JP2014145027A - Coating material composition excellent in heat shield - Google Patents

Coating material composition excellent in heat shield Download PDF

Info

Publication number
JP2014145027A
JP2014145027A JP2013014267A JP2013014267A JP2014145027A JP 2014145027 A JP2014145027 A JP 2014145027A JP 2013014267 A JP2013014267 A JP 2013014267A JP 2013014267 A JP2013014267 A JP 2013014267A JP 2014145027 A JP2014145027 A JP 2014145027A
Authority
JP
Japan
Prior art keywords
coating
coating material
sunlight
hollow particles
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013014267A
Other languages
Japanese (ja)
Inventor
Minoru Arai
稔 荒井
Katsunori Kubota
克則 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLIANCE CORP
Original Assignee
ALLIANCE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALLIANCE CORP filed Critical ALLIANCE CORP
Priority to JP2013014267A priority Critical patent/JP2014145027A/en
Publication of JP2014145027A publication Critical patent/JP2014145027A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating material composition capable of forming a coating film for effectively suppressing a flow of thermal energy from the outside, such as sunlight, into the inside of a coated object in the coated object.SOLUTION: Movement of thermal energy received from sunlight into the inside of the coating layer of a top layer formed by drying a coating material is effectively suppressed by coating a coating material composition having resin based hollow particles dispersed in the coating layer and having 0.6-1.2 μm of an average diameter of hollow parts and 10-35% of the total volume of the hollow parts to the total volume of the coating film.

Description

本発明は、太陽光から受ける熱エネルギーの内部への移動を抑制することを狙いとした塗膜形成を可能とする塗料に関するものである。 The present invention relates to a coating material capable of forming a coating film aiming at suppressing the movement of heat energy received from sunlight to the inside.

常に日光に曝されている建築物の屋根や外壁は、太陽光の熱エネルギーを受け温度が上昇する。特に夏場において省エネの観点から、温度上昇を抑制したい場合に、遮熱効果を有する塗料が用いられる。 The roofs and exterior walls of buildings that are constantly exposed to sunlight rise in temperature due to the heat energy of sunlight. Particularly in the summer, from the viewpoint of energy saving, a paint having a heat shielding effect is used when it is desired to suppress the temperature rise.

これらの遮熱塗料としては、例えば特許第3794837号、特開2002−320912、特開2009−286862等にて提示されているように、可視光線より波長が長い赤外線領域の反射性に優れた顔料を用いた太陽光反射型塗料を用いることが広く応用されている。 As these thermal barrier paints, for example, as disclosed in Japanese Patent No. 3794837, Japanese Patent Application Laid-Open No. 2002-320912, Japanese Patent Application Laid-Open No. 2009-286862, etc., pigments having excellent reflectivity in the infrared region having a wavelength longer than that of visible light It is widely applied to use solar reflective paints using

赤外線領域の反射性に優れた顔料としては、ほとんどは材質を選択することで対応しているが、特許第4546834号には、白顔料として代表的な酸化チタンの粒径をコントロールすることで、赤外線を有効的に反射する技術が提示されている。 Most of the pigments with excellent reflectivity in the infrared region are supported by selecting a material. However, in Patent No. 4546834, by controlling the particle size of titanium oxide, which is a typical white pigment, Technologies that effectively reflect infrared radiation have been presented.

また例えば特開2001−64544号等で開示されているように、各種中空粒子を用いることで塗膜層の熱伝導率を低くし、断熱効果によって熱の内部への移動を抑制する方法が実用化されている。 Further, as disclosed in, for example, JP-A No. 2001-64544, a method for reducing the thermal conductivity of the coating layer by using various hollow particles and suppressing the movement of heat to the inside by a heat insulating effect is practical. It has become.

