JP2013147571A - Heat-shielding coating - Google Patents

Heat-shielding coating Download PDF

Info

Publication number
JP2013147571A
JP2013147571A JP2012009176A JP2012009176A JP2013147571A JP 2013147571 A JP2013147571 A JP 2013147571A JP 2012009176 A JP2012009176 A JP 2012009176A JP 2012009176 A JP2012009176 A JP 2012009176A JP 2013147571 A JP2013147571 A JP 2013147571A
Authority
JP
Japan
Prior art keywords
fine particles
titanium oxide
specific particle
particle size
spherical fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009176A
Other languages
Japanese (ja)
Inventor
Akito Hayashi
昭人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Kagaku Kogyo KK
Admatechs Co Ltd
Original Assignee
Kikusui Kagaku Kogyo KK
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Kagaku Kogyo KK, Admatechs Co Ltd filed Critical Kikusui Kagaku Kogyo KK
Priority to JP2012009176A priority Critical patent/JP2013147571A/en
Publication of JP2013147571A publication Critical patent/JP2013147571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-shielding coating that is capable of forming a new heat-shielding coating film to be expected to further improve heat-shielding performance (increase in solar reflectance).SOLUTION: A heat-shielding coating is obtained by dispersing spherical fine particles made of a metal oxide and rutile-type titanium oxide having a specific particle diameter into a synthetic resin and forms a heat-shielding coating film. The median size of the spherical fine particles (former) is 0.1-1.5 μm and that of the titanium oxide (latter) having the specific particle diameter is 0.5-2.0 μm. The blending ratio of the titanium oxide having the specific particle diameter to the spherical fine particles is the latter/the former =0.2 to 0.8.

Description

本発明は、遮熱塗料に関する。さらに詳しくは、建造物表面や道路表面に塗布し、蓄熱の主因である太陽光を反射させて、建物内への熱の侵入阻止や道路表面の温度上昇を抑制することできる、いわゆる高い日射反射率を示す遮熱塗料に係る発明である。   The present invention relates to a thermal barrier paint. More specifically, it can be applied to the surface of buildings and road surfaces to reflect sunlight, which is the main cause of heat storage, so as to prevent the heat from entering the building and suppress the temperature rise on the road surface, so-called high solar reflection. It is invention which concerns on the heat-shielding coating material which shows a rate.

明細書および特許請求の範囲において、配合単位を示す「部」および「%」は特に断らない限り、質量単位とする。また、各技術用語の意味を下記する。   In the specification and claims, “parts” and “%” indicating the blending units are mass units unless otherwise specified. The meaning of each technical term is as follows.

1)「遮熱」:日射を反射することによって、外部からの熱の流入を遮る作用。     1) “Heat insulation”: The action of blocking the inflow of heat from outside by reflecting solar radiation.

2)「日射反射率」:入射角2°で、JIS K5602「塗膜の日射反射率の求め方」に準じて、測定した値。     2) “Solar reflectance”: a value measured at an incident angle of 2 ° according to JIS K5602 “How to determine solar reflectance of coating film”.

3)「メジアン径(50%値)」:JIS Z8825−1「レーザ回折分布曲線」に基づくメジアン径、
なお、試験例では、「HORIBA LA−750」(堀場製作所社製商品名)を用いて測定。
3) “Median diameter (50% value)”: Median diameter based on JIS Z8825-1 “Laser diffraction distribution curve”
In the test examples, measurement was performed using “HORIBA LA-750” (trade name, manufactured by Horiba, Ltd.).

4)「球状」:真球度が0.7以上のもの(真球度が0.7未満のものは「非球状」とする。)。なお、「真球度」は、走査電子顕微鏡(SEM)で撮った写真から求めた粒子の面積と周囲長に基づいて、計算式
(真球度)={4π×(面積)÷(周囲長)
により求めた値(特許文献2段落0006参照)。
4) “Spherical”: A sphericity of 0.7 or more (a sphericity of less than 0.7 shall be “non-spherical”). Note that “sphericity” is calculated based on the area and circumference of the particles obtained from a photograph taken with a scanning electron microscope (SEM) (sphericity) = {4π × (area) ÷ (perimeter length) 2 }
(Refer to Patent Document 2, paragraph 0006).

近年、都市部を中心に問題となっているヒートアイランド現象の効果的防止策として、建造物や道路表面の昇温を抑制できる遮熱塗料が着目されている。   In recent years, as an effective preventive measure for the heat island phenomenon, which has been a problem mainly in urban areas, thermal barrier paints that can suppress the temperature rise of buildings and road surfaces have attracted attention.

例えば、本発明の特許性に影響を与えるものではないが、特許文献1・2等を挙げることができる。   For example, although not affecting the patentability of the present invention, Patent Documents 1 and 2 can be cited.

特許文献1では、「非白色顔料と白色顔料を必須成分として含有する塗料において、白色顔料として平均粒子径が0.5〜1.4μmルチル型酸化チタンを用いることを特徴とする塗料。」(請求項1)が提案されている。   In Patent Document 1, “a paint containing a non-white pigment and a white pigment as essential components, wherein the rutile titanium oxide having an average particle size of 0.5 to 1.4 μm is used as the white pigment.” Claim 1) is proposed.

