JP2013153096A - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
JP2013153096A
JP2013153096A JP2012013785A JP2012013785A JP2013153096A JP 2013153096 A JP2013153096 A JP 2013153096A JP 2012013785 A JP2012013785 A JP 2012013785A JP 2012013785 A JP2012013785 A JP 2012013785A JP 2013153096 A JP2013153096 A JP 2013153096A
Authority
JP
Japan
Prior art keywords
substrate
liquid
liquid film
processing apparatus
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012013785A
Other languages
English (en)
Inventor
Atsushi Tanide
敦 谷出
Toshimitsu Funayoshi
俊充 船吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2012013785A priority Critical patent/JP2013153096A/ja
Publication of JP2013153096A publication Critical patent/JP2013153096A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】優れた面内均一性で、かつ安定して基板表面上のパーティクルを除去することができる基板処理装置を提供する。
【解決手段】処理液貯留槽1内にDIWなどの処理液が貯留され、液膜LFが形成される。そして、この液膜LF内に基板Wを浸漬させた状態で超音波発振器4からパルス信号が超音波ヘッド2の振動子に出力されて液膜LFに超音波振動が付与される。また、これと同時に、処理液供給源52から処理液が液滴供給ノズル51に圧送され、これによって液滴供給ノズル51から処理液の液滴が上記液膜LFの液滴供給位置Pdに滴下される。このように液膜LFに対する超音波振動の付与および液滴の供給が行われ、液滴供給によって発生する微小気泡は基板表面Wfの周縁から振動付与位置Pvの反対側に広がり、基板表面Wfからパーティクルが除去される。
【選択図】図4

Description

この発明は、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(電界放出ディスプレイ:Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板等を超音波振動を用いて洗浄する基板処理技術に関するものである。
半導体装置や液晶表示装置などの電子部品の製造工程では、基板の表面に成膜やエッチングなどの処理を繰り返し施して微細パターンを形成するプロセス工程が含まれている。ここで、微細加工を良好に行うためには基板表面を清浄な状態に保つ必要があり、必要に応じて基板表面に対して洗浄処理が行われる。そこで、従来、基板へのダメージを抑制しながら基板表面上のパーティクルを効率的に除去するために、超音波振動と液滴供給とを組み合わせた基板処理技術が提案されている(特許文献1)。この特許文献1に記載の基板処理装置では、基板表面上の液膜がパドル状に形成されるとともに、その液膜に対して振動付与位置で超音波振動が与えられる。また、これに同時に、その振動付与位置と異なる液滴供給位置で洗浄液の液滴が液膜に供給されて超音波振動と異なる振動が液膜に与えられる。これによって、基板表面に付着していたパーティクルの除去率が単に超音波振動を加えた場合に比べて格段に向上する。
特開2009−71272号公報
上記従来技術では、基板表面上に形成された液膜に対して超音波振動の付与および液滴の供給を組み合わせて基板処理を行うため、基板処理の間、液膜を安定して維持することが重要である。しかしながら、基板表面に液膜をパドル状に形成しているにすぎないため、液膜を安定させることが困難となることがある。特に、基板表面上にとどまらず基板表面周縁から外方にはみ出て液膜を形成し、そのはみ出た領域(外方液膜領域)に超音波振動を付加する構成を採用すると、液膜を安定して維持することが一層難しくなる。