熱の遮断性を高めるには、概して言えば上述したように、太陽光特に赤外線領域での反射性を高める方法と、断熱性を高める方法があり、それぞれ単独もしくは組み合わせることで実用化されている。本発明の目的は、これらの方法に付加して、さらに効果的に熱が内部へ移動するのを抑制する塗膜層形成を可能とする塗料組成物を提供することにある。 Generally speaking, as described above, there are a method for improving the reflectivity in sunlight, particularly in the infrared region, and a method for improving the heat insulation property, which have been put into practical use either individually or in combination. . It is an object of the present invention to provide a coating composition that can be applied to these methods and can form a coating layer that more effectively suppresses heat from moving inside.

前述した断熱性能を有する中空粒子は、一般的な塗装方法では塗膜層をあまり厚くできないことから、断熱による熱遮断効果も非常に限定的である。一方で中空粒子は、内部は空気等の気体相であるため、塗膜層を構成する樹脂や無機質に比べ屈折率が非常低い。そのため、塗膜層中に分散している中空粒子の境界での屈折率の差が大きく、したがって入射した太陽光は、中空粒子の境界で散乱反射することで、中空粒子自体が白顔料としての機能を有しているとともに、太陽光を反射する性能すなわち遮熱性を有している。 Since the hollow particles having the heat insulation performance described above cannot make the coating layer so thick by a general coating method, the heat shielding effect by heat insulation is also very limited. On the other hand, since the hollow particles are in a gas phase such as air, the refractive index is very low compared to the resin or inorganic material constituting the coating layer. Therefore, there is a large difference in the refractive index at the boundary between the hollow particles dispersed in the coating layer. Therefore, the incident sunlight is scattered and reflected at the boundary between the hollow particles, so that the hollow particles themselves are white pigments. In addition to having a function, it has the ability to reflect sunlight, that is, heat shielding properties.

分散している中空粒子が、太陽光の赤外線領域である波長0.8〜3μmの光を最も効率よく光散乱するのは、分散粒子による光の散乱形態としてミー散乱する場合で、粒子径が波長の1/2から等しい場合に強く散乱する現象とされる。実際に中空粒子が分散している塗膜の分光反射率を測定してみたところ、中空部の平均径が0.6〜1.2μmの範囲の場合に赤外線領域の光を効率よく反射することがわかった。 The dispersed hollow particles most efficiently scatter light with a wavelength of 0.8 to 3 μm, which is the infrared region of sunlight, in the case of Mie scattering as the light scattering form by the dispersed particles. It is considered to be a phenomenon of strong scattering when equal to 1/2. When the spectral reflectance of the coating film in which the hollow particles were actually dispersed was measured, it was found that the light in the infrared region was efficiently reflected when the average diameter of the hollow portion was in the range of 0.6 to 1.2 μm. .

さらに中空粒子の場合、塗膜を形成する樹脂や顔料と比較して、体積当たりの熱容量が小さいという特徴を有する。中でも、外殻がセラミックス系で形成されている中空粒子よりも、樹脂系の中空粒子のほうが外殻自体の熱容量が小さいため、その特徴が著しい。一般的な白顔料である酸化チタンは、塗膜の主成分である樹脂成分よりも体積当たりの熱容量が高く、したがって、中空粒子を白顔料として使用し、酸化チタンの含有量を低くすることで、単位体積当たりの熱容量が低い塗膜を形成させることができる。熱容量の低い塗膜の場合、太陽光から吸収した熱エネルギーにて昇温しやすく、表面の昇温が進行すると周囲との温度差が大きくなり、放熱が促進され熱エネルギーの内部への移動がその分抑制される。 Furthermore, in the case of hollow particles, the heat capacity per volume is small compared to resins and pigments that form a coating film. In particular, the resin-based hollow particles have a smaller heat capacity than the hollow particles in which the outer shell is formed of ceramics, and thus the characteristics are remarkable. Titanium oxide, which is a common white pigment, has a higher heat capacity per volume than the resin component, which is the main component of the coating film. Therefore, by using hollow particles as white pigment and lowering the titanium oxide content, A coating film having a low heat capacity per unit volume can be formed. In the case of a coating film with a low heat capacity, the temperature easily rises with the heat energy absorbed from sunlight, and as the temperature rises on the surface, the temperature difference from the surroundings increases, heat dissipation is promoted, and heat energy is transferred to the inside. It is suppressed accordingly.

