材料である籾殻を、無酸素雰囲気でありながら連続的に、かつ均質に熱分解されるようにロータリーキルン内で撹拌を加えながら炭化することにより、ゴム補強材として好ましい特徴を備えた籾殻炭を提供する。
具体的には、籾殻炭に含まれる炭素とシリカの比率が一定で、かつ純度が高いために粉砕性に優れ、比表面積が大きいことからゴム素材との親和性にも優れていることから、これを補強材として用いたゴム製品は破断強度が高く、耐久性にも優れている。
また、籾殻は天然素材であるため、例えばタイヤに用いた場合、摩耗して環境中に放出されても害がなく、環境にも優しい素材である。
In the present invention, the rice husk, which is a material, is carbonized while stirring in a rotary kiln so as to be thermally decomposed uniformly and homogeneously in an oxygen-free atmosphere, thereby providing a preferable feature as a rubber reinforcing material. Provide rice husk charcoal.
Specifically, because the ratio of carbon and silica contained in rice husk charcoal is constant, and because of its high purity, it is excellent in pulverization, and because of its large specific surface area, it has excellent compatibility with rubber materials. Rubber products using this as a reinforcing material have high breaking strength and excellent durability.
In addition, since the rice husk is a natural material, for example, when used in a tire, it is harmless even if it is worn and released into the environment, and is a material that is friendly to the environment.
本発明のゴム補強材に使用される炭化物である、籾殻炭は、無酸素囲気中にて、撹拌しながら炭化される炭化装置にて炭化されることを特徴としている。使用する炭化装置としては、被炭化物が、無酸素雰囲気中にて炭化される炭化装置であれば、その形式は問わない。 Charcoal husk charcoal, which is a carbide used in the rubber reinforcing material of the present invention, is characterized in that it is carbonized in a carbonization apparatus that is carbonized while stirring in an oxygen-free atmosphere. As the carbonization apparatus to be used, any form may be used as long as the carbonized object is carbonized in an oxygen-free atmosphere.
炭化装置の一例としては、図11に本発明の籾殻を炭化するための、炭化装置の1例の構成図を示した。図11に示すように、本発明で使用される炭化装置(還元炭化処理装置)は、内部に螺旋羽と攪拌羽1を配置した回転する一つのキルン2と、この一つのキルン2の内部に投入された廃棄物を含む有機物等を無酸素雰囲気の還元状態で間接加熱しつつ有機物等に蓄熱して一つのキルン2の内部全体に熱を供給する燃焼室3と、燃焼室3内に臨むバーナー等の加熱源4と、キルン2の内部に投入された有機物等に含まれる水分を燃焼室3の間接加熱によって蒸発させるようにキルン2の内部にエリア設定された乾燥部2aと、乾燥部2aで乾燥処理された有機物等を間接加熱分解させることで炭化させるようにキルン2の内部にエリア設定された炭化部2bと、を備えている。
本装置は還元滅菌炭化加工機SUMIX(株式会社ガイア環境技術研究所製)と称し、本装置によって製造される炭化物を以後SUMIX炭と称する。籾殻炭に関しては、SUMIX籾殻炭と称する。
As an example of the carbonization apparatus, FIG. 11 shows a configuration diagram of an example of the carbonization apparatus for carbonizing the rice husk of the present invention. As shown in FIG. 11, the carbonization apparatus (reduction carbonization processing apparatus) used in the present invention includes a rotating
This apparatus is referred to as a reduction sterilization carbonization machine SUMIX (manufactured by Gaia Environmental Technology Laboratory Co., Ltd.), and the carbide produced by this apparatus is hereinafter referred to as SUMIX charcoal. The rice husk charcoal is called SUMIX rice husk charcoal.
本発明のゴム補強材およびゴム組成物の実施例について、以下説明する。 Examples of the rubber reinforcing material and rubber composition of the present invention will be described below.
