JP6744751B2 - Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them - Google Patents

Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them Download PDF

Info

Publication number
JP6744751B2
JP6744751B2 JP2016082672A JP2016082672A JP6744751B2 JP 6744751 B2 JP6744751 B2 JP 6744751B2 JP 2016082672 A JP2016082672 A JP 2016082672A JP 2016082672 A JP2016082672 A JP 2016082672A JP 6744751 B2 JP6744751 B2 JP 6744751B2
Authority
JP
Japan
Prior art keywords
less
particles
heat shield
reflectance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016082672A
Other languages
Japanese (ja)
Other versions
JP2017194493A (en
Inventor
怜子 久保田
怜子 久保田
利昭 信宮
利昭 信宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016082672A priority Critical patent/JP6744751B2/en
Priority to US15/481,707 priority patent/US11163132B2/en
Publication of JP2017194493A publication Critical patent/JP2017194493A/en
Application granted granted Critical
Publication of JP6744751B2 publication Critical patent/JP6744751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、カメラやビデオ、放送機器などの光学機器のレンズ鏡筒や、その他の屋外で使用される可能性があるカメラ本体、ビデオ本体、監視カメラ、お天気カメラ等の光学機器に用いられる遮熱膜および遮熱塗料に関する。 INDUSTRIAL APPLICABILITY The present invention provides a lens barrel for an optical device such as a camera, a video device, and a broadcasting device, and other optical devices such as a camera body, a video body, a surveillance camera, and a weather camera that may be used outdoors. The present invention relates to a heat film and a heat shield paint.

遮熱膜とは、屋外で使用した際に太陽光による部材の温度上昇を抑制する機能を有する膜である。従来、太陽光による部材の温度上昇を抑制する方法としては、図1に示すように太陽による入射光1を赤外線反射膜4で反射光2として反射する方法が知られており、入射光1に対する反射光2の比率を大きくすることで、透過光3による発熱を抑制することが出来る。その他の遮熱方法としては赤外線反射膜4の替わりに熱伝導率が低い断熱層を設けたり、熱を外部に放出するための放熱層を設けたり、それらを組み合わせたりする方法がある。 The heat shield film is a film having a function of suppressing a temperature rise of a member due to sunlight when used outdoors. Conventionally, as a method of suppressing a temperature rise of a member due to sunlight, a method of reflecting incident light 1 from the sun as reflected light 2 by an infrared reflection film 4 as shown in FIG. 1 is known. By increasing the ratio of the reflected light 2, heat generation by the transmitted light 3 can be suppressed. As another heat shielding method, there is a method of providing a heat insulating layer having a low heat conductivity in place of the infrared reflecting film 4, providing a heat radiating layer for radiating heat to the outside, or combining them.

一方、光学機器はピント調整等を行うため、位置精度が非常に重要な機器である。例えば、図2に示すように光学機器のレンズ鏡筒8はレンズ6およびその鏡筒カバー等から成っており、ピント調整のための摺動する嵌合部分7が設けられている。基材5の表層に遮熱膜9を設けることにより、光学機器が太陽光に暴露されても太陽光による光学機器の温度上昇を抑制し、焦点等の位置精度を保持することが出来る。 On the other hand, since the optical device performs focus adjustment and the like, position accuracy is very important. For example, as shown in FIG. 2, the lens barrel 8 of the optical device is composed of the lens 6 and its lens barrel cover, etc., and is provided with a sliding fitting portion 7 for focus adjustment. By providing the heat shield film 9 on the surface layer of the base material 5, even if the optical device is exposed to sunlight, the temperature rise of the optical device due to sunlight can be suppressed, and the positional accuracy of the focus and the like can be maintained.

特許文献1には、レンズ鏡筒用の遮熱膜において、着色層、赤外線反射層および断熱層からなる膜が開示されている。特許文献1では、赤外線反射層だけでなく、膜厚が500μmから2000μmの断熱層を設けることにより遮熱効果を高めている。 Patent Document 1 discloses a heat shield film for a lens barrel, the film including a colored layer, an infrared reflective layer, and a heat insulating layer. In Patent Document 1, not only the infrared reflecting layer but also a heat insulating layer having a film thickness of 500 μm to 2000 μm is provided to enhance the heat shielding effect.

特開2009−139856号公報JP, 2009-139856, A

しかしながら、特許文献1のように膜厚が500μmから2000μmの断熱層を設けるとレンズ鏡筒の膜厚自体が厚くなり、摺動する嵌合部分の位置精度を十分に出すことが困難である。 However, when a heat insulating layer having a film thickness of 500 μm to 2000 μm is provided as in Patent Document 1, the film thickness itself of the lens barrel becomes thick, and it is difficult to obtain sufficient positional accuracy of the sliding fitting portion.

本発明は、この様な背景技術に鑑みてなされたものであり、薄膜でも反射率が高く、太陽光による温度上昇が少ない光学機器用の遮熱膜、光学機器用の遮熱塗料、光学機器を提供するものである。 The present invention has been made in view of such background art, and has a high reflectance even in a thin film, and a heat shield film for an optical device in which a temperature rise due to sunlight is small, a heat shield coating for an optical device, and an optical device. Is provided.

本発明の光学機器は、レンズと、内部に前記レンズを配置しているレンズ鏡筒とを有する光学機器であって、前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有し、前記遮熱膜は、d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂とを有し、前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子における粒径が1.5μm以下の割合が35質量%以下であることを特徴とする。
本発明の遮熱膜は、d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂とを有する遮熱膜であって、前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子における粒径が1.5μm以下の割合が35質量%以下であることを特徴とする。
本発明の遮熱塗料は、d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂と、溶剤を有する遮熱塗料であって、前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子における粒径が1.5μm以下の割合が35質量%以下であることを特徴とする。
The optical device of the present invention is a lens and an optical device having a lens barrel in which the lens is arranged, having a heat shield film on at least a part of an outer peripheral surface of the lens barrel, The thermal barrier film has particles having a d-line refractive index of 2.5 or more and 3.2 or less and a resin having a d-line refractive index of 1.32 or more and 1.42 or less, and the particles have an average particle size of It is characterized in that it is 2 μm or more and 5 μm or less and the ratio of the particle diameter of the particles is 1.5 μm or less is 35% by mass or less.
The heat shield film of the present invention is a heat shield film comprising particles having a d-line refractive index of 2.5 to 3.2 and a resin having a d-line refractive index of 1.32 to 1.42. The particles have an average particle size of 2 μm or more and 5 μm or less, and the ratio of the particle size of the particles of 1.5 μm or less is 35% by mass or less.
The heat-shielding paint of the present invention is a heat-shielding paint having a solvent having a d-line refractive index of 2.5 to 3.2 and a resin having a d-line refractive index of 1.32 to 1.42, and a solvent. The particles have an average particle size of 2 μm or more and 5 μm or less, and a ratio of the particle size of the particles of 1.5 μm or less is 35% by mass or less.

本発明によれば、太陽光に対して高い反射率を持ち、薄膜でも遮熱効果が高いため、位置精度が必要な光学機器用の遮熱膜、光学機器用の遮熱塗料、光学機器を提供することが出来る。 ADVANTAGE OF THE INVENTION According to this invention, since it has high reflectance with respect to sunlight, and a thin film has a high heat-shielding effect, the heat-shielding film for optical devices, the heat-shielding paint for optical devices, and optical equipment which require positional accuracy are provided. Can be provided.

基材5の上面に赤外線反射膜4を形成した際の太陽光の反射および吸収の状態を示す断面模式図である。3 is a schematic cross-sectional view showing the state of reflection and absorption of sunlight when the infrared reflection film 4 is formed on the upper surface of the base material 5. FIG. レンズ鏡筒8の断面模式図である。3 is a schematic sectional view of a lens barrel 8. FIG. 粒子10と樹脂11界面の反射を示す断面模式図である。5 is a schematic cross-sectional view showing reflection at the interface between particles 10 and resin 11. FIG. 分光光度計による反射率の測定形態模式図である。It is a schematic diagram of a reflectance measurement mode by a spectrophotometer. 温度の評価方法を示す模式図である。It is a schematic diagram which shows the evaluation method of temperature.

以下、本発明の好適な実施の形態について説明する。
まず、太陽光の反射率を向上するための方法を説明する。次に、太陽光の反射率を向上するための本発明の光学機器用の遮熱塗料、光学機器用の遮熱膜、光学機器について説明する。本発明の光学機器は、レンズと、内部に前記レンズを配置しているレンズ鏡筒を有し、前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有する。
本発明において、「粒径」とは、粒子の体積より換算した直径であり、レーザー回折式粘度分析計により求められる。
また、本発明における「平均粒径」には、メジアン径を用いた。
Hereinafter, preferred embodiments of the present invention will be described.
First, a method for improving the reflectance of sunlight will be described. Next, the heat-shielding coating for an optical device, the heat-shielding film for an optical device, and the optical device of the present invention for improving the reflectance of sunlight will be described. The optical device of the present invention has a lens and a lens barrel in which the lens is arranged, and has a heat shield film on at least a part of an outer peripheral surface of the lens barrel.
In the present invention, the “particle diameter” is a diameter converted from the volume of particles, and is determined by a laser diffraction type viscosity analyzer.
Moreover, the median diameter was used for the "average particle diameter" in this invention.