以上のような考えに基づき、塗料組成の確認試験を重ねることで得られた本発明の塗料組成物は、塗料を乾燥してできる最上層の塗膜層において、中空部の平均径が0.6〜1.2μmの範囲からなる樹脂系中空粒子が分散しており、中空部の体積の総和が塗膜全体積に対して10〜35%の範囲であることを特徴とする。ここで、中空部の体積の総和が塗膜全体積に対して10%未満では有意的な効果が現れず、35%超の場合は、下地に対する十分な色の隠蔽性を確保することができないことに加え、特に白色や淡彩色においては赤外線の反射性も低下する。   Based on the above idea, the coating composition of the present invention obtained by repeating the coating composition confirmation test, the average layer diameter of the hollow portion in the uppermost coating layer obtained by drying the coating is 0.6 ~ Resin-based hollow particles having a range of 1.2 μm are dispersed, and the total volume of the hollow portions is in the range of 10 to 35% with respect to the total volume of the coating film. Here, if the total volume of the hollow portions is less than 10% with respect to the total volume of the coating film, no significant effect appears, and if it exceeds 35%, sufficient color concealment with respect to the background cannot be ensured. In addition, the reflectivity of infrared rays also decreases particularly in white and pale colors.

本発明の塗料組成物において、使用される樹脂に関しては特に制限はなく、用途、要求品質等から、適した樹脂が選定される。好適な例としては、水溶性樹脂及び/または水分散型樹脂で、その種類としては、エチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、アルキッド樹脂、塩化ビニル樹脂、エポキシ樹脂、アクリル樹脂、アクリルシリコーン樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂等、あるいはこれらの混合系や変性もしくは共重合系等が挙げられる。 In the coating composition of the present invention, the resin used is not particularly limited, and a suitable resin is selected from the application, required quality and the like. Preferable examples include water-soluble resins and / or water-dispersed resins, and types thereof include ethylene resins, vinyl acetate resins, polyester resins, alkyd resins, vinyl chloride resins, epoxy resins, acrylic resins, acrylic silicone resins, A urethane resin, a silicone resin, a fluororesin, etc., or a mixed system, modified or copolymerized system, or the like can be given.

さらに、使用される顔料やフィラーについても特に制限はなく、希望色や要求物性に応じて適した顔料もしくはフィラーが選択される。ただし、黒顔料であるカーボンブラック等の赤外線吸収性の高いものは避けたほうがよく、好適な例としては、赤外線反射型顔料として上市されている各種顔料、フィラーに加え、アルミフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化インジウム、アルミナ、ペリレン顔料、アゾ顔料、黄鉛、弁柄、チタニウムレッド、カドミウムレッド、キナクリドンレッド、イソインドリノン、ベンズイミダゾロン、フタロシアニングリーン、フタロシアニンブルー、コバルトブルー、インダスレンブルー、群青、紺青等が挙げられる。 Furthermore, there is no restriction | limiting in particular also about the pigment and filler to be used, A suitable pigment or filler is selected according to a desired color and a required physical property. However, it is better to avoid those that have high infrared absorption such as carbon black, which is a black pigment.Preferred examples include various pigments and fillers marketed as infrared reflective pigments, aluminum flakes, titanium oxide, Barium sulfate, zinc oxide, calcium carbonate, silicon oxide, magnesium oxide, zirconium oxide, indium oxide, alumina, perylene pigment, azo pigment, yellow lead, petal, titanium red, cadmium red, quinacridone red, isoindolinone, benzimidazo Ron, phthalocyanine green, phthalocyanine blue, cobalt blue, indanthrene blue, ultramarine blue, and bitumen.