また、このようにパドル状に形成される液膜では、中央部と周縁部とで液膜厚さが異なっており、このことが基板処理の面内均一性を高める上で障害のひとつとなっている。
この発明は上記課題に鑑みなされたものであり、優れた面内均一性で、かつ安定して基板表面上のパーティクルを除去することができる基板処理装置を提供することを目的とする。
この発明にかかる基板処理装置は、上記目的を達成するため、基板を略水平姿勢で収容可能な収容部と、収容部に収容される基板の径方向側に設けられて収容部に連通する連通部とを有し、収容部および連通部で第1処理液を貯留して液膜を形成し、液膜内に基板を浸漬させる処理液貯留手段と、連通部で液膜に対して超音波振動を付与する超音波付与手段と、液膜内に浸漬される基板の中心位置と、超音波付与手段が超音波振動を付与する振動付与位置との間の液滴供給位置で、第2処理液の液滴を液膜に供給する第1液滴供給手段とを備えることを特徴としている。
このように構成された発明では、第1処理液が処理液貯留手段に貯留されて液膜が形成され、この液膜内に基板が浸漬される。このため、基板全面にわたって液膜が安定して形成されるとともに液膜厚が均一となっている。そして、この液膜に対する超音波振動の付与および液滴の供給が行われ、基板表面からパーティクルが除去される。したがって、基板表面からのパーティクル除去、つまり洗浄処理が優れた面内均一性で安定して行われる。
なお、液膜に対して超音波振動を付与した状態で液滴を供給すると、既に特許文献1に記載されているように、液滴の供給位置(本発明の液滴供給位置)に対して超音波振動の付与位置(本発明の振動付与位置)の反対側でパーティクル除去が進む。したがって、第1液滴供給手段が基板の周縁部で第2処理液の液滴を液膜に供給するように構成することで、パーティクル除去が行われる基板表面の範囲が広がり、好適である。
また、処理液貯留手段での連通部の設置個数は1個に限定されるものではなく、複数の連通部を処理液貯留手段に設けてもよい。そして、各連通部に対し、超音波付与手段および第1液滴供給手段を設けることで、超音波振動の付与と液滴の供給との組み合わせにより行われる洗浄処理が基板表面の複数箇所で行われる。したがって、表面積が比較的狭い基板はもちろんのこと、比較的広い基板に対しても、基板表面全体からパーティクルを良好に除去することができる。
また、液滴の供給は1箇所に限定されるものではなく、例えば第2液滴供給手段が液滴供給位置に対して振動付与位置の反対側で第2処理液の液滴を液膜に供給するように構成してもよく、これによって振動付与位置から比較的離れた基板表面領域に付着するパーティクルについても良好に除去することが可能となる。また、この第2液滴供給手段を移動手段により基板に対して相対的に移動させると、パーティクル除去範囲が広がり、好適である。
また、本発明では第2処理液の液滴を液膜に供給するため、時間経過とともに液膜の厚みが増大してパーティクルの除去性能が影響を受ける。この影響を回避するために、例えば液膜厚調整手段をさらに設けてもよく、液膜厚調整手段が液膜の厚さを調整することで上記影響を抑制することができる。液膜厚調整手段としては、例えば処理液貯留手段に貯留される第1処理液および第2処理液を排出する排液管と、排液管を介して排出される第1処理液および第2処理液の量を調整する調整部とで構成してもよい。例えば処理液貯留手段に貯留される第1処理液および第2処理液のうち液滴供給分だけを排液管を介して排出することで液膜厚を一定に保つことができ、安定した基板処理が可能となる。
さらに、振動付与位置と基板の中心位置の間で、かつ基板の周縁部より外側に設けられ、液膜への超音波振動の付与により発生する第1処理液の流れを整流する整流手段をさらに設けてもよい。このように整流手段を設けることで、超音波付与手段から基板に伝わる音響流の運動エネルギーを低下させてパーティクル除去に寄与する気泡核の偏在を抑制し、洗浄処理の均一性が高められる。この整流手段としては、例えば第1処理液で満たされた整流管路を有する中空管を用いることができ、整流管路の鉛直方向の寸法を超音波振動の波長以上とするのが望ましい。
以上のように、処理液貯留手段に第1処理液を貯留して形成した液膜内に基板を浸漬させた状態で、当該液膜に超音波振動を付与するとともに液滴を供給して基板表面からパーティクルを除去している。そのため、基板表面全体にわたって液膜を均一な厚みで、かつ安定して維持することができ、優れた面内均一性で、かつ安定して基板表面上のパーティクルを除去することができる。