[太陽光の反射率向上のメカニズム]
太陽光の波長は約0.3μmから約3μmの範囲であり、これらの波長の光が図1に示すように透過光3となると熱エネルギーに変換され、基材5が発熱する。よって、断熱層なしに太陽光による発熱を抑制するためには、入射光1に対する反射光2の比率を出来るだけ上げて内部への光の透過による発熱を抑制する必要がある。
[Mechanism for improving sunlight reflectance]
The wavelength of sunlight is in the range of about 0.3 μm to about 3 μm, and when the light of these wavelengths becomes the transmitted light 3 as shown in FIG. 1, it is converted into heat energy and the base material 5 generates heat. Therefore, in order to suppress heat generation due to sunlight without the heat insulating layer, it is necessary to increase the ratio of the reflected light 2 to the incident light 1 as much as possible and suppress heat generation due to the transmission of light to the inside.

太陽光の波長である0.3μmから3μmの範囲は粒径が数μmの粒子に対してはMie散乱の領域であり、Mie散乱の計算を行うと粒径が約1μm付近において、太陽光の反射率が最も高くなる。このため、太陽光の反射粒子の粒径は1μm付近であるのが一般的である。尚、Mie散乱の計算についてはLight Scattering Theory(Department of Mechanical and Aerospace Engineering University of Florida; David W. Hahn)の式を用いた。 The range of 0.3 μm to 3 μm, which is the wavelength of sunlight, is the Mie scattering region for particles with a particle size of several μm. Calculation of Mie scattering shows that the Mie scattering is about 1 μm. Highest reflectance. Therefore, the particle size of the reflective particles of sunlight is generally around 1 μm. For the calculation of Mie scattering, the formula of Light Scattering Theory (Department of Mechanical and Aerospace Engineering University of Florida; David W. Hahn) was used.

本発明者は、反射率の更なる向上について鋭意検討したところ、粒子の粒径、屈折率および粒度分布の範囲、更に樹脂の屈折率を適正な範囲とすることで、大きく反射率を向上させることが出来ることを見出した。 The present inventor, after earnestly studying further improvement of reflectance, greatly improves the reflectance by setting the particle diameter of particles, the range of refractive index and particle size distribution, and the refractive index of resin to an appropriate range. I found that I could do it.

まず、d線屈折率が2.5以上3.2以下で平均粒径が2μm以上の粒子を用いると反射率が高くなることを見出した。この粒径はMie散乱の計算値の最適解である1μmより大きい。一般的なMie散乱の計算は入射光に対して、360°全ての方位の散乱の合計を計算する。しかし、入射光に対して実際に反射して膜外に出る光は後方散乱のみである。よって、粒径が大きい方が遮蔽効果が大きく前方散乱が少ないため、実際に反射率を向上するためには粒径が2μm以上である必要がある。また、平均粒径が5μmを超えると膜の凹凸が大きくなり膜厚精度が悪化する。従って、本願発明における上記粒子の平均粒径は2μm以上5μm以下となる。 First, it was found that the reflectance increases when particles having a d-line refractive index of 2.5 or more and 3.2 or less and an average particle diameter of 2 μm or more are used. This particle size is larger than 1 μm, which is the optimum solution for the calculated value of Mie scattering. A typical Mie scattering calculation calculates the sum of scattering in all 360° azimuths for incident light. However, the only light that actually reflects the incident light and goes out of the film is backscattering. Therefore, the larger the particle size is, the larger the shielding effect is and the less the forward scattering is. Therefore, in order to actually improve the reflectance, the particle size needs to be 2 μm or more. Further, if the average particle size exceeds 5 μm, the unevenness of the film becomes large and the film thickness accuracy deteriorates. Therefore, the average particle diameter of the particles in the present invention is 2 μm or more and 5 μm or less.

更に、樹脂の屈折率と粒子の屈折率の間には相関があり、粒子のd線屈折率が2.5以上3.2以下に対して樹脂のd線屈折率が1.32以上1.42以下で最も反射率が高くなることを見出した。図3に示すように樹脂11の屈折率が高いと粒子10との屈折率差が小さくなり入射光1に対する反射光2の量が減少するが、樹脂11の屈折率が低くなりすぎると粒子10との屈折率差が広がりすぎて粒子10内に入った光が粒子内での反射12を繰り返して樹脂11側に出ることが出来ずに光が閉じ込められて逆に反射率が低下すると推測される。よって、粒子のd線屈折率が2.5以上3.2以下に対して樹脂のd線屈折率が1.32以上1.42以下で最も反射率を向上させることで温度低減効果を高めることが出来る。 Furthermore, there is a correlation between the refractive index of the resin and the refractive index of the particles, and the d-line refractive index of the resin is 2.5 to 3.2 and the d-line refractive index of the resin is 1.32 to 1. It was found that the reflectance was highest at 42 or less. As shown in FIG. 3, when the refractive index of the resin 11 is high, the difference in the refractive index with the particles 10 is small and the amount of the reflected light 2 with respect to the incident light 1 is reduced, but when the refractive index of the resin 11 is too low, the particles 10 are too small. It is presumed that the light entering the particle 10 due to the too large difference in the refractive index between and cannot be emitted to the resin 11 side by repeating the reflection 12 inside the particle and the light is confined, and conversely the reflectance decreases. It Therefore, when the d-line refractive index of the particles is 2.5 or more and 3.2 or less and the d-line refractive index of the resin is 1.32 or more and 1.42 or less, the reflectance is most improved to enhance the temperature reduction effect. Can be done.

[光学機器用の遮熱塗料]
以下に、本発明の光学機器用の遮熱塗料の材料構成および本発明の遮熱塗料の製造方法について説明する。
[Thermal coating for optical equipment]
The material constitution of the thermal barrier coating for optical equipment of the present invention and the method for producing the thermal barrier coating of the present invention will be described below.

《材料構成》
本発明の光学機器用遮熱塗料は、少なくともd線屈折率が2.5以上3.2以下の粒子と樹脂と溶剤を含む。
<Material composition>
The thermal barrier coating for optical devices of the present invention contains at least particles having a d-line refractive index of 2.5 or more and 3.2 or less, a resin, and a solvent.

(d線屈折率が2.5以上3.2以下の粒子)
まず、本発明のd線屈折率が2.5以上3.2以下の粒子について説明する。
本発明のd線屈折率が2.5以上3.2以下の粒子には、最も好適な材料としてルチル型酸化チタン、アナターゼ型酸化チタンを用いることが出来る。また、色を調整する必要がある場合は、可視光領域に吸収を持つ酸化クロム、チタン、酸化銅、タングステン、白金、酸化鉄、ヘマタイト等を用いることができる。ただし、可視光から赤外領域での消衰係数が低い酸化チタンと比較して、特に可視光領域の消衰係数が高い材料は太陽光の反射率がやや低下する傾向にあるが、本発明の範囲に粒径を調整することでより高い太陽光の反射率を得ることが出来る。d線屈折率が2.5以上3.2以下の粒子は1種類を単独で用いても複数を混合してもよい。
(Particles with d-line refractive index of 2.5 to 3.2)
First, the particles having a d-line refractive index of 2.5 to 3.2 according to the present invention will be described.
For the particles having a d-line refractive index of 2.5 or more and 3.2 or less according to the present invention, rutile type titanium oxide or anatase type titanium oxide can be used as the most preferable material. Further, when it is necessary to adjust the color, chromium oxide, titanium, copper oxide, tungsten, platinum, iron oxide, hematite or the like which has absorption in the visible light region can be used. However, as compared with titanium oxide, which has a low extinction coefficient in the visible to infrared range, the material having a particularly high extinction coefficient in the visible range tends to have a slightly reduced reflectance of sunlight. By adjusting the particle size in the range of 1, it is possible to obtain a higher sunlight reflectance. The particles having a d-line refractive index of 2.5 or more and 3.2 or less may be used alone or as a mixture of a plurality thereof.

本発明のd線屈折率が2.5以上3.2以下の粒子は、平均粒径が2μm以上5μm以下である。平均粒径が2μm未満になると太陽光の反射率が低下する。また、平均粒径が5μmを超えると膜の凹凸が大きくなり膜厚精度が悪化する。 The particles having a d-line refractive index of 2.5 or more and 3.2 or less of the present invention have an average particle size of 2 μm or more and 5 μm or less. When the average particle diameter is less than 2 μm, the reflectance of sunlight decreases. Further, if the average particle size exceeds 5 μm, the unevenness of the film becomes large and the film thickness accuracy deteriorates.