本発明の塗料組成物、すなわち塗料を乾燥してできる最上層の塗膜層において、中空部の平均径が0.6〜1.2μmの範囲からなる樹脂系中空粒子が分散しており、中空部の体積の総和が塗膜全体積に対して10〜35%の範囲であることを特徴とする塗料組成物を用いた塗装物においては、太陽光における赤外線領域の波長を効率的に反射することに加え、熱容量の小さい塗膜を形成することから、蓄積した熱が放射されやすくなる。すなわち、本発明による塗料組成による塗装物は、太陽光から受ける熱エネルギーの内部への移動を有効的に抑制することが可能となり、その結果、室内側の昇温抑制,断熱層の厚さ軽減等、省エネ効果に貢献できる構造部材として使用することができる。 In the coating composition of the present invention, that is, the uppermost coating layer formed by drying the coating, resin-based hollow particles having an average hollow portion diameter in the range of 0.6 to 1.2 μm are dispersed, and the volume of the hollow portion In addition to efficiently reflecting the wavelength in the infrared region of sunlight, paints using paint compositions characterized by the sum of Since the coating film having a small heat capacity is formed, the accumulated heat is easily radiated. In other words, the coated object with the coating composition according to the present invention can effectively suppress the transfer of heat energy received from sunlight to the inside, and as a result, the temperature rise on the indoor side is suppressed and the thickness of the heat insulating layer is reduced. It can be used as a structural member that can contribute to energy saving effects.

以下、本発明を具体的な実施例において説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in a specific Example, this invention is not limited to a following example.

[試験板の作成]
基材として、板厚0.5mmの溶融55%Al−Zn合金めっき鋼板を使用し、その表面に塗布型クロメート処理剤による表面処理を施し、下塗り塗料として弱溶剤型の2液エポキシ系樹脂塗料を乾燥塗膜厚が5±1μmとなるように塗装、乾燥させた。
[Create test plate]
As a base material, a molten 55% Al-Zn alloy-plated steel sheet with a thickness of 0.5 mm is used, and the surface is surface-treated with a coating-type chromate treatment agent, and a weak solvent type two-component epoxy resin paint is used as an undercoat. The film was painted and dried so that the dry coating thickness was 5 ± 1 μm.

上塗塗料はアクリルエマルジョン樹脂をベースとし、色としては、最も遮熱性が良好で塗料組成での差が現れにくい白色とすべく、白顔料として表1の実施例1および実施例2に示すようなルチル型酸化チタンとスチレン−アクリル系共重合体を外殻とする中空粒子を配合させて塗料を調合した。当該塗料を乾燥塗膜厚が25±3μmとなるよう塗装、乾燥させ試験材とした。   The top coating is based on an acrylic emulsion resin, and the color is white as shown in Example 1 and Example 2 in Table 1 as a white pigment in order to make the color the most heat-insulating and difficult to show differences in paint composition. A paint was prepared by blending hollow particles having a rutile type titanium oxide and a styrene-acrylic copolymer as an outer shell. The paint was applied and dried so that the dry coating thickness was 25 ± 3 μm, and used as a test material.

比較例として表1に示す4種類の組成のものを調合し、実施例と同様に塗装、乾燥させ試験材とした。なお、比較例の特徴は以下の通りである。
(比較例1)一般的な白色塗料の組成に該当
(比較例2)中空粒子の中空部の平均径が、特許請求範囲よりも小さい場合の組成
(比較例3)中空粒子の中空部の体積の総和が、特許請求範囲よりも大きい場合の組成
(比較例4)特許第4546834号による赤外線反射型の酸化チタンを用いた組成
As comparative examples, samples having four compositions shown in Table 1 were prepared, and coated and dried in the same manner as in Examples to obtain test materials. The features of the comparative example are as follows.
(Comparative Example 1) Corresponds to the composition of a general white paint (Comparative Example 2) Composition when the average diameter of the hollow part of the hollow particle is smaller than the claims (Comparative Example 3) Volume of the hollow part of the hollow particle In the case where the sum of the above is larger than the claims (Comparative Example 4) Composition using infrared reflective titanium oxide according to Japanese Patent No. 454634