キャビテーションの分布と洗浄性との関連性を示す図である。 音響放射圧による水中気泡の動きを示す図である。 音響放射圧と音圧との関係を示す図である。 本発明にかかる基板処理装置の第1実施形態を示す図である。 本発明にかかる基板処理装置の第2実施形態を示す図である。 本発明にかかる基板処理装置の第3実施形態を示す図である。 本発明にかかる基板処理装置の第4実施形態を示す図である。
A.超音波振動付与と液滴供給との相互作用に関する考察
特許文献1では、基板表面上の液膜に対して超音波振動を付与するのみならず液滴を供給することで、パーティクルの除去率が単に超音波振動を加えた場合に比べて格段に向上することが記載されている。そこで、本願発明者は、その理由を解析するとともに種々の実験などを行った。その結果、次の新たな知見を得た。以下においては、それらについて説明した後、それらの知見などに基づく実施形態について説明する。
超音波による物理エネルギーは、粗密波による加速エネルギーと、音波の腹の部分で発生するキャビテーション(気泡核)の収縮・崩壊によるエネルギーとに大別される。特に、kHz〜数MHz帯の低周波領域を用いた超音波洗浄では、キャビテーションによる物理力が大きく洗浄に寄与し、気泡核量や気泡核分布によってパーティクル除去性能が変化する。
そこで、キャビテーションの分布と洗浄性との関連性について検討した。キャビテーションに関してはソノケミストリーの分野で可視化手法が開発されているものの、それを枚葉洗浄における可視化にそのまま適用することは困難である。その代替として、目視可能な気泡の可視化を試みた。具体的には、特許文献1と同様に、表面にパーティクル(Si屑)を付着させたシリコンウエハ(ウエハ径:200mm)を用意し、シリコンウエハの表面に形成したDIW(脱イオン水:deionized water)の液膜のうち表面周縁に超音波振動を付加するとともに、DIWの液滴を液膜に滴下し、パーティクルの除去率を計測した。このような実験を、液滴径、液滴の流速および液滴を供給する位置を変更しながら行った。その結果として、洗浄性が得られる洗浄条件では、図1(a−1)、(b−1)に示すように、数100[μm]径の微小気泡が発生し、その分布は洗浄性、つまりパーティクルの除去率と明確な相関を有している。この点については、特許文献1に記載された具体例と一致している。なお、図1中の符号Pvは超音波振動を付与した振動付与位置を示し、符号Pdは液滴を供給した液滴供給位置を示している。また、白破線領域は微小気泡の発生領域を示している。さらに、図1(a−2)、(b−2)中の黒点はシリコンウエハの表面からパーティクルが除去されたポイントを示しており、同図(a−2)は同図(a−1)に示すシリコンウエハでのパーティクルの除去を示し、同図(b−2)は同図(b−1)に示すシリコンウエハでのパーティクルの除去を示している。
さらに、このように洗浄性が得られる洗浄条件を分析したところ、その洗浄条件は、
液滴径:φ1[mm]以上、φ10[mm]以下、
液膜衝突時点の液滴の流速:0.1[m/s]以上、5[m/s]
であった。例えば液滴径φ4[mm]のDIWの液滴を互いに異なる流速で滴下し、パーティクルの除去率を計測したところ、次の結果、つまり、
流速1.2[m/s]…除去率38[%]
流速0.8[m/s]…除去率17[%]
流速0.6[m/s]…除去率15[%]
が得られた。
また、液滴の供給により発生する気泡核の分布は供給位置周囲の流れと一致せず、液滴の供給位置に対して超音波振動の付与位置の反対側に移動する。これは以下の理由に基づくものと考察される。すなわち、DIWなどの液膜中に発生する水中気泡(気泡核)の音響インピーダンスは水のそれと大きく異なっている。このため、インピーダンス差に応じた音響放射圧が液膜内で発生し、水中気泡の動きは周囲の流れ(図2参照)と異なる。音響放射圧は、例えば図3に示すように、音圧の自乗に比例するため、振動子周囲の音圧変化の激しい領域に位置する気泡核に与える抗力は大きい。一方、振動子から離れるに従って当該抗力は小さくなり、水中気泡の移動量は減少する。この現象は洗浄に寄与する微小気泡に関しても同様に成り立つものと考えられる。したがって、基板表面のサイズが大きくなると、音響放射圧が不足する領域が発生し、良好な洗浄性が得られない可能性がある。このような場合、当該領域に液滴を供給して気泡核を発生させるのが好適である。
B.第1実施形態
