WO2005019358A1 - Coating composition for heat-insulating film formation and method of coating with the same - Google Patents

Coating composition for heat-insulating film formation and method of coating with the same Download PDF

Info

Publication number
WO2005019358A1
WO2005019358A1 PCT/JP2004/012332 JP2004012332W WO2005019358A1 WO 2005019358 A1 WO2005019358 A1 WO 2005019358A1 JP 2004012332 W JP2004012332 W JP 2004012332W WO 2005019358 A1 WO2005019358 A1 WO 2005019358A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
coating composition
parts
pigment
resin
Prior art date
Application number
PCT/JP2004/012332
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Sano
Keiichiro Saikawa
Tetsuo Ogawa
Masami Sugishima
Shinji Tsushima
Yoshiaki Chino
Teppei Oohori
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to JP2005513377A priority Critical patent/JPWO2005019358A1/en
Publication of WO2005019358A1 publication Critical patent/WO2005019358A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/02Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a coating composition capable of forming a heat-shielding coating that suppresses an increase in internal temperature of a building or the like, and a coating method using the same.
  • oil tanks, grain tanks, and the like have the problem that the temperature difference between the inside and outside of the tank increases due to the irradiation of sunlight, so that volatile components evaporate and the grain deteriorates.
  • a white coating film formed from a coating composition containing a titanium dioxide pigment having an average particle size of about 200 to 300 nm has excellent underlayer concealing properties and exhibits a certain degree of heat shielding effect. ing.
  • its heat shielding effect was not satisfactory.
  • a coloring pigment is further added to the above-mentioned coating composition and the coating film is colored deeply, the heat-shielding effect is significantly reduced.
  • JP-A-2-185572 discloses a solar heat-shielding coating composition containing a resin component having excellent weather resistance, a solar heat-shielding pigment such as zirconium oxide, and a composite oxide-based coloring pigment. According to the composition, a coating film having heat shielding properties and excellent weather resistance can be formed, but in the case of a dark-colored coating film, the heat shielding effect may not be observed.
  • Japanese Patent Application Laid-Open No. Hei 11-113-1977 discloses a heat-shielding paint containing hollow particles made of ceramic (ceramic table) and a structure-retaining agent for densely stacking ceramic bubbles. According to this paint, it is possible to obtain a coating film having a high heat shielding effect with a single layer. However, since the particle diameter of the ceramic bubbles is as large as 5 to 150 / m, there is a problem that the gloss of the coating film is reduced. Disclosure of the invention
  • An object of the present invention is to provide a coating composition for forming a heat-shielding film and a coating method using the same, which can form a coating film having an excellent heat-shielding effect and having sufficient underlayer concealing property and gloss.
  • the present invention provides the following coating composition for forming a thermal barrier coating and a coating method using the same.
  • a coating composition for forming a thermal barrier coating comprising:
  • the resin component (A) contains an unsaturated fatty acid-modified acrylic resin as described in item 1 above.
  • the coating composition as described in the above.
  • the coating composition according to item 1 further comprising a white pigment (C) having an average primary particle size of less than 40 Onm.
  • the coating composition according to item 1 further comprising a coloring pigment (D).
  • An overcoating composition which is the coating composition for forming a heat-shielding film according to item 1 above.
  • An undercoat paint composition which is the paint composition for forming a heat-shielding film according to item 1 above.
  • the undercoat paint composition according to the above item 16 which can form a coating film having a lightness (L * value) of 70 to 98 based on the L * a * b * color system specified in JIS Z 8729.
  • top coat composition according to the above item 14 is applied in a single layer on an object to be coated.
  • a coating method in which, after a base coat composition is applied to an object to be coated, the top coat composition according to item 14 above is applied on the coated surface.
  • the refractive index of the coating of the resin component (A) and the average particle diameter and the refractive index of the white pigment (B) are adjusted to be within specific ranges, respectively. The following remarkable effects can be obtained.
  • a single layer or multiple layers of a coating film having an excellent heat shielding effect, sufficient base concealing property and gloss can be formed on various objects to be coated such as buildings. Therefore, it is possible to contribute to suppression of temperature rise inside the object to be coated.
  • an undercoating film having excellent heat shielding effect and concealing property can be formed. Therefore, it is possible to form a multilayer coating film having a good appearance and an excellent heat-shielding effect without adversely affecting the color tone of the coating film of the overcoat paint applied on the undercoat paint film. According to such a multi-layer coating film, even if the top coating film has a dark color appearance, for example, the appearance of the object to be coated is maintained for a long time without causing a poor appearance as the entire multi-layer coating film. Meanwhile, the internal temperature rise can be suppressed.
  • the coating composition for forming a heat-shielding film of the present invention has a resin component ( ⁇ ) for forming a film having a refractive index in the range of 1.3 to 1.6, and an average primary particle diameter of 500 to 500. It contains a white pigment (B) in the range of 2,000 nm and the refractive index in the range of 1.8 to 3.0.
  • the white pigment (B) is added to the resin component (A).
  • the effect of reflecting and scattering the infrared rays of the white pigment (B) is effectively exhibited, and the obtained coating film has an excellent heat shielding effect.
  • the above-mentioned action of the white pigment (B) is an action of efficiently reflecting and scattering near-infrared rays having a wavelength of about 780 to 2,100 nm.
  • the resin component (A) forms a film having a refractive index in the range of 1.30 to 1.60, preferably 1.35 to; L. 58, more preferably 1.40 to 1.55. .
  • the refractive index of the coating of the resin component (A) exceeds 1.60, not only does the efficiency of reflection and scattering of infrared rays by the white pigment (B) decrease, but also the concealment and appearance of the coating may decrease. It is not preferable.
  • the refractive index of the coating of the resin component (A) must be smaller than the refractive index of the white pigment (B).
  • the value obtained by subtracting the refractive index of the resin component (A) coating from the refractive index of the white pigment (B) is 0.20 or more, preferably 0.45 to: L. 40, and more preferably 0.80 to 1. 00. If the difference in refractive index is less than 0.20, the rate of transmission of infrared rays increases, which is not preferable.
  • the refractive index of the coating of the resin component (A) is obtained by preparing a free coating of the resin component (A) and measuring the free coating with an Abbe refractometer described in JIS K0062.
  • the content of the resin component (A) is not limited as long as the film formed by the component has a refractive index in the above range.
  • the resin component (A) may be any of a water-soluble or water-dispersible resin, a resin soluble or dispersible in an organic solvent, and a powder resin.
  • the resin component (A) is desirably a resin that can be dried at room temperature because the coating composition of the present invention is mainly used for painting outdoors such as the exterior of buildings.
  • the resin component (A) may be either a crosslinked resin or a non-crosslinked resin.
  • the crosslinkable resin is usually used in a state in which a self-crosslinkable resin or a crosslinkable functional group-containing resin and a crosslinker are dissolved or dispersed in a medium.
  • the medium is water and Z or Use an organic solvent.
  • a coating composition containing a cross-linkable resin undergoes a cross-linking reaction due to volatilization of a medium after coating to form a three-dimensional cross-linked coating film.
  • non-crosslinked resins are usually used in a state of being dissolved or dispersed in a medium.
  • the medium water and Z or an organic solvent are used.
  • a coating composition containing a non-crosslinkable resin forms a coating film by volatilization of the medium after coating.
  • the non-crosslinked resin include a cellulose derivative, an acrylic resin, a urethane resin, a vinyl chloride resin, a fluorine resin, an alkyd resin, a vinyl acetate resin, and a styrene-butadiene resin.
  • the resin component (A) includes a combination of a acrylonitrile-containing acrylic copolymer and a hydrazine derivative as a crosslinking agent, a maleimide group-containing acrylic copolymer, an unsaturated fatty acid-modified acrylic copolymer, and the like. Mold resins are preferred.
  • the carbonyl-group-containing acrylic copolymer may be used alone as a non-crosslinked resin. It is preferable to use the acrylic copolymer containing a sulfonic acid group, which is the resin component (A), as an emulsion.
  • the acrylonitrile copolymer containing a force-rubonyl group can be prepared, for example, according to a general emulsion polymerization method, in the presence of a surfactant as a emulsifier, in the presence of a surfactant as a force-ruponyl group and other ethylenically unsaturated monomers. It can be easily produced by copolymerizing the monomer.
  • the ethylenically unsaturated monomer containing a thioponyl group is a monomer having at least one carbonyl-containing group selected from an aldehyde group and a keto group and a polymerizable double bond in one molecule.
  • the monomer include (meth) acrolein, formyl styrene, vinyl alkyl ketone having 4 to 7 carbon atoms, acetoacetoxyl (meth) acrylate, and diacetone (meth) acrylamide.
  • the vinyl alkyl ketone having 4 to 7 carbon atoms include vinyl methyl ketone, vinyl ethyl ketone, vinyl butyl ketone, and the like.
  • ethylenically unsaturated monomers include, for example, methyl (meth) acrylate To ethyl, methyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethyl Alkyl (meth) acrylates such as xyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; cycloaliphatic (meth) acrylates such as cyclohexyl (meth) acrylate and isopornyl (meth) acrylate Aralkyl (meth) acrylates such as benzyl (meth) acrylate; alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth
  • styrene, an alkyl (meth) acrylate having an alkyl group having 1 to 8 carbon atoms, and (meth) are preferable monomers in view of the refractive index and copolymerizability of the obtained copolymer film.
  • Acrylic acid, (meth) acrylamide and the like can be mentioned.
  • a resin component capable of crosslinking at room temperature By combining a hydrazine derivative with an acrylyl copolymer emulsion containing a sulfonic acid group, a resin component capable of crosslinking at room temperature can be formed, and a crosslinked coating film having excellent water resistance, weather resistance, and the like can be formed.
  • Examples of the hydrazine derivative include compounds having at least two functional groups per molecule of at least one kind selected from a hydrazide group, a semicarbazide group, and a hydrazone group.
  • the two or more functional groups may be the same or different.
  • Examples of the compound having two or more hydrazide groups per molecule include, for example, a saturated compound having 2 to 18 carbon atoms such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, daltaric acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide.
  • Dihydrazide of aliphatic dicarboxylic acid Dihydrazide of aliphatic dicarboxylic acid; monoolefinic unsaturated dical such as maleic dihydrazide, fumaric dihydrazide, itaconic dihydrazide Dihydrazide of boric acid; dihydrazide of phthalic acid, terephthalic acid or isophthalic acid; dihydrazide of pyromellitic acid, trihydrazide or tetrahydrazide; trihydrazide triacetate, trihydrazide citrate, 1,2,4- Benzentrihydrazide; ethylenediaminetetraacetic acid tetrahydrazide, 1,4,5,8-naphthoic acid tetrahydrazide; polyhydrazide obtained by reacting a low polymer having a lower alkyl ester group of carboxylic acid with hydrazine or hydrazine hydrate; Is mentioned
  • hydrazide compound for example, dihydrazide of a saturated fatty acid dicarboxylic acid such as adipic dihydrazide and succinic dihydrazide is preferable.
  • Examples of the compound having two or more semicarbazide groups per molecule include, for example, an excess of N, N-substituted hydrazine or the above hydrazide in a dihydrazide carbonate, a bisemicarbazide; a diisocyanate compound or a polyisocyanate compound derived therefrom.
  • a mixture of a polyfunctional semicarbazide and an aqueous polyfunctional semicarbazide is exemplified.
  • Hexamethylene diisocyanate, isophorone diisocyanate and the like are mentioned as the di-socyanate compound.
  • Examples of the N, N-substituted hydrazine include N, N-dimethylhydrazine and the like.
  • Examples of the active hydrogen compound having a hydrophilic group include polyether polyols and polyethylene glycol monoalkyl ethers.
  • bis-cetyldihydrazone can be suitably used as the compound having two or more hydrazone groups per molecule.
  • the above-mentioned hydrazine derivatives can be used alone or in combination of two or more.
  • the amount of the hydrazine derivative to be used is such that the refractive index of the coating of the resin component (A) falls within the range of 1.30 to 1.60.
  • the content is preferably in the range of about 0.1 to 10.0% by weight.
  • the maleimide group-containing acrylic copolymer which is the resin component (A), is used in combination with an emulsion. Then, it is preferable to use.
  • the maleimide group-containing acrylic copolymer emulsion has a property that the maleimide group is dimerized by light irradiation, so that a self-crosslinking reaction proceeds at room temperature under sunlight irradiation.
  • the emulsion is prepared by copolymerizing a maleimide group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer in the presence of a surfactant as an emulsifier, for example, according to a general emulsion polymerization method. Thus, it can be easily manufactured.
  • maleimide group-containing ethylenically unsaturated monomer compounds represented by the following formulas (1) and (2) are preferably used.
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group.
  • R 3 and R 4 independently represent an alkyl group having 4 or less carbon atoms.
  • n shows the integer of 1-6.
  • the other ethylenically unsaturated monomers those similar to those listed as the other ethylenically unsaturated monomers used for producing the acrylonitrile-containing acrylyl copolymer emulsion can be used.
  • a carbonyl group-containing acrylic copolymer emulsion and a maleimide group-containing acrylic copolymer emulsion can be used in combination.
  • the combination ratio is about 39-97 Z3, preferably about 1090-90 / 10 in terms of the weight ratio of the solid content of the former Z and the latter.
  • the hydrazine derivative can be used in combination with the acryl resin containing a ponyl group.
  • an organic solvent-soluble unsaturated fatty acid-modified acrylic resin can be preferably used as the resin component (A).
  • the unsaturated fatty acid-modified acrylic resin undergoes self-crosslinking by oxidative polymerization at room temperature.
  • the unsaturated fatty acid component in the resin can effectively suppress a decrease in the gloss of the coating film, which may occur due to the incorporation of the white pigment (B).
  • the unsaturated fatty acid-modified acrylic resin is prepared, for example, by copolymerizing an epoxy group-containing ethylenically unsaturated monomer and other ethylenically unsaturated monomers in the presence of an organic solvent to form an epoxy group-containing acrylyl copolymer. It can be prepared by preparing and subjecting the epoxy group to an addition reaction with an unsaturated fatty acid.
  • ethylenically unsaturated monomers those similar to those listed as the other ethylenically unsaturated monomers used in the production of the acrylonitrile-containing acrylyl copolymer emulsion can be used.
  • Unsaturated fatty acids are introduced to oxidatively cure the formed coating.
  • the fatty acids include fish oil fatty acids, dehydrated castor oil fatty acids, safflower oil fatty acids, linseed oil fatty acids, soybean oil fatty acids, sesame oil fatty acids, poppy oil fatty acids, eno oil fatty acids, hemp oil fatty acids, grape kernel oil fatty acids, Corn oil fatty acids, tall oil fatty acids, sunflower oil fatty acids, cottonseed oil fatty acids, walnut oil fatty acids, rubber seed oil fatty acids, and the like.
  • the fatty acid-modified acrylic resin may be modified with a silicon resin or the like for the purpose of improving weather resistance.
  • resin component (A) fluorine resin, acrylic resin, polyester resin
  • a two-component resin composition can be used in which a resin containing hydroxyl groups in a resin such as a resin, an alkyd resin, a urethane resin, or an epoxy resin is used as a main component, and a crosslinking agent such as a polyisocyanate is mixed immediately before use.
  • a urethane-curable two-component paint in which a polyisocyanate curing agent is used in combination with a base resin (main agent) containing a hydroxyl group-containing acrylic resin can be preferably used.
  • the resin component (A) can contain an organosilicate compound as a stain-proofing agent, if necessary.
  • This compound has the advantage that the formed coating film becomes hydrophilic and its surface is easily washed with rainwater or the like, so that it is less likely to be stained.
  • the organosilicate compound include a linear condensate represented by the following formula (3).
  • R 5 independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • m represents 1 to an integer of L00.
  • hydrocarbon group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n- Alkyl groups such as pentyl group, i-pentyl group, n-hexyl group, i-hexyl group and n-octyl group; aryl groups such as phenyl group are preferred.
  • organosilicate compound of the above formula (3) those in which R 5 is a lower alkyl group having 1 to 4 carbon atoms and m is 2 to 15 are more preferable.
  • organosilicate compound examples include a branched compound or a cyclic compound in addition to the linear compound represented by the above formula (3).
  • the above organosilicate compound may be reacted with a polyalkylene glycol-based compound such as polyethylene glycol or polypropylene glycol to be blended as a modified organosilicate compound. Good.