(ゴム組成物)
以下、比較実験で使用した籾殻炭及び各種薬品について記述する。
(ゴム組成物の基本配合)
ゴム原材料の基本配合を表1に示す。
・(株)ガイア環境技術研究所社製 還元滅菌炭化加工機「SUMIX」による「SUMIX籾殻炭(炭化温度:300℃、500℃、700℃)」
・関西産業(株)社製 「バイオ炭」
ゴム補強材としての籾殻炭は、YAMATO社製ボールミルを用いて、12時間粉砕し、それぞれの粒径をセイシン企業社製レーザー回折散乱式粒度分布測定器「LMS-2000e」を用いて測定した。粉砕した各籾殻炭粉の平均粒径を図1に示す。
尚、図1にて、「S300」は「SUMIX」により炭化温度300℃で製造したもの、「S500」は「SUMIX」により炭化温度500℃で製造したもの、「S700」は「SUMIX」により炭化温度700℃で製造したもの、「KBC」は関西産業社製バイオ炭を示す。(以下の試験グラフでも同様)
(Rubber composition)
Hereinafter, rice husk charcoal and various chemicals used in the comparative experiment are described.
(Basic composition of rubber composition)
Table 1 shows the basic composition of rubber raw materials.
・ "SUMIX rice husk charcoal (carbonization temperature: 300 ℃, 500 ℃, 700 ℃)" by reduction sterilization carbonization machine "SUMIX" manufactured by Gaia Environmental Technology Laboratory Co., Ltd.
・ "Bio-charcoal" manufactured by Kansai Sangyo Co., Ltd.
Rice husk charcoal as a rubber reinforcing material was pulverized for 12 hours using a ball mill manufactured by YAMATO, and each particle size was measured using a laser diffraction scattering type particle size distribution analyzer “LMS-2000e” manufactured by Seishin Enterprise Co., Ltd. The average particle diameter of each crushed rice husk charcoal powder is shown in FIG.
In Fig. 1, "S300" is manufactured by "SUMIX" at a carbonization temperature of 300 ° C, "S500" is manufactured by "SUMIX" at a carbonization temperature of 500 ° C, and "S700" is carbonized by "SUMIX". "KBC" manufactured at a temperature of 700 ° C indicates bio-charcoal produced by Kansai Sangyo Co., Ltd. (The same applies to the following test graphs)
これらの籾殻炭のBET比表面積を図2に示す。
これらの籾殻炭粉を表1に示した原材料に対して、1〜50質量部配合して、ゴム組成物を作成した。
Fig. 2 shows the BET specific surface areas of these rice husk charcoal.
These rice husk charcoal powders were blended in an amount of 1 to 50 parts by mass with respect to the raw materials shown in Table 1 to prepare rubber compositions.
(比較実験)
前記の通り作成したゴム組成物について、以下の比較実験を行った。
・硬度:硬度計 ELASTLON ESA(DUROMETER
A)
・比重:比重計 ALFAMIRAGE MD-3005
・引張応力:引張試験機 MONTECH TECH-500
・破断強度及び伸長:引張試験機 MONTECH TECH-500
・ムーニー粘度:ムーニー粘度計
(Comparative experiment)
The following comparative experiment was conducted on the rubber composition prepared as described above.
・ Hardness: Hardness meter ELASTLON ESA (DUROMETER
A)
・ Specific gravity: Hydrometer ALFAMIRAGE MD-3005
・ Tensile stress: Tensile testing machine MONTECH TECH-500
-Breaking strength and elongation: Tensile tester MONTECH TECH-500
・ Mooney viscosity: Mooney viscometer
(試験結果)
(比重)
図3に各ゴム組成物の比重を示す。横軸は補強材としての籾殻炭粉含有率(質量部)であり、含有量0は籾殻炭粉の入らない比較試料の値を示す。また、使用した籾殻炭の種類を線種で区別している。(以下の試験グラフでも同様)
図3より、300〜700℃で炭化したSUMIX籾殻炭を配合した場合、バイオ炭を配合した場合と比較して同じ炭含有量では比重が小さいことが判る。これは例えばタイヤとして用いた場合には燃費において有利である。また、機械のベルト等に用いた場合には、動力への負担が軽減される。その他、防振ゴムや靴底、ホース等々に用いた場合にも、多くの場合、好ましい性質であると推察される。
(Test results)
(specific gravity)
FIG. 3 shows the specific gravity of each rubber composition. The horizontal axis represents the content (parts by mass) of rice husk charcoal as a reinforcing material, and the content of 0 indicates the value of a comparative sample that does not contain rice husk charcoal. In addition, the type of rice husk charcoal used is distinguished by line type. (The same applies to the following test graphs)
From FIG. 3, it can be seen that when SUMIX rice husk charcoal carbonized at 300 to 700 ° C. is blended, the specific gravity is small at the same charcoal content as compared with the case where biochar is blended. For example, this is advantageous in terms of fuel consumption when used as a tire. Moreover, when used for a machine belt or the like, the burden on power is reduced. In addition, when used for anti-vibration rubber, shoe soles, hoses, etc., in many cases, it is presumed to be a preferable property.