図4は、本発明にかかる基板処理装置の第1実施形態を示す図であり、同図(a)は平面図であり、同図(b)は装置構成を模式的に示す図である。この基板処理装置は、DIWなどの処理液を貯留する処理液貯留槽1を有している。この処理液貯留槽1は、略水平姿勢の基板Wを収容可能となっている収容部11と、収容部11に収容される基板Wの径方向側に設けられる第1連通部12と、基板Wの中心位置Pcに対して第1連通部12の反対側に設けられる第2連通部13とを有している。処理液貯留槽1では、図1(a)に示すように、収容部11は基板Wよりも若干大きな略円形底面を有し、第1連通部12および第2連通部13は略矩形底面を有しており、これらの底面が相互に一体化されている。
この収容部11の略円形底面から支持ピン14が複数本立設され、各支持ピン14の頂部で基板Wの裏面を支持可能となっている。また、収容部11の略円形底面の周縁では、第1連通部12および第2連通部13と一体化されている箇所を除き、壁部材が立設されている。さらに、第1連通部12および第2連通部13の略矩形底面の周縁においても、収容部11と一体化されている箇所を除き、壁部材が立設されている。これらの壁部材は支持ピン14で支持された基板Wの表面Wfよりも高い位置まで延設されている。
このように処理液貯留槽1では、基板Wを略水平姿勢で支持ピン14で支持する収容空間が鉛直上方の開口した状態で収容部11の内部に形成されている。また、第1連通部12および第2連通部13にも鉛直上方の開口した空間が形成され、収容空間と連通している。このため、図示を省略する処理液供給部により処理液貯留槽1に処理液を送り込むと、処理液は収容部11、第1連通部12および第2連通部13に行き渡って液膜LFを形成する。そして、同図(b)に示すように、収容部11に収容された基板Wは液膜LF内で浸漬される。
第1連通部12には、超音波ヘッド2が固定配置されている。この超音波ヘッド2は、本体部の収容部側(図4の右手側)の側面に振動板21が取り付けられ、液膜LFと接している。この振動板21の接液面が振動面となっている。この振動板21には不図示の振動子が貼り付けられている。また、装置全体を制御する制御ユニット3からの制御信号に基づき超音波発振器4がパルス信号を振動子に出力する。これによって振動子が超音波振動して振動板21を介して液膜LFに超音波振動を付与する。このように超音波ヘッド2によって超音波振動が液膜LFに与えられる位置Pvが本発明の「振動付与位置」に相当する。
こうして超音波振動が与えられる液膜LFに対し、振動付与位置Pvと異なる位置PdでDIWなどの処理液の液滴を供給するために、液滴供給部5が設けられている。この液滴供給部5は、処理液貯留槽1の上方位置に配置された液滴供給ノズル51と、当該液滴供給ノズル51にDIWなどの処理液を供給する処理液供給源52とを有している。液滴供給ノズル51は基板Wの中心位置Pcと振動付与位置Pvとの間の液滴供給位置Pdの上方に配置されている。特に、本実施形態では、中心位置Pcと振動付与位置Pvとを結ぶ仮想直線と基板表面Wfの周縁とが交差する位置を、液滴供給位置Pdとしている。なお、本実施形態では、液滴供給位置Pdを固定化しているが、液滴供給ノズル51を水平方向に移動可能に構成し、基板Wや処理液の種類などに応じて液滴供給ノズル51を水平方向に変位させて液滴供給位置Pdを調整するように構成してもよい。
このように本実施形態では、本発明の「第1処理液」に相当する処理液を処理液貯留槽1に貯留して液膜LFを形成するとともに、本発明の「第2処理液」に相当する処理液の液滴を液膜LFに対して供給している。したがって、第2処理液の液滴供給によって処理液貯留槽1に貯留される処理液の量が液滴の供給継続に伴って増えて液膜LFの厚みが増大していく。そこで、本実施形態では、液膜LFの厚みを調整するために、次のように構成された液膜厚調整部6が設けられている。この液膜厚調整部6は、排液管61および開閉バルブ62で構成されている。すなわち、第2連通部13では、排液管61が処理液貯留槽1の底面部を鉛直方向に貫通して設けられており、その上端は処理液貯留槽1の内底面から鉛直上方に突出する一方、その下端は処理液貯留槽1から鉛直下方に延設されている。また、排液管61の下端は開閉バルブ62と接続されている。そして、開閉バルブ62が制御ユニット3からの開指令に応じて開成すると、排液管61を介して処理液貯留槽1に貯留される処理液を排液して液膜LFの厚みを減少させる。これによって、液膜LFが洗浄に適した液膜厚に調整される。