また、特許文献2では、「球状金属酸化物粒子(例えば、真球度0.7以上のシリカ)を含む無機物粒子が配合されている水系塗料組成物」(特許請求の範囲)が提案されている。   Further, Patent Document 2 proposes “a water-based coating composition in which inorganic particles containing spherical metal oxide particles (for example, silica having a sphericity of 0.7 or more) are blended” (claims). Yes.

特開2006−8874号公報JP 2006-8874 A 国際公開 第2006/104290号パンフレットInternational Publication No. 2006/104290 Pamphlet

本発明は、上記にかんがみて、先行技術文献に記載されていない、新規でさらなる遮熱性能の向上(日射反射率の増大)が期待できる遮熱塗膜を形成可能な遮熱塗料を提供することを目的とする。   In view of the above, the present invention provides a thermal barrier paint that is not described in the prior art documents and can form a new thermal barrier coating that can be expected to further improve thermal barrier performance (increase in solar reflectance). For the purpose.

本発明者らは、上記課題を解決するために、鋭意開発をした結果、下記構成の遮熱塗料に想到した。   As a result of intensive development in order to solve the above-described problems, the present inventors have come up with a heat-shielding paint having the following constitution.

金属酸化物製の球状微粒子とルチル形の特定粒径酸化チタンとが合成樹脂中に分散されてなり、遮熱塗膜を形成する遮熱塗料であって、
前記球状微粒子および特定粒径酸化チタンのメジアン径が、前者:0.1〜1.5μm、後者:0.5〜2.0μmの範囲にあることを特徴とする。
Metal oxide spherical particles and rutile-shaped titanium oxide having a specific particle diameter are dispersed in a synthetic resin to form a thermal barrier coating,
The median diameter of the spherical fine particles and the specific particle size titanium oxide is in the range of the former: 0.1 to 1.5 μm and the latter: 0.5 to 2.0 μm.

そして、当該遮熱塗料は、塗膜成分の組成が、
合成樹脂分:15〜70%、
球状微粒子:20〜60%、
特定粒径酸化チタン:5〜35%、及び、
球状微粒子+特定粒径酸化チタン:30〜80%、さらには、特定粒径酸化チタン/球状微粒子:0.2〜0.8の要件を満たすことが望ましい。
And, the thermal barrier paint has the composition of the coating film component,
Synthetic resin content: 15-70%,
Spherical fine particles: 20 to 60%,
Specific particle size titanium oxide: 5-35%, and
It is desirable to satisfy the requirements of spherical fine particles + specific particle size titanium oxide: 30 to 80%, and further specific particle size titanium oxide / spherical fine particles: 0.2 to 0.8.

本発明の遮熱塗料は、建造物外壁面等に適用した場合、従来の「金属酸化物製の球状微粒子」を配合した遮熱塗料(例えば、特許文献2)に比して、日射反射率を増大でき、遮熱性能の向上が期待できる。   When the thermal barrier paint of the present invention is applied to an outer wall surface of a building, the solar reflectance is higher than that of a conventional thermal barrier paint (for example, Patent Document 2) containing “spherical fine particles made of metal oxide”. It can be expected to improve the heat shielding performance.

特定粒径酸化チタン配合塗料、球状微粒子配合塗料及び市販塗料で形成した各塗膜の波長と分光反射率の関係を示すグラフ図である。It is a graph which shows the relationship between the wavelength of each coating film formed with the specific particle size titanium oxide compounding paint, the spherical fine particle compounding paint and the commercial paint and the spectral reflectance. 太陽光線(日射)の分光スペクトル図である。It is a spectral spectrum figure of a solar ray (sunlight).

以下、本発明の遮熱塗料の実施の形態について説明する。   Hereinafter, embodiments of the thermal barrier paint of the present invention will be described.

本発明に係る遮熱塗料は、金属酸化物製の球状微粒子(以下、単に「球状微粒子」)とルチル形の特定粒径酸化チタンとが合成樹脂中に分散されてなり、遮熱塗膜を形成するものである。   The thermal barrier coating according to the present invention comprises metal oxide spherical fine particles (hereinafter simply referred to as “spherical fine particles”) and rutile-shaped titanium oxide having a specific particle size dispersed in a synthetic resin. To form.

ここで、遮熱塗料中における球状微粒子の分散状態は、球状微粒子が二次粒子(凝集粒子)を形成しないように分散させることが望ましい。球状微粒子が二次粒子化すると、メジアン径が相対的に大きくなり、該球状微粒子が本来担う1000nm近傍の反射率増大作用を奏し難くなる。   Here, the dispersion state of the spherical fine particles in the thermal barrier coating is desirably dispersed so that the spherical fine particles do not form secondary particles (aggregated particles). When the spherical fine particles become secondary particles, the median diameter becomes relatively large, and it becomes difficult to achieve the reflectance increasing action near 1000 nm, which the spherical fine particles originally play.