また、粒径が1.5μm以下の粒子が増加すると太陽光が通過する比率が増えるため、塗膜内での吸収が起こり太陽光の反射率が低下する。本願発明においては、d線屈折率が2.5以上3.2以下であって粒径が1.5μm以下の割合が35質量%以下になるように調整される。 Further, when the number of particles having a particle size of 1.5 μm or less increases, the ratio of sunlight passing through increases, so that absorption occurs in the coating film and the reflectance of sunlight decreases. In the present invention, the ratio of the d-line refractive index of 2.5 or more and 3.2 or less and the particle diameter of 1.5 μm or less is adjusted to 35% by mass or less.

また、本発明のd線屈折率が2.5以上3.2以下の粒子はその粒子の表面が任意の有機材料や無機材料で被覆されていても構わない。また、形状は不定形であっても球形であっても燐片状であっても中空であっても構わないが、より好ましくは表面の凹凸が少ない形状である。 Further, the particles having a d-line refractive index of 2.5 or more and 3.2 or less according to the present invention may have their surfaces coated with any organic material or inorganic material. Further, the shape may be irregular, spherical, flake shaped, or hollow, but is more preferably a shape having few surface irregularities.

本発明のd線屈折率が2.5以上3.2以下の粒子の含有量は、遮熱塗料に対して10重量%以上90重量%以下であることが好ましい。粒子の含有量が10重量%未満になると、基材まで到達する光が増加して太陽光の反射率が低下する。また、粒子の含有量が90重量%を超えると塗膜の脆性が悪化する。 The content of the particles having a d-line refractive index of 2.5 or more and 3.2 or less of the present invention is preferably 10% by weight or more and 90% by weight or less with respect to the thermal barrier coating. When the content of the particles is less than 10% by weight, the amount of light reaching the base material increases and the reflectance of sunlight decreases. Further, when the content of particles exceeds 90% by weight, the brittleness of the coating film is deteriorated.

(樹脂)
次に、本発明の樹脂について説明する。
本発明の樹脂は、d線屈折率が1.32以上1.42以下である。樹脂のd線屈折率が1.42を越えると樹脂と粒子の屈折率差が少ないために樹脂と粒子界面の反射率が低下する。また、樹脂のd線屈折率が1.32未満になると樹脂と粒子の屈折率差が大きくなりすぎて粒子内部へ透過した光が閉じ込められ太陽光が吸収されるため反射率が低下していく。
(resin)
Next, the resin of the present invention will be described.
The resin of the present invention has a d-line refractive index of 1.32 or more and 1.42 or less. When the d-line refractive index of the resin exceeds 1.42, the difference in the refractive index between the resin and the particles is small, so that the reflectance at the interface between the resin and the particles decreases. Further, when the d-line refractive index of the resin is less than 1.32, the refractive index difference between the resin and the particles becomes too large, the light transmitted inside the particles is trapped and the sunlight is absorbed, and the reflectance decreases. ..

本発明のd線屈折率が1.32以上1.42以下の樹脂としては、その範囲に入る材料であれば任意の材料を用いることが出来るが、例えばシリコーン樹脂、フッ素樹脂、フッ素基を導入した樹脂が好ましい。シリコーン系樹脂の一例としては、メチル系、メチル/フェニル系、プロピル/フェニル系、エポキシ樹脂変性、アルキッド樹脂変性、ポリエステル樹脂変性、ゴム系、それらのレジンやオリゴマー等が挙げられる。また、樹脂の屈折率を調整するために粒径が100nm以下の低屈折率粒子を混合して用いても構わない。低屈折率粒子としては、有機粒子を用いても無機粒子を用いても構わない。材料としては、フッ素系、MgF、シリカ等が挙げられる。形状は球状であっても、不定形であっても、中空であっても、細孔があっても構わない。中空粒子としては、例えば、シリカ、フッ化マグネシウム、有機樹脂が挙げられる。なお、シリコーン樹脂には、例えばKC−89S(信越シリコーン)、KR−400(信越シリコーン)を用いることができる。d線屈折率が1.42の樹脂には、例えばX−41−1810(信越シリコーン)、X−41−1805(信越シリコーン)、X−41−1818(信越シリコーン)、KR251(信越シリコーン)を用いることができる。 As the resin having a d-line refractive index of 1.32 or more and 1.42 or less according to the present invention, any material can be used as long as it falls within the range. For example, a silicone resin, a fluororesin, or a fluorine group is introduced. The resins mentioned above are preferred. Examples of the silicone-based resin include methyl-based, methyl/phenyl-based, propyl/phenyl-based, epoxy resin-modified, alkyd resin-modified, polyester resin-modified, rubber-based resins, and resins and oligomers thereof. Further, in order to adjust the refractive index of the resin, low refractive index particles having a particle size of 100 nm or less may be mixed and used. As the low refractive index particles, organic particles or inorganic particles may be used. Examples of the material include fluorine-based materials, MgF 2 , silica and the like. The shape may be spherical, amorphous, hollow, or have pores. Examples of the hollow particles include silica, magnesium fluoride, and organic resin. As the silicone resin, for example, KC-89S (Shin-Etsu Silicone) or KR-400 (Shin-Etsu Silicone) can be used. Examples of the resin having a d-line refractive index of 1.42 include X-41-1810 (Shin-Etsu Silicone), X-41-1805 (Shin-Etsu Silicone), X-41-1818 (Shin-Etsu Silicone), and KR251 (Shin-Etsu Silicone). Can be used.

また、本発明の樹脂の含有量は遮熱塗料に対して5重量%以上50重量%以下であることが好ましく、より好ましくは7重量%以上30重量%以下である。本発明の樹脂の含有量が5重量%未満になると基材との密着性が悪化する。また、本発明の樹脂の含有量が50重量%を超えると、太陽光の反射率が悪化する。 Further, the content of the resin of the present invention is preferably 5% by weight or more and 50% by weight or less, and more preferably 7% by weight or more and 30% by weight or less with respect to the thermal barrier coating. When the content of the resin of the present invention is less than 5% by weight, the adhesion with the base material deteriorates. Further, when the content of the resin of the present invention exceeds 50% by weight, the reflectance of sunlight deteriorates.

(溶剤)
次に、溶剤について説明する。
溶剤としては、任意の材料を用いて良い。溶剤の一例としては、水、シンナー、エタノール、イソプロピルアルコール、n−ブチルアルコール、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、トルエン、キシレン、アセトン、セロソルブ類、グリコールエーテル類、エーテル類等が挙げられる。これらの溶媒は、1種類を用いても複数の種類を混合して用いても良い。
(solvent)
Next, the solvent will be described.
Any material may be used as the solvent. Examples of the solvent include water, thinner, ethanol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, toluene, xylene, acetone, cellosolve. Examples thereof include glycol ethers, glycol ethers and ethers. These solvents may be used alone or as a mixture of plural kinds.

遮熱塗料の好ましい粘度は、10mPa・s以上10000mPa・s以下である。遮熱塗料の粘度が10mPa・s未満になると塗布後の遮熱膜の膜厚が薄くなる箇所が生じる場合がある。また、10000mPa・sより大きくなると遮熱塗料の塗工性が低下する。 The preferable viscosity of the heat-shielding coating is 10 mPa·s or more and 10000 mPa·s or less. When the viscosity of the heat-shielding paint is less than 10 mPa·s, there are cases where the thickness of the heat-shielding film after application becomes thin. On the other hand, when it is more than 10,000 mPa·s, the coating property of the heat-shielding paint is deteriorated.

(添加剤)
本発明の遮熱塗料は樹脂のd線屈折率が1.32以上1.42以下の範囲で収まる限り、その他の任意の添加剤を樹脂の一部として含んでいてもよい。その一例としては、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、赤外線透過型有機着色剤、赤外線透過型無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、d線屈折率が2.5以下の無機粒子および有機粒子、d線屈折率が3.2以上の無機粒子等が挙げられる。なお、分散剤は、DISPERBYK−118(ビックケミージャパン)、DISPERBYK−110(ビックケミージャパン)、DISPERBYK−111(ビックケミージャパン)、DISPERBYK−102(ビックケミージャパン)、DISPERBYK−190(ビックケミージャパン)、DISPERBYK−106(ビックケミージャパン)、DISPERBYK−180(ビックケミージャパン)、DISPERBYK−108(ビックケミージャパン)、デモールEP(花王)を用いることができる。
(Additive)
The thermal barrier coating composition of the present invention may contain any other additive as a part of the resin as long as the d-line refractive index of the resin is within the range of 1.32 or more and 1.42 or less. As examples thereof, a dispersant, a curing agent, a curing catalyst, a plasticizer, a thixotropic agent, a leveling agent, an infrared transmissive organic colorant, an infrared transmissive inorganic colorant, a preservative, an ultraviolet absorber, an antioxidant, Examples thereof include coupling agents, inorganic particles and organic particles having a d-line refractive index of 2.5 or less, and inorganic particles having a d-line refractive index of 3.2 or more. The dispersants are DISPERBYK-118 (Big Chemie Japan), DISPERBYK-110 (Big Chemie Japan), DISPERBYK-111 (Big Chemie Japan), DISPERBYK-102 (Big Chemie Japan), DISPERBYK-190 (Big Chemie Japan). , DISPERBYK-106 (Big Chemie Japan), DISPERBYK-180 (Big Chemie Japan), DISPERBYK-108 (Big Chemie Japan), and Demol EP (Kao) can be used.