以上のように、第1実施形態にかかる基板処理装置では、DIWなどの処理液を処理液貯留槽1に貯留することで形成された液膜LF内に基板Wを浸漬させている。このため、基板全面にわたって液膜LFが安定して形成され、しかも液膜厚も均一となっている。そして、このように液膜LF内に基板Wを浸漬させた状態で超音波発振器4からパルス信号が超音波ヘッド2の振動子に出力されて液膜LFに超音波振動が付与される。また、これと同時に、処理液供給源52から処理液が液滴供給ノズル51に圧送され、これによって液滴供給ノズル51から処理液の液滴が上記液膜LFの液滴供給位置Pdに滴下される。このように液膜LFに対する超音波振動の付与および液滴の供給が行われ、液滴供給によって発生する微小気泡は基板表面Wfの周縁から振動付与位置Pvの反対側に広がり、基板表面Wfからパーティクルが除去される。したがって、基板表面Wfからのパーティクル除去、つまり洗浄処理を優れた面内均一性で安定して行うことができる。
また、上記実施形態では、液滴供給ノズル51からDIWの液滴を液膜LFに供給しているため、時間経過とともに液膜LFの厚みが増大する。これによって、超音波ヘッド2からの音圧を受ける体積が大きくなり、パーティクルの除去性能が影響を受ける。しかしながら、第1実施形態では、液膜厚調整部6の開閉バルブ62を開閉制御することで液膜LFを洗浄に適した液膜厚に調整している。その結果、上記影響を抑制して基板表面Wfからのパーティクル除去をさらに安定して行うことが可能となっている。
このように第1実施形態では、処理液貯留槽1が本発明の「処理液貯留手段」に相当し、第1連通部12が本発明の「連通部」に相当している。また、超音波ヘッド2が本発明の「超音波付与手段」に相当している。また、液滴供給ノズル51が本発明の「第1液滴供給手段」に相当している。
C.第2実施形態
上記した「A.超音波振動付与と液滴供給との相互作用に関する考察」の項で説明したように、基板表面Wfのサイズが大きくなると、超音波ヘッド2から離れるに従って微小気泡の移動量は減少する。例えば基板Wの中心位置Pcに対して振動付与位置Pvの反対側でのパーティクル除去率が低下することがある。そこで、液滴供給位置Pdに対して振動付与位置Pvの反対側でDIWの液滴を液膜LFに供給するように構成してもよい。
図5は、本発明にかかる基板処理装置の第2実施形態を示す図である。この第2実施形態では、基板Wの中心位置Pcに対して振動付与位置Pvの反対側でDIWの液滴を液膜LFに供給する液滴供給ノズル53が追加され、液滴供給ノズル51とともに処理液供給源52から処理液の供給を受けて液膜LFの液滴供給位置Pd′(以下「追加液滴供給位置Pd′」という)に処理液の液滴を滴下する。これによって振動付与位置Pvから比較的離れた基板表面領域に付着するパーティクルについても良好に除去することが可能となる。
このように第2実施形態では、液滴供給ノズル53が本発明の「第2液滴供給手段」に相当している。
なお、第2実施形態において、液滴供給ノズル53を基板表面Wfに沿って相対移動させる移動手段を設けてもよく、基板Wに対する液滴供給ノズル53の相対的移動によって、液滴供給範囲が広がり、パーティクル除去範囲をさらに広げることが可能となる。この点については次の第3実施形態においても同様である。
D.第3実施形態
上記した「A.超音波振動付与と液滴供給との相互作用に関する考察」の項で説明したように、音響放射圧は超音波ヘッド2の振動子周囲で大きい。したがって、液滴供給位置Pdで発生した微小気泡は超音波加振時に生じる処理液の流れ、つまり音響流の影響を大きく受けて微小気泡が偏在し、このことが洗浄性の均一性を阻害する主要因のひとつとなることがある。これに対しては、整流機構を設けるのが好適である。以下、図6を参照しつつ説明する。
図6は、本発明にかかる基板処理装置の第3実施形態を示す図である。この第3実施形態が第1実施形態と大きく相違する点は、第1連通部12に整流機構7が設けられている点であり、その他の構成は基本的に第1実施形態と同一である。したがって、以下においては、相違点を中心に説明し、同一構成については同一符号を付して説明を省略する。