  • the resin component (A) contains a resin used for dispersing a pigment, Good.
  • the pigment dispersing resin known anionic resins, nonionic resins, and cation resins can be used without limitation.
  • an anionic resin particularly a carboxylic acid resin.
  • the resin component (A) is aqueous, it is preferable to use a polycarboxylic acid resin, and when the resin component is an organic solvent type, it is preferable to use a hydroxyl group-containing carboxylic ester resin.
  • the mixing amount of the dispersing resin is preferably about 1 to 10% by weight based on all the pigments contained in the coating composition.
  • the white pigment (B) used in the composition of the present invention imparts heat shielding property to the formed coating film, and has an average primary particle diameter of 500 to 2,000 nm, preferably 550 nm. 11,600 nm, more preferably in the range of 600 ⁇ 1,400 nm, and the refractive index is 1.8 03.0, preferably 1.9 ⁇ . It is in the range of 2.80, preferably 1.95 to 2.70.
  • the white pigment (B) Since the white pigment (B) has the above particle diameter and refractive index, it can efficiently reflect and scatter near infrared rays having a wavelength of about 780 to 2,100 nm in the coating film. The effect as a thermal pigment can be exhibited.
  • Effective white pigments include titanium dioxide and zinc oxide, and it is preferable to use at least one of these. It is particularly preferred to use titanium dioxide.
  • the average primary particle size of the white pigment (B) is less than 50 O nm, visible light can be scattered efficiently, but it will transmit infrared light with a wavelength of about 780 to 2,100 nm. In other words, the heat shielding effect of the formed coating film becomes insufficient. On the other hand, when it exceeds 2,000 nm, the concealing property and gloss of the formed coating film are undesirably reduced. On the other hand, when the refractive index is less than 1.8, the heat shielding effect of the formed coating film is not sufficient, and it is not preferable from the viewpoint of concealment.
  • the crystal system of titanium dioxide as the white pigment (B) may be a rutile type or an anase type as long as the average particle diameter and the refractive index are in the ranges described above.
  • the surface of titanium dioxide may be coated with an inorganic oxide such as aluminum oxide, zirconium oxide, or silicon dioxide; or an organic compound such as amine or alcohol.
  • the pigment volume concentration (Pigment volume concentration) of the white pigment (B) contained in the formed coating film is about 5 to 30%. Preferably, it is about 6 to 25%. Therefore, a white pigment (B) is blended with the resin component (A) so as to have such a pigment volume concentration.
  • the pigment volume concentration is the volume percentage of the pigment contained in the coating film.
  • the pigment volume concentration can be calculated as the ratio of the total area occupied by the pigment to the area of the cross section of the coating film measured by a scanning electron microscope.
  • the coating composition for forming a heat-shielding film of the present invention may further contain a white pigment (C) having an average primary particle diameter of less than 40 O nm, preferably about 200 to 300 nm. It is preferable from the viewpoint that the undercoat concealing property of the coating film formed from the composition of the present invention can be improved.
  • C white pigment
  • white pigment (C) examples include titanium dioxide and zinc oxide, and it is preferable to use at least one of these. It is particularly preferred to use titanium dioxide.
  • the coating composition for forming a thermal barrier coating of the present invention may further contain a color pigment (D).
  • Color pigment (D) refers to a pigment for imparting a desired color to a coating film. Usually, they can be classified into achromatic pigments and chromatic pigments.
  • Achromatic pigments include white pigments and black pigments.
  • white pigments include lead white, basic lead sulfate, lead sulfate, lithobone, zinc sulfide, antimony white, white pigment (B), and titanium dioxide or zinc dioxide other than white pigment (C).
  • black pigments include azomethine pigments, perylene pigments, and dalaite.
  • perylene pigments are preferred because they hardly absorb infrared rays and the heat-shielding effect of the resulting coating film is small.
  • a car pump rack can be used as the black pigment.
  • the car pump rack is not preferable because it easily absorbs infrared rays and greatly reduces the heat shielding effect of the obtained coating film.
  • the chromatic pigments include coloring pigments other than the achromatic pigment.
  • yellow pigments such as yellow iron oxide, titanium yellow, monoazo yellow, condensed yellow, azomethine yellow, bismuth vanadate, benzimidazolone, isoindolinone, isoindolin, quinophthalone, benzidine yellow, permanent yellow, etc .
  • Orange pigments red pigments such as red iron oxide, naphthol AS-based azo red, anthanthuron, anthraquinonyl red, perylene maroon, quinacridone-based red pigments, diketopyrrolopyrrole, watching red, and pigments; cobalt purple; Purple pigments such as quinacridone violet and dioxazine violet; blue pigments such as cobalt blue, phthalocyanine blue, and slenbl; green pigments such as phthalocyanine green; Rukoto can.
  • the coloring pigment (D) may be used alone or as a combination of two or more as needed.
  • a dark color coating film can be formed even in the presence of the white pigment (B).
  • a coating film with a wide range of brightness can be obtained.
  • the plurality of chromatic pigments having a complementary color relationship include, for example, chromatic two-color pigments that are located at almost opposite positions on the Munsell hue circle.
  • Examples of combinations of chromatic colors that have a complementary color relationship include red and green, blue and orange, yellow and bluish violet, and purple and yellow-green.
  • composition and preparation method of coating composition for forming thermal barrier coating Composition and preparation method of coating composition for forming thermal barrier coating
  • the blending ratio of the white pigment (B) is preferably about 10 to 140 parts by weight with respect to 100 parts by weight of the resin component (A). About 5 to 120 parts by weight is more preferable.
  • the pigment volume concentration of the white pigment (B) contained in the formed coating film can be within the range of about 5 to 30%. A heat shielding effect can be obtained.
  • the mixing ratio of the white pigment (C) is about 10 to 140 parts by weight based on 100 parts by weight of the resin component (A). More preferably, about 15 to 120 parts by weight is more preferable. When the blending amount of the white pigment (C) is within this range, a coating film having a sufficient undercoat hiding property can be obtained.
  • the weight ratio of the white pigment (B) to the white pigment (C) is preferably in the range of about 10/90 to 90/10, and 20 Z80 to 80. More preferably, it is in the range of about Z 20. Within this range, white pigment ( ⁇ ) and white pigment
  • the content is not limited, and the amount necessary for obtaining a desired color of the coating film can be blended.
  • the amount of the resin coating is preferably about 0.1 part by weight or less with respect to 100 parts by weight of the resin component ( ⁇ ) so that the heat shielding effect of the resulting coating film is not significantly reduced. It is desirable to keep it to a small amount.
  • the coating composition for forming a heat-shielding film of the present invention may contain, if necessary, an extender, an anti-pigment pigment, a glitter pigment, a surface conditioner, a surfactant, a curing catalyst, a dispersant, a defoamer, and a thickener. It may contain paint additives such as a film-forming aid, a preservative, an antifreezing agent, a curing accelerator, and a reaction retardant.
  • the coating composition for forming a thermal barrier coating of the present invention can be prepared by mixing the above-described components according to a known method.
  • the resin component is in the form of an organic solvent solution, emulsion, or the like, it can be mixed as it is.
  • the pigment component may be mixed with a dispersing resin to form a paste, and then mixed. Further, at the time of mixing each component, an organic solvent, water or a mixture thereof may be added as necessary.
  • the coating composition of the present invention is preferably a liquid coating composition having a solid content of about 40 to 80% by weight.
  • the liquid coating composition may be either an organic solvent type or an aqueous type.
  • the organic solvent contained in the composition of the present invention may be the one used at the time of producing each component, or may be the one added at the time of mixing each component.
  • organic solvent examples include aliphatic solvents such as n-hexane, n-hexane, 2,2,2-trimethylpentane, isooctane, n-nonane, cyclohexan, and methylcyclohexane.
  • Hydrocarbon solvents aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; mineral spirits, petroleum hydrocarbon mixed solvents with a C9 aromatic hydrocarbon content of 95% by weight or more, petroleum ether, Petroleum solvents such as petroleum benzine and petroleum naphtha; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and isobutyl acetate; ether solvents such as ethylene glycol monobutyl ether; Alcohol solvents such as isopropyl alcohol, n-butyl alcohol and isopropyl alcohol Rukoto can.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene
  • mineral spirits petroleum hydrocarbon mixed solvents with a C9 aromatic hydrocarbon content of 95% by weight or more
  • petroleum ether Petroleum solvents such as
  • the above organic solvents can be used alone or in combination of two or more. Further, if necessary, it can be used by mixing with water.
  • the coating composition for forming a heat-shielding film of the present invention is used as a top-coat paint for a single-layer finish, a top-coat paint or a double-coat finish for a two-layer finish when forming a heat-shielding film on various buildings and the like. be able to. Also, it can be used as an intermediate coating for a multilayer coating film of three or more layers.
  • a coloring pigment (D) is blended.
  • L * value a lightness of about 20 to 70, preferably about 22 to 68, based on the L * a * b * color system specified in JISZ 8729.
  • the white pigment (B) and the color pigment (D) are mixed in a weight ratio of white pigment (B) / color pigment (D) of about 95 to 5 to 5Z95, Preferably, it is preferably in the range of about 90 to 10/60/40.
  • the L * value is an index of the lightness of the coating film, where 100 indicates pure white and 0 indicates pure black.
  • the L * value can be measured using a known colorimeter.
  • the elongation at break of the formed coating film is 80 to 500% at 20 ° ⁇ . And more preferably in the range of about 100 to 400%. When the elongation at break is within this range, the formed coating film can follow the occurrence of cracks on the surface to be coated, which is preferable.
  • the lightness (L * value) based on the L * a * b * color system specified in JISZ 8729 is about 70 to 98, preferably about 75.
  • the composition capable of forming a coating film of about 97 it is possible to prevent a bad influence on color tone such as lightness of an upper coating film of the coating film.
  • the white pigment (B) and the color pigment (D) are required to have a weight ratio of the white pigment (B) and the Z color pigment (D) of about 100Z0 to 90/10. It is more preferable to set it within the range of about 99Z1 to 95/5.
  • the coating composition for forming a thermal barrier coating of the present invention can be suitably used in various coating methods described below.
  • the substrate to which the coating composition of the present invention is applied is not limited as long as it is a substrate on which a heat-shielding film needs to be formed.
  • Preferred substrates include construction structures. Specific examples of the construction structure include buildings such as buildings, houses, factories, warehouses, stores, and schools; storage tanks such as oil tanks and grain tanks.
  • the surface to be coated is preferably an outer wall of a building, a roof, an outer surface of a tank, or the like.
  • Examples of the material of the surface to be coated include inorganic base materials such as metal, concrete, gypsum board, slate, siding material, porcelain tile, lightweight cellular concrete, mortar, brick, and stone base material; and organic base materials such as wood and plastic.
  • Examples of the metal include iron, zinc, iron-zinc alloy, and aluminum.
  • a coating film may be already provided on the surface to be coated.
  • a coating film include acrylic resin, acrylic urethane resin, polyurethane resin, fluorine resin, silicon acrylic resin, vinyl acetate resin, and epoxy resin films.
  • a coating film such as a well-known sealer or base adjustment agent may be provided on the surface to be coated.
  • Examples of means for applying the coating composition of the present invention include known coating tools such as a roller, air spray, airless spray, ricin gun, universal gun, and brush. After coating, it is usually dried or dried and crosslinked at room temperature to obtain a dried coating film. However, forced drying can also be performed by heating.
  • the dry film thickness can be generally in the range of about 10 to 20,000 m, preferably in the range of about 20 to 1,500 m.
  • Specific coating methods using the coating composition of the present invention include, for example, the following methods I, II and III. ⁇
  • Method I is a single-layer finish coating method in which an object to be coated is coated with the topcoat composition of the present invention.
  • the dry film thickness is usually in the range of about 200 to 2,000 m, preferably about 300 to 1,500 / xm. It is preferable to paint. In this case, the same paint composition may be applied a plurality of times so as to be within the range of the dry film thickness.
  • Method II I is a two-layer finish coating method in which an undercoat composition is applied to an object to be coated, and then the topcoat composition of the present invention is applied on the coated surface.
  • the undercoat paint composition in Method II is applied to the exterior walls and roofs of buildings Any of the known organic solvent-based paint compositions and water-based paint compositions used as undercoat paints can be used.
  • an aqueous coating composition containing a resin component such as an acrylic resin emulsion, a urethane resin emulsion, an epoxy resin emulsion, an alkyd resin emulsion, and a fatty acid-modified acrylic resin emulsion, and a pigment is preferred.
  • Method II As the method for applying the undercoat coating composition in I, the same method as in the case of the coating composition of the present invention can be employed.
  • the undercoat coating composition in the method II be applied so that the dry film thickness is usually in the range of about 10 to 300 m, preferably about 20 to 200 m.
  • the overcoat composition of the present invention in the method II is usually applied so that the dry film thickness is in the range of about 10 to 150 / im, preferably in the range of about 30 to 100 m. Is preferred.
  • Method I II is a two-layer finish coating method in which an undercoat composition of the present invention is applied to an object to be coated, and then an overcoat composition is applied on the coated surface.
  • the undercoat composition of the present invention in Method III is usually applied so that the dry film thickness is in the range of about 20 to 100 m, preferably about 40 to 800 m. Is preferred.
  • any of the known organic solvent-based paint compositions and water-based paint compositions used as top coats to be applied to exterior walls, roofs and the like of buildings can be used.
  • an aqueous coating composition containing a resin component and a pigment such as an acrylic resin emulsion, a urethane resin emulsion, a fatty acid-modified acrylic resin emulsion, a fluororesin emulsion, and a vinyl acetate resin emulsion, is preferable.
  • the overcoat composition may be a paint composition containing a perylene pigment. It is preferable from the viewpoint that the heat-shielding effect of the two-layer coating film composed of the film and the coating film of the overcoat composition is not reduced.
  • the same method as in the case of the coating composition of the present invention can be employed.
  • the topcoat composition in Method III is preferably applied such that the dry film thickness is generally in the range of about 10 to 300 m, preferably about 20 to 200 m.
  • a two-layer finish coating method of coating the object to be coated with the undercoat composition of the present invention and then coating the topcoat composition of the present invention on the coated surface can also be adopted.
  • the coating composition of the present invention is applied as an intermediate coating composition, and then a known topcoat composition is applied on the intermediate coating surface.
  • a three-layer finish painting method can also be adopted.
  • FIG. 1 is a cross-sectional view schematically showing a temperature measuring device used for a test of a thermal barrier effect of a coating film.
  • reference numeral 1 denotes a light source
  • 2 denotes a free coating film for a test
  • 3 denotes a styrofoam box
  • 4 to 6 denote thermocouple thermometers.
  • “parts” indicates “parts by weight”.
  • the average primary particle size of the pigment was determined by observation using an electron microscope (trade name “LUZEX AP”, manufactured by NIRECO Co., Ltd.).
  • the L * value based on the L * a * b * color system specified in JISZ 8729 is measured using a colorimeter (trade name “Karaichi Computer SM-7”, manufactured by Suga Test Instruments Co., Ltd.). It was measured.
  • Titanium dioxide powder (Note 5) 120 parts
  • Titanium dioxide powder (Note 6) 120 parts
  • Dispersing resin brand name “Nobcospars 44C”, manufactured by San Nopco, sodium polycarboxylate resin, solid content 43% by weight.
  • Antifoaming agent brand name "SN Deformer 364", manufactured by San Nopco.
  • Titanium dioxide powder trade name “TI IIXJR—605”, manufactured by Teica Co., Ltd., refractive index 2.72, average primary particle diameter 250 nm.
  • Titanium dioxide powder trade name “TI IIXR_1000”, manufactured by Tika Co., Ltd., refractive index 2.72, average primary particle diameter 1,000 nm.
  • a water-based pigment paste was prepared in the same manner as in Production Example 1, except that titanium dioxide powder (Note 5) was not used in 120 parts and that the amount of titanium dioxide powder (Note 6) used was 240 parts. (P-2) was created.
  • the aqueous pigment paste (P-3) was prepared in the same manner as in Production Example 1 except that 120 parts of zinc oxide powder (Note 7) was used instead of 120 parts of titanium dioxide powder (Note 6). Created.