(硬度)
図4に各ゴム組成物の硬度を示す。
図4より、SUMIX籾殻炭を配合した場合の方が、バイオ炭を配合した場合と比較して同じ炭含有量では硬度が低いことが判る。ゴムの硬度については、その用途により求められる性質が異なるので、一概に善し悪しの判断はできない。
(hardness)
FIG. 4 shows the hardness of each rubber composition.
From FIG. 4, it can be seen that the case where SUMIX rice husk charcoal is blended has lower hardness at the same charcoal content than the case where biochar is blended. As for the hardness of rubber, the required properties differ depending on the application, so it is generally impossible to judge whether it is good or bad.
(ムーニー粘度)
図5に各ゴム組成物のムーニー粘度を示す。
図5より、SUMIX籾殻炭を配合した場合の方が、バイオ炭を配合した場合と比較して同じ炭含有量ではムーニー粘度が高い傾向があることが判る。ムーニー粘度はゴム材の加工特性に関する指標であるから、その用途により求められる性質が異なるので、一概に善し悪しの判断はできない。但し、SUMIX籾殻炭を配合した場合の方が、バイオ炭を配合した場合と比較して含有量に対する応答が安定しており、素材設計においては好ましい性質である。
(Mooney viscosity)
FIG. 5 shows the Mooney viscosity of each rubber composition.
FIG. 5 shows that the Mooney viscosity tends to be higher when the SUMIX rice husk charcoal is blended than when the bio charcoal is blended. Since Mooney viscosity is an index related to the processing characteristics of a rubber material, the required properties differ depending on the application, and therefore it cannot be judged whether it is good or bad. However, when SUMIX rice husk charcoal is blended, the response to the content is more stable than when biochar is blended, which is a preferable property in material design.
(引張応力)
図6〜8に、引張試験器による引張応力の値を示す。図6は試料を100%、即ち倍の長さに引張った場合における試料両端にかかる単位面積当りの応力、図7及び8は、同200%及び300%の長さへ引張った場合の応力を示す。
引張応力の値も、用いる用途により求められる性質が異なるので、一概に善し悪しの判断はできない。但し、SUMIX籾殻炭の配合においては、炭化温度の上昇に伴って引張応力が増す傾向が認められ、これは炭化温度により求められるゴム材に適する性質を持つ補強材を選択的に製造できることを示している。また、全体的にSUMIX籾殻炭を配合した場合の方が、バイオ炭を配合した場合と比較して含有量に対する応答が安定しており、これは素材設計においては好ましい性質である。
(Tensile stress)
The value of the tensile stress by a tensile tester is shown in FIGS. Fig. 6 shows the stress per unit area applied to both ends of the sample when the sample is pulled to 100%, that is, double the length. Figs. 7 and 8 show the stress when the sample is pulled to the length of 200% and 300%. Show.
The value of the tensile stress is also different depending on the application to be used, so it is generally impossible to judge whether it is good or bad. However, in the SUMIX rice husk charcoal compound, there is a tendency for tensile stress to increase as the carbonization temperature rises, indicating that it is possible to selectively produce a reinforcing material having properties suitable for the rubber material required by the carbonization temperature. ing. In addition, when SUMIX rice husk charcoal is blended as a whole, the response to the content is more stable than when biochar is blended, which is a favorable property in material design.