この整流機構7は、振動付与位置Pvと基板Wの中心位置Pcの間で、かつ基板Wの周縁部より外側に設けられ、液膜LFへの超音波振動の付与により発生する処理液の流れを整流する。より詳しくは、整流機構7は中央に圧力損失用の管路71を有する中空管で構成されており、第1連通部12の液膜LFに浸漬されている。この管路71は、圧力損失を発生させるために、超音波ヘッド2から基板Wに向かう方向に沿った長さLが10[mm]以上で、かつ高さDが液膜LFを伝播する音響波の波長λ以上(より好ましくは、波長λの整数倍)となっている。このため、管路71内の処理液を音響波が伝播する間に、音響波の運動エネルギーが低減される。その結果、微小気泡が偏在するのを効果的に防止して洗浄性の均一性を高めることができる。
E.第4実施形態
図7は、本発明にかかる基板処理装置の第4実施形態を示す図である。この第4実施形態では、この処理液貯留槽1は、略水平姿勢の基板Wを収容可能となっている収容部11と、収容部11に収容される基板Wの径方向側に設けられる3つのヘッド配設用の第1連通部12a〜12cと、液膜厚調整用の第2連通部13とを有している。処理液貯留槽1では、第1実施形態と同様に、収容部11は基板Wよりも若干大きな略円形底面を有し、第1連通部12a〜12cおよび第2連通部13は略矩形底面を有しており、これらの底面が相互に一体化されている。
この収容部11では、第1実施形態と同様に、複数の支持ピン14により基板Wが略水平姿勢で支持されている。また、この基板Wの中心位置Pcを中心として第1連通部12a〜12cが放射状に、かつ等角度間隔で配置されている。一方、第2連通部13はいずれの第1連通部12a〜12cとも対向しないように配置されている。なお、その他の構成は第1実施形態の処理液貯留槽1と同一であり、図示を省略する処理液供給部により処理液貯留槽1に処理液を送り込むことで、処理液貯留槽1内で液膜が形成され、収容部11に収容された基板Wが液膜内で浸漬される。
第1連通部12a〜12cには、第1実施形態と同一構成の超音波ヘッド2a〜2cがそれぞれ配置されている。そして、制御ユニット3からの制御信号に基づき超音波発振器4がパルス信号を超音波ヘッド2a〜2cの振動子に出力すると、互いに異なる3方向から超音波振動が液膜に同時に付与される。
また、超音波ヘッド毎に2種類の液滴供給ノズルが設けられている。すなわち、3つの超音波ヘッドのうち超音波ヘッド2aに対して液滴供給ノズル51a、53aが設けられている。超音波ヘッド2aの振動付与位置と基板Wの中心位置Pcとを結ぶ仮想直線と基板表面Wfの周縁とが交差する位置を、液滴供給位置とし、この上方位置に液滴供給ノズル51aが配置されている。また、もう一方の液滴供給ノズル53aは基板Wの中心位置Pcに対して超音波ヘッド2aの振動付与位置の反対側で基板表面Wfに沿って移動自在に設けられている。なお、超音波ヘッド2bに対して液滴供給ノズル51b、53bが、また超音波ヘッド2cに対して液滴供給ノズル51c、53cが、液滴供給ノズル51a、53aと同様に設けられている。
また、液滴供給ノズル53a〜53cは不図示のノズル移動機構と接続されている。そして、装置全体を制御する制御ユニットからの制御指令に応じてノズル移動機構が作動することで、液滴供給ノズル53a〜53cを基板表面Wfに沿って相対移動させることが可能となっている。
さらに、第2連通部13では、第1実施形態と同様に、液膜厚調整部6の排液管61が処理液貯留槽1の底面部を鉛直方向に貫通して設けられており、排液管61の下端に接続された開閉バルブ62が制御ユニットからの開閉制御することで液膜の液膜厚を調整可能となっている。
以上のように、第4実施形態では、超音波振動を複数方向から付与するとともに、各振動付与位置に対応する位置で液滴を供給しており、超音波振動の付与と液滴の供給との組み合わせより行われる洗浄処理を基板表面Wfの複数箇所で行っている。したがって、表面積が比較的狭い基板Wはもちろんのこと、比較的広い基板Wに対しても、基板表面Wf全体からパーティクルを良好に除去することができる。
また、液滴供給ノズル53a〜53cを設けているため、第2実施形態と同様に、基板Wの中心位置Pcに対して振動付与位置の反対側でDIWの液滴を液膜に滴下することができ、振動付与位置Pvから比較的離れた基板表面領域に付着するパーティクルについても良好に除去することが可能となる。しかも、これらの液滴供給ノズル53a〜53cを基板表面Wfに沿って移動可能としているため、広範囲にわたって洗浄性の均一性を高めることができる。
F.その他