  • Zinc oxide powder Trade name “2 kinds of zinc oxide”, manufactured by Sakai Chemical Industry Co., Ltd. Ratio 2.00, average primary particle diameter 600 nm.
  • the aqueous pigment paste was prepared in the same manner as in Production Example 1 except that 120 parts of the titanium dioxide powder (Note 6) was not used and 240 parts of the titanium dioxide powder (Note 5) was used. (P-4) was created.
  • Titanium dioxide powder (Note 6) 240 parts
  • Dispersion resin trade name “BYK_109”, manufactured by BYK Chemie Co., Ltd., hydroxyl group-containing carboxylic acid ester resin, solid content 100% by weight.
  • Antifoaming agent trade name "BYK-066", manufactured by Big Chem Co., Ltd.
  • Organic solvent-based pigment paste (P-6) was prepared in the same manner as in Production Example 5, except that 240 parts of titanium dioxide powder (Note 6) was used instead of 240 parts of titanium dioxide powder (Note 6). ) created.
  • Titanium dioxide powder trade name “TI TANN I X JR-805”, manufactured by Tika Co., Ltd., refractive index 2.72, average primary particle diameter 250 nm.
  • Anionic surfactant brand name “Newcol 707 SF”, manufactured by Japan Emulsifier Co., Ltd., ammonium sulfate having a polyoxyethylene chain, solid content 30% by weight.
  • the obtained resin emulsion was applied to a glass plate (15 OmmX 10 OmmX 2 mm) using a doctor blade, dried and cured at a temperature of 23 ° C and a relative humidity of 50% for 2 weeks. As a result, a free coating film having a dry film thickness of about 1 mm was obtained. Using the Abbe refractometer described in JISK 0062, the refractive index of this free coating film, The measured value was 1.52.
  • a maleimide group-containing monomer represented by the following formula (4) 50 parts of n-butyl methacrylate, 25 parts of methyl methacrylate, 14 parts of n-butyl acrylate and 14 parts of methyl methacrylate Parts of the mixture, and 100 parts of deionized water and a radical polymerizable surfactant (trade name “AQUALON HS10”, manufactured by Daiichi Pharmaceutical Co., Ltd.), polymerizable unsaturated groups and oxyethylene groups 0.5 part of ammonium sulfate having the above), and a monomer emulsion was prepared using a rotary homomixer.
  • a radical polymerizable surfactant trade name “AQUALON HS10”, manufactured by Daiichi Pharmaceutical Co., Ltd.
  • the inside of the flask containing 45 parts of deionized water and 0.5 part of a radical polymerizable surfactant (“AQUALON HS10”) was purged with nitrogen, and then heated to a temperature of 80 ° C. While maintaining the temperature at 80 ° C., 1 part of ammonium persulfate and 2% by weight of the above monomer emulsion were added thereto, and 15 minutes after the addition, the remaining monomer emulsion was added for 2 hours. Then, the mixture was aged for 2 hours. After aging, the mixture was cooled, and 3 parts of 10% by weight ammonia water was added dropwise as a neutralizing agent to obtain a resin emulsion (b).
  • AQUALON HS10 a radical polymerizable surfactant
  • Anionic surfactant (Note 11) 9.6 parts 0.2 parts of ammonium persulfate From 30 minutes to 30 minutes after completion of the dropping, a solution prepared by dissolving 0.1 part of ammonium persulfate in 1 part of deionized water is added dropwise, and kept at 80 ° C for 2 hours. Emulsion (d) was obtained.
  • topcoat composition for forming heat-shielding coating
  • the mixing ratio of titanium dioxide powder having an average primary particle diameter of 250 nm to 20 parts by weight of the resin component was 100 parts by weight, and the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm was 20 parts. Department.
  • the resin component in the coating composition is the total amount of the resin solid content of the resin emulsion (R-1) and the resin solid content of the aqueous pigment base (P-1).
  • Example 1 an aqueous pigment paste was used instead of the aqueous pigment paste (P-1).
  • An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of (P-2) was blended.
  • the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm to 40 parts by weight of the resin component was 40 parts.
  • the resin component in the coating composition is the total amount of the resin solid content of the resin emulsion (R-1) and the resin solid content of the aqueous pigment paste (P-2).
  • a water-based paint was prepared in the same manner as in Example 1, except that the acrylic copolymer emulsion (d) was blended in the same amount as the solid content in place of the resin emulsion (R-1). A composition was obtained.
  • the mixing ratio of titanium dioxide powder having an average primary particle diameter of 250 nm to 20 parts by weight of the resin component was 100 parts by weight, and the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm was 20 parts. Department.
  • a two-part urethane-curable organic solvent-based coating composition comprising a base resin and a curing agent was prepared by the following method.
  • isocyanurate of hexamethylene diisocyanate (trade name “Duranate TSS-100”, manufactured by Asahi Danisei Co., Ltd.) and 50 parts of low-condensed ethyl silicate (trade name “ES —48 ”, manufactured by Colcoat Co., Ltd.), to obtain a curing agent.
  • 20 parts of the curing agent is added to 100 parts of the solid content of the base resin solution.
  • the mixing ratio of the titanium dioxide powder having an average primary particle diameter of 1,000 Onm to 100 parts by weight of the resin component in this coating was 50 parts.
  • the mixing ratio of the titanium dioxide powder having an average primary particle diameter of 1,000 nm to 100 parts by weight of the resin component in this coating material was 50 parts.
  • aqueous color coating composition (chocolate color).
  • Titanium dioxide pigment (Note 6) 60 parts
  • Red pigment paste trade name “NS BROWN C 522”, manufactured by Sanyo Pigment Co., pigment: red iron oxide (content 50% by weight).
  • Green pigment paste NS GREEN 4711 (trade name), manufactured by Sanyo Pigment Co., pigment: phthalocyanine green (content 30% by weight).
  • An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of the aqueous pigment paste (P-3) was used instead of the aqueous pigment paste (P-1). It was.
  • An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of the aqueous pigment paste (P-4) was used instead of the aqueous pigment paste (P_l).
  • the acryl polyol resin was prepared in the same manner as in Example 4 except that the organic solvent-based pigment paste (P-5) was replaced with the same amount of the organic solvent-based pigment paste (P-6).
  • a containing base resin solution was obtained.
  • a two-component urethane-curable organic solvent-based coating composition comprising the base resin solution and the curing agent described in Example 4 was obtained.
  • the refractive index of the resin coating was measured according to the following test methods.
  • a resin composition was prepared by removing the pigment component from each coating composition. This was applied to a glass plate (15 OmmX 10 Ommx 2 mm) using a doctor blade, at a temperature of 23 ° C and a relative humidity of 50%. After drying and curing for 2 weeks under the above conditions, the coating film was peeled off to obtain a free coating film having a dry film thickness of about 1 mm. The refractive index of the free coating film was measured using an Abbe refractometer described in JISK0062. Pigment volume concentration (PVC)
  • Each coating composition was applied to a glass plate (15 OmmX 10 OmmX 2 mm) using a doctor blade, dried and cured at a temperature of 23 ° (50% relative humidity for 2 weeks), and then coated.
  • the cross section of the free film was photographed with a scanning electron microscope (trade name “J SM-531 OLV”, manufactured by JEOL Ltd.).
  • a scanning electron microscope (trade name “J SM-531 OLV”, manufactured by JEOL Ltd.).
  • a continuous phase based on the resin component and a dispersed phase based on the pigment component were observed.
  • — 8100 (manufactured by JEOL Ltd.), and identified dispersed phases originating from titanium dioxide and zinc oxide among the dispersed phases observed in the SEM photograph.
  • the major axis and minor axis were converted from the magnification in the SEM photograph, and the average of these was 500 to 2,000 O
  • the dispersed phase having an average primary particle diameter of 1,000 nm was titanium dioxide having an average primary particle diameter of 1,000 nm
  • the dispersed phase having an average primary particle diameter of less than 400 nm was titanium dioxide having an average primary particle diameter of 25 Onm.
  • the dispersed phase having an average of major axis and minor axis of 500 to 2,000 nm was defined as zinc oxide having an average primary particle diameter of 600 nm.
  • the disperse phase caused by each white pigment was specified based on the above criteria, and the ratio of the total area of the disperse phase to the cross-sectional area of the coating film was calculated. The volume concentration (%) was calculated.
  • Each coating composition was applied to release paper (20 OmmX 20 Omm) using a doctor blade, dried and cured at a temperature of 23 ° C and a relative humidity of 50% for 2 weeks. Thus, a free coating having a dry film thickness of about 1 mm was obtained. The elongation at break of the free coating film was measured using a tensile tester (trade name "Autograph AG2000 B", Shimadzu Corporation).
  • Table 1 shows the test results.
  • JR-605, JR-1000 and JR-805 are titanium dioxide powders with an average primary particle diameter of 250 nm “TI TANN IXJR-605” (trade name, Tika Titanium dioxide powder with an average primary particle diameter of 1,00 O nm
  • T I ⁇ I X J R — 100 0 (trade name, manufactured by Tika Co., Ltd.) and titanium dioxide powder with an average primary particle size of 250 nm “T I ⁇ I X J R—805”
  • zinc oxide refers to zinc oxide powder having an average primary particle diameter of 60 O nm (trade name “2 types of zinc oxide”, manufactured by Sakai Chemical Industry Co., Ltd.).
  • Each coating composition obtained in Examples 1 to 7 and Comparative Examples 1 to 4 was placed on a slate plate (70 mm X 150 mm X 5 mm) so that the dry film thickness became 1,000 m.
  • Doc evening Coated with a blade and dried at 23 ° C (50% relative humidity) for 14 days to obtain a test coated plate.
  • FIG. 1 is a cross-sectional view schematically showing the apparatus.
  • reference numeral 1 denotes a light source
  • 2 denotes a free coating film for testing
  • 3 denotes a styrene foam box
  • 4 to 6 denote thermocouple thermometers used as temperature sensors.
  • an incandescent light bulb (trade name “Reflamp”, 100W, manufactured by Toshiba Corporation) that emits light including infrared rays was used.
  • a free paint film (50 mm x 70 mm) with a dry film thickness of 1,000 m was placed in a hole of the same size as the free paint film provided on the upper surface of Box 3. The distance between the light source 1 and the free coating film 2 was 15 cm. Thermocouple thermometers were installed on the front and back surfaces of the free coating film 2 and inside the box 3, respectively.
  • Example 1 Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7
  • Example 1 Example 2
  • Example 3 Example 4 Gloss 81 81 80 82 83 81 84 82 81 84 84 Underground hiding A A A A A A A A A A A A A A B
  • Acrylic resin emulsion based primer coating composition (Ales Holder GII, manufactured by Kansai Paint Co., Ltd., pigment volume concentration 62%, slate board (7 OmmX 15 OmmX 5mm), pigment volume concentration 62%, elongation at break at 20 ° C 120 %) was applied using a doctor blade so that the dry film thickness was 1 mm, and dried at room temperature (23 ° C) for 16 hours.
  • the obtained coating composition was applied using a doctor blade to a dry film thickness of 50 m, and dried at room temperature (23 ° C) for 14 days to obtain a test coated plate.
  • Example 2 The paint composition obtained in Example 2 was applied to a slate plate (7 OmmX 15 OmmX 5 mm) using a doctor blade so that the dry film thickness became 150 m, and was applied at room temperature (23 ° C). Let dry for hours. Then, the coating composition obtained in Example 1 or Comparative Example 1 was applied on the coated surface so that the dry film thickness became 50 m, and dried at room temperature (23 ° C) for 14 days. It was a painted plate.
  • Holder-1 G II indicates an acrylic resin emulsion-based primer coating composition (trade name “Ales Holder GII”, manufactured by Kansai Paint Co., Ltd.).
  • Titanium dioxide powder (Note 5) 120 parts
  • Titanium dioxide powder (Note 6) 120 parts
  • Titanium dioxide powder (Note 5) 110 parts
  • Titanium dioxide powder (Note 6) 110 parts
  • Titanium dioxide powder (Note 5) 120 parts
  • Titanium dioxide powder (Note 6) 120 parts
  • Perylene black pigment trade name “PAL I OGEN BLACK S 0084”, manufactured by BAS F.
  • Carbon black pigment paste (Note 15) 20 parts
  • Carbon black pigment base NS Black C—628, trade name, manufactured by Sanyo Dyeing Co.
  • Dispersing resin trade name “BYK-190”, manufactured by Big Chemical Co., Ltd., polycarboxylic acid resin, solid content 40% by weight.
  • the following components were stirred and mixed in a 1-liter stainless steel container with a stirrer for 30 minutes to obtain an aqueous primer coating composition.
  • Aqueous pigment paste (P-10) 350 parts
  • Example 18 each undercoat paint composition was obtained with the same composition as in Example 18, except that the pigment paste and the resin emulsion were combined as shown in Table 4 below.
  • Table 4 also shows the L * values of the coating films formed from each of the primer coating compositions.
  • the L * value was determined by applying each coating composition to a glass plate using a doctor blade so that the dry film thickness was 15 Om, drying at 23 ° C and 65% relative humidity for 2 days, It measured using the colorimeter similarly to and. Table 4
  • the resin emulsion R-3, shaku_4 and shaku-5 in Table 4 indicate the following.
  • R-3 Silicone resin emulsion, trade name "38% Sunmall EW1021, manufactured by San Nopco Co., with a refractive index of the coating of 1.55.
  • R-4 Acrylic resin emulsion, trade name "54% MK-250", manufactured by Dainippon Ink and Chemicals, Inc., with a refractive index of coating of 1.55.
  • R-5 Emulsion of vinyl chloride resin, trade name "45% Movinyl", manufactured by Clariant Polymer Co., Ltd.
  • the refractive index of the coating is 1.75.
  • Aqueous pigment paste (P-14) 265 parts
  • Each priming composition and top coating composition were applied to a slate board (10 OmmX 15 OmmX 4 mm) using the combination of Table 5 using a doctor blade, and a test coating board was prepared. Provided. The undercoat paint composition was applied to a dry film thickness of 15 Om, and the overcoat paint composition was applied to a dry film thickness of 60 m. The drying conditions were both 23 ° C (: at a relative humidity of 50%). 14 days.
  • each free coating film obtained using a glass plate instead of the slate plate was examined in the same manner as described above. Further, each free coating film was examined for infrared reflectance by the following method.
  • spectral reflectance measuring instrument (trade name “UV-310 PC”, manufactured by Shimadzu Corporation) to obtain a wavelength around 780 11111-2, 100 nm.
  • the spectral reflectance in the infrared region was measured, and then the solar reflectance as defined in JISA 579-59 was calculated, and the result was taken as the infrared reflectance (%).
  • T-1 Trade name "Ales Aquadalos White", Kansai Paint Co., Ltd., Carbo Nyl group-containing acrylic resin emulsion paint, containing 100 parts of a resin component and 50 parts of a titanium dioxide pigment having an average particle diameter of 220 nm.
  • T-II Trade name “Ales Aquayane Silicon Gray J”, manufactured by Kansai Paint Co., Ltd.
  • Acrylic resin emulsion paint containing liponyl group, titanium dioxide with an average particle size of 220 nm for 100 parts of resin component Contains 50 parts of pigment and 0.8 part of carbon black.
  • T-1-3 ARES AQUAYANE Silicone Cream, manufactured by Kansai Paint Co., Ltd., acrylic resin emulsion paint containing liponyl group, titanium dioxide with an average particle size of 220 nm for 100 parts of resin component Contains 50 parts of pigment and 2 parts of yellow iron oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A coating composition for heat-insulating film formation which comprises (A) a resin ingredient forming a coating film having a refractive index of 1.30 to 1.60 and (B) a white pigment having an average primary-particle diameter of 500 to 2,000 nm and a refractive index of 1.80 to 3.00; and a method of coating with the coating composition.

Description

明 細 書  Specification
遮熱性被膜形成用塗料組成物及びそれを用いた塗装方法 技 術 分 野  Thermal barrier coating forming coating composition and coating method using the same
本発明は、 建築物等の内部温度の上昇を抑制する遮熱性被膜を形成できる塗料 組成物及びそれを用いた塗装方法に関する。 背 景 技 術  The present invention relates to a coating composition capable of forming a heat-shielding coating that suppresses an increase in internal temperature of a building or the like, and a coating method using the same. Background technology
太陽光の照射等による建築物の内部温度の上昇を抑制することは、 空調費の節 減等のため、 必要である。 特に、 ビル、 住宅等の建材として使用されるコンクリ ート等の無機建材は、 高い蓄熱性を有し、 建築物内部の温度上昇を促進するので、 上記必要性が大きい。  It is necessary to control the rise in the internal temperature of the building due to the irradiation of sunlight, etc., because it reduces the cost of air conditioning. In particular, the need for inorganic building materials such as concrete used as building materials for buildings and houses has a high heat storage property and promotes a rise in the temperature inside the building.