ここで、球状微粒子の粒径は、メジアン径が、0.1〜1.5μm、さらには0.2〜1.0μm、よりさらには、0.3〜0.8μmが望ましい。また、球状微粒子の真球度は、0.7以上、さらには0.8以上、よりさらには0.9以上が望ましい。真球度が大きいと、1000nm近傍の反射率増大作用をより確保し易い。   Here, as for the particle size of the spherical fine particles, the median diameter is preferably 0.1 to 1.5 μm, more preferably 0.2 to 1.0 μm, and still more preferably 0.3 to 0.8 μm. The sphericity of the spherical fine particles is preferably 0.7 or more, more preferably 0.8 or more, and even more preferably 0.9 or more. When the sphericity is large, it is easier to secure the effect of increasing the reflectance near 1000 nm.

メジアン径および真球度がこの範囲のときに、全波長域(特に、近赤外線波長域700〜1200nm)の反射率が相対的に高くなる(図1参照)。即ち、当該近赤外線(熱線)波長域は、日射スペクトル分布図(図2)における第一ピーク(950〜1050nm)を含み、遮熱塗膜の日射(熱線)反射率を効率的に増大させる。なお、図1は、市販(汎用)のアクリル樹脂系塗料の組成において、該市販塗料の顔料酸化チタンを、特定粒径酸化チタン(TiO:メジアン径1.0μm)に等量置換して配合した、および、球状微粒子(SiO:真球度0.95、メジアン径0.5μm)を配合した各塗料について、上記市販塗料とともに、同一条件で測定した結果である。 When the median diameter and sphericity are in this range, the reflectance in the entire wavelength region (particularly, the near infrared wavelength region 700 to 1200 nm) is relatively high (see FIG. 1). That is, the near-infrared (heat ray) wavelength region includes the first peak (950 to 1050 nm) in the solar radiation spectrum distribution diagram (FIG. 2), and efficiently increases the solar radiation (heat ray) reflectance of the thermal barrier coating. FIG. 1 shows a composition of a commercially available (general purpose) acrylic resin-based paint, in which the pigment titanium oxide of the commercially available paint is replaced with an equivalent amount of titanium oxide having a specific particle diameter (TiO 2 : median diameter 1.0 μm). It was, and spherical fine particles (SiO 2: sphericity 0.95, median diameter 0.5 [mu] m) for each paint blended together with the commercially available paint, which is the result of measuring under the same conditions.

金属酸化物としては、シリカ、アルミナ、ジルコニア等を挙げることができるが、日射反射率が高いシリカが望ましい。   Examples of the metal oxide include silica, alumina, zirconia and the like, and silica having high solar reflectance is desirable.

さらに望ましくは、「アドマファイン」(登録商標)の商品名で上市されている、比表面積が30m/g以下で、真球度が0.8以上である「シリカ微粒子」を好適に使用可能である。 More desirably, “silica fine particles” having a specific surface area of 30 m 2 / g or less and a sphericity of 0.8 or more that are marketed under the trade name “Admafine” (registered trademark) can be suitably used. It is.

この球状微粒子の配合量は、塗膜成分の組成において、20〜60%、さらには25〜50%が望ましい。球状微粒子の配合量を20%以上とすることにより、球状微粒子が担う1000nm近傍の波長域における反射率増大作用を確保し易い。また、球状微粒子の配合量を20〜60%とすることにより、遮熱性と塗膜物性とのバランスを確保しやすい。   The amount of the spherical fine particles is preferably 20 to 60%, more preferably 25 to 50% in the composition of the coating film component. By making the blending amount of the spherical fine particles 20% or more, it is easy to ensure the reflectance increasing action in the wavelength region near 1000 nm that the spherical fine particles bear. Moreover, it is easy to ensure the balance between the heat shielding properties and the physical properties of the coating film by adjusting the blending amount of the spherical fine particles to 20 to 60%.

また、特定粒径酸化チタンは、メジアン径が、0.5〜2.0μm、さらには0.6〜1.5μm、よりさらには0.8〜1.2μmが望ましい。この範囲の粒径の特定粒径酸化チタンを含有させると、特定粒径近傍より短波長側では反射率が顔料酸化チタンに比して小さいが、長波長側(近赤外線波長域)での反射率低下が小さい(図1参照)。即ち、当該近赤外線波長域は、分光光度計による日射スペクトル図(図2)における第二ピーク(1100〜1250nm)および第三ピーク(1450〜1600nm)を含有するため、遮熱塗膜の日射(熱線)反射率を効率的に増大させる。なお、通常、白顔料として使用される酸化チタン(チタニア)の粒径は、平均粒径約0.3μm以下とされている(特許文献1[0003])。   The specific particle size titanium oxide preferably has a median diameter of 0.5 to 2.0 μm, more preferably 0.6 to 1.5 μm, and still more preferably 0.8 to 1.2 μm. When titanium oxide with a specific particle size in this range is included, the reflectance is smaller on the short wavelength side than the specific particle size side compared with the pigment titanium oxide, but the reflection on the long wavelength side (near infrared wavelength region). The rate drop is small (see FIG. 1). That is, since the near-infrared wavelength region contains the second peak (1100 to 1250 nm) and the third peak (1450 to 1600 nm) in the solar radiation spectrum diagram (FIG. 2) by a spectrophotometer, the solar radiation ( (Heat ray) efficiently increase the reflectivity. In general, the particle size of titanium oxide (titania) used as a white pigment is set to an average particle size of about 0.3 μm or less (Patent Document 1 [0003]).