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記第1実施形態〜第3実施形態では1個の超音波ヘッド2が設けられ、上記第4実施形態では3個の超音波ヘッド2a〜2cが設けられているが、超音波ヘッドの配設個数はこれらに限定されるものではなく、2個、あるいは4個以上の超音波ヘッドを配設してもよい。なお、超音波ヘッドを複数個設けた場合、第4実施形態と同様に、それらの超音波ヘッドを同時に作動させて複数箇所から同時に超音波振動を液膜LFに付与してもよいが、超音波振動を異なるタイミングで付与するように構成してもよい。また、液滴供給についても、同時あるいは相互に異なるタイミングで実行してもよい。
また、上記実施形態では、第2連通部13を一箇所のみに設けているが、第2連通部13を複数個設け、各第2連通部13に排液管61を設置し、複数箇所から排液するように構成してもよい。
また、上記実施形態では、振動付与位置Pv、液滴供給位置Pdおよび基板Wの中心位置Pc(さらに、追加液滴供給位置Pd′)が一直線上となるように、振動付与位置Pvおよび液滴供給位置Pdが設定されているが、振動付与位置Pvおよび液滴供給位置Pdの相対関係はこれに限定されるものではない。すなわち、超音波振動が液膜LF中を伝播する経路上で、かつ超音波振動が付与される振動付与位置Pvと異なる位置を液滴供給位置Pdとすることができる。
さらに、上記実施形態においては、液膜LFを構成する処理液および液滴を構成する処理液は、いずれもDIW(同種の処理液)であるものとして説明したが、これに限定されるものでない。例えば、これらの処理液は、SC1溶液(アンモニア水と過酸化水素水との混合水溶液)などの基板Wの洗浄処理に用いられる薬液であってもよい。また、これらの処理液は、異なるものであってもよい。
この発明は、超音波振動を利用して基板からパーティクルを除去する基板処理技術に適用することができる。
1…処理液貯留槽(処理液貯留手段)
2、2a〜2c…超音波ヘッド(超音波付与手段)
4…超音波発振器
6…液膜厚調整部
7…整流機構
11…収容部
12、12a〜12c…第1連通部
21…振動板
51、51a〜51c…液滴供給ノズル(第1液滴供給手段)
53、53a〜53c…液滴供給ノズル(第2液滴供給手段)
61…排液管
62…開閉バルブ
71…管路
LF…液膜
Pc…(基板の)中心位置
Pd…液滴供給位置
Pd′…追加液滴供給位置
Pv…振動付与位置
W…基板
Wf…基板表面

Claims (9)

  1. 基板を略水平姿勢で収容可能な収容部と、前記収容部に収容される基板の径方向側に設けられて前記収容部に連通する連通部とを有し、前記収容部および前記連通部で第1処理液を貯留して液膜を形成し、前記液膜内に前記基板を浸漬させる処理液貯留手段と、
    前記連通部で前記液膜に対して超音波振動を付与する超音波付与手段と、
    前記液膜内に浸漬される基板の中心位置と、前記超音波付与手段が超音波振動を付与する振動付与位置との間の液滴供給位置で、第2処理液の液滴を前記液膜に供給する第1液滴供給手段と
    を備えることを特徴とする基板処理装置。
  2. 請求項1に記載の基板処理装置であって、
    前記第1液滴供給手段は、前記基板の周縁部で前記第2処理液の液滴を前記液膜に供給する基板処理装置。
  3. 請求項1または2に記載の基板処理装置であって、
    前記処理液貯留手段は前記連通部を複数個有し、
    各連通部に対し、前記超音波付与手段および前記第1液滴供給手段が設けられる基板処理装置。
  4. 請求項1ないし3のいずれか一項に記載の基板処理装置であって、
    前記液滴供給位置に対して前記振動付与位置の反対側で前記第2処理液の液滴を前記液膜に供給する第2液滴供給手段をさらに備える基板処理装置。
  5. 請求項4に記載の基板処理装置であって、
    前記第2液滴供給手段を前記基板に対して相対的に移動する移動手段をさらに備える基板処理装置。
  6. 請求項1ないし5のいずれか一項に記載の基板処理装置であって、
    前記液膜の厚さを調整する液膜厚調整手段をさらに備える基板処理装置。
  7. 請求項6に記載の基板処理装置であって、
    前記液膜厚調整手段は、前記処理液貯留手段に貯留される前記第1処理液および前記第2処理液を排出する排液管と、前記排液管を介して排出される前記第1処理液および前記第2処理液の量を調整する調整部とを有する基板処理装置。
  8. 請求項1ないし7のいずれか一項に記載の基板処理装置であって、
    前記振動付与位置と前記基板の中心位置の間で、かつ前記基板の周縁部より外側に設けられ、前記液膜への超音波振動の付与により発生する前記第1処理液の流れを整流する整流手段をさらに備える基板処理装置。