一方、 石油用タンク、 穀物用タンク等においては、 太陽光の照射によってタン ク内外の温度差が拡大するので、 揮発成分の蒸発、 穀物の劣化等が起こるという 問題がある。  On the other hand, oil tanks, grain tanks, and the like have the problem that the temperature difference between the inside and outside of the tank increases due to the irradiation of sunlight, so that volatile components evaporate and the grain deteriorates.
従って、 建築物の外壁及び屋根、 タンクの外面等に十分な遮熱効果を付与し得 る遮熱性被膜形成用塗料組成物の開発が要望されている。  Accordingly, there is a need for the development of a coating composition for forming a thermal barrier coating capable of imparting a sufficient thermal barrier effect to the outer wall and roof of a building, the outer surface of a tank, and the like.
従来、 平均粒子径 2 0 0〜3 0 0 n m程度の二酸化チタン顔料を含む塗料組成 物により形成される白色塗膜は、 下地隠蔽性に優れ、 ある程度の遮熱効果を発揮 することが知られている。 しかし、 その遮熱効果は満足すべきものではなかった。 また、 上記塗料組成物に、 更に着色顔料を配合して、 塗膜を濃色に着色した場合 には、 遮熱効果が著しく低下してしまう。  Conventionally, it has been known that a white coating film formed from a coating composition containing a titanium dioxide pigment having an average particle size of about 200 to 300 nm has excellent underlayer concealing properties and exhibits a certain degree of heat shielding effect. ing. However, its heat shielding effect was not satisfactory. Further, when a coloring pigment is further added to the above-mentioned coating composition and the coating film is colored deeply, the heat-shielding effect is significantly reduced.
特開平 2— 1 8 5 5 7 2号は、 耐候性に優れた樹脂成分、 酸化ジルコニウム等 の太陽熱遮蔽顔料及び複合酸化物系着色顔料を含有する太陽熱遮蔽塗料組成物を 開示している。 該組成物によれば、 遮熱性を有し、 耐候性に優れる塗膜を形成で きるが、 濃色系塗膜の場合には、 遮熱効果がみられない場合があった。  JP-A-2-185572 discloses a solar heat-shielding coating composition containing a resin component having excellent weather resistance, a solar heat-shielding pigment such as zirconium oxide, and a composite oxide-based coloring pigment. According to the composition, a coating film having heat shielding properties and excellent weather resistance can be formed, but in the case of a dark-colored coating film, the heat shielding effect may not be observed.
特開平 1 1一 3 2 3 1 9 7号は、 セラミック製の中空粒子 (セラミックパブ ル) 及びセラミックバブルを緻密積層させる構造保持剤を含有する遮熱性塗料を 開示している。 この塗料によれば、 単層で遮熱効果の高い塗膜を得ることができ るが、 セラミックバブルの粒子径が 5〜 1 5 0 / mと大きいため、 塗膜の光沢が 低下するという問題があつた。 発 明 の 開 示 Japanese Patent Application Laid-Open No. Hei 11-113-1977 discloses a heat-shielding paint containing hollow particles made of ceramic (ceramic table) and a structure-retaining agent for densely stacking ceramic bubbles. According to this paint, it is possible to obtain a coating film having a high heat shielding effect with a single layer. However, since the particle diameter of the ceramic bubbles is as large as 5 to 150 / m, there is a problem that the gloss of the coating film is reduced. Disclosure of the invention
本発明の目的は、 遮熱効果に優れ、 十分な下地隠蔽性及び光沢を有する塗膜を 形成できる遮熱性被膜形成用塗料組成物及びそれを用いた塗装方法を提供するこ とにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a coating composition for forming a heat-shielding film and a coating method using the same, which can form a coating film having an excellent heat-shielding effect and having sufficient underlayer concealing property and gloss.
本発明の他の目的及び特徴は、 以下の記載により明らかになるであろう。 本発明者は、 上記目的を達成すべく鋭意研究した。 その結果、 平均 1次粒子径 が 5 0 0〜2, 0 0 0 n mの範囲内で、 且つ屈折率が 1 . 8 0〜3 . 0 0の範囲 内である白色顔料が、 熱線である赤外線を反射 ·散乱する作用を有すること、 こ の白色顔料を、 屈折率 1 . 3 0〜1 . 6 0の被膜を形成する樹脂成分に配合した 塗料組成物によれば、 遮熱効果に優れ、 且つ十分な下地隠蔽性及び光沢を有する 塗膜を形成できることを見出した。 本発明は、 かかる知見に基づいて完成された ものである。  Other objects and features of the present invention will become apparent from the following description. The present inventor has made intensive studies to achieve the above object. As a result, a white pigment having an average primary particle diameter in the range of 500 to 2,000 nm and a refractive index in the range of 1.8 to 3.0 is converted to infrared rays as heat rays. According to the coating composition in which the white pigment is mixed with a resin component forming a film having a refractive index of 1.3 to 1.6, the heat-shielding effect is excellent. Further, it has been found that a coating film having a sufficient underlayer concealing property and gloss can be formed. The present invention has been completed based on such findings.
本発明は、 以下の遮熱性被膜形成用塗料組成物及びそれを用いた塗装方法を提 供する。  The present invention provides the following coating composition for forming a thermal barrier coating and a coating method using the same.
1 . (A) 屈折率 1 . 3 0〜1 . 6 0の範囲内の被膜を形成する樹脂成分、 及 び  1. (A) a resin component that forms a coating film having a refractive index in the range of 1.3 to 1.6, and
(B ) 平均 1次粒子径が 5 0 0〜2, 0 0 0 n mの範囲内で、 且つ屈折率が 1 . 8 0〜3 . 0 0の範囲内である白色顔料  (B) a white pigment having an average primary particle diameter in the range of 500 to 2,000 nm and a refractive index in the range of 1.8 to 3.0;
を含有する遮熱性被膜形成用塗料組成物。 A coating composition for forming a thermal barrier coating, comprising:
2 . 樹脂成分 (A) が、 架橋型アクリル樹脂又は非架橋型アクリル樹脂を含有 する上記項 1に記載の塗料組成物。  2. The coating composition according to the above item 1, wherein the resin component (A) contains a crosslinked acrylic resin or a non-crosslinked acrylic resin.
3 . 樹脂成分 (A) が、 カルボニル基含有アクリル共重合体及びヒドラジン誘 導体を含有する上記項 1に記載の塗料組成物。  3. The coating composition according to the above item 1, wherein the resin component (A) contains a carbonyl group-containing acrylic copolymer and a hydrazine derivative.
4. 樹脂成分 (A) が、 マレイミド基含有アクリル共重合体を含有する上記項 1に記載の塗料組成物。  4. The coating composition according to the above item 1, wherein the resin component (A) contains a maleimide group-containing acrylic copolymer.
5 . 樹脂成分 (A) が、 不飽和脂肪酸変性アクリル樹脂を含有する上記項 1に 記載の塗料組成物。 5. The resin component (A) contains an unsaturated fatty acid-modified acrylic resin as described in item 1 above. The coating composition as described in the above.
6. 白色顔料 (B) が、 二酸化チタン及び Z又は酸化亜鉛である上記項 1に記 載の塗料組成物。  6. The coating composition according to the above item 1, wherein the white pigment (B) is titanium dioxide and Z or zinc oxide.
7. 白色顔料 (B) の配合割合が、 樹脂成分 (A) 100重量部に対して、 1 0-140重量部である上記項 1に記載の塗料組成物。  7. The coating composition according to the above item 1, wherein the mixing ratio of the white pigment (B) is 10 to 140 parts by weight with respect to 100 parts by weight of the resin component (A).
8. 更に、 平均 1次粒子径が 40 Onm未満の白色顔料 (C) を含有する上記 項 1に記載の塗料組成物。  8. The coating composition according to item 1, further comprising a white pigment (C) having an average primary particle size of less than 40 Onm.
9. 白色顔料 (C) が、 二酸化チタン及び Z又は酸化亜鉛である上記項 8に記 載の塗料組成物。  9. The coating composition according to the above item 8, wherein the white pigment (C) is titanium dioxide and Z or zinc oxide.
10. 白色顔料 (C) の配合割合が、 樹脂成分 (A) 100重量部に対して、 10〜 140重量部である上記項 8に記載の塗料組成物。  10. The coating composition according to the above item 8, wherein the mixing ratio of the white pigment (C) is 10 to 140 parts by weight based on 100 parts by weight of the resin component (A).
11. 白色顔料 (B) 及び白色顔料 (C) の重量比が、 10 90〜90/1 0の範囲内である上記項 8に記載の塗料組成物。  11. The coating composition according to the above item 8, wherein the weight ratio of the white pigment (B) to the white pigment (C) is in the range of 1090 to 90/10.
12. 更に、 着色顔料 (D) を含有する上記項 1に記載の塗料組成物。  12. The coating composition according to item 1, further comprising a coloring pigment (D).
13. 着色顔料 ω) として、 補色関係にある複数の有彩色顔料を含有する上 記項 12に記載の塗料組成物。  13. The coating composition according to item 12, containing a plurality of chromatic pigments having a complementary color relationship as the coloring pigment ω).
14. 上記項 1に記載の遮熱性被膜形成用塗料組成物である上塗り塗料組成物。 14. An overcoating composition which is the coating composition for forming a heat-shielding film according to item 1 above.
15. 更に、 着色塗料 (D) を含有し、 J I S Z 8729に規定される L * a* b*表色系に基づく明度 (L*値) 20〜 70の塗膜を形成し得る上記項 14 に記載の上塗り塗料組成物。 15. In addition to the above item 14, which contains a colored paint (D) and can form a coating film having a lightness (L * value) of 20 to 70 based on the L * a * b * color system specified in JISZ 8729. The top coating composition according to any one of the preceding claims.
16. 上記項 1に記載の遮熱性被膜形成用塗料組成物である下塗り塗料組成物。 16. An undercoat paint composition which is the paint composition for forming a heat-shielding film according to item 1 above.
17. J I S Z 8729に規定される L*a*b*表色系に基づく明度 (L *値) 70〜98の塗膜を形成し得る上記項 16に記載の下塗り塗料組成物。 17. The undercoat paint composition according to the above item 16, which can form a coating film having a lightness (L * value) of 70 to 98 based on the L * a * b * color system specified in JIS Z 8729.
18. 被塗物に、 上記項 14に記載の上塗り塗料組成物を、 単層で塗装する塗 装方法。  18. A coating method in which the top coat composition according to the above item 14 is applied in a single layer on an object to be coated.
19. 被塗物に、 下塗り塗料組成物を塗装後、 該塗面上に上記項 14に記載の 上塗り塗料組成物を塗装する塗装方法。  19. A coating method in which, after a base coat composition is applied to an object to be coated, the top coat composition according to item 14 above is applied on the coated surface.
20. 被塗物に、 上記項 16に記載の下塗り塗料組成物を塗装後、 該塗面上に 上塗り塗料組成物を塗装する塗装方法。 2 1 . 上塗り塗料組成物が、 ペリレン系顔料を含有する塗料組成物である上記 項 2 0に記載の塗装方法。 20. A coating method in which the undercoat composition according to item 16 is applied to an object to be coated, and then the topcoat composition is applied on the coated surface. 21. The coating method according to the above item 20, wherein the top coating composition is a coating composition containing a perylene pigment.
発明の効果  The invention's effect
本発明の遮熱性被膜形成用塗料組成物によれば、 樹脂成分 (A) の被膜の屈折 率、 及び白色顔料 (B) の平均粒子径及び屈折率を、 それぞれ特定範囲内に調整 したことにより、 以下のような顕著な効果が得られる。  According to the coating composition for forming a thermal barrier coating of the present invention, the refractive index of the coating of the resin component (A) and the average particle diameter and the refractive index of the white pigment (B) are adjusted to be within specific ranges, respectively. The following remarkable effects can be obtained.
(1)建築物等の各種被塗物上に、 遮熱効果に優れ、 十分な下地隠蔽性及び光沢 を有する塗膜を、 単層で又は複層で形成できる。 従って、 被塗物内部の温度上昇 の抑制に貢献できる。  (1) A single layer or multiple layers of a coating film having an excellent heat shielding effect, sufficient base concealing property and gloss can be formed on various objects to be coated such as buildings. Therefore, it is possible to contribute to suppression of temperature rise inside the object to be coated.
(2)樹脂成分 (Α) の種類等を選択することにより、 形成される塗膜に、 耐汚 染性、 耐候性等の機能を付与することができる。  (2) By selecting the type and the like of the resin component (II), it is possible to impart functions such as contamination resistance and weather resistance to the formed coating film.
(3)当該塗料組成物に、 着色顔料を含有させて、 上塗り塗料として使用するこ とにより、 遮熱効果に優れ且つ濃色等の色調のバリエ一ションが豊富な塗膜を得 ることが可能である。 従って、 建築物等の被塗物の外壁、 屋根等に塗装すること により、 被塗物内部の温度上昇を抑制できるのに加えて、 美粧性に優れた外観と することができる。  (3) By adding a coloring pigment to the coating composition and using it as a top coating, it is possible to obtain a coating film having an excellent heat-shielding effect and a rich color tone variation such as a dark color. It is possible. Therefore, by coating the outer wall, the roof, and the like of an object to be coated such as a building, it is possible to suppress an increase in the temperature inside the object to be coated and to obtain an appearance having excellent aesthetics.
(4)当該塗料組成物から形成される塗膜が特定の明度となるように調整して、 下塗り塗料として使用することにより、 遮熱効果及び隠蔽性に優れる下塗り塗膜 を形成できる。 従って、 この下塗り塗膜上に塗装される上塗り塗料の塗膜の色調 に悪影響を及ぼすことがなく、 良好な外観の遮熱効果に優れた複層塗膜を形成で きる。 このような複層塗膜によれば、 例えば、 上塗り塗膜が濃彩色の外観であつ ても、 複層塗膜全体として、 外観不良を起こすことなく、 被塗物の美観を長期的 に保持しながら、 その内部温度上昇を抑制できる。  (4) By adjusting the coating film formed from the coating composition to have a specific brightness and using it as an undercoating material, an undercoating film having excellent heat shielding effect and concealing property can be formed. Therefore, it is possible to form a multilayer coating film having a good appearance and an excellent heat-shielding effect without adversely affecting the color tone of the coating film of the overcoat paint applied on the undercoat paint film. According to such a multi-layer coating film, even if the top coating film has a dark color appearance, for example, the appearance of the object to be coated is maintained for a long time without causing a poor appearance as the entire multi-layer coating film. Meanwhile, the internal temperature rise can be suppressed.
遮熱性被膜形成用塗料組成物  Coating composition for forming thermal barrier coating
本発明の遮熱性被膜形成用塗料組成物は、 屈折率が 1 . 3 0〜1 . 6 0の範囲 内の被膜を形成する樹脂成分 (Α) 、 及び平均 1次粒子径が 5 0 0〜2 , 0 0 0 n mの範囲内で且つ屈折率が 1 . 8 0〜3 . 0 0の範囲内の白色顔料 (B) を含 有する。  The coating composition for forming a heat-shielding film of the present invention has a resin component (Α) for forming a film having a refractive index in the range of 1.3 to 1.6, and an average primary particle diameter of 500 to 500. It contains a white pigment (B) in the range of 2,000 nm and the refractive index in the range of 1.8 to 3.0.
本発明塗料組成物においては、 上記樹脂成分 (A) に、 上記白色顔料 (B ) を 組み合わせたことにより、 白色顔料 (B) の有する赤外線を反射 ·散乱する作用 が、 効果的に発揮され、 得られる塗膜の遮熱効果が優れることになる。 ここで、 白色顔料 (B) の上記作用は、 特に波長 780〜2, 100 nm程度の近赤外線 を、 効率よく反射 ·散乱する作用である。 In the coating composition of the present invention, the white pigment (B) is added to the resin component (A). By the combination, the effect of reflecting and scattering the infrared rays of the white pigment (B) is effectively exhibited, and the obtained coating film has an excellent heat shielding effect. Here, the above-mentioned action of the white pigment (B) is an action of efficiently reflecting and scattering near-infrared rays having a wavelength of about 780 to 2,100 nm.