《遮熱塗料の製造方法》
以下に本発明の遮熱塗料の製造方法について説明する。
本発明の遮熱塗料の製造方法としては本発明のd線屈折率が2.5以上3.2以下の粒子を樹脂と溶媒からなる溶液中に分散出来れば任意の方法を用いることが出来る。一例としては、ビーズミル、ボールミル、ジェットミル、三本ローラー、遊星回転装置、ミキサー、超音波分散機等が挙げられる。
<Method for producing heat-shielding paint>
The method for producing the thermal barrier coating composition of the present invention will be described below.
As a method for producing the heat-shielding coating material of the present invention, any method can be used as long as the particles having a d-line refractive index of 2.5 or more and 3.2 or less of the present invention can be dispersed in a solution containing a resin and a solvent. Examples include bead mills, ball mills, jet mills, three rollers, planetary rotation devices, mixers, ultrasonic dispersers, and the like.

[光学機器用の遮熱膜]
以下に本発明の光学機器用の遮熱膜の材料構成および膜構成について説明する。
[Heat shield film for optical equipment]
The material constitution and film constitution of the heat shield film for optical equipment of the present invention will be explained below.

《材料構成》
以下に本発明の光学機器用の遮熱膜の材料構成について説明する。
本発明の遮熱膜は、d線屈折率が2.5以上3.2以下の粒子と樹脂を有する。
<Material composition>
The material constitution of the heat shield film for optical equipment of the present invention will be described below.
The heat-shielding film of the present invention has particles having a d-line refractive index of 2.5 or more and 3.2 or less and a resin.

(d線屈折率が2.5以上3.2以下の粒子)
上記遮熱塗料を塗布して下記の方法により形成された遮熱膜において、本発明のd線屈折率が2.5以上3.2以下の粒子の含有量は、遮熱膜に対して20体積%以上60体積%以下であることが好ましい。粒子の含有量が20体積%未満になると、基材まで到達する光が増加するため太陽光の反射率が低下する。また、粒子の含有量が60体積%を超えると塗膜の脆性が悪化する。
(Particles having a d-line refractive index of 2.5 or more and 3.2 or less)
In the heat shield film formed by applying the above heat shield coating by the following method, the content of particles having a d-line refractive index of 2.5 or more and 3.2 or less of the present invention is 20 with respect to the heat shield film. It is preferably not less than 60% by volume and not more than 60% by volume. If the content of the particles is less than 20% by volume, the amount of light reaching the base material increases, so that the reflectance of sunlight decreases. Further, if the content of particles exceeds 60% by volume, the brittleness of the coating film deteriorates.

(樹脂)
上記した樹脂の含有量は遮熱膜に対して10体積%以上78体積%以下であることが好ましく、より好ましくは20体積%以上70体積%以下である。本発明の樹脂の含有量が10体積%未満になると基材との密着性が悪化する。また、本発明の樹脂の含有量が78体積%を超えると、太陽光の反射率が悪化する。
(resin)
The content of the above-mentioned resin is preferably 10% by volume or more and 78% by volume or less, more preferably 20% by volume or more and 70% by volume or less with respect to the heat shield film. If the content of the resin of the present invention is less than 10% by volume, the adhesion with the substrate will deteriorate. Further, when the content of the resin of the present invention exceeds 78% by volume, the reflectance of sunlight deteriorates.

(添加剤)
本発明の遮熱膜は樹脂のd線屈折率が1.32以上1.42以下の範囲で収まる限り、樹脂の一部としてその他の任意の添加剤を含んでいてもよい。その一例としては、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、赤外線透過型有機着色剤、赤外線透過型無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、d線屈折率が2.5以下の無機粒子および有機粒子、d線屈折率が3.2以上の無機粒子等が挙げられる。
(Additive)
The heat-shielding film of the present invention may contain any other additive as a part of the resin as long as the d-line refractive index of the resin is within the range of 1.32 or more and 1.42 or less. As examples thereof, a dispersant, a curing agent, a curing catalyst, a plasticizer, a thixotropic agent, a leveling agent, an infrared transmissive organic colorant, an infrared transmissive inorganic colorant, a preservative, an ultraviolet absorber, an antioxidant, Examples thereof include coupling agents, inorganic particles and organic particles having a d-line refractive index of 2.5 or less, and inorganic particles having a d-line refractive index of 3.2 or more.

《膜構成》
本発明の遮熱膜9は少なくとも基材5より外側に形成される。その形態としては、基材5と密着していてもよいし、基材5と遮熱膜9の間に密着性を向上させるプライマー層が設けられていてもよい。
<Membrane composition>
The heat shield film 9 of the present invention is formed at least outside the base material 5. As a form thereof, it may be in close contact with the base material 5, or a primer layer for improving the adhesiveness may be provided between the base material 5 and the heat shield film 9.

(基材)
基材としては、任意の材料を用いることが出来るが、金属やプラスチックが好ましい。金属材料としては、アルミニウム、チタン、ステンレス、マグネシウム合金等が挙げられる。プラスチック材料の一例としては、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂、フッ素樹脂等が挙げられる。
(Base material)
As the base material, any material can be used, but metal or plastic is preferable. Examples of the metal material include aluminum, titanium, stainless steel, magnesium alloy and the like. Examples of plastic materials include polycarbonate resin, acrylic resin, ABS resin, fluororesin, and the like.

また、基材の厚みとしては任意の厚みを持つことが出来るが、0.5mm以上5mm以下、より好ましくは0.5mm以上2mm以下であることが好ましい。膜厚が0.5mm未満になるとレンズ鏡筒の形状を保持することが困難である。また、膜厚が5mmを超えると部材のコストが高くなる。 The substrate may have any thickness, but it is preferably 0.5 mm or more and 5 mm or less, more preferably 0.5 mm or more and 2 mm or less. If the film thickness is less than 0.5 mm, it is difficult to maintain the shape of the lens barrel. Moreover, if the film thickness exceeds 5 mm, the cost of the member increases.

(プライマー)
プライマーとしては、任意の材料を用いることが出来るが、一例としてはエポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。また、プライマーには本発明の粒子や本発明以外の粒子、着色剤、分散剤、硬化剤、硬化触媒、可塑剤、チキソ性付与剤、レベリング剤、有機着色剤、無機着色剤、防腐剤、紫外線吸収剤、酸化防止剤、カップリング剤、溶媒の残渣が含まれていても構わない。
(Primer)
Although any material can be used as the primer, examples thereof include epoxy resin, urethane resin, acrylic resin, silicone resin, and fluororesin. Further, the primer particles of the present invention and particles other than the present invention, colorants, dispersants, curing agents, curing catalysts, plasticizers, thixotropic agents, leveling agents, organic colorants, inorganic colorants, preservatives, An ultraviolet absorber, an antioxidant, a coupling agent, and a solvent residue may be contained.

また、プライマーの膜厚としては2μm以上30μm以下が好ましく、5μm以上20μm以下がより好ましい。膜厚が2μm未満では膜の密着性が低下することがあり、30μmを超える場合は位置精度に悪影響をおよぼすことがある。 Further, the film thickness of the primer is preferably 2 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less. If the film thickness is less than 2 μm, the adhesion of the film may decrease, and if it exceeds 30 μm, the positional accuracy may be adversely affected.

(本発明の遮熱膜の膜厚)
本発明の遮熱膜の平均膜厚は10μm以上70μm以下であることが好ましい。膜厚が10μm未満になると、基材側に光が透過して太陽光の反射率が悪化する。膜厚が70μmを超えると位置精度が悪化する。膜厚精度については、規格値に対して±15μmであることが好ましくより好ましくは±10μmの範囲である。
(Thickness of the heat shield film of the present invention)
The average film thickness of the heat shield film of the present invention is preferably 10 μm or more and 70 μm or less. When the film thickness is less than 10 μm, light is transmitted to the base material side and the reflectance of sunlight is deteriorated. If the film thickness exceeds 70 μm, the positional accuracy deteriorates. The film thickness accuracy is preferably ±15 μm with respect to the standard value, and more preferably ±10 μm.

《本発明の遮熱膜の形成方法》
本発明の遮熱膜は、硬化後の膜厚が10μm以上70μm以下になるように本発明の遮熱塗料を均一に塗布出来れば任意の塗布方法および硬化方法を用いることが出来る。
<<Method of forming heat shield film of the present invention>>
For the heat shield film of the present invention, any coating method and curing method can be used as long as the heat shield coating composition of the present invention can be uniformly applied so that the film thickness after curing is 10 μm or more and 70 μm or less.