  9. 請求項8に記載の基板処理装置であって、
    前記整流手段は前記第1処理液で満たされた整流管路を有する中空管であり、
    前記整流管路の鉛直方向の寸法は前記超音波振動の波長以上である基板処理装置。
JP2012013785A 2012-01-26 2012-01-26 基板処理装置 Pending JP2013153096A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013785A JP2013153096A (ja) 2012-01-26 2012-01-26 基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013785A JP2013153096A (ja) 2012-01-26 2012-01-26 基板処理装置

Publications (1)

Publication Number Publication Date
JP2013153096A true JP2013153096A (ja) 2013-08-08

Family

ID=49049222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013785A Pending JP2013153096A (ja) 2012-01-26 2012-01-26 基板処理装置

Country Status (1)

Country Link
JP (1) JP2013153096A (ja)

Similar Documents

Publication Publication Date Title
US9901962B2 (en) Ultrasonic cleaning apparatus
KR101317736B1 (ko) 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치
US20170271145A1 (en) Method and an apparatus for cleaning substrates
JP4801086B2 (ja) 基板を処理するための方法、装置及びノズルユニット
JP2007311756A (ja) 超音波洗浄装置及び超音波洗浄方法
WO2008070295A2 (en) System and method for the sonic-assisted cleaning of substrates utilizing a sonic-treated liquid
SG188535A1 (en) Improved ultrasonic cleaning method and apparatus
JP2011255274A (ja) 超音波洗浄装置及び超音波洗浄方法
US20110088719A1 (en) Method and Apparatus for Cleaning a Semiconductor Substrate
KR100757417B1 (ko) 웨이퍼 세정 장치
US20190252215A1 (en) Apparatus and method for cleaning semiconductor wafers
KR101639635B1 (ko) 메가소닉 세정 방법 및 세정 장치
US20130019893A1 (en) Ultrasonic cleaning method and apparatus
KR101827296B1 (ko) 대면적 초음파 세정장치
JP6818484B2 (ja) 基板洗浄方法、基板洗浄レシピ作成方法、および基板洗浄レシピ作成装置
JP2013153096A (ja) 基板処理装置
JP2007319748A (ja) 超音波洗浄装置
JP4533406B2 (ja) 超音波洗浄装置及び超音波洗浄方法
JP4957277B2 (ja) 洗浄装置および洗浄方法
JP5703625B2 (ja) 洗浄装置および洗浄方法
JP2010238744A (ja) 超音波洗浄ユニット、超音波洗浄装置
JP2007266194A (ja) 半導体基板の洗浄方法及びそれを用いた半導体基板の洗浄装置
KR20200036151A (ko) 기판 세정 장치 및 기판 세정 방법
JP2011165911A (ja) 洗浄装置及び被洗浄物の洗浄方法並びに超音波の発振方法
JP2022078147A (ja) 超音波シャワー洗浄装置