Figure 2014145027
Figure 2014145027

[遮熱性の確認1]
分光光度計を用いて、波長300〜2500nmの範囲の分光反射率を測定した。測定結果を図1〜図6に示す。また、各波長において求めた分光反射率とJIS K 5602に記載の重価係数との積算から、全波長域(300〜2500nm)での反射率、紫外線〜可視光線域(300〜780nm)での反射率、赤外線域(780〜2500nm)での反射率を算出し、表1に示した。
(図1)

Figure 2014145027
(図2)
Figure 2014145027
(図3)
Figure 2014145027
(図4)
Figure 2014145027
(図5)
Figure 2014145027
(図6)
Figure 2014145027
[Confirmation of heat insulation 1]
Using a spectrophotometer, spectral reflectance in the wavelength range of 300 to 2500 nm was measured. The measurement results are shown in FIGS. Moreover, from the integration of the spectral reflectance obtained at each wavelength and the weight coefficient described in JIS K 5602, the reflectance in the entire wavelength range (300 to 2500 nm), the ultraviolet to visible light range (300 to 780 nm). The reflectance and the reflectance in the infrared region (780 to 2500 nm) were calculated and are shown in Table 1.
(Figure 1)
Figure 2014145027
(Figure 2)
Figure 2014145027
(Figure 3)
Figure 2014145027
(Fig. 4)
Figure 2014145027
(Fig. 5)
Figure 2014145027
(Fig. 6)
Figure 2014145027

[遮熱性の確認2]
雰囲気温度25℃において、試験板の塗装面直上5cmに100Wレフランプの先端がくるように設置し、光線を照射する中で、試験板裏側における温度変化を経時測定した。約12〜18分程度でほぼ一定温度となり、その時の温度を表1の「ランプテスト」の項目列に示した。
[Confirmation of heat insulation 2]
At an atmospheric temperature of 25 ° C., the temperature change on the back side of the test plate was measured over time while the tip of a 100 W reflex lamp was placed 5 cm directly above the painted surface of the test plate and irradiated with light. The temperature became almost constant in about 12 to 18 minutes, and the temperature at that time is shown in the column of “Lamp Test” in Table 1.

今までの説明および表1の結果から、本発明による塗料組成による塗装物は、赤外線領域の反射率が高く、かつ赤外線反射型酸化チタンを用いた表1の比較例4と比べてランプテストでの温度上昇が抑制されていることからも、塗装面からの放熱性が良好であると考えられる。
From the description so far and the results of Table 1, the coated product with the coating composition according to the present invention has a high reflectance in the infrared region, and in the lamp test compared to Comparative Example 4 in Table 1 using infrared reflective titanium oxide. It is considered that the heat dissipation from the painted surface is good also from the fact that the temperature rise of the film is suppressed.

Claims (2)

塗料を乾燥してできる最上層の塗膜層において、中空部の平均径が0.6〜1.2μmの範囲からなる樹脂系中空粒子が分散しており、中空部の体積の総和が塗膜全体積に対して10〜35%の範囲であることを特徴とする塗料組成物。 In the uppermost coating layer formed by drying the paint, resin-based hollow particles having an average hollow portion diameter of 0.6 to 1.2 μm are dispersed, and the total volume of the hollow portion is the total coating volume. A coating composition characterized by being in the range of 10 to 35%. 前述の樹脂系中空粒子が、スチレン−アクリル系共重合体を外殻とするものであることを特徴とする請求項1の水性塗料組成物。 The aqueous coating composition according to claim 1, wherein the resin-based hollow particles have a styrene-acrylic copolymer as an outer shell.
JP2013014267A 2013-01-29 2013-01-29 Coating material composition excellent in heat shield Pending JP2014145027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014267A JP2014145027A (en) 2013-01-29 2013-01-29 Coating material composition excellent in heat shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014267A JP2014145027A (en) 2013-01-29 2013-01-29 Coating material composition excellent in heat shield