本発明の光学機器用の遮熱膜の塗布方法の一例としては、ハケ塗り、スプレー塗布、ディップコーティング、転写等が挙げられる。また、遮熱膜は1層塗りであっても、多層塗りであっても構わないし、意匠性を出すためにシボ加工されていても良い。 Examples of the coating method of the heat shield film for the optical device of the present invention include brush coating, spray coating, dip coating, transfer and the like. Further, the heat-shielding film may be a single-layer coating or a multi-layer coating, and may be embossed for improving its design.

また、本発明の光学機器用の遮熱膜の硬化方法としては室温放置しても構わないし、任意の熱により硬化を促進したり、紫外線を与えても構わない。熱を与えて硬化させる方法としては、加熱炉、ヒーター、赤外線加熱等が挙げられる。硬化温度としては、室温から400℃が好ましく更に室温から200℃が好ましい。 In addition, as a method of curing the heat shield film for the optical device of the present invention, it may be left at room temperature, or may be accelerated by an arbitrary heat or may be irradiated with ultraviolet rays. Examples of the method of applying heat to cure include a heating furnace, a heater, and infrared heating. The curing temperature is preferably room temperature to 400°C, more preferably room temperature to 200°C.

以下に、本発明における好適な実施例について説明する。
実施例1から15における遮熱塗料の調製、遮熱膜の作製、反射率の評価、温度の評価、膜厚精度の評価は下記の方法で行った。
The preferred embodiments of the present invention will be described below.
Preparation of the heat-shielding coating, preparation of the heat-shielding film, evaluation of reflectance, evaluation of temperature, and evaluation of film thickness accuracy in Examples 1 to 15 were carried out by the following methods.

〈反射率の測定方法〉
反射率は図4に示すように、分光光度計(U−4000;日立ハイテク)を用いて測定した。
測定用のサンプルには30mm角で厚みが1mmの金属板に、本発明の遮熱塗料を塗布し硬化して本発明の遮熱膜を形成して用いた。金属板には、ステンレス、アルミニウム、チタン、マグネシウム合金等の中のいずれかを用いた。また、金属板の表面にスピンコーターで所望の膜厚になるように本発明の遮熱膜を塗布し、焼成した。
<Method of measuring reflectance>
The reflectance was measured using a spectrophotometer (U-4000; Hitachi High-Tech) as shown in FIG.
For the sample for measurement, the heat shield coating of the present invention was applied to a metal plate having a side of 30 mm and a thickness of 1 mm and cured to form the heat shield film of the present invention. For the metal plate, any one of stainless steel, aluminum, titanium, magnesium alloy and the like was used. Further, the heat shield film of the present invention was applied to the surface of the metal plate by a spin coater so as to have a desired film thickness, and was baked.

次に、反射率の測定方法を説明する。図4に示すように積分球13に対して波長400nm〜2600nmの入射光1を入射させた。まず、入射光1に対して入射角5°傾けた試験片を取り付け部14に100%反射が起こるアルミナ焼結体のブランクを設置し、ベースライン測定を行った。続いて、試験片取り付け部14にブランクの替わりに本発明の遮光膜を形成した試験片を設置し、400nm〜2600nmの光を入射させ、検出部15で検出して反射率を測定した。また、反射率は400nm〜2600nmにおいて1nmおきの平均反射率の値を記載した。反射率は温度の評価結果と相関があり、94%以上で下記の温度評価結果において良好な値を示した。このことより、反射率が94%以上であれば良好な遮熱膜であると言える。 Next, a method of measuring reflectance will be described. As shown in FIG. 4, incident light 1 having a wavelength of 400 nm to 2600 nm was made incident on the integrating sphere 13. First, a test piece tilted at an incident angle of 5° with respect to the incident light 1 was set on a mounting portion 14 as a blank of an alumina sintered body that causes 100% reflection, and a baseline measurement was performed. Then, instead of the blank, a test piece on which the light-shielding film of the present invention was formed was placed in the test piece attachment portion 14, light of 400 nm to 2600 nm was made incident, and the detection portion 15 detected and measured the reflectance. As the reflectance, the average reflectance value every 1 nm in 400 nm to 2600 nm is shown. The reflectance has a correlation with the temperature evaluation result, and a good value was shown in the temperature evaluation result below at 94% or more. From this, it can be said that a heat shield film having a reflectance of 94% or more is a good heat shield film.

〈温度低減効果の評価方法〉
図5は温度の評価方法を示す模式図である。図5に示すように、温度測定には、ランプ16、温度測定用治具19および温度評価用の試験片17を用いた。温度測定は、温度測定箇所18にて測定した。
<Evaluation method of temperature reduction effect>
FIG. 5 is a schematic diagram showing a temperature evaluation method. As shown in FIG. 5, the lamp 16, the temperature measurement jig 19, and the temperature evaluation test piece 17 were used for temperature measurement. The temperature was measured at the temperature measuring point 18.

温度評価用の試験片17には、100mm角で厚みが1mmの金属板に本発明の遮熱膜を形成して用いた。金属板には、ステンレス、アルミニウム、チタン、マグネシウム合金等の中のいずれかを用いた。また、金属板の表面にスピンコーターで所望の膜厚になるように本発明の遮熱膜を塗布し、焼成した。温度測定用治具19には、表面が白色120mm×120mm×120mmの段ボール箱を用い、温度評価用の試験片17取り付け部分に90mm×90mm角の窓部を設けた。
また、ランプ16にはハイラックスMT150FD6500K(岩崎電気)を用いた。
As the test piece 17 for temperature evaluation, a heat shield film of the present invention was formed on a 100 mm square and 1 mm thick metal plate and used. For the metal plate, any one of stainless steel, aluminum, titanium, magnesium alloy and the like was used. Further, the heat shield film of the present invention was applied to the surface of the metal plate by a spin coater so as to have a desired film thickness, and was baked. A cardboard box having a white surface of 120 mm×120 mm×120 mm was used as the temperature measurement jig 19, and a 90 mm×90 mm square window portion was provided in the mounting portion of the test piece 17 for temperature evaluation.
As the lamp 16, Hilux MT150FD6500K (Iwasaki Electric) was used.

次に、温度測定用治具19に温度評価用の試験片17を取り付け、温度評価用の試験片17の裏面の温度測定箇所18に熱電対を取り付けた。温度評価用の試験片17が取り付けられた温度測定用治具19をランプ16との距離が100mmになるように設置した。次にランプ16を60分間照射し、60分後の温度を測定した。 Next, the test piece 17 for temperature evaluation was attached to the jig 19 for temperature measurement, and the thermocouple was attached to the temperature measurement location 18 on the back surface of the test piece 17 for temperature evaluation. The temperature measuring jig 19 to which the test piece 17 for temperature evaluation was attached was installed so that the distance from the lamp 16 was 100 mm. Next, the lamp 16 was irradiated for 60 minutes, and the temperature after 60 minutes was measured.

温度低減効果は、温度評価用の試験片17の表面に黒色のブランクを形成して温度測定し、実施例の遮熱膜の温度測定結果との差分を計算して温度低減効果とした。 Regarding the temperature reducing effect, a black blank was formed on the surface of the test piece 17 for temperature evaluation, the temperature was measured, and the difference from the temperature measurement result of the heat shield film of the example was calculated to obtain the temperature reducing effect.

黒色のブランク膜としてはカーボンブラック(MA100;三菱化学)20g、エポキシ樹脂(jER828;三菱化学)100g、アミン硬化剤(ST11;三菱化学)70g、シンナー20gを遊星回転装置で混合した塗料を温度評価用の試験片17の表面に塗布し、焼成して作製した。 As a black blank film, 20 g of carbon black (MA100; Mitsubishi Kagaku), 100 g of epoxy resin (jER828; Mitsubishi Kagaku), 70 g of amine curing agent (ST11; Mitsubishi Kagaku), and 20 g of thinner were mixed with a planetary rotating device for temperature evaluation. It was prepared by applying it to the surface of the test piece 17 for use in the application and firing it.

温度低減効果が15℃〜20℃であれば良好な遮熱膜であると評価した(下記表:○)。また、温度低減効果が15℃未満になると、良好な遮熱膜ではないと評価した(下記表:×)。 When the temperature reduction effect was 15°C to 20°C, it was evaluated as a good heat shield film (the following table: ◯). Moreover, when the temperature reduction effect was less than 15° C., it was evaluated as not a good heat shield film (the following table: x).