上記特定粒径酸化チタンの配合量は、塗膜成分の組成において、5〜35%、さらには10〜25%が望ましい。特定粒径酸化チタンの配合量を5%以上とすることにより、該特定粒径酸化チタンが反射を担う近赤外線の波長域における反射率増大を確保し易い。また、特定粒径酸化チタンの配合量を5〜35%とすることにより、遮熱性と塗膜物性とのバランスを確保しやすい。   The blending amount of the specific particle size titanium oxide is preferably 5 to 35%, more preferably 10 to 25% in the composition of the coating film component. By setting the blending amount of the specific particle size titanium oxide to 5% or more, it is easy to ensure an increase in reflectance in the near-infrared wavelength region where the specific particle size titanium oxide is responsible for reflection. Moreover, it is easy to ensure the balance of heat-shielding property and coating-film physical property by making the compounding quantity of specific particle size titanium oxide into 5-35%.

そして、球状微粒子と特定粒径酸化チタンの配合合計量が、塗膜成分組成において30〜80%、さらには40〜70%が望ましい。球状微粒子と特定粒径酸化チタンの配合合計量を30〜80%とすることにより、これらの遮熱性能と塗膜物性とのバランスを確保しやすい。   The total amount of the spherical fine particles and the specific particle size titanium oxide is preferably 30 to 80%, more preferably 40 to 70% in the coating film component composition. By making the total amount of spherical fine particles and titanium oxide having a specific particle size 30 to 80%, it is easy to ensure a balance between the heat shielding performance and the physical properties of the coating film.

前記球状微粒子、特定粒径酸化チタンの各配合量および両者の配合合計量が、少ないと、日射反射率の増大作用を得難い。他方それらの量が多いと、塗膜物性改善のための副資材の添加が制限される。結果的に、実用的な塗膜物性(耐久性、耐汚染性および着色自由度)を得難くなる。   When the blending amount of the spherical fine particles and the specific particle size titanium oxide and the total blending amount of both are small, it is difficult to obtain an effect of increasing the solar reflectance. On the other hand, if the amount is large, the addition of auxiliary materials for improving the physical properties of the coating film is limited. As a result, it becomes difficult to obtain practical physical properties of the coating film (durability, stain resistance and degree of coloring freedom).

また、球状微粒子と特定粒径酸化チタンの質量比が、特定粒径酸化チタン/球状微粒子:0.2〜0.8、さらには0.3〜0.7が望ましい。この比率で配合すると太陽光(日射)におけるスペクトル分布の近赤外線波長域における第一ピーク(大きい)および第一ピークより低い第二・第三ピークを効率的かつバランスよく反射でき、遮熱性能が高まる。さらには、両者の合計量も相対的に小さくでき、前述の如く、副資材の添加が制限されず、良好な塗膜物性(耐久性、耐汚染性さらには着色自由性)を得やすくなる。   The mass ratio between the spherical fine particles and the specific particle size titanium oxide is preferably specific particle size titanium oxide / spherical fine particles: 0.2 to 0.8, and more preferably 0.3 to 0.7. When blended at this ratio, the first peak (large) in the near-infrared wavelength region of the spectrum distribution of sunlight (sunlight) and the second and third peaks lower than the first peak can be reflected efficiently and in a balanced manner, and the heat shielding performance is improved. Rise. Furthermore, the total amount of the two can be made relatively small, and as described above, the addition of the auxiliary material is not limited, and it is easy to obtain good coating film properties (durability, stain resistance, and coloring freedom).

以上の如く、日射スペクトル分布の近赤外波長域の第一ピーク及び第二・第三ピークを、球状微粒子と特定粒径酸化チタンとで特異的に分担して、全体として塗膜の日射反射率が格段に増大する。   As described above, the first peak and the second and third peaks in the near-infrared wavelength region of the solar radiation spectrum are specifically assigned by the spherical fine particles and the specific particle size titanium oxide, and the solar reflection of the coating as a whole. The rate increases dramatically.

特定粒径酸化チタンとともに、顔料酸化チタン(メジアン径0.3μm以下)、その他各種の白顔料、さらには、有機・無機の着色顔料を組み合わせて用いてもよい。   In addition to titanium oxide having a specific particle diameter, pigment titanium oxide (median diameter of 0.3 μm or less), various other white pigments, and organic and inorganic coloring pigments may be used in combination.

また、顔料酸化チタンと組み合わせる白顔料および着色顔料としては、下記のものを挙げることができる。   Moreover, the following can be mentioned as a white pigment and a coloring pigment combined with a pigment titanium oxide.

白顔料・・・亜鉛華、リトポン、鉛白等、
着色顔料・・・カドニウム赤、べんがら、トルイジンレッド、黄鉛、鉄黄、チタン黄、ファストイエロー、アントラキノンイエロー、ベンジジンイエロー、酸化クロム、フタロシアニングリーン、紺青、群青、フタロンシアニンブルー、等。
White pigment: zinc white, lithopone, lead white, etc.
Color pigments: Cadonium red, red bean, toluidine red, yellow lead, iron yellow, titanium yellow, fast yellow, anthraquinone yellow, benzidine yellow, chromium oxide, phthalocyanine green, bitumen, ultramarine blue, phthaloncyanine blue, and the like.