(破断強度)
図9に単位面積当りの破断強度、図10に破断時の試料の伸び、即ち最大伸長を示す。
全体に、炭化温度500℃及び700℃のSUMIX籾殻炭を用いた試料は、同300℃及びバイオ炭と比較して明らかに破断強度に優れていることが判る。また、同500℃及び700℃の場合、1〜2質量部の含有量では、コントロールと比較して破断強度が増す傾向も認められた。ゴム材の破断強度の増大は、ほぼ全ての用途において好ましい性質である。
最大伸長についても、全体的にSUMIX籾殻炭を配合した場合の方が、バイオ炭を配合した場合と比較して含有量に対する応答が安定しており、これは素材設計においては好ましい性質である。
(Breaking strength)
FIG. 9 shows the breaking strength per unit area, and FIG. 10 shows the elongation of the sample at the time of breaking, that is, the maximum elongation.
Overall, it can be seen that the samples using SUMIX rice husk charcoal with carbonization temperatures of 500 ° C. and 700 ° C. are clearly superior in breaking strength compared to 300 ° C. and bio charcoal. Moreover, in the case of the same 500 degreeC and 700 degreeC, the tendency for breaking strength to increase compared with control was recognized by content of 1-2 mass parts. Increasing the breaking strength of a rubber material is a favorable property for almost all applications.
Regarding the maximum elongation, the response to the content is more stable in the case where SUMIX rice husk charcoal is blended as compared with the case where biochar is blended, which is a preferable property in material design.
図12は、炭化温度700℃のSUMIX籾殻炭を20重量部添加したゴム組成物のSEM写真。(倍率500倍)である。
図13は、炭化温度500℃のSUMIX籾殻炭を20重量部添加したゴム組成物のSEM写真。(倍率500倍)である。
図14は、炭化温度300℃のSUMIX籾殻炭を20重量部添加したゴム組成物のSEM写真。(倍率500倍)である。
図15は、関西産業(株)社製 「バイオ炭」を20重量部添加したゴム組成物のSEM写真。(倍率500倍)である。
図12〜図15にて、写真中の粒が籾殻炭粉の粒子である。
図15〜図12の順番にて、籾殻炭粉の粒子が細かくなっている。
図15の関西産業(株)社製 「バイオ炭」の場合、平均粒径では炭化温度300℃のSUMIX籾殻炭よりも小さが、全体として不均一なために粉砕した際に粒度分布が広く、 結果的に粗い粒子が混じっている。
破断試験においては、関西産業(株)社製 「バイオ炭」では、この粗い粒子が核となって破断が生じるため、図9に示したような破断強度の結果となる。
FIG. 12 is an SEM photograph of a rubber composition to which 20 parts by weight of SUMIX rice husk charcoal having a carbonization temperature of 700 ° C. is added. (
FIG. 13 is an SEM photograph of a rubber composition to which 20 parts by weight of SUMIX rice husk charcoal having a carbonization temperature of 500 ° C. is added. (
FIG. 14 is an SEM photograph of a rubber composition to which 20 parts by weight of SUMIX rice husk charcoal having a carbonization temperature of 300 ° C. is added. (
FIG. 15 is an SEM photograph of a rubber composition to which 20 parts by weight of “bio charcoal” manufactured by Kansai Sangyo Co., Ltd. is added. (
12 to 15, the grains in the photographs are the particles of rice husk charcoal powder.
The particles of rice husk charcoal powder are fine in the order of FIGS.
In the case of “bio charcoal” manufactured by Kansai Sangyo Co., Ltd. in FIG. 15, the average particle size is smaller than that of SUMIX rice husk charcoal with a carbonization temperature of 300 ° C. As a result, coarse particles are mixed.
In the rupture test, “bio charcoal” manufactured by Kansai Sangyo Co., Ltd. breaks with these coarse particles serving as nuclei, resulting in a rupture strength as shown in FIG.