〈膜厚精度の評価方法〉
以下に、膜厚精度の評価方法について説明する。光学機器は位置精度が厳しいが、膜厚精度がばらつくと位置精度が悪化する。膜厚精度評価用のサンプルには30mm角で厚みが1mmの金属板に本発明の遮熱膜を所望の膜厚になるようにスプレーで本発明の遮熱膜を塗布し、焼成した。評価用のサンプルは20枚用意し、1枚につきマイクロメーターで5か所の膜厚を測定してその平均値を算出し膜厚とした。また20枚の試験片の膜厚の平均値を算出し、平均値からの最大ズレ量を膜厚ばらつきの値とした。尚、最大ズレ量とは20枚の試験片×5か所で合計100か所についての最大ズレ量とした。
<Evaluation method of film thickness accuracy>
The method of evaluating the film thickness accuracy will be described below. Positioning accuracy of optical equipment is severe, but if the accuracy of film thickness varies, the positioning accuracy deteriorates. For the sample for evaluation of film thickness accuracy, the heat insulating film of the present invention was applied to a metal plate having a side of 30 mm and a thickness of 1 mm by spraying so as to have a desired film thickness, and the sample was baked. Twenty sheets of samples for evaluation were prepared, and the thickness of each sheet was measured with a micrometer at five locations, and the average value was calculated as the film thickness. Further, the average value of the film thickness of 20 test pieces was calculated, and the maximum deviation amount from the average value was used as the value of the film thickness variation. In addition, the maximum amount of deviation is the maximum amount of deviation for 100 test points in total of 20 test pieces×5 points.

膜厚ばらつきが±10μm以内の精度であれば膜厚の均一性が良好と評価した(下記表:○)。膜厚ばらつきが±10μmを超えて±15μm以内であればやや位置精度は劣るが光学機器として使用できる膜厚均一性であると評価した(下記表:△)。膜厚ばらつきが±15μmを超えると、位置精度が悪化するので光学機器として使用することが困難になる(下記表:×)。 If the film thickness variation is within ±10 μm, the film thickness uniformity was evaluated as good (the following table: ◯). If the variation in the film thickness exceeds ±10 μm and is within ±15 μm, the positional accuracy is slightly inferior, but it is evaluated as the film thickness uniformity that can be used as an optical device (the following table: Δ). If the variation in film thickness exceeds ±15 μm, the positional accuracy deteriorates, making it difficult to use as an optical device (the following table: x).

(実施例1)
<遮熱塗料の調製>
実施例1は、以下の方法で遮熱塗料を作製した。酸化チタンHT0210(東邦チタニウム;平均粒径2.25μm)210g、シリコーン樹脂40g、分散剤2.4g、溶剤30gを秤量し、遊星回転装置(泡取練太郎;シンキー)にて10分間撹拌して、実施例1の遮熱塗料を得た。
(Example 1)
<Preparation of thermal barrier paint>
In Example 1, a thermal barrier coating material was produced by the following method. Titanium oxide HT0210 (Toho Titanium; average particle size 2.25 μm) 210 g, silicone resin 40 g, dispersant 2.4 g, solvent 30 g are weighed and stirred for 10 minutes with a planetary rotation device (Awatori Kentaro; Shinky). The heat-shielding coating material of Example 1 was obtained.

<遮熱膜の作製>
実施例1では、表1に記載される材料および条件の下、以下の方法で遮熱膜を作製した。上記の遮熱塗料を反射率測定用の試験片、温度評価用の試験片17、膜厚精度評価用の試験片に膜厚が40μmになるように塗布し、室温で1時間硬化させ、実施例1の遮熱膜を得た。
<Preparation of heat shield film>
In Example 1, under the materials and conditions described in Table 1, a heat shield film was produced by the following method. The above heat-shielding paint was applied to a test piece for reflectance measurement, a test piece 17 for temperature evaluation, and a test piece for film thickness accuracy evaluation so that the film thickness would be 40 μm, and cured at room temperature for 1 hour. The heat shield film of Example 1 was obtained.

(実施例2〜15)
実施例2〜15では、表1〜3の材料および条件にする以外は実施例1と同様にして、遮熱塗料および遮熱膜を作製した。尚、平均粒径が3μmの酸化チタンにはHT0110(東邦チタニウム)、平均粒径が5μm酸化チタンについては、粒径が80nmの酸化チタンを、ロータリーキルンで低温で乾燥させた後に、1100℃の温度で2時間焼成して作製した。
d線屈折率が1.42の樹脂には、X−41−1810(信越シリコーン)、X−41−1805(信越シリコーン)、X−41−1818(信越シリコーン)、KR251(信越シリコーン)のいずれかを用いた。
フッ素樹脂としては、ゼッフル(ダイキン;d線屈折率1.40)を用いた。
(Examples 2 to 15)
In Examples 2 to 15, thermal barrier paints and thermal barrier films were produced in the same manner as in Example 1 except that the materials and conditions shown in Tables 1 to 3 were used. HT0110 (Toho Titanium) is used for titanium oxide having an average particle diameter of 3 μm, and titanium oxide having an average particle diameter of 5 μm is dried at a low temperature in a rotary kiln at a temperature of 1100° C. It was made by firing for 2 hours.
For resins with a d-line refractive index of 1.42, any of X-41-1810 (Shin-Etsu Silicone), X-41-1805 (Shin-Etsu Silicone), X-41-1818 (Shin-Etsu Silicone), and KR251 (Shin-Etsu Silicone). Was used.
Zefl (Daikin; d-line refractive index 1.40) was used as the fluororesin.

なお、全ての実施例において、d線屈折率が2.5以上3.2以下であって粒径が1.5μm以下の粒子の割合が35質量%以下になるように調製した。 In all of the examples, the d-line refractive index was adjusted to 2.5 or more and 3.2 or less and the proportion of particles having a particle diameter of 1.5 μm or less was adjusted to 35% by mass or less.

Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751

〈評価結果〉
上記の方法により、実施例1から15の遮熱膜の反射率および温度低減効果を評価した結果を、表4〜6に記す。
<Evaluation results>
Tables 4 to 6 show the results of evaluating the reflectance and the temperature reducing effect of the heat shield films of Examples 1 to 15 by the above method.

測定結果としては、遮熱膜の反射率は94%以上であることが好ましい。また、温度低減効果はブランクとの差分が15℃以上あることが好ましい。また、膜厚精度は±15μm以内であることが好ましく、膜厚精度が±10μm以内であることがより好ましい。 As a measurement result, it is preferable that the reflectance of the heat shield film is 94% or more. Further, it is preferable that the difference in temperature reduction effect from the blank is 15° C. or more. Further, the film thickness accuracy is preferably within ±15 μm, and more preferably the film thickness accuracy is within ±10 μm.

実施例1では、表1に示すように、平均粒径が2.25μmの酸化チタンとd線屈折率が1.39のシリコーン樹脂を用いた。得られた遮熱膜の反射率と温度低減効果を評価した結果を表4に示す。反射率の評価結果は、96%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 1, as shown in Table 1, titanium oxide having an average particle diameter of 2.25 μm and silicone resin having a d-line refractive index of 1.39 were used. Table 4 shows the results of evaluating the reflectance and the temperature reducing effect of the obtained heat shield film. The evaluation result of the reflectance was 96%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例2では、実施例1に対し、平均粒径が3μmと粒径が大きい酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表4に示す。反射率の評価結果は、96%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 2, as compared with Example 1, titanium oxide having a large average particle size of 3 μm was used. Table 4 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 96%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例3では、実施例1に対し、平均粒径が5μmと粒径が大きい酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表4に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 3, titanium oxide having an average particle size of 5 μm, which is larger than that of Example 1, was used. Table 4 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例4では、実施例1に対し、全粒子に対する粒径1.5μm以下の粒子の割合が35体積%となるように、平均粒径が1μmの酸化チタン粒子(JR−1000;テイカ)を添加して調整した酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表4に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 4, the titanium oxide particles (JR-1000; TAYCA) having an average particle diameter of 1 μm were used so that the ratio of particles having a particle diameter of 1.5 μm or less to all particles was 35% by volume. Titanium oxide added and adjusted was used. Table 4 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例5では、実施例1に対し、遮熱膜に対する酸化チタンの比率が20体積%になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表4に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は15℃とやや劣るが良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 5, adjustment was made so that the ratio of titanium oxide to the heat shield film was 20% by volume as compared with Example 1. Table 4 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. Further, the temperature reducing effect was good although it was slightly inferior at 15°C. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例6では、実施例1に対し、遮熱膜に対する酸化チタンの比率が22体積%になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 6, adjustment was made so that the ratio of titanium oxide to the heat shield film was 22% by volume as compared with Example 1. Table 5 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例7では、実施例1に対し、遮熱膜に対する酸化チタンの比率が59体積%になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表5に示す。反射率の評価結果は、98%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 7, as compared with Example 1, the ratio of titanium oxide to the heat shield film was adjusted to be 59% by volume. Table 5 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 98%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例8では、実施例1に対し、遮熱膜に対する酸化チタンの比率が60体積%になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表5に示す。反射率の評価結果は、98%であり良好であった。また、温度低減効果は15℃以上あり良好であったが若干脆性が悪化したものの使用できるレベルであった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 8, as compared with Example 1, adjustment was made so that the ratio of titanium oxide to the heat shield film was 60% by volume. Table 5 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 98%, which was good. The temperature reduction effect was 15° C. or more, which was good, but the brittleness was slightly deteriorated, but it was at a usable level. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例9では、実施例1に対し、シリコーン樹脂に代えてフッ素樹脂を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 9, the fluororesin was used instead of the silicone resin in Example 1. Table 5 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例10では、実施例1に対し、シリコーン樹脂に中空粒子を混ぜ込んでd線屈折率が1.32になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表5に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 10, as compared with Example 1, hollow particles were mixed in a silicone resin to adjust the d-line refractive index to 1.32. Table 5 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例11では、実施例1に対し、樹脂にd線屈折率が1.42のシリコーン樹脂を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表6に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 11, as compared with Example 1, a silicone resin having a d-line refractive index of 1.42 was used as the resin. Table 6 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例12では、実施例1に対し、膜厚を9μmに調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表6に示す。反射率の評価結果は、94%であり良好であった。また、温度低減効果は15℃でありやや劣るものの良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 12, as compared with Example 1, the film thickness was adjusted to 9 μm. Table 6 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 94%, which was good. The temperature reduction effect was 15° C., which was somewhat inferior but was good. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例13では、実施例1に対し、膜厚を10μmに調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表6に示す。反射率の評価結果は、96%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 13, as compared with Example 1, the film thickness was adjusted to 10 μm. Table 6 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 96%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例14では、実施例1に対し、膜厚を70μmに調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表6に示す。反射率の評価結果は、96%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Example 14, the film thickness was adjusted to 70 μm as compared with Example 1. Table 6 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 96%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