合成樹脂(塗膜樹脂分:バインダー)としては、下記のような各種熱可塑性・熱硬化性合成樹脂を挙げることができる。   Examples of the synthetic resin (coating resin: binder) include the following various thermoplastic / thermosetting synthetic resins.

アクリル樹脂、スチレン樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、メラミン樹脂、アルキッド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエステル樹脂。   Acrylic resin, styrene resin, urethane resin, silicone resin, fluorine resin, epoxy resin, melamine resin, alkyd resin, vinyl chloride resin, vinyl acetate resin, polyester resin.

これらの樹脂は様々な形態のものから適宜選択して用いればよい。例えば、分散媒である水に合成樹脂を分散させたエマルション系や、水や有機溶剤などの溶媒中に合成樹脂を溶解させた溶液系のものなどを用いることができる。   These resins may be appropriately selected from various forms. For example, an emulsion system in which a synthetic resin is dispersed in water as a dispersion medium, or a solution system in which a synthetic resin is dissolved in a solvent such as water or an organic solvent can be used.

ここで、塗膜成分における合成樹脂(樹脂分:バインダー)の組成は、15〜70%、さらには30〜50%が望ましい。樹脂分が少ないと塗膜に必要な特性(耐久性、耐汚染性など)を得難く、多いと相対的に球状微粒子や特定粒径酸化チタンの配合量が少なくなって、塗膜に優れた遮熱性能を得難くなる。   Here, the composition of the synthetic resin (resin component: binder) in the coating film component is preferably 15 to 70%, and more preferably 30 to 50%. When the resin content is small, it is difficult to obtain the properties (durability, stain resistance, etc.) required for the coating film. When the resin content is large, the blending amount of spherical fine particles and specific titanium oxide is relatively small, and the coating film is excellent. It becomes difficult to obtain heat insulation performance.

また、溶媒を用いない無溶剤型の合成樹脂を用いてもよい。これらの形態の合成樹脂を用いた遮熱塗料は、塗料等の塗り材料となり、塗装されたのちに、乾燥や反応硬化することによって塗膜成分(塗膜)を形成する。   Alternatively, a solventless synthetic resin that does not use a solvent may be used. Thermal barrier coatings using these forms of synthetic resins become coating materials such as coatings, and after coating, they form a coating film component (coating film) by drying or reaction curing.

本発明の遮熱塗料は、さらに、他の副資材として一般的に塗料に用いられるものを添加することができる。例えば、体質顔料(炭酸カルシウム、カオリンクレー)、塗膜形成副要素(粘性調整剤、界面活性剤、造膜助剤、消泡剤、防腐剤など)等を、適宜、添加する。   The heat-shielding paint of the present invention may further include those commonly used in paints as other auxiliary materials. For example, extender pigments (calcium carbonate, kaolin clay), coating film forming sub-elements (viscosity adjusting agent, surfactant, film-forming aid, antifoaming agent, preservative, etc.) are added as appropriate.

そして、本発明の遮熱塗料の、望ましい塗膜成分の組成(1)、さらに望ましい塗膜成分の組成(2)は、下記の如くになる。   The desirable composition (1) of the coating film component and the more desirable composition (2) of the coating film component of the thermal barrier paint of the present invention are as follows.

塗膜成分の組成(1)
合成樹脂分:15〜70%、
球状微粒子:20〜60%、
特定粒径酸化チタン:5〜35%、
球状微粒子+特定粒径酸化チタン:30〜80%、及び、
特定粒径酸化チタン/球状微粒子:0.2〜0.8。
Composition of coating film component (1)
Synthetic resin content: 15-70%,
Spherical fine particles: 20 to 60%,
Specific particle size titanium oxide: 5-35%,
Spherical fine particles + specific particle size titanium oxide: 30 to 80%, and
Specific particle size titanium oxide / spherical fine particles: 0.2 to 0.8.

塗膜成分の組成(2)
合成樹脂分:30〜50%
球状微粒子:25〜50%、
特定粒径酸化チタン:10〜25%、
球状微粒子+特定粒径酸化チタン:40〜70%、及び、
特定粒径酸化チタン/球状微粒子:0.3〜0.7。
Composition of coating film component (2)
Synthetic resin content: 30-50%
Spherical fine particles: 25 to 50%,
Specific particle size titanium oxide: 10 to 25%,
Spherical fine particles + specific particle size titanium oxide: 40 to 70%, and
Specific particle size titanium oxide / spherical fine particles: 0.3 to 0.7.