樹脂成分 (A)  Resin component (A)
樹脂成分 (A) は、 屈折率が 1. 30〜1. 60、 好ましくは 1. 35〜; L. 58、 より好ましくは 1. 40〜1. 55の範囲内の被膜を形成するものである。 樹脂成分 (A) の被膜の屈折率が 1. 60を超えると、 白色顔料 (B) による 赤外線の反射 ·散乱の効率を低下させるばかりか、 塗膜の隠蔽性及び外観が低下 することがあるので、 好ましくない。  The resin component (A) forms a film having a refractive index in the range of 1.30 to 1.60, preferably 1.35 to; L. 58, more preferably 1.40 to 1.55. . When the refractive index of the coating of the resin component (A) exceeds 1.60, not only does the efficiency of reflection and scattering of infrared rays by the white pigment (B) decrease, but also the concealment and appearance of the coating may decrease. It is not preferable.
また、 白色顔料 (B) が赤外線を効率よく反射 *散乱させるためには、 樹脂成 分 (A) の被膜の屈折率は、 白色顔料 (B) の屈折率よりも小さいことが必要で ある。 白色顔料 (B) の屈折率から樹脂成分 (A) の被膜の屈折率を差し引いた 値は、 0. 20以上、 好ましくは 0. 45〜: L. 40、 より好ましくは 0. 80 〜1. 00である。 かかる屈折率差が 0. 20未満では、 赤外線が透過する割合 が多くなり、 好ましくない。  In addition, in order for the white pigment (B) to efficiently reflect and scatter infrared rays, the refractive index of the coating of the resin component (A) must be smaller than the refractive index of the white pigment (B). The value obtained by subtracting the refractive index of the resin component (A) coating from the refractive index of the white pigment (B) is 0.20 or more, preferably 0.45 to: L. 40, and more preferably 0.80 to 1. 00. If the difference in refractive index is less than 0.20, the rate of transmission of infrared rays increases, which is not preferable.
本明細書において、 樹脂成分 (A) の被膜の屈折率は、 樹脂成分 (A) の遊離 被膜を作成し、 これを J I S K 0062に記載のアッベ屈折率計で測定した ものである。  In the present specification, the refractive index of the coating of the resin component (A) is obtained by preparing a free coating of the resin component (A) and measuring the free coating with an Abbe refractometer described in JIS K0062.
樹脂成分 (A) としては、 該成分により形成される被膜が上記範囲の屈折率と なるものであれば、 その内容は制限されない。 樹脂成分 (A) は、 水溶性もしく は水分散性樹脂、 有機溶剤に可溶性もしくは分散性の樹脂、 又は粉体樹脂のいず れであってもよい。 また、 樹脂成分 (A) は、 本発明塗料組成物が、 主に、 建築 物等の外面等の屋外での塗装に使用されることから、 常温で乾燥できる樹脂であ ることが望ましい。  The content of the resin component (A) is not limited as long as the film formed by the component has a refractive index in the above range. The resin component (A) may be any of a water-soluble or water-dispersible resin, a resin soluble or dispersible in an organic solvent, and a powder resin. The resin component (A) is desirably a resin that can be dried at room temperature because the coating composition of the present invention is mainly used for painting outdoors such as the exterior of buildings.
また、 樹脂成分 (A) は、 架橋型樹脂及び非架橋型樹脂のいずれであってもよ い。  Further, the resin component (A) may be either a crosslinked resin or a non-crosslinked resin.
架橋型樹脂は、 通常、 自己架橋性樹脂を、 又は架橋性官能基含有樹脂と架橋剤 とを、 媒体に溶解又は分散した状態で使用される。 媒体としては、 水及び Z又は 有機溶剤を使用する。 架橋型樹脂を含有する塗料組成物は、 塗装後に、 媒体が揮 発することによって、 架橋反応が起こり、 3次元架橋塗膜を形成する。 The crosslinkable resin is usually used in a state in which a self-crosslinkable resin or a crosslinkable functional group-containing resin and a crosslinker are dissolved or dispersed in a medium. The medium is water and Z or Use an organic solvent. A coating composition containing a cross-linkable resin undergoes a cross-linking reaction due to volatilization of a medium after coating to form a three-dimensional cross-linked coating film.
一方、 非架橋型樹脂は、 通常、 媒体に溶解又は分散した状態で使用される。 媒 体としては、 水及び Z又は有機溶剤を使用する。 非架橋型樹脂を含有する塗料組 成物は、 塗装後に、 媒体が揮発することによって塗膜を形成する。 非架橋型樹脂 としては、 例えばセルロース誘導体、 アクリル樹脂、 ウレタン樹脂、 塩化ビニル 樹脂、 フッ素樹脂、 アルキド樹脂、 酢酸ビニル樹脂、 スチレン一ブタジエン樹脂 等を挙げることができる。  On the other hand, non-crosslinked resins are usually used in a state of being dissolved or dispersed in a medium. As the medium, water and Z or an organic solvent are used. A coating composition containing a non-crosslinkable resin forms a coating film by volatilization of the medium after coating. Examples of the non-crosslinked resin include a cellulose derivative, an acrylic resin, a urethane resin, a vinyl chloride resin, a fluorine resin, an alkyd resin, a vinyl acetate resin, and a styrene-butadiene resin.
樹脂成分 (A) としては、 架橋型アクリル樹脂又は非架橋型アクリル樹脂を使 用するのが、 本発明の組成物から形成される塗膜の光沢が良好である点から、 望 ましい。  It is preferable to use a crosslinked acrylic resin or a non-crosslinked acrylic resin as the resin component (A), since the gloss of a coating film formed from the composition of the present invention is good.
また、 樹脂成分 (A) としては、 力ルポニル基含有アクリル共重合体とその架 橋剤であるヒドラジン誘導体との組み合わせ、 マレイミド基含有アクリル共重合 体、 不飽和脂肪酸変性アクリル共重合体等の架橋型樹脂が好ましい。 カルポニル 基含有アクリル共重合体は、 単独で非架橋型樹脂として用いても構わない。 樹脂成分 (A) である力ルポニル基含有アクリル共重合は、 エマルシヨンとし て用いることが好ましい。  The resin component (A) includes a combination of a acrylonitrile-containing acrylic copolymer and a hydrazine derivative as a crosslinking agent, a maleimide group-containing acrylic copolymer, an unsaturated fatty acid-modified acrylic copolymer, and the like. Mold resins are preferred. The carbonyl-group-containing acrylic copolymer may be used alone as a non-crosslinked resin. It is preferable to use the acrylic copolymer containing a sulfonic acid group, which is the resin component (A), as an emulsion.
力ルポニル基含有ァクリル共重合体エマルションは、 例えば一般的な乳化重合 法に従い、 乳化剤としての界面活性剤の存在下に、 力ルポニル基含有エチレン性 不飽和単量体及びその他のェチレン性不飽和単量体を共重合することにより容易 に製造できる。  The acrylonitrile copolymer containing a force-rubonyl group can be prepared, for example, according to a general emulsion polymerization method, in the presence of a surfactant as a emulsifier, in the presence of a surfactant as a force-ruponyl group and other ethylenically unsaturated monomers. It can be easily produced by copolymerizing the monomer.
力ルポニル基含有エチレン性不飽和単量体は、 1分子中に、 アルデヒド基及び ケト基から選ばれる少なくとも 1個のカルボニル含有基と重合可能な二重結合と を有する単量体である。 該単量体としては、 例えば、 (メタ) ァクロレイン、 ホ ルミルスチロール、 炭素数 4〜 7のビニルアルキルケトン、 ァセトァセトキシェ チル (メタ) ァクリレート、 ダイアセトン (メタ) アクリルアミド等が挙げられ る。 炭素数 4〜 7のビニルアルキルケトンとしては、 例えば、 ビニルメチルケト ン、 ビニルェチルケトン、 ビニルプチルケトンなどが挙げられる。  The ethylenically unsaturated monomer containing a thioponyl group is a monomer having at least one carbonyl-containing group selected from an aldehyde group and a keto group and a polymerizable double bond in one molecule. Examples of the monomer include (meth) acrolein, formyl styrene, vinyl alkyl ketone having 4 to 7 carbon atoms, acetoacetoxyl (meth) acrylate, and diacetone (meth) acrylamide. Examples of the vinyl alkyl ketone having 4 to 7 carbon atoms include vinyl methyl ketone, vinyl ethyl ketone, vinyl butyl ketone, and the like.
その他のエチレン性不飽和単量体としては、 例えば、 メチル (メタ) ァクリレ ート、 ェチル (メタ) ァクリレート、 プロピル (メタ) ァクリレート、 n—プチ ル (メタ) ァクリレー卜、 イソブチル (メタ) ァクリレー卜、 ペンチル (メタ) ァクリレー卜、 へキシル (メタ) ァクリレート、 2—ェチルへキシル (メタ) ァ クリレート、 ラウリル (メタ) ァクリレート、 ステアリル (メタ) ァクリレート 等のアルキル (メタ) ァクリレート ;シクロへキシル (メタ) ァクリレー卜、 ィ ソポルニル (メタ) ァクリレート等の脂環式 (メタ) ァクリレ一ト;ベンジル (メタ) ァクリレート等のァラルキル (メタ) ァクリレート ; 2—メトキシェチ ル (メタ) ァクリレート、 2—ェ卜キシェチル (メタ) ァクリレート等のアルコ キシアルキル (メタ) ァクリレート ; ヒドロキシェチル (メタ) ァクリレー卜、 ヒドロキシプロピル (メタ) ァクリレート等のヒドロキシアルキル (メタ) ァク リレート ;酢酸ビニル、 プロピオン酸ビニル等のビニルエステル化合物;スチレ ン、 α—メチルスチレン等のビニル芳香族化合物;パーフルォロアルキル (メ 夕) ァクリレート、 グリシジル (メタ) ァクリレート、 Ν, Ν—ジェチルァミノ ェチル (メタ) ァクリレート、 (メタ) アクリル酸、 (メタ) アクリルアミド、 (メタ) アクリロニトリル等が挙げられる。 これらの中で、 得られる共重合体の 被膜の屈折率及び共重合性の面から好ましい単量体として、 スチレン、 炭素数が 1〜8のアルキル基を有するアルキル (メタ) ァクリレート、 (メタ) アクリル 酸、 (メタ) アクリルアミド等を挙げることができる。 Other ethylenically unsaturated monomers include, for example, methyl (meth) acrylate To ethyl, methyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethyl Alkyl (meth) acrylates such as xyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; cycloaliphatic (meth) acrylates such as cyclohexyl (meth) acrylate and isopornyl (meth) acrylate Aralkyl (meth) acrylates such as benzyl (meth) acrylate; alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate and 2-ethoxyxyl (meth) acrylate; hydroxyethyl (meth) acrylate Uto, hydro Hydroxyalkyl (meth) acrylates such as cypropyl (meth) acrylate; vinyl ester compounds such as vinyl acetate and vinyl propionate; vinyl aromatic compounds such as styrene and α-methylstyrene; perfluoroalkyl (methyl ) Acrylate, glycidyl (meth) acrylate, Ν, Ν-ethylethylaminoethyl (meth) acrylate, (meth) acrylic acid, (meth) acrylamide, (meth) acrylonitrile and the like. Among these, styrene, an alkyl (meth) acrylate having an alkyl group having 1 to 8 carbon atoms, and (meth) are preferable monomers in view of the refractive index and copolymerizability of the obtained copolymer film. Acrylic acid, (meth) acrylamide and the like can be mentioned.
力ルポニル基含有ァクリル共重合体エマルションに、 ヒドラジン誘導体を組み 合わせることにより、 常温で架橋する樹脂成分とすることができ、 耐水性、 耐候 性等に優れる架橋塗膜が形成できる。  By combining a hydrazine derivative with an acrylyl copolymer emulsion containing a sulfonic acid group, a resin component capable of crosslinking at room temperature can be formed, and a crosslinked coating film having excellent water resistance, weather resistance, and the like can be formed.
ヒドラジン誘導体としては、 ヒドラジド基、 セミカルパジド基及びヒドラゾン 基から選ばれる少なくとも一種の官能基を 1分子あたり 2個以上有する化合物を 挙げることができる。 2個以上の官能基は、 同じであっても異なっていてもよい。 ヒドラジド基を 1分子あたり 2個以上有する化合物としては、 例えば、 蓚酸ジ ヒドラジド、 マロン酸ジヒドラジド、 こはく酸ジヒドラジド、 ダルタル酸ジヒド ラジド、 アジピン酸ジヒドラジド、 セバシン酸ジヒドラジドなどの炭素数 2〜1 8の飽和脂肪族ジカルボン酸のジヒドラジド;マレイン酸ジヒドラジド、 フマル 酸ジヒドラジド、 ィタコン酸ジヒドラジドなどのモノォレフィン性不飽和ジカル ボン酸のジヒドラジド;フタル酸、 テレフタル酸又はイソフ夕ル酸のジヒドラジ ド;ピロメリット酸のジヒドラジド、 トリヒドラジド又はテトラヒドラジド;二 トリ口トリ酢酸トリヒドラジド、 クェン酸トリヒドラジド、 1 , 2 , 4—べンゼ ントリヒドラジド;エチレンジアミンテトラ酢酸テトラヒドラジド、 1, 4, 5 , 8—ナフトェ酸テトラヒドラジド;カルボン酸低級アルキルエステル基を有する 低重合体をヒドラジン又はヒドラジン水化物と反応させてなるポリヒドラジドな どが挙げられる。 Examples of the hydrazine derivative include compounds having at least two functional groups per molecule of at least one kind selected from a hydrazide group, a semicarbazide group, and a hydrazone group. The two or more functional groups may be the same or different. Examples of the compound having two or more hydrazide groups per molecule include, for example, a saturated compound having 2 to 18 carbon atoms such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, daltaric acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide. Dihydrazide of aliphatic dicarboxylic acid; monoolefinic unsaturated dical such as maleic dihydrazide, fumaric dihydrazide, itaconic dihydrazide Dihydrazide of boric acid; dihydrazide of phthalic acid, terephthalic acid or isophthalic acid; dihydrazide of pyromellitic acid, trihydrazide or tetrahydrazide; trihydrazide triacetate, trihydrazide citrate, 1,2,4- Benzentrihydrazide; ethylenediaminetetraacetic acid tetrahydrazide, 1,4,5,8-naphthoic acid tetrahydrazide; polyhydrazide obtained by reacting a low polymer having a lower alkyl ester group of carboxylic acid with hydrazine or hydrazine hydrate; Is mentioned.
上記ヒドラジド化合物としては、 例えば、 アジピン酸ジヒドラジド、 こはく酸 ジヒドラジドなどの飽和脂肪酸ジカルボン酸のジヒドラジドが好適である。  As the hydrazide compound, for example, dihydrazide of a saturated fatty acid dicarboxylic acid such as adipic dihydrazide and succinic dihydrazide is preferable.
セミカルバジド基を 1分子あたり 2個以上有する化合物としては、 例えば、 炭 酸ジヒドラジド、 ビスセミカルバジド;ジイソシァネート化合物又はこれから誘 導されるポリイソシァネート化合物に、 N, N—置換ヒドラジン又は上記ヒドラ ジドを過剰に反応させて得られる多官能セミカルバジド;該ポリイソシァネート 化合物と親水性基含有活性水素化合物との反応物中のイソシァネート基に上記ジ ヒドラジドを過剰に反応させて得られる水性多官能セミカルバジド;該多官能セ ミカルバジドと水性多官能セミカルバジドとの混合物等が挙げられる。 上記ジィ ソシァネート化合物としては、 へキサメチレンジイソシァネート、 イソホロンジ イソシァネ一ト等が挙げられる。 N, N—置換ヒドラジンとしては、 N, N—ジ メチルヒドラジン等が挙げられる。 親水性基含有活性水素化合物としては、 ポリ エーテルポリオール類、 ポリエチレングリコールモノアルキルエーテル類等が挙 げられる。  Examples of the compound having two or more semicarbazide groups per molecule include, for example, an excess of N, N-substituted hydrazine or the above hydrazide in a dihydrazide carbonate, a bisemicarbazide; a diisocyanate compound or a polyisocyanate compound derived therefrom. An aqueous polyfunctional semicarbazide obtained by excessively reacting the above-mentioned dihydrazide with an isocyanate group in a reaction product of the polyisocyanate compound and a hydrophilic group-containing active hydrogen compound; A mixture of a polyfunctional semicarbazide and an aqueous polyfunctional semicarbazide is exemplified. Hexamethylene diisocyanate, isophorone diisocyanate and the like are mentioned as the di-socyanate compound. Examples of the N, N-substituted hydrazine include N, N-dimethylhydrazine and the like. Examples of the active hydrogen compound having a hydrophilic group include polyether polyols and polyethylene glycol monoalkyl ethers.