Publications (1)

Publication Number Publication Date
JP2014145027A true JP2014145027A (en) 2014-08-14

Family

ID=51425537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014267A Pending JP2014145027A (en) 2013-01-29 2013-01-29 Coating material composition excellent in heat shield

Country Status (1)

Country Link
JP (1) JP2014145027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194556U (en) * 2014-09-17 2014-11-27 田島ルーフィング株式会社 White roofing
JP2018193441A (en) * 2017-05-15 2018-12-06 輝明 嘉納 Thermal radiation/insulation fireproof coating material and combination of thermal radiation/insulation fireproof coating material with additive
KR20220068848A (en) 2020-11-19 2022-05-26 (주)오딘솔루션 Method for manufacturing of heat-resisting and cot off heat paint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194556U (en) * 2014-09-17 2014-11-27 田島ルーフィング株式会社 White roofing
JP2018193441A (en) * 2017-05-15 2018-12-06 輝明 嘉納 Thermal radiation/insulation fireproof coating material and combination of thermal radiation/insulation fireproof coating material with additive
KR20220068848A (en) 2020-11-19 2022-05-26 (주)오딘솔루션 Method for manufacturing of heat-resisting and cot off heat paint

Similar Documents

Publication Publication Date Title
JP6061783B2 (en) Multi-layer coating film and method for forming multi-layer coating film
CN1422309A (en) Transparent medium having angle-selective transmission or reflection properties and/or absorption properties
WO2007056096A3 (en) Low emissive powder coating
JP2010000460A (en) Radiation heat transfer control film
BR112013028635B1 (en) COMPOSITION OF ARCHITECTURAL INK REFLECTING INFRARED, CEILING OR OUTER WALL OF A CONSTRUCTION COATED WITH THE INK COMPOSITION AND METHOD OF REDUCING THE TEMPERATURE RISING OF A CEILING OR OUTER WALL OF A CONSTRUCTION
JP2007016558A (en) Construction material board and manufacturing method therefor
WO2013058141A1 (en) Infrared shielding film and infrared shield using same
JP2014145027A (en) Coating material composition excellent in heat shield
JP2008145942A (en) Light diffusing reflective material, method of manufacturing the same, and electronic component
JP2013147571A (en) Heat-shielding coating
JP6302518B2 (en) Thermal barrier paints, thermal barrier coatings and coated articles
JP6612128B2 (en) Coating composition and coating film forming method
JP6466077B2 (en) Painted metal plate
JP5906226B2 (en) Paint for coated metal plate, painted metal plate and method for producing painted metal plate
JP3513149B1 (en) Heat shield
Suwal et al. Performance of roof‐cool paints prepared using organic acrylic polymer binder and inorganic additives for the thermal reduction in buildings
JP5749807B2 (en) Infrared reflective film for solar cell module and infrared reflector
JP2014184673A (en) Thermal insulation structure and thermal insulation coating composition
JP2007276205A (en) Coated base material and its manufacturing method
JP6744751B2 (en) Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them
JP3792704B2 (en) Light-reflective painted metal plate
Jaoua‐Bahloul et al. Solar spectral properties of PVC plastisol‐based films filled with various fillers
JP6797511B2 (en) Aqueous infrared / ultraviolet shielding coating agent and infrared / ultraviolet shielding treatment method using this
JP2002264254A (en) Coated metal sheet with superb heat shielding properties and manufacturing method therefor
JP2011079999A (en) Coating material composition