そして、上記組成の本発明の遮熱塗料は、水やその他の分散媒により、適宜粘度に調整して、スプレー、刷毛塗り等の汎用の塗布手段により、建造物の屋外壁面、屋根、屋上床面等の全面又は所定部位に塗布して、使用する。このときの塗膜厚は、30〜1000μm、望ましくは100〜500μmとする。塗膜厚は、薄すぎると日射反射率の増大作用(遮熱性向上効果)を得難く、厚すぎてもそれ以上の日射反射率の増大作用(遮熱性向上効果)を得られず無駄である。   The thermal barrier paint of the present invention having the above composition is adjusted to a suitable viscosity with water or other dispersion medium, and is applied to the outdoor wall surface of the building, roof, rooftop floor by general application means such as spraying and brushing. It is applied to the entire surface such as a surface or a predetermined site. The coating thickness at this time is 30 to 1000 μm, preferably 100 to 500 μm. If the coating thickness is too thin, it is difficult to obtain an effect of increasing the solar reflectance (heat shielding effect), and if it is too thick, no further effect of increasing the solar reflectance (heat shielding property improving effect) can be obtained. .

本発明の遮熱塗料は、加熱溶融した熱可塑性樹脂中に球状微粒子と特定粒径酸化チタンとを他の副資材とともに含む分散体を冷却固化させて遮熱塗膜とすることもできる。   The thermal barrier coating of the present invention can be made into a thermal barrier coating by cooling and solidifying a dispersion containing spherical fine particles and specific particle size titanium oxide together with other auxiliary materials in a thermoplastic resin heated and melted.

また、遮熱塗料のみによって又は支持体を介してフィルム状ないしシート状(板状)に成形したものを適用対象となる部位に配設(貼着等)して遮熱部材としての適用も可能である。   In addition, it can be applied as a heat shield member by placing (sticking, etc.) a film or sheet (plate) formed only with a heat shield paint or via a support at the target site. It is.

本発明の遮熱塗料は、上記の如く、建造物の外壁や屋根等に好適であるが、組成(副資材)を変更せずに、又は、適宜変更して、舗装(アスファルト、コンクリートなど)面や、さらには、部屋内壁面、屋外タンク外壁面等、遮熱性が要求されるあらゆる部位に適用可能である。   As described above, the thermal barrier paint of the present invention is suitable for outer walls and roofs of buildings, etc., but paving (asphalt, concrete, etc.) without changing the composition (auxiliary material) or as appropriate. The present invention can be applied to any part where heat shielding is required, such as a surface, a wall surface in a room, and an outer wall surface of an outdoor tank.

以下、本発明に係る遮熱塗料の作用・効果を確認するために、比較例とともに行なった実施例について説明する。なお、分光光度計は、「分光光度計UV-3600」(島津製作所社製)を用いた。   Hereinafter, in order to confirm the effect | action and effect of the thermal-insulation coating material based on this invention, the Example performed with the comparative example is described. As the spectrophotometer, “Spectrophotometer UV-3600” (manufactured by Shimadzu Corporation) was used.

<試験例A>
表1に示す各組成の塗料(遮熱塗料)を用意するとともに、各遮熱塗料を用いて、乾燥膜厚が300μmとなるようにアルミ金属板に塗装したものを、JIS K5602に定義される300〜2500nmの波長域における日射反射率を測定した。
<Test Example A>
The paints (heat-shielding paints) having the respective compositions shown in Table 1 are prepared, and those coated on an aluminum metal plate so as to have a dry film thickness of 300 μm using each heat-shielding paint are defined in JIS K5602. The solar reflectance in a wavelength range of 300 to 2500 nm was measured.

そして、それらの結果を示す表1から、下記のことが分かる。   From Table 1 showing the results, the following can be understood.

各実施例1〜6の日射反射率は、比較例1(シリカ微粒子、特定粒径酸化チタン共に無配合)、比較例2(シリカ微粒子のみ)、比較例3(特定粒径酸化チタンのみ)のいずれと比較しても、日射反射率が格段に増大し、遮熱性の格段の向上が期待できることが分かる。シリカ微粒子に対する特定粒径酸化チタンの配合比率が0.3〜0.7の範囲(実施例2−6)がシリカ微粒子と特定粒径酸化チタンの合計量が少なくて、大きな日射反射率を得やすいことが伺える。即ち、シリカ微粒子と特定粒径酸化チタンとの合計量を少なくすることができ、良好な塗膜物性(耐久性・耐汚染性等)を維持しやすくなる。   The solar reflectances of Examples 1 to 6 are those of Comparative Example 1 (no blending of silica fine particles and specific particle size titanium oxide), Comparative Example 2 (silica fine particles only), and Comparative Example 3 (specific particle size titanium oxide only). It can be seen that the solar reflectance is significantly increased compared to any of the above, and a significant improvement in the heat shielding property can be expected. When the mixing ratio of the specific particle size titanium oxide to the silica fine particles is in the range of 0.3 to 0.7 (Example 2-6), the total amount of the silica fine particles and the specific particle size titanium oxide is small, and a large solar reflectance is obtained. It can be said that it is easy. That is, the total amount of silica fine particles and specific particle size titanium oxide can be reduced, and it becomes easy to maintain good coating film properties (durability, stain resistance, etc.).