実施例15では、実施例1に対し、膜厚を80μmに調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表6に示す。反射率の評価結果は、96%であり良好であった。また、温度低減効果は15℃以上あり良好であった。また、膜厚精度の評価結果は±11〜15μmであり、やや劣るものの光学機器に使用できるレベルであった。 In Example 15, as compared with Example 1, the film thickness was adjusted to 80 μm. Table 6 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 96%, which was good. Further, the temperature reducing effect was 15° C. or higher, which was favorable. In addition, the evaluation result of the film thickness accuracy was ±11 to 15 μm, which was at a level that could be used for an optical device, although it was somewhat inferior.

Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751

[比較例1〜5]
比較のための遮熱塗料の調整、遮熱膜の作製、反射率の評価、温度低減効果の評価、膜厚精度の評価を、前述の実施例1〜15と同様に行った。実施例1〜15と異なる点について以下に示す。
表7、8に比較例1〜7の遮熱膜を構成する材料および含有量を示す。
表9、10に比較例1〜7の遮熱膜を用いて評価した結果をそれぞれ示す。
[Comparative Examples 1 to 5]
Adjustment of a heat-shielding paint for comparison, preparation of a heat-shielding film, evaluation of reflectance, evaluation of temperature reduction effect, and evaluation of film thickness accuracy were performed in the same manner as in Examples 1 to 15 described above. Differences from Examples 1 to 15 are shown below.
Tables 7 and 8 show materials and contents of the heat shield films of Comparative Examples 1 to 7.
Tables 9 and 10 show the results of evaluation using the heat shield films of Comparative Examples 1 to 7, respectively.

比較例1では、実施例1に対し、平均粒径が3.8μmの酸化亜鉛粒子(♯F;堺化学)を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表9に示す。反射率の評価結果は、78%であり悪かった。また、温度低減効果についても15℃未満であり悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 1, zinc oxide particles (#F; Sakai Chemical Co., Ltd.) having an average particle diameter of 3.8 μm were used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The reflectance evaluation result was 78%, which was poor. Further, the effect of reducing the temperature was also poor at less than 15°C. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

比較例2では、実施例1に対し、平均粒径が5μmのシリコン(SIE23PB;高純度化学)を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表9に示す。反射率の評価結果は、81%であり悪かった。また、温度低減効果についても15℃未満であり悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 2, silicon having an average particle size of 5 μm (SIE23PB; high-purity chemical) was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The reflectance evaluation result was 81%, which was poor. Further, the effect of reducing the temperature was also poor at less than 15°C. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

比較例3では、実施例1に対し、平均粒径が1μmの酸化チタン(JR−1000;テイカ)を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表9に示す。反射率の評価結果は、85%であり悪かった。また、温度低減効果についても15℃未満であり悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 3, as compared with Example 1, titanium oxide (JR-1000; TAYCA) having an average particle size of 1 μm was used. Table 9 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 85%, which was poor. Further, the effect of reducing the temperature was also poor at less than 15°C. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

比較例4では、実施例1に対し、平均粒径が7μmの酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表9に示す。反射率の評価結果は、95%であり良好であった。また、温度低減効果についても15℃以上であり良好であった。しかし、膜厚精度の評価結果は±16μm以上であり、悪かった。 In Comparative Example 4, titanium oxide having an average particle size of 7 μm was used as compared with Example 1. Table 9 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 95%, which was good. The temperature reduction effect was also good, being 15° C. or higher. However, the evaluation result of the film thickness accuracy was ±16 μm or more, which was bad.

比較例5では、実施例1に対し、全粒子に対する粒径1.5μm以下の粒子の割合が40体積%となるように、平均粒径が1μmの酸化チタン粒子(JR−1000;テイカ)を添加して調整した酸化チタンを用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表9に示す。反射率の評価結果は、93%でありやや悪かった。また、温度低減効果についても14℃でありやや悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 5, titanium oxide particles (JR-1000; Takea) having an average particle size of 1 μm were used in comparison with Example 1 such that the ratio of particles having a particle size of 1.5 μm or less to all particles was 40% by volume. Titanium oxide added and adjusted was used. Table 9 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 93%, which was rather bad. Further, the effect of reducing the temperature was 14° C., which was rather bad. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

比較例6では、実施例1に対し、中空粒子を用いてd線屈折率が1.30になるように調整した。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表10に示す。反射率の評価結果は、93%でありやや悪かった。また、温度低減効果についても14℃でありやや悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 6, the d-line refractive index was adjusted to 1.30 by using hollow particles as compared with Example 1. Table 10 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 93%, which was rather bad. Further, the effect of reducing the temperature was 14° C., which was rather bad. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

比較例7では、実施例1に対し、d線屈折率が約1.50になるようにウレタン樹脂を用いた。得られた遮熱膜の反射率と温度低減効果および膜厚精度を評価した結果を表10に示す。反射率の評価結果は、87%であり悪かった。また、温度低減効果についても15℃未満であり悪かった。また、膜厚精度の評価結果は±10μm以内であり、良好であった。 In Comparative Example 7, urethane resin was used so that the d-line refractive index was about 1.50 as compared with Example 1. Table 10 shows the results of evaluating the reflectance, the temperature reduction effect, and the film thickness accuracy of the obtained heat shield film. The evaluation result of the reflectance was 87%, which was poor. Moreover, the effect of reducing the temperature was also poor at less than 15°C. The evaluation result of the film thickness accuracy was within ±10 μm, which was good.

Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751
Figure 0006744751

本発明の光学機器用の遮光膜は、カメラやビデオ、放送機器などの光学機器のレンズ鏡筒や、その他の屋外で使用される可能性があるカメラ本体、ビデオ本体、監視カメラ、お天気カメラ等の光学機器の遮光膜に利用することができる。 The light-shielding film for an optical device of the present invention is a lens barrel of an optical device such as a camera, a video device, and a broadcasting device, and other camera bodies that may be used outdoors, a video body, a surveillance camera, a weather camera, etc. It can be used as a light-shielding film for optical devices.

1.入射光
2.反射光
3.透過光
4.赤外線反射膜
5.基材
6.レンズ
7.嵌合部分
8.レンズ鏡筒
9.遮熱膜
10.粒子
11.樹脂
12.粒子内の反射
13.積分球
14.試験片取り付け部
15.検出器
16.ランプ
17.温度評価用の試験片
18.温度測定箇所
1. Incident light
2. reflected light
3. Transmitted light
4. Infrared reflective film
5. Base material
6. lens
7. Mating part
8. Lens barrel 9. Heat shield film
10. particle
11. resin
12. Reflection in particles
13. Integrating sphere
14. Test piece attachment part
15. Detector
16. lamp
17. Test piece for temperature evaluation
18. Temperature measurement point

Claims (15)

レンズと、内部に前記レンズを配置しているレンズ鏡筒とを有する光学機器であって、前記レンズ鏡筒の外周表面の少なくとも一部に遮熱膜を有し、
前記遮熱膜は、d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂とを有し、
前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子全体に対する粒径が1.5μm以下の粒子の割合が35質量%以下であることを特徴とする光学機器。
An optical device having a lens and a lens barrel in which the lens is arranged, having a heat shield film on at least a part of an outer peripheral surface of the lens barrel,
The heat shield film has particles having a d-line refractive index of 2.5 or more and 3.2 or less and a resin having a d-line refractive index of 1.32 or more and 1.42 or less,
The optical device, wherein the particles have an average particle size of 2 μm or more and 5 μm or less, and a ratio of particles having a particle size of 1.5 μm or less to the entire particles is 35% by mass or less.
前記遮熱膜は、入射角5°で入射する波長400nm〜2600nmの光の平均反射率が94%以上であることを特徴とする請求項1に記載の光学機器。 The optical device according to claim 1, wherein the heat shield film has an average reflectance of 94% or more for light having a wavelength of 400 nm to 2600 nm that is incident at an incident angle of 5°. 前記粒子が酸化チタンであることを特徴とする請求項1または2に記載の光学機器。 The optical device according to claim 1 or 2, wherein the particles are titanium oxide. 前記遮熱膜は、前記粒子を20体積%以上60体積%以下の含有量で有していることを特徴とする請求項1乃至3のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 3, wherein the heat shield film has a content of the particles of 20% by volume or more and 60% by volume or less. 前記遮熱膜の平均膜厚が10μm以上70μm以下であることを特徴とする請求項1乃至4のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 4, wherein an average film thickness of the heat shield film is 10 µm or more and 70 µm or less. 前記樹脂は、シリコーン樹脂またはフッ素樹脂であることを特徴とする請求項1乃至5のいずれか一項に記載の光学機器。 The optical device according to any one of claims 1 to 5, wherein the resin is a silicone resin or a fluororesin. d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂とを有する遮熱膜であって、
前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子全体に対する粒径が1.5μm以下の粒子の割合が35質量%以下であることを特徴とする遮熱膜。
A heat shield film comprising particles having a d-line refractive index of 2.5 or more and 3.2 or less and a resin having a d-line refractive index of 1.32 or more and 1.42 or less,
The particles have an average particle size of 2 μm or more and 5 μm or less, and a ratio of particles having a particle size of 1.5 μm or less to the entire particles is 35% by mass or less.
レンズ鏡筒の外周表面の少なくとも一部に設けるための光学機器用の遮熱膜であることを特徴とする請求項7に記載の遮熱膜。 The heat shield film according to claim 7, which is a heat shield film for an optical device, which is provided on at least a part of the outer peripheral surface of the lens barrel. 入射角5°で入射する波長400nm〜2600nmの光の平均反射率が94%以上であることを特徴とする請求項7又は8に記載の遮熱膜。 9. The heat shield film according to claim 7, wherein the average reflectance of light having a wavelength of 400 nm to 2600 nm that is incident at an incident angle of 5° is 94% or more. 前記粒子が酸化チタンであることを特徴とする請求項7乃至9のいずれか一項に記載の遮熱膜。 10. The heat shield film according to claim 7, wherein the particles are titanium oxide. 前記粒子を20体積%以上60体積%以下の含有量で有していることを特徴とする請求項7乃至10のいずれか一項に記載の遮熱膜。 The thermal barrier film according to any one of claims 7 to 10, wherein the particles have a content of 20% by volume or more and 60% by volume or less. 平均膜厚が10μm以上70μm以下であることを特徴とする請求項7乃至11のいずれか一項に記載の遮熱膜。 The thermal barrier film according to claim 7, wherein the average film thickness is 10 μm or more and 70 μm or less. 前記樹脂は、シリコーン樹脂またはフッ素樹脂であることを特徴とする請求項7乃至12のいずれか一項に記載の遮熱膜。 The heat shield film according to claim 7, wherein the resin is a silicone resin or a fluororesin. d線屈折率が2.5以上3.2以下の粒子とd線屈折率が1.32以上1.42以下の樹脂と、溶剤を有する遮熱塗料であって、
前記粒子は、平均粒径が2μm以上5μm以下であり、前記粒子全体に対する粒径が1.5μm以下の粒子の割合が35質量%以下であることを特徴とする遮熱塗料。
A thermal barrier paint comprising a solvent having a d-line refractive index of 2.5 or more and 3.2 or less, a d-line refractive index of 1.32 or more and 1.42 or less, and a solvent,
The thermal barrier coating material, wherein the particles have an average particle size of 2 μm or more and 5 μm or less, and a ratio of particles having a particle size of 1.5 μm or less with respect to the entire particles is 35% by mass or less.
レンズ鏡筒の外周表面の少なくとも一部に設けるための光学機器の遮熱膜として用いられることを特徴とする請求項14に記載の遮熱塗料。 The thermal barrier coating according to claim 14, wherein the thermal barrier coating is used as a thermal barrier for an optical device to be provided on at least a part of the outer peripheral surface of the lens barrel.
JP2016082672A 2016-04-18 2016-04-18 Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them Active JP6744751B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016082672A JP6744751B2 (en) 2016-04-18 2016-04-18 Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them
US15/481,707 US11163132B2 (en) 2016-04-18 2017-04-07 Thermal barrier film, thermal barrier paint, and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082672A JP6744751B2 (en) 2016-04-18 2016-04-18 Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them

Publications (2)

Publication Number Publication Date
JP2017194493A JP2017194493A (en) 2017-10-26
JP6744751B2 true JP6744751B2 (en) 2020-08-19

Family

ID=60156113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082672A Active JP6744751B2 (en) 2016-04-18 2016-04-18 Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them

Country Status (1)

Country Link
JP (1) JP6744751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797548B2 (en) * 2016-04-22 2020-12-09 キヤノン株式会社 Heat shield film, heat shield paint, and optical equipment
JP2019203050A (en) * 2018-05-22 2019-11-28 デンカ株式会社 Heat insulation material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340313B1 (en) * 1987-11-06 1993-09-29 Nippon Steel Chemical Co., Ltd. Solar heat insulating paint composition and structures coated with said composition
JPH01121371A (en) * 1987-11-06 1989-05-15 Nippon Steel Chem Co Ltd Coating composition for shielding solar heat
JPH01126376A (en) * 1987-11-12 1989-05-18 Nippon Steel Chem Co Ltd Solar-heat shielding coated structure
EP1580166B1 (en) * 2002-12-09 2017-03-22 Tayca Corporation Titanium oxide particles having useful properties
CN1515633A (en) * 2003-01-06 2004-07-28 马承银 Heat-isolating coating capable of reflecting solar heat ray
JPWO2005019358A1 (en) * 2003-08-22 2006-10-19 関西ペイント株式会社 Coating composition for forming a heat-shielding film and coating method using the same
US20090029176A1 (en) * 2006-02-02 2009-01-29 Mitsubishi Plastics, Inc Heat shield sheet
JP2008291174A (en) * 2007-05-28 2008-12-04 Jgc Catalysts & Chemicals Ltd Coating material for forming transparent coating film and substrate with transparent film
JP2009139856A (en) * 2007-12-10 2009-06-25 Nikon Corp Lens barrel and imaging system
JP5354153B2 (en) * 2008-07-31 2013-11-27 株式会社ニコン Optical device and method of manufacturing optical device
CA2748886C (en) * 2010-08-30 2013-11-19 Milgard Manufacturing Incorporated Coating with improved heat reflection

Also Published As

Publication number Publication date
JP2017194493A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
RU2559444C2 (en) Low-emissivity and electromagnetic interference screening window films
CN110128688A (en) A kind of radiation refrigeration film and preparation method thereof
JP5455387B2 (en) Film and optical lens formed on outer peripheral surface of lens
JP6797548B2 (en) Heat shield film, heat shield paint, and optical equipment
US20240045103A1 (en) Article including film, optical apparatus, coating material, and method for producing article
JP6744751B2 (en) Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them
US11163132B2 (en) Thermal barrier film, thermal barrier paint, and optical instrument
JP2024125316A (en) Article having film, coating material, and method for manufacturing article
JP6891029B2 (en) Optical equipment, films provided on the surface of optical equipment, and paints used for optical equipment
JP6612128B2 (en) Coating composition and coating film forming method
Lundh et al. Antireflection treatment of Thickness Sensitive Spectrally Selective (TSSS) paints for thermal solar absorbers
JP7071481B2 (en) Heat shield film, heat shield paint, and optical equipment
JP2007276205A (en) Coated base material and its manufacturing method
JP7154921B2 (en) Optical device, lens hood, method for manufacturing optical device, and method for manufacturing lens hood
JP6896492B2 (en) Optical equipment, films provided on the surface of optical equipment, and paints used for optical equipment
JP2014145027A (en) Coating material composition excellent in heat shield
JP2022183839A (en) Article with heat shield film, optical device, coating material, and method of manufacturing article
JP2024061887A (en) Article having film, optical device, coating, and method for producing article
JP2020062870A (en) Article having membrane, optical device, coating, and manufacturing method of article
JP2022095096A (en) Film provided on surface of optical device, optical device, and coating
Schaeffer et al. Spray-on anti-soiling coatings that exhibit high transparency and mechanical durability
JP2020199757A (en) Article having film, optical device, coating, and method for producing article
JP2022095097A (en) Article with film, optical device, coating material, and method of manufacturing article
Schaeffer et al. Spray-on superhydrophobic coatings with high mechanical durability for anti-corrosion and anti-soiling applications
JP2008040041A (en) Near ir beam shade and near ir beam shading structure

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200731

R151 Written notification of patent or utility model registration

Ref document number: 6744751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151