図16は、各種籾殻炭について、炭素(C)、シリカ(Si02)、その他の含有量を示した図である。炭化温度500℃及び700℃のSUMIX籾殻炭においては、炭素を60〜70重量%、シリカを30〜40重量%含有し、不純物が少ない。 FIG. 16 is a diagram showing carbon (C), silica (SiO 2 ), and other contents of various rice husk charcoal. SUMIX rice husk charcoal having carbonization temperatures of 500 ° C. and 700 ° C. contains 60 to 70% by weight of carbon and 30 to 40% by weight of silica, and has few impurities.
本発明のゴム補強材によれば、耐久性がよく、環境に配慮したゴム組成物のためのゴム補強材を提供することができ、特に前記ゴム補強材を用いたゴム組成物について、耐摩耗性、破断強度を向上することが可能となり、応用範囲として、タイヤ及びスタッドレスタイヤトレッド、タイヤサイドウォール他、ベルト、防振、ブレーキパッド、靴底、パッキン、ホース、電線、電気部品、ロール用ゴムなど広範囲への応用が実現できる。 According to the rubber reinforcing material of the present invention, it is possible to provide a rubber reinforcing material for a rubber composition that has good durability and is environmentally friendly. Particularly, the rubber composition using the rubber reinforcing material has an abrasion resistance. As a range of applications, tires, studless tire treads, tire sidewalls, belts, anti-vibration, brake pads, shoe soles, packings, hoses, electric wires, electrical components, rubber for rolls It can be applied to a wide range.
2…キルン
2a 乾燥部
2b 炭化部
2d 蓄熱部
2c 内部空間
2in 入口
2out 出口
3…燃焼室
3a…排気管
4…加熱源
5…配管部
6…冷却部
7…脱臭部
8…乾留ガス回収部
9…補助加熱源
10…蒸気煙経路
11…油化部
12…配水管
13…ファン
14…ホッパ
15…原料供給配管
16…供給スクリュー
17…第2排出配管
18…冷却装置
19…接続管(下流側排ガス管)
19a 下流側排ガス管上管
19b 下流側排ガス管下管
20…搬送スクリュー
21…搬送スクリュー
22…蒸気抜きパイプ(上流側排ガス管)
22a 上流側排ガス管上管
22b 上流側排ガス管下管
23 煙突部
24 循環管
25 ガス抜きパイプ
30 接続部
60 回収部
P 投入素材
Q 炭化された素材
DESCRIPTION OF
19a Downstream exhaust pipe upper pipe
19b Downstream exhaust pipe
20 ... Conveying
22a Upper side exhaust pipe upper pipe
22b Upstream exhaust pipe lower pipe
23
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015812A JP5945121B2 (en) | 2012-01-27 | 2012-01-27 | Rubber reinforcing material and rubber composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015812A JP5945121B2 (en) | 2012-01-27 | 2012-01-27 | Rubber reinforcing material and rubber composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013155254A true JP2013155254A (en) | 2013-08-15 |
JP5945121B2 JP5945121B2 (en) | 2016-07-05 |
Family
ID=49050775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012015812A Active JP5945121B2 (en) | 2012-01-27 | 2012-01-27 | Rubber reinforcing material and rubber composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5945121B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018100325A (en) * | 2016-12-19 | 2018-06-28 | トライボテックス株式会社 | Composite material and sliding member using the same |
JP2020186142A (en) * | 2019-05-10 | 2020-11-19 | 株式会社クボタ | Silica-carbon composite material and its manufacturing method |
CN114736433A (en) * | 2022-02-28 | 2022-07-12 | 旗禾科技(吉林)有限责任公司 | Preparation method, product and application of biomass rice hull based nano-micro structure carbon material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49132108A (en) * | 1972-07-28 | 1974-12-18 | ||
JPS55139441A (en) * | 1979-04-16 | 1980-10-31 | Matsushita Electric Ind Co Ltd | Rubber composition |
CN1116128C (en) * | 2001-05-25 | 2003-07-30 | 吉林大学 | Comprehensive rice husk utilizing method |
JP2009114253A (en) * | 2007-11-02 | 2009-05-28 | Toyo Tire & Rubber Co Ltd | Rubber composition for tire tread |
WO2011096444A1 (en) * | 2010-02-02 | 2011-08-11 | 株式会社ガイア環境技術研究所 | Method for producing oil or gas adsorbent, and oil or gas adsorbent |
-
2012
- 2012-01-27 JP JP2012015812A patent/JP5945121B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49132108A (en) * | 1972-07-28 | 1974-12-18 | ||
JPS55139441A (en) * | 1979-04-16 | 1980-10-31 | Matsushita Electric Ind Co Ltd | Rubber composition |
CN1116128C (en) * | 2001-05-25 | 2003-07-30 | 吉林大学 | Comprehensive rice husk utilizing method |