Figure 2013147571
Figure 2013147571

Claims (5)

金属酸化物製の球状微粒子とルチル形の特定粒径酸化チタンとが合成樹脂中に分散されてなり、遮熱塗膜を形成する遮熱塗料であって、
前記球状微粒子および特定粒径酸化チタンのメジアン径が、前者:0.1〜1.5μm、後者:0.5〜2.0μmの範囲にあることを特徴とする遮熱塗料。
Metal oxide spherical particles and rutile-shaped titanium oxide having a specific particle diameter are dispersed in a synthetic resin to form a thermal barrier coating,
The median diameter of the spherical fine particles and the specific particle size titanium oxide is in the range of the former: 0.1 to 1.5 μm and the latter: 0.5 to 2.0 μm.
塗膜成分の組成が、
合成樹脂分:15〜70%、
球状微粒子:20〜60%、
特定粒径酸化チタン:5〜35%、および、
球状微粒子+特定粒径酸化チタン:30〜80%、
の要件を満たすことを特徴とする請求項1記載の遮熱塗料。
The composition of the coating film component is
Synthetic resin content: 15-70%,
Spherical fine particles: 20 to 60%,
Specific particle size titanium oxide: 5-35%, and
Spherical fine particles + specific particle size titanium oxide: 30 to 80%,
The thermal barrier coating material according to claim 1, wherein
前記塗膜成分の組成が、さらに、特定粒径酸化チタン/球状微粒子:0.2〜0.8、の要件を満たすことを特徴とする請求項2記載の遮熱塗料。   The thermal barrier paint according to claim 2, wherein the composition of the coating film component further satisfies the requirement of specific particle size titanium oxide / spherical fine particles: 0.2 to 0.8. 金属酸化物製の球状微粒子とルチル形の特定粒径酸化チタンとが合成樹脂中に分散されてなる遮熱塗膜を形成する遮熱塗料であって、
前記球状微粒子および特定粒径酸化チタンのメジアン径が、前者:0.2〜1.0μm、後者:0.6〜1.5μmの範囲にあるとともに、
塗膜成分の組成が、
合成樹脂分:30〜50%
球状微粒子:25〜50%、
特定粒径酸化チタン:10〜25%、
球状微粒子+特定粒径酸化チタン:40〜70%、及び、
特定粒径酸化チタン/球状微粒子:0.3〜0.7、
の要件を満たすことを特徴とする遮熱塗料。
A thermal barrier coating material that forms a thermal barrier coating film in which spherical fine particles made of metal oxide and titanium oxide having a specific particle size in the rutile form are dispersed in a synthetic resin,
The median diameter of the spherical fine particles and the specific particle size titanium oxide is in the range of the former: 0.2 to 1.0 μm, the latter: 0.6 to 1.5 μm,
The composition of the coating film component is
Synthetic resin content: 30-50%
Spherical fine particles: 25 to 50%,
Specific particle size titanium oxide: 10 to 25%,
Spherical fine particles + specific particle size titanium oxide: 40 to 70%, and
Specific particle size titanium oxide / spherical fine particles: 0.3 to 0.7,
Thermal insulation paint characterized by satisfying the requirements of
前記球状微粒子が、真球度0.8以上のシリカ微粒子であることを特徴とする請求項1〜4いずれか一記載の遮熱塗料。
The thermal barrier coating material according to any one of claims 1 to 4, wherein the spherical fine particles are silica fine particles having a sphericity of 0.8 or more.
JP2012009176A 2012-01-19 2012-01-19 Heat-shielding coating Pending JP2013147571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009176A JP2013147571A (en) 2012-01-19 2012-01-19 Heat-shielding coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009176A JP2013147571A (en) 2012-01-19 2012-01-19 Heat-shielding coating

Publications (1)

Publication Number Publication Date
JP2013147571A true JP2013147571A (en) 2013-08-01

Family

ID=49045407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009176A Pending JP2013147571A (en) 2012-01-19 2012-01-19 Heat-shielding coating

Country Status (1)

Country Link
JP (1) JP2013147571A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002008A (en) * 2017-06-19 2019-01-10 南亜塑膠工業股▲ふん▼有限公司 Aqueous heat insulation coating and composition thereof
KR20190034061A (en) * 2018-05-30 2019-04-01 (주)두온에너지원 High durable thermally shielding paint composition with high infrared reflection
JP2019070306A (en) * 2017-10-06 2019-05-09 東洋鋼鈑株式会社 Polyvinyl chloride coating metal plate for architectural structure exterior cladding material
JP2021031475A (en) * 2019-08-29 2021-03-01 ポーラ化成工業株式会社 Oil-in-water emulsion composition
JP2021046513A (en) * 2019-09-20 2021-03-25 菊水化学工業株式会社 Coating composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116885A (en) * 1997-10-21 1999-04-27 Nippon Paint Co Ltd Low-fouling water-based coating material composition
WO2005019358A1 (en) * 2003-08-22 2005-03-03 Kansai Paint Co., Ltd. Coating composition for heat-insulating film formation and method of coating with the same
JP2005097462A (en) * 2003-09-26 2005-04-14 Kansai Paint Co Ltd Coloring paint having heat blocking property and method of forming coating film
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
WO2006104290A1 (en) * 2005-03-31 2006-10-05 Admatechs Co., Ltd. Water-based coating composition and heat-shielding coating material
JP2006316258A (en) * 2005-04-12 2006-11-24 Toyo Aluminium Kk Printing ink composition and package
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
JP2010005613A (en) * 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp Complex, functional structure and coating agent
JP2010030829A (en) * 2008-07-29 2010-02-12 Toda Kogyo Corp Infrared reflective black pigment, and coating material and resin composition using the infrared reflective black pigment
JP2011009181A (en) * 2009-06-29 2011-01-13 Aoki Yoshio Heat ray reflective coating material for electric wire and cable
JP2011111485A (en) * 2009-11-25 2011-06-09 Asahi Kasei Chemicals Corp Composition, coating film and coated product
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film
JP2011173241A (en) * 2009-01-30 2011-09-08 Techno Polymer Co Ltd Laminate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116885A (en) * 1997-10-21 1999-04-27 Nippon Paint Co Ltd Low-fouling water-based coating material composition
WO2005019358A1 (en) * 2003-08-22 2005-03-03 Kansai Paint Co., Ltd. Coating composition for heat-insulating film formation and method of coating with the same
JP2005097462A (en) * 2003-09-26 2005-04-14 Kansai Paint Co Ltd Coloring paint having heat blocking property and method of forming coating film
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
WO2006104290A1 (en) * 2005-03-31 2006-10-05 Admatechs Co., Ltd. Water-based coating composition and heat-shielding coating material
JP2006316258A (en) * 2005-04-12 2006-11-24 Toyo Aluminium Kk Printing ink composition and package
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
JP2010005613A (en) * 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp Complex, functional structure and coating agent
JP2010030829A (en) * 2008-07-29 2010-02-12 Toda Kogyo Corp Infrared reflective black pigment, and coating material and resin composition using the infrared reflective black pigment
JP2011173241A (en) * 2009-01-30 2011-09-08 Techno Polymer Co Ltd Laminate
JP2011009181A (en) * 2009-06-29 2011-01-13 Aoki Yoshio Heat ray reflective coating material for electric wire and cable
JP2011111485A (en) * 2009-11-25 2011-06-09 Asahi Kasei Chemicals Corp Composition, coating film and coated product
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002008A (en) * 2017-06-19 2019-01-10 南亜塑膠工業股▲ふん▼有限公司 Aqueous heat insulation coating and composition thereof
US10913858B2 (en) 2017-06-19 2021-02-09 Nan Ya Plastics Corporation Waterborne heat-insulation coating and composition thereof
JP2019070306A (en) * 2017-10-06 2019-05-09 東洋鋼鈑株式会社 Polyvinyl chloride coating metal plate for architectural structure exterior cladding material
JP7378202B2 (en) 2017-10-06 2023-11-13 東洋鋼鈑株式会社 PVC coated metal plate for building exterior materials
KR20190034061A (en) * 2018-05-30 2019-04-01 (주)두온에너지원 High durable thermally shielding paint composition with high infrared reflection
KR101970633B1 (en) 2018-05-30 2019-04-22 (주)두온에너지원 High durable thermally shielding paint composition with high infrared reflection
JP2021031475A (en) * 2019-08-29 2021-03-01 ポーラ化成工業株式会社 Oil-in-water emulsion composition
JP7362361B2 (en) 2019-08-29 2023-10-17 ポーラ化成工業株式会社 Oil-in-water emulsion composition
JP2021046513A (en) * 2019-09-20 2021-03-25 菊水化学工業株式会社 Coating composition

Similar Documents

Publication Publication Date Title
Song et al. The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings
JP5906098B2 (en) Near-infrared reflector and composition containing the same
JP2013147571A (en) Heat-shielding coating
KR101005045B1 (en) A stainresistant thermal barrier paint and a painting process using the same
JP6055276B2 (en) Black pigment composition for thermal barrier paint, thermal barrier paint using the same, and use thereof for toning and painting
JP2007217586A (en) Heat-insulating coating and heat-insulating material
JP2016102218A (en) Coating material
JP2004251108A (en) Paving body for road
JP4404850B2 (en) Thermal barrier paint
JP2009242768A (en) Light ray reflective coating material and manufacturing method thereof
US20140121297A1 (en) Solar Reflective Coating
KR101123151B1 (en) Thermo shield paint composition
CN113563779A (en) Polymer cement radiation refrigeration paint and coating
KR20170115679A (en) Thermo shield paint composition with excellent weatherability and a method for preparing thereof
KR20110128666A (en) Thermally insulating and water-soluble paint composition and method of manufacturing coating layer using the same
JP5931344B2 (en) Thermal radiation coating composition, thermal radiation coating material and method for producing thermal radiation coating material
KR20120002054A (en) Reflection paints of heat and a road pavement method using it
JP6302518B2 (en) Thermal barrier paints, thermal barrier coatings and coated articles
JP2005061042A (en) Solar heat intercepting pavement body
Suwal et al. Performance of roof‐cool paints prepared using organic acrylic polymer binder and inorganic additives for the thermal reduction in buildings
JP3213032U (en) Thermal barrier pavement
JP2014145027A (en) Coating material composition excellent in heat shield
JP5461139B2 (en) Coating composition
JP4512935B2 (en) Thermal insulation (heat insulation) method and thermal insulation material
KR101827836B1 (en) Construction method for infrared reflection coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524