ヒドラゾン基を 1分子あたり 2個以上有する化合物としては、 例えば、 ビスァ セチルジヒドラゾンが好適に使用できる。  As the compound having two or more hydrazone groups per molecule, for example, bis-cetyldihydrazone can be suitably used.
上記ヒドラジン誘導体は、 それぞれ単独で使用することができ、 又は 2種もし くはそれ以上組み合わせて使用してもよい。 ヒドラジン誘導体の使用量は、 樹脂 成分 (A) の被膜の屈折率を、 1 . 3 0〜1 . 6 0の範囲内にするためには、 力 ルポニル基含有ァクリル共重合体エマルションの不揮発分に対して 0 . 1〜 1 0 . 0重量%程度の範囲内がよい。  The above-mentioned hydrazine derivatives can be used alone or in combination of two or more. The amount of the hydrazine derivative to be used is such that the refractive index of the coating of the resin component (A) falls within the range of 1.30 to 1.60. On the other hand, the content is preferably in the range of about 0.1 to 10.0% by weight.
樹脂成分 (A) であるマレイミド基含有アクリル共重合体は、 エマルシヨンと して、 使用することが好ましい。 マレイミド基含有アクリル共重合体エマルショ ンは、 マレイミド基が光照射により 2量化する性質を有することにより、 太陽光 の照射下、 常温で自己架橋反応が進行するものである。 The maleimide group-containing acrylic copolymer, which is the resin component (A), is used in combination with an emulsion. Then, it is preferable to use. The maleimide group-containing acrylic copolymer emulsion has a property that the maleimide group is dimerized by light irradiation, so that a self-crosslinking reaction proceeds at room temperature under sunlight irradiation.
該エマルシヨンは、 例えば一般的な乳化重合法に従い、 乳化剤としての界面活 性剤の存在下に、 マレイミド基含有エチレン性不飽和単量体及びその他のェチレ ン性不飽和単量体を共重合することにより容易に製造することができる。  The emulsion is prepared by copolymerizing a maleimide group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer in the presence of a surfactant as an emulsifier, for example, according to a general emulsion polymerization method. Thus, it can be easily manufactured.
マレイミド基含有エチレン性不飽和単量体としては、 下記式 (1 ) 及び (2 ) で表される化合物を用いるのが好ましい。  As the maleimide group-containing ethylenically unsaturated monomer, compounds represented by the following formulas (1) and (2) are preferably used.
Figure imgf000010_0001
各式中、 R 1及び R 2は、 独立して、 水素原子又はメチル基を示す。 R 3及び R 4は、 独立して、 炭素数 4以下のアルキル基を示す。 nは 1〜6の整数を示す。 その他のエチレン性不飽和単量体としては、 前記力ルポニル基含有ァクリル共 重合体エマルシヨンの製造に用いるその他のエチレン性不飽和単量体として列記 したものと同様のものを使用することができる。
Figure imgf000010_0001
In each formula, R 1 and R 2 independently represent a hydrogen atom or a methyl group. R 3 and R 4 independently represent an alkyl group having 4 or less carbon atoms. n shows the integer of 1-6. As the other ethylenically unsaturated monomers, those similar to those listed as the other ethylenically unsaturated monomers used for producing the acrylonitrile-containing acrylyl copolymer emulsion can be used.
樹脂成分 (A) として、 カルボニル基含有アクリル共重合体エマルシヨン及び マレイミド基含有アクリル共重合体エマルシヨンを併用することもできる。 この 場合の併用割合は、 前者 Z後者の固形分重量比で 3 9 7〜9 7 Z 3程度、 好ま しくは 1 0ノ 9 0〜9 0 / 1 0程度の範囲である。 また、 この併用の場合、 カル ポニル基含有ァクリル樹脂に対して、 前記ヒドラジン誘導体を組み合わせて使用 することもできる。 As the resin component (A), a carbonyl group-containing acrylic copolymer emulsion and a maleimide group-containing acrylic copolymer emulsion can be used in combination. In this case, the combination ratio is about 39-97 Z3, preferably about 1090-90 / 10 in terms of the weight ratio of the solid content of the former Z and the latter. In the case of this combination, The hydrazine derivative can be used in combination with the acryl resin containing a ponyl group.
樹脂成分 (A) として、 有機溶剤可溶型である不飽和脂肪酸変性アクリル樹脂 を、 好ましく使用できる。 不飽和脂肪酸変性アクリル樹脂は、 常温で酸化重合す ることにより、 自己架橋する。 また、 該樹脂中の不飽和脂肪酸成分により、 白色 顔料 (B ) 配合により発生することがある塗膜光沢の低下を有効に抑制できる。 上記不飽和脂肪酸変性アクリル樹脂は、 例えば、 有機溶剤の存在下でエポキシ 基含有ェチレン性不飽和単量体およびその他のェチレン性不飽和単量体を共重合 させてエポキシ基含有ァクリル共重合体を調製し、 そのエポキシ基に不飽和脂肪 酸を付加反応させることにより得ることができる。  As the resin component (A), an organic solvent-soluble unsaturated fatty acid-modified acrylic resin can be preferably used. The unsaturated fatty acid-modified acrylic resin undergoes self-crosslinking by oxidative polymerization at room temperature. In addition, the unsaturated fatty acid component in the resin can effectively suppress a decrease in the gloss of the coating film, which may occur due to the incorporation of the white pigment (B). The unsaturated fatty acid-modified acrylic resin is prepared, for example, by copolymerizing an epoxy group-containing ethylenically unsaturated monomer and other ethylenically unsaturated monomers in the presence of an organic solvent to form an epoxy group-containing acrylyl copolymer. It can be prepared by preparing and subjecting the epoxy group to an addition reaction with an unsaturated fatty acid.
エポキシ基含有エチレン性不飽和単量体は、 1分子中に、 少なくとも 1個のェ ポキシ基と重合可能な二重結合とを有する単量体である。 該単量体としては、 例 えば、 グリシジル (メタ) アタリレート、 ]3—メチルダリシジル (メタ) ァクリ レート、 3, 4—エポキシシクロへキシルメチル (メタ) ァクリレー卜、 3 , 4 —エポキシシクロへキシルェチル (メタ) ァクリレート、 3, 4一エポキシシク 口へキシルプロピル (メタ) ァクリレート、 ァリルグリシジルエーテル等が挙げ られる。  The epoxy group-containing ethylenically unsaturated monomer is a monomer having at least one epoxy group and a polymerizable double bond in one molecule. Examples of the monomer include glycidyl (meth) acrylate,] 3-methyldaricidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and 3,4-epoxycyclo. Xylethyl (meth) acrylate, 3,4-epoxycyclohexylpropyl (meth) acrylate, aryl glycidyl ether, and the like.
その他のエチレン性不飽和単量体としては、 前記力ルポニル基含有ァクリル共 重合体エマルションの製造に用いるその他のエチレン性不飽和単量体として列記 したものと同様のものを使用することができる。  As the other ethylenically unsaturated monomers, those similar to those listed as the other ethylenically unsaturated monomers used in the production of the acrylonitrile-containing acrylyl copolymer emulsion can be used.
不飽和脂肪酸は、 形成塗膜を酸化硬化せしめるために導入されるものである。 該脂肪酸としては、 例えば、 魚油脂肪酸、 脱水ヒマシ油脂肪酸、 サフラワー油脂 肪酸、 アマ二油脂肪酸、 ダイズ油脂肪酸、 ゴマ油脂肪酸、 ケシ油脂肪酸、 エノ油 脂肪酸、 麻実油脂肪酸、 ブドウ核油脂肪酸、 トウモロコシ油脂肪酸、 トール油脂 肪酸、 ヒマヮリ油脂肪酸、 綿実油脂肪酸、 クルミ油脂肪酸、 ゴム種油脂肪酸等が 挙げられる。  Unsaturated fatty acids are introduced to oxidatively cure the formed coating. Examples of the fatty acids include fish oil fatty acids, dehydrated castor oil fatty acids, safflower oil fatty acids, linseed oil fatty acids, soybean oil fatty acids, sesame oil fatty acids, poppy oil fatty acids, eno oil fatty acids, hemp oil fatty acids, grape kernel oil fatty acids, Corn oil fatty acids, tall oil fatty acids, sunflower oil fatty acids, cottonseed oil fatty acids, walnut oil fatty acids, rubber seed oil fatty acids, and the like.
また、 上記脂肪酸変性アクリル樹脂は、 耐候性を向上させる等の目的でシリコ ン樹脂等で改質してもよい。  The fatty acid-modified acrylic resin may be modified with a silicon resin or the like for the purpose of improving weather resistance.
また、 樹脂成分 (A) としては、 フッ素樹脂、 アクリル樹脂、 ポリエステル樹 脂、 アルキド樹脂、 ウレタン樹脂、 エポキシ樹脂などの樹脂に水酸基を含有させ た樹脂を主剤として、 これにポリイソシァネートなどの架橋剤を使用直前に混合 する 2液型の樹脂組成物も使用できる。 例えば、 水酸基含有アクリル樹脂を含有 するベース樹脂 (主剤) に、 ポリイソシァネート硬化剤を併用するウレタン硬化 型 2液型塗料を、 好ましく使用できる。 In addition, as the resin component (A), fluorine resin, acrylic resin, polyester resin A two-component resin composition can be used in which a resin containing hydroxyl groups in a resin such as a resin such as a resin, an alkyd resin, a urethane resin, or an epoxy resin is used as a main component, and a crosslinking agent such as a polyisocyanate is mixed immediately before use. . For example, a urethane-curable two-component paint in which a polyisocyanate curing agent is used in combination with a base resin (main agent) containing a hydroxyl group-containing acrylic resin can be preferably used.
樹脂成分 (A) は、 必要に応じて、 耐汚染化剤としてのオルガノシリケ一ト化 合物を含有することができる。 該化合物により、 形成塗膜が、 親水性になり、 雨 水等により表面が洗浄され易くなるため、 汚れにくくなるという利点が得られる。 上記オルガノシリケ一ト化合物としては、 例えば、 下記式 (3 ) で表される直 鎖状の縮合物をあげることができる。  The resin component (A) can contain an organosilicate compound as a stain-proofing agent, if necessary. This compound has the advantage that the formed coating film becomes hydrophilic and its surface is easily washed with rainwater or the like, so that it is less likely to be stained. Examples of the organosilicate compound include a linear condensate represented by the following formula (3).
(Rb0) (3)(R b 0) (3)
Figure imgf000012_0001
式中、 R 5は、 独立して、 水素原子又は炭素数 1〜 1 0の炭化水素基を示す。 mは 1〜; L 0 0の整数を示す。
Figure imgf000012_0001
In the formula, R 5 independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. m represents 1 to an integer of L00.
炭素数 1〜1 0の炭化水素基としては、 例えば、 メチル基、 ェチル基、 n—プ 口ピル基、 i 一プロピル基、 n—ブチル基、 i—ブチル基、 t _ブチル基、 n - ペンチル基、 i —ペンチル基、 n—へキシル基、 i —へキシル基、 n—ォクチル 基などのアルキル基;フエニル基などのァリ一ル基等が好ましい。  Examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n- Alkyl groups such as pentyl group, i-pentyl group, n-hexyl group, i-hexyl group and n-octyl group; aryl groups such as phenyl group are preferred.
上記式 (3 ) のオルガノシリケ一ト化合物としては、 R 5が炭素数 1〜4の低 級アルキル基であって mが 2〜 1 5のものが、 より好ましい。 As the organosilicate compound of the above formula (3), those in which R 5 is a lower alkyl group having 1 to 4 carbon atoms and m is 2 to 15 are more preferable.
上記オルガノシリケ一ト化合物としては、 上記式 (3 ) で表される直鎖状の化 合物以外に、 分岐状の化合物又は環状の化合物も包含される。  Examples of the organosilicate compound include a branched compound or a cyclic compound in addition to the linear compound represented by the above formula (3).
また、 樹脂成分 (B) が水性である場合においては、 上記オルガノシリケ一ト 化合物に、 ポリエチレングリコール、 ポリプロピレングリコール等のポリアルキ レングリコ一ル系化合物を反応させて、 変性オルガノシリケート化合物として、 配合してもよい。  Further, when the resin component (B) is aqueous, the above organosilicate compound may be reacted with a polyalkylene glycol-based compound such as polyethylene glycol or polypropylene glycol to be blended as a modified organosilicate compound. Good.
樹脂成分 (A) は、 顔料を分散させるために用いられる樹脂を含有していても よい。 顔料分散用樹脂としては、 公知のァニオン系樹脂、 ノニオン系樹脂、 カチ オン系樹脂を制限なく使用できる。 白色顔料 (B) の分散性を向上させるため、 ァニオン系樹脂、 特にカルボン酸系樹脂を用いるのが好ましい。 また、 樹脂成分 (A) が水性の場合は、 ポリカルボン酸系樹脂を、 又有機溶剤型の場合は、 水酸. 基含有カルボン酸エステル系樹脂を、 用いるのが好ましい。 分散用樹脂の配合量 としては、 塗料組成物に含まれる全顔料に対して 1〜1 0重量%程度が好適であ る。 Even if the resin component (A) contains a resin used for dispersing a pigment, Good. As the pigment dispersing resin, known anionic resins, nonionic resins, and cation resins can be used without limitation. In order to improve the dispersibility of the white pigment (B), it is preferable to use an anionic resin, particularly a carboxylic acid resin. When the resin component (A) is aqueous, it is preferable to use a polycarboxylic acid resin, and when the resin component is an organic solvent type, it is preferable to use a hydroxyl group-containing carboxylic ester resin. The mixing amount of the dispersing resin is preferably about 1 to 10% by weight based on all the pigments contained in the coating composition.
白色顔料 (B )  White pigment (B)
本発明の組成物に用いられる白色顔料 (B ) は、 形成塗膜に遮熱性を付与する ものであり、 平均 1次粒子径が 5 0 0〜2 , 0 0 0 nm、 好ましくは 5 5 0〜1, 6 0 0 n m、 より好ましくは 6 0 0〜 1, 4 0 0 nmの範囲内であって、 且つ屈 折率が 1 . 8 0〜 3 . 0 0、 好ましくは 1 . 9 0〜 2 . 8 0、 好ましくは 1 . 9 5〜2 . 7 0の範囲内である。  The white pigment (B) used in the composition of the present invention imparts heat shielding property to the formed coating film, and has an average primary particle diameter of 500 to 2,000 nm, preferably 550 nm. 11,600 nm, more preferably in the range of 600〜1,400 nm, and the refractive index is 1.8 03.0, preferably 1.9〜. It is in the range of 2.80, preferably 1.95 to 2.70.
白色顔料 (B) は、 上記粒子径及び屈折率を有することにより、 塗膜中で波長 7 8 0〜 2 , 1 0 0 nm程度の近赤外線を効率的に反射 ·散乱することができ、 遮熱性顔料としての効果を発揮することができる。 効果的な白色顔料としては、 二酸化チタン及び酸化亜鉛が挙げられ、 これらの少なくとも一種を用いるのが好 ましい。 二酸化チタンを用いるのが特に好ましい。  Since the white pigment (B) has the above particle diameter and refractive index, it can efficiently reflect and scatter near infrared rays having a wavelength of about 780 to 2,100 nm in the coating film. The effect as a thermal pigment can be exhibited. Effective white pigments include titanium dioxide and zinc oxide, and it is preferable to use at least one of these. It is particularly preferred to use titanium dioxide.
白色顔料 (B) の平均 1次粒子径が 5 0 O nm未満では、 可視光を効率よく散 乱することはできるが、 波長 7 8 0〜2 , 1 0 0 nm程度の赤外線を透過してし まい、 形成塗膜の遮熱効果が不十分になる。 一方 2, 0 0 O nmを超えると、 形 成塗膜の隠蔽性及び光沢が低下するので、 好ましくない。 また、 屈折率が 1 . 8 0未満では、 形成塗膜の遮熱効果が十分でなく、 又隠蔽性の点からも好ましくな い。  If the average primary particle size of the white pigment (B) is less than 50 O nm, visible light can be scattered efficiently, but it will transmit infrared light with a wavelength of about 780 to 2,100 nm. In other words, the heat shielding effect of the formed coating film becomes insufficient. On the other hand, when it exceeds 2,000 nm, the concealing property and gloss of the formed coating film are undesirably reduced. On the other hand, when the refractive index is less than 1.8, the heat shielding effect of the formed coating film is not sufficient, and it is not preferable from the viewpoint of concealment.
ここで、 平均 1次粒子径とは、 個々の独立した顔料粒子の粒子径の平均値であ る。 一般に顔料粒子は凝集して存在しているので、 通常の粒子径分布測定装置で は粒子の凝集したものと個々の独立した粒子を区別して測定することは困難であ るが、 電子顕微鏡観察等により、 独立した顔料粒子自体の平均粒子径を判定する ことが可能である。 本明細書において、 顔料の 「平均 1次粒子径」 は、 電子顕微鏡観察により判定 したものである。 また、 顔料の 「屈折率」 は、 J I S K 0 0 6 2に記載のァ ッベ屈折率計で測定した値である。 Here, the average primary particle diameter is an average value of the particle diameters of the individual independent pigment particles. In general, pigment particles are present in an agglomerated state, so it is difficult for ordinary particle size distribution analyzers to measure particles separately from individual agglomerated particles. Accordingly, it is possible to determine the average particle diameter of the independent pigment particles. In the present specification, the “average primary particle size” of the pigment is determined by observation with an electron microscope. The “refractive index” of the pigment is a value measured by an Abbe's refractometer described in JIS K 062.
本発明において、 白色顔料 (B) としての二酸化チタンの結晶系は、 上記した 平均粒子径と屈折率の範囲であれば、 ルチル型であってもアナ夕ーゼ型であって もよい。 また、 二酸化チタン表面を、 酸化アルミニウム、 酸化ジルコニウム、 二 酸化珪素等の無機酸化物;ァミン、 アルコール等の有機化合物などで被覆処理を してもよい。  In the present invention, the crystal system of titanium dioxide as the white pigment (B) may be a rutile type or an anase type as long as the average particle diameter and the refractive index are in the ranges described above. Further, the surface of titanium dioxide may be coated with an inorganic oxide such as aluminum oxide, zirconium oxide, or silicon dioxide; or an organic compound such as amine or alcohol.
本発明においては、 十分な遮熱効果を得る点から、 形成塗膜の中に含まれる白 色顔料 (B ) の顔料体積濃度 (pigment volume concentrat ion; PVC)が、 5〜3 0 %程度であるのが好ましく、 6〜2 5 %程度であるのがより好ましい。 従って、 このような顔料体積濃度となるように、 樹脂成分 (A) に白色顔料 (B ) を配合 する。 顔料体積濃度は、 塗膜中に含まれる顔料の体積百分率である。 顔料体積濃 度は、 走査型電子顕微鏡により測定した塗膜断面の面積に対するその顔料の占め る総面積の割合として算出することができる。  In the present invention, from the viewpoint of obtaining a sufficient heat shielding effect, the pigment volume concentration (Pigment volume concentration) of the white pigment (B) contained in the formed coating film is about 5 to 30%. Preferably, it is about 6 to 25%. Therefore, a white pigment (B) is blended with the resin component (A) so as to have such a pigment volume concentration. The pigment volume concentration is the volume percentage of the pigment contained in the coating film. The pigment volume concentration can be calculated as the ratio of the total area occupied by the pigment to the area of the cross section of the coating film measured by a scanning electron microscope.
白色顔料 (C)  White pigment (C)
本発明の遮熱性被膜形成用塗料組成物においては、 平均 1次粒子径が 4 0 O n m未満、 好ましくは 2 0 0〜3 0 0 nm程度の白色顔料 (C) をさらに含有する ことが、 本発明組成物から形成される塗膜の下地隠蔽性を向上させることができ る点から、 好ましい。  The coating composition for forming a heat-shielding film of the present invention may further contain a white pigment (C) having an average primary particle diameter of less than 40 O nm, preferably about 200 to 300 nm. It is preferable from the viewpoint that the undercoat concealing property of the coating film formed from the composition of the present invention can be improved.
かかる白色顔料 (C) としては、 二酸化チタン及び酸化亜鉛が挙げられ、 これ らの少なくとも一種を用いるのが好ましい。 二酸化チタンを用いるのが特に好ま しい。  Examples of such white pigment (C) include titanium dioxide and zinc oxide, and it is preferable to use at least one of these. It is particularly preferred to use titanium dioxide.
上記二酸化チタン (C) の結晶型は、 ルチル型、 アナ夕一ゼ型のいずれであつ てもよいが、 形成される塗膜の隠蔽性及び耐候性に優れる点から、 ルチル型が好 ましい。  The crystal form of the titanium dioxide (C) may be either a rutile type or an anatase type, but a rutile type is preferred because the formed coating film has excellent concealing properties and weather resistance. .
着色顔料 (D)  Color pigment (D)
本発明の遮熱性被膜形成用塗料組成物は、 着色顔料 (D) をさらに含有するこ ともできる。 着色顔料 (D) とは、 塗膜に所望の色彩を与えるための顔料をいい、 通常、 無彩色顔料と有彩色顔料に分類することができる。 The coating composition for forming a thermal barrier coating of the present invention may further contain a color pigment (D). Color pigment (D) refers to a pigment for imparting a desired color to a coating film. Usually, they can be classified into achromatic pigments and chromatic pigments.
無彩色顔料としては、 白色顔料及び黒色顔料等が挙げられる。 白色顔料として は、 例えば、 鉛白、 塩基性硫酸鉛、 硫酸鉛、 リトボン、 硫化亜鉛、 アンチモン白、 白色顔料 (B ) 及び白色顔料 (C) 以外の二酸化チタン又は二酸化亜鉛等が挙げ られる。 黒色顔料としては、 例えば、 ァゾメチン系顔料、 ペリレン系顔料、 ダラ フアイト等が挙げられる。  Achromatic pigments include white pigments and black pigments. Examples of the white pigment include lead white, basic lead sulfate, lead sulfate, lithobone, zinc sulfide, antimony white, white pigment (B), and titanium dioxide or zinc dioxide other than white pigment (C). Examples of black pigments include azomethine pigments, perylene pigments, and dalaite.
上記黒色顔料の内、 ペリレン系顔料は、 赤外線を吸収し難く、 得られる塗膜の 遮熱効果の低下が小さい点から、 好ましい。 一方、 黒色顔料として、 カーポンプ ラックを使用することもできるが、 カーポンプラックは赤外線を吸収し易く、 得 られる塗膜の遮熱効果を大きく低下させるので、 好ましくない。  Among the above black pigments, perylene pigments are preferred because they hardly absorb infrared rays and the heat-shielding effect of the resulting coating film is small. On the other hand, a car pump rack can be used as the black pigment. However, the car pump rack is not preferable because it easily absorbs infrared rays and greatly reduces the heat shielding effect of the obtained coating film.
有彩色顔料としては、 前記無彩色顔料を除く着色顔料が包含される。 例えば、 黄色酸化鉄、 チタンイエロ一、 モノァゾイェロー、 縮合ァゾイェロー、 ァゾメチ ンイェロー、 ビスマスバナデート、 ベンズイミダゾロン、 イソインドリノン、 ィ ソインドリン、 キノフタロン、 ベンジジンイェロー、 パーマネントイエロ一等の 黄色顔料;パーマネントオレンジ等の橙色顔料;赤色酸化鉄、 ナフトール A S系 ァゾレッド、 アンサンスロン、 アンスラキノニルレッド、 ペリレンマルーン、 キ ナクリドン系赤顔料、 ジケトピロロピロール、 ウォッチングレッド、 パ一マネン 卜レツド等の赤色顔料;コバルト紫、 キナクリドンバイオレツト、 ジォキサジン バイオレット等の紫色顔料;コバルトブルー、 フタロシアニンブルー、 スレンブ ル一などの青色顔料;フタロシアニングリーンなどの緑色顔料等を挙げることが できる。  The chromatic pigments include coloring pigments other than the achromatic pigment. For example, yellow pigments such as yellow iron oxide, titanium yellow, monoazo yellow, condensed yellow, azomethine yellow, bismuth vanadate, benzimidazolone, isoindolinone, isoindolin, quinophthalone, benzidine yellow, permanent yellow, etc .; Orange pigments; red pigments such as red iron oxide, naphthol AS-based azo red, anthanthuron, anthraquinonyl red, perylene maroon, quinacridone-based red pigments, diketopyrrolopyrrole, watching red, and pigments; cobalt purple; Purple pigments such as quinacridone violet and dioxazine violet; blue pigments such as cobalt blue, phthalocyanine blue, and slenbl; green pigments such as phthalocyanine green; Rukoto can.
該着色顔料 (D) は、 一種単独で使用してもよいし、 必要に応じて 2種以上を 選択し組み合わせて使用してもよい。  The coloring pigment (D) may be used alone or as a combination of two or more as needed.
本発明においては、 着色顔料 (D) として、 補色関係にある複数の有彩色顔料 を含有せしめることにより、 上記白色顔料 (B ) の存在下においても、 濃色の塗 膜を形成することができ、 幅広い明度の塗膜を得ることができる。  In the present invention, by including a plurality of chromatic color pigments having a complementary color relationship as the color pigment (D), a dark color coating film can be formed even in the presence of the white pigment (B). A coating film with a wide range of brightness can be obtained.
補色関係にある複数の有彩色顔料とは、 例えば、 マンセルの色相環でお互いほ ぼ反対の位置にある有彩色の 2色の顔料が挙げられる。 補色関係にある有彩色の 組合せとして、 例えば、 赤と緑、 青と橙色、 黄と青紫、 紫と黄緑などがあげられ る。 The plurality of chromatic pigments having a complementary color relationship include, for example, chromatic two-color pigments that are located at almost opposite positions on the Munsell hue circle. Examples of combinations of chromatic colors that have a complementary color relationship include red and green, blue and orange, yellow and bluish violet, and purple and yellow-green. The
遮熱性被膜形成用塗料組成物の配合組成及び調製方法  Composition and preparation method of coating composition for forming thermal barrier coating
本発明の遮熱性被膜形成用塗料組成物において、 白色顔料 (B) の配合割合は、 樹脂成分 (A) 1 0 0重量部に対して、 1 0〜1 4 0重量部程度が好ましく、 1 5〜1 2 0重量部程度がより好ましい。 白色顔料 (B) の配合量がこの範囲内で あれば、 形成塗膜中に含まれる白色顔料 (B ) の顔料体積濃度を 5〜 3 0 %程度 の範囲内とすることができ、 十分な遮熱効果を得ることができる。  In the coating composition for forming a heat-shielding film of the present invention, the blending ratio of the white pigment (B) is preferably about 10 to 140 parts by weight with respect to 100 parts by weight of the resin component (A). About 5 to 120 parts by weight is more preferable. When the blending amount of the white pigment (B) is within this range, the pigment volume concentration of the white pigment (B) contained in the formed coating film can be within the range of about 5 to 30%. A heat shielding effect can be obtained.
本発明組成物が、 白色顔料 (C) を含有する場合、 白色顔料 (C) の配合割合 は、 樹脂成分 (A) 1 0 0重量部に対して、 1 0〜1 4 0重量部程度が好ましぐ 1 5〜1 2 0重量部程度がより好ましい。 白色顔料 (C) の配合量がこの範囲内 であれば、 十分な下地隠蔽性を有する塗膜が得られる。  When the composition of the present invention contains a white pigment (C), the mixing ratio of the white pigment (C) is about 10 to 140 parts by weight based on 100 parts by weight of the resin component (A). More preferably, about 15 to 120 parts by weight is more preferable. When the blending amount of the white pigment (C) is within this range, a coating film having a sufficient undercoat hiding property can be obtained.
また、 この場合、 白色顔料 (B) 及び白色顔料 (C) の重量比が、 1 0 / 9 0 〜9 0 / 1 0程度の範囲内であるのが好ましく、 2 0 Z 8 0〜8 0 Z 2 0程度の 範囲内であるのがより好ましい。 この範囲内で白色顔料 (Β) 及び白色顔料  In this case, the weight ratio of the white pigment (B) to the white pigment (C) is preferably in the range of about 10/90 to 90/10, and 20 Z80 to 80. More preferably, it is in the range of about Z 20. Within this range, white pigment (Β) and white pigment
( C) を併用することにより、 形成塗膜の遮熱効果と下地隠蔽性とを共に良好に することができる。  By using (C) in combination, it is possible to improve both the heat shielding effect of the formed coating film and the concealing property of the base.
本発明塗料組成物が着色顔料 (D) を含有する場合、 その含有量は限定されず、 塗膜を所望の色彩とするのに必要な量を配合することができる。 但し、 着色顔料 としてカーボンブラックを配合する場合は、 得られる塗膜の遮熱効果が大きく低 下しないように、 樹脂成分 (Α) 1 0 0重量部に対して、 0 . 1重量部以下程度 の少量に抑えることが望ましい。  When the coating composition of the present invention contains the color pigment (D), the content is not limited, and the amount necessary for obtaining a desired color of the coating film can be blended. However, when carbon black is blended as a coloring pigment, the amount of the resin coating is preferably about 0.1 part by weight or less with respect to 100 parts by weight of the resin component (Α) so that the heat shielding effect of the resulting coating film is not significantly reduced. It is desirable to keep it to a small amount.
本発明の遮熱性被膜形成用塗料組成物は、 必要に応じて、 体質顔料、 防鲭顔料、 光輝性顔料、 表面調整剤、 界面活性剤、 硬化触媒、 分散剤、 消泡剤、 増粘剤、 造 膜助剤、 防腐剤、 凍結防止剤、 硬化促進剤、 反応遅延剤などの塗料用添加剤を含 有することができる。  The coating composition for forming a heat-shielding film of the present invention may contain, if necessary, an extender, an anti-pigment pigment, a glitter pigment, a surface conditioner, a surfactant, a curing catalyst, a dispersant, a defoamer, and a thickener. It may contain paint additives such as a film-forming aid, a preservative, an antifreezing agent, a curing accelerator, and a reaction retardant.
上記体質顔料としては、 例えば、 バリ夕粉、 沈降性硫酸バリウム、 炭酸バリゥ ム、 炭酸カルシウム、 石膏、 クレ一、 シリカ、 ホワイトカーボン、 珪藻土、 夕ル ク、 炭酸マグネシウム、 アルミナホワイト、 ダロスホワイト等を挙げることがで さる。 本発明の遮熱性被膜形成用塗料組成物は、 以上に述べた各成分を、 公知の方法 に従って、 混合することにより、 調製することができる。 樹脂成分は、 有機溶剤 溶液、 エマルシヨン等の形態である場合は、 そのまま混合することができる。 ま た、 顔料成分は、 分散用樹脂と混合してぺ一スト状としてから、 混合してもよい。 また、 各成分の混合時に、 必要に応じて、 有機溶剤、 水又はこれらの混合物を、 加えてもよい。 Examples of the above-mentioned extender pigment include Bali evening powder, precipitated barium sulfate, barium carbonate, calcium carbonate, gypsum, clay, silica, white carbon, diatomaceous earth, evening silk, magnesium carbonate, alumina white, Daros white, and the like. You can list them. The coating composition for forming a thermal barrier coating of the present invention can be prepared by mixing the above-described components according to a known method. When the resin component is in the form of an organic solvent solution, emulsion, or the like, it can be mixed as it is. The pigment component may be mixed with a dispersing resin to form a paste, and then mixed. Further, at the time of mixing each component, an organic solvent, water or a mixture thereof may be added as necessary.
本発明の塗料組成物は、 固形分含量 4 0〜8 0重量%程度の液状塗料組成物で あるのが好ましい。 また、 液状塗料組成物は、 有機溶剤型及び水性型のいずれで あってもよい。  The coating composition of the present invention is preferably a liquid coating composition having a solid content of about 40 to 80% by weight. The liquid coating composition may be either an organic solvent type or an aqueous type.
本発明組成物が含有する有機溶剤としては、 各成分製造時に用いたものであつ てもよいし、 各成分混合時に追加したものであってもよい。  The organic solvent contained in the composition of the present invention may be the one used at the time of producing each component, or may be the one added at the time of mixing each component.
本発明組成物に使用できる有機溶剤としては、 例えば、 n—へキサン、 n—才 クタン、 2, 2 , 2—トリメチルペンタン、 イソオクタン、 n—ノナン、 シクロ へギサン、 メチルシクロへキサン等の脂肪族炭化水素系溶剤;ベンゼン、 トルェ ン、 キシレン、 ェチルベンゼン等の芳香族炭化水素系溶剤;ミネラルスピリット、 C 9芳香族炭化水素含有率 9 5重量%以上の石油系炭化水素混合溶剤、 石油エー テル、 石油ベンジン、 石油ナフサ等の石油系溶剤;メチルェチルケトン、 メチル イソプチルケトン等のケトン系溶剤;酢酸ェチル、 酢酸イソブチル等のエステル 系溶剤;エチレングリコールモノブチルェ一テル等のェ一テル系溶剤;イソプロ ピルアルコール、 n—ブチルアルコール、 イソブチルアルコール等のアルコール 系溶剤等を挙げることができる。  Examples of the organic solvent that can be used in the composition of the present invention include aliphatic solvents such as n-hexane, n-hexane, 2,2,2-trimethylpentane, isooctane, n-nonane, cyclohexan, and methylcyclohexane. Hydrocarbon solvents; aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; mineral spirits, petroleum hydrocarbon mixed solvents with a C9 aromatic hydrocarbon content of 95% by weight or more, petroleum ether, Petroleum solvents such as petroleum benzine and petroleum naphtha; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and isobutyl acetate; ether solvents such as ethylene glycol monobutyl ether; Alcohol solvents such as isopropyl alcohol, n-butyl alcohol and isopropyl alcohol Rukoto can.
上記有機溶剤は、 単独で、 又は 2種以上を混合して、 用いることができる。 ま た、 必要に応じて、 水と混合して用いることができる。  The above organic solvents can be used alone or in combination of two or more. Further, if necessary, it can be used by mixing with water.
遮熱性被膜形成用塗料組成物の用途  Uses of coating compositions for forming thermal barrier coatings
本発明の遮熱性被膜形成用塗料組成物は、 各種建築物等に遮熱性被膜を形成す る場合において、 単層仕上げ用の上塗り塗料、 二層仕上げ用の上塗り塗料又は下 塗り塗料として使用することができる。 また、 三層以上の複層塗膜用の中塗り塗 料としても使用できる。  The coating composition for forming a heat-shielding film of the present invention is used as a top-coat paint for a single-layer finish, a top-coat paint or a double-coat finish for a two-layer finish when forming a heat-shielding film on various buildings and the like. be able to. Also, it can be used as an intermediate coating for a multilayer coating film of three or more layers.
本発明塗料組成物を、 上塗り塗料として使用する場合、 着色顔料 (D) を配合 して、 J I S Z 8729に規定される L*a*b*表色系に基づく明度 (L* 値) 20〜70程度、 好ましくは 22〜68程度の塗膜を形成し得る組成物とす ることによって、 濃色の外観を有する塗膜を形成できる。 When the paint composition of the present invention is used as a top coat, a coloring pigment (D) is blended. And a composition capable of forming a coating film having a lightness (L * value) of about 20 to 70, preferably about 22 to 68, based on the L * a * b * color system specified in JISZ 8729. Thus, a coating film having a dark appearance can be formed.
上記 L*値の範囲の塗膜を得るためには、 白色顔料 (B) 及び着色顔料 (D) を、 白色顔料 (B) /着色顔料 (D) の重量比で 95ノ 5〜5Z95程度、 好ま しくは 90ノ10〜60/40程度の範囲内にすることが好適である。  In order to obtain a coating film in the range of the above L * value, the white pigment (B) and the color pigment (D) are mixed in a weight ratio of white pigment (B) / color pigment (D) of about 95 to 5 to 5Z95, Preferably, it is preferably in the range of about 90 to 10/60/40.
上記 L*値は、 塗膜の明度の指標であり、 100は純白を、 0は純黒を示す。  The L * value is an index of the lightness of the coating film, where 100 indicates pure white and 0 indicates pure black.
L*値は、 公知の測色計を用いて、 測定できる。 The L * value can be measured using a known colorimeter.
本発明の塗料組成物を、 単層仕上げ用の上塗り塗料に使用する場合又は二層仕 上げの下塗り塗料に使用する場合は、 形成塗膜の破断伸び率が、 20°〇で80〜 500%程度であることが好ましく、 100〜400 %程度の範囲内であること がより好ましい。 破断伸び率がこの範囲内であると、 被塗面にヮレが発生した場 合に、 形成塗膜が追随することができ、 好適である。  When the coating composition of the present invention is used as a top coat for a single-layer finish or used as an undercoat for a two-layer finish, the elongation at break of the formed coating film is 80 to 500% at 20 ° 〇. And more preferably in the range of about 100 to 400%. When the elongation at break is within this range, the formed coating film can follow the occurrence of cracks on the surface to be coated, which is preferable.
また、 本発明塗料組成物を、 下塗り塗料として使用する場合、 J I S Z 8 729に規定される L*a*b*表色系に基づく明度 (L*値) 70〜98程度、 好 ましくは 75〜97程度の塗膜を形成し得る組成物とすることにより、 該塗膜の 上層塗膜の明度等の色調に悪影響を及ぼさないことができる。  When the paint composition of the present invention is used as an undercoat paint, the lightness (L * value) based on the L * a * b * color system specified in JISZ 8729 is about 70 to 98, preferably about 75. By making the composition capable of forming a coating film of about 97, it is possible to prevent a bad influence on color tone such as lightness of an upper coating film of the coating film.
上記 L*値の範囲の塗膜を得るためには、 白色顔料 (B) 及び着色顔料 (D) を、 白色顔料 (B) Z着色顔料 (D) の重量比で 100Z0〜90/10程度と することが好ましく、 99Z1〜95/5程度の範囲内とすることがより好まし い。  In order to obtain a coating film having the above L * value, the white pigment (B) and the color pigment (D) are required to have a weight ratio of the white pigment (B) and the Z color pigment (D) of about 100Z0 to 90/10. It is more preferable to set it within the range of about 99Z1 to 95/5.
遮熱性被膜形成用塗料組成物を用いた塗装方法  Coating method using coating composition for forming thermal barrier coating
本発明の遮熱性被膜形成用塗料組成物は、 以下に示す種々の塗装方法において、 好適に使用することができる。  The coating composition for forming a thermal barrier coating of the present invention can be suitably used in various coating methods described below.
被塗物及び塗装手段  Workpiece and coating means
本発明塗料組成物を適用する被塗物としては、 遮熱性被膜を形成する必要があ る被塗物であれば、 限定されない。 好ましい被塗物としては、 建設構造物が挙げ られる。 建設構造物の具体例としては、 ビル、 住宅、 工場、 倉庫、 店舗、 学校等 の建築物;石油用タンク、 穀物用タンク等の貯蔵槽等が挙げられる。 また、 被塗物の被塗面としては、 建築物の外壁、 屋根、 タンクの外面等が好ま しい。 The substrate to which the coating composition of the present invention is applied is not limited as long as it is a substrate on which a heat-shielding film needs to be formed. Preferred substrates include construction structures. Specific examples of the construction structure include buildings such as buildings, houses, factories, warehouses, stores, and schools; storage tanks such as oil tanks and grain tanks. The surface to be coated is preferably an outer wall of a building, a roof, an outer surface of a tank, or the like.
上記被塗面の材質としては、 金属、 コンクリート、 石膏ボード、 スレート、 サ イデイング材、 磁器タイル、 軽量気泡コンクリート、 モルタル、 レンガ、 石材等 の無機基材;木材、 プラスチック等の有機基材が挙げられる。 金属としては、 鉄、 亜鉛、 鉄一亜鉛合金、 アルミニウム等が挙げられる。  Examples of the material of the surface to be coated include inorganic base materials such as metal, concrete, gypsum board, slate, siding material, porcelain tile, lightweight cellular concrete, mortar, brick, and stone base material; and organic base materials such as wood and plastic. Can be Examples of the metal include iron, zinc, iron-zinc alloy, and aluminum.
また、 被塗面には、 既に塗膜が設けられていてもよい。 このような塗膜として は、 アクリル樹脂系、 アクリルウレタン樹脂系、 ポリウレタン樹脂系、 フッ素樹 脂系、 シリコンアクリル樹脂系、 酢酸ビニル樹脂系、 エポキシ樹脂系などの塗膜 が挙げられる。  Further, a coating film may be already provided on the surface to be coated. Examples of such a coating film include acrylic resin, acrylic urethane resin, polyurethane resin, fluorine resin, silicon acrylic resin, vinyl acetate resin, and epoxy resin films.
上記被塗面には、 必要に応じて、 公知のシ一ラ一、 下地調整剤等の塗膜を設け ておいてもよい。  If necessary, a coating film such as a well-known sealer or base adjustment agent may be provided on the surface to be coated.
本発明塗料組成物の塗装手段としては、 例えば、 ローラー、 エアスプレー、 ェ アレススプレー、 リシンガン、 万能ガン、 ハケなどの公知の塗装器具を挙げるこ とができる。 塗装後は、 通常、 常温で、 乾燥又は乾燥及び架橋させて、 乾燥塗膜 を得る。 伹し、 加熱等により、 強制乾燥することもできる。  Examples of means for applying the coating composition of the present invention include known coating tools such as a roller, air spray, airless spray, ricin gun, universal gun, and brush. After coating, it is usually dried or dried and crosslinked at room temperature to obtain a dried coating film. However, forced drying can also be performed by heating.
乾燥膜厚は、 通常、 1 0〜2 , 0 0 0 x m程度、 好ましくは 2 0〜1, 5 0 0 m程度の範囲内とすることができる。  The dry film thickness can be generally in the range of about 10 to 20,000 m, preferably in the range of about 20 to 1,500 m.
本発明塗料組成物を用いる具体的な塗装方法としては、 例えば、 下記方法 I、 I I及び I I Iを挙げることができる。 ·  Specific coating methods using the coating composition of the present invention include, for example, the following methods I, II and III. ·
方法 Iは、 被塗物に、 本発明の上塗り塗料組成物を塗装する単層仕上げ塗装方 法である。  Method I is a single-layer finish coating method in which an object to be coated is coated with the topcoat composition of the present invention.
上記単層仕上げで塗装する場合には、 通常、 乾燥膜厚が 2 0 0〜 2 , 0 0 0 m程度、 好ましくは 3 0 0〜1, 5 0 0 /x m程度の範囲内となるように塗装する ことが好適である。 この場合、 上記乾燥膜厚の範囲内となるように、 同じ塗料組 成物を、 複数回塗り重ねてもよい。  In the case of painting with the above-mentioned single layer finish, the dry film thickness is usually in the range of about 200 to 2,000 m, preferably about 300 to 1,500 / xm. It is preferable to paint. In this case, the same paint composition may be applied a plurality of times so as to be within the range of the dry film thickness.
方法 I Iは、 被塗物に、 下塗り塗料組成物を塗装後、 該塗面上に本発明の上塗り 塗料組成物を塗装する二層仕上げ塗装方法である。  Method II I is a two-layer finish coating method in which an undercoat composition is applied to an object to be coated, and then the topcoat composition of the present invention is applied on the coated surface.
方法 I Iにおける下塗り塗料組成物としては、 建築物の外壁、 屋根等に塗装する 下塗り塗料として用いられる公知の有機溶剤型塗料組成物及び水性塗料組成物を いずれも使用できる。 例えば、 アクリル樹脂エマルシヨン、 ウレタン樹脂エマル シヨン、 エポキシ樹脂エマルシヨン、 アルキド樹脂エマルシヨン、 脂肪酸変性ァ クリル樹脂エマルション等の樹脂成分及び顔料を含有する水性塗料組成物が好ま しい。 The undercoat paint composition in Method II is applied to the exterior walls and roofs of buildings Any of the known organic solvent-based paint compositions and water-based paint compositions used as undercoat paints can be used. For example, an aqueous coating composition containing a resin component such as an acrylic resin emulsion, a urethane resin emulsion, an epoxy resin emulsion, an alkyd resin emulsion, and a fatty acid-modified acrylic resin emulsion, and a pigment is preferred.
方法 I Iにおける下塗り塗料組成物の塗装方法としては、 本発明塗料組成物の場 合と同様の方法を採用できる。  Method II As the method for applying the undercoat coating composition in I, the same method as in the case of the coating composition of the present invention can be employed.
方法 I Iにおける下塗り塗料組成物は、 通常、 乾燥膜厚が 1 0〜3 0 0 m程度、 好ましくは 2 0〜 2 0 0 m程度の範囲内となるように塗装することが好適であ る。  It is preferable that the undercoat coating composition in the method II be applied so that the dry film thickness is usually in the range of about 10 to 300 m, preferably about 20 to 200 m.
また、 方法 I Iにおける本発明の上塗り塗料組成物は、 通常、 乾燥膜厚が 1 0〜 1 5 0 /i m程度、 好ましくは 3 0〜1 0 0 m程度の範囲内となるように塗装す ることが好適である。  The overcoat composition of the present invention in the method II is usually applied so that the dry film thickness is in the range of about 10 to 150 / im, preferably in the range of about 30 to 100 m. Is preferred.
方法 I I Iは、 被塗物に、 本発明の下塗り塗料組成物を塗装後、 該塗面上に上塗 り塗料組成物を塗装する二層仕上げ塗装方法である。  Method I II is a two-layer finish coating method in which an undercoat composition of the present invention is applied to an object to be coated, and then an overcoat composition is applied on the coated surface.
方法 I I Iにおける本発明の下塗り塗料組成物は、 通常、 乾燥膜厚が 2 0〜1, 0 0 0 m程度、 好ましくは 4 0〜 8 0 0 m程度の範囲内となるように塗装す ることが好適である。  The undercoat composition of the present invention in Method III is usually applied so that the dry film thickness is in the range of about 20 to 100 m, preferably about 40 to 800 m. Is preferred.
また、 方法 I I Iにおける上塗り塗料組成物としては、 建築物の外壁、 屋根等に 塗装する上塗り塗料として用いられる公知の有機溶剤型塗料組成物及び水性塗料 組成物をいずれも使用できる。 例えば、 アクリル樹脂エマルシヨン、 ウレタン樹 脂エマルシヨン、 脂肪酸変性アクリル樹脂エマルシヨン、 フッ素樹脂エマルショ ン、 酢酸ビニル樹脂エマルション等の樹脂成分及び顔料を含有する水性塗料組成 物が好ましい。 また、 建築物の外壁、 屋根等を濃色の外観とする場合には、 該上 塗り塗料組成物が、 ペリレン系顔料を含有する塗料組成物であることが、 本発明 下塗り塗料組成物の塗膜及び該上塗り塗料組成物の塗膜からなる二層塗膜の遮熱 効果を低下させない点から、 好ましい。  As the top coat composition in Method II, any of the known organic solvent-based paint compositions and water-based paint compositions used as top coats to be applied to exterior walls, roofs and the like of buildings can be used. For example, an aqueous coating composition containing a resin component and a pigment, such as an acrylic resin emulsion, a urethane resin emulsion, a fatty acid-modified acrylic resin emulsion, a fluororesin emulsion, and a vinyl acetate resin emulsion, is preferable. When the exterior wall, roof, etc. of the building have a dark color appearance, the overcoat composition may be a paint composition containing a perylene pigment. It is preferable from the viewpoint that the heat-shielding effect of the two-layer coating film composed of the film and the coating film of the overcoat composition is not reduced.
方法 111における上塗り塗料組成物の塗装方法としては、 本発明塗料組成物の 場合と同様の方法を採用できる。 方法 IIIにおける上塗り塗料組成物は、 通常、 乾燥膜厚が 10