JP2009114253A (en) * | 2007-11-02 | 2009-05-28 | Toyo Tire & Rubber Co Ltd | Rubber composition for tire tread |
WO2011096444A1 (en) * | 2010-02-02 | 2011-08-11 | 株式会社ガイア環境技術研究所 | Method for producing oil or gas adsorbent, and oil or gas adsorbent |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018100325A (en) * | 2016-12-19 | 2018-06-28 | トライボテックス株式会社 | Composite material and sliding member using the same |
JP2020186142A (en) * | 2019-05-10 | 2020-11-19 | 株式会社クボタ | Silica-carbon composite material and its manufacturing method |
WO2020230631A1 (en) * | 2019-05-10 | 2020-11-19 | 株式会社クボタ | Silica-carbon composite material and method for producing same |
CN113795463A (en) * | 2019-05-10 | 2021-12-14 | 株式会社久保田 | Silica-carbon composite material and method for producing same |
JP7214561B2 (en) | 2019-05-10 | 2023-01-30 | 株式会社クボタ | Method for producing amphiphilic silica-carbon composite |
CN114736433A (en) * | 2022-02-28 | 2022-07-12 | 旗禾科技(吉林)有限责任公司 | Preparation method, product and application of biomass rice hull based nano-micro structure carbon material |
Also Published As
Publication number | Publication date |
---|---|
JP5945121B2 (en) | 2016-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lay et al. | Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites | |
Poikelispää et al. | The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound | |
WO2012023479A1 (en) | Solid fuel, and method and apparatus for producing same | |
JP5945121B2 (en) | Rubber reinforcing material and rubber composition | |
JP5813985B2 (en) | Method for producing carbide for reinforcing rubber articles | |
Peterson et al. | Reducing biochar particle size with nanosilica and its effect on rubber composite reinforcement | |
Jong et al. | Utilization of porous carbons derived from coconut shell and wood in natural rubber | |
WO2018225789A1 (en) | Rubber crosslinked product and method for manufacturing for same | |
WO2020195799A1 (en) | Elastomer composition and molded body | |
JP5878275B2 (en) | Method of pyrolyzing polymer waste, method of recovering carbide, and carbide, rubber composition and tire | |
JP7151760B2 (en) | Method for producing rubber composition | |
JP2005263547A (en) | Composite activated carbonized material and method for manufacturing the same | |
JP5632661B2 (en) | Carbon material for rubber reinforcement and method for producing the same | |
Hwang et al. | Feasibility assessment of manufacturing carbonized blocks from rice husk charcoal | |
JP4910631B2 (en) | Blast furnace operation method | |
Lubura et al. | Influence of biochar and carbon black on natural rubber mixture properties | |
JP4486552B2 (en) | Manufacturing method of high strength coke | |
Jincheng et al. | Application of nano‐zinc oxide master batch in polybutadiene styrene rubber system | |
JP7276319B2 (en) | Composite material manufacturing method | |
Danilova-Tret′ yak | On thermophysical properties of rubbers and their components | |
Akbay et al. | Assessment of blue crab Shell (Callinectes sapidus) particles as bio‐based filler to EPDM rubber | |
Bardha et al. | Physicochemical Characterization of Different Steam Activations of Corn Stover Biochar and Their Reinforcement of Styrene-Butadiene Rubber Composites | |
Manoharan et al. | On‐demand tuned hazard free elastomeric composites: A green approach | |
JPH10158714A (en) | Production of low moisture and low sulfur carburnizing material for metallurgy | |
RU2693755C1 (en) | Method of producing graphene material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160527 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5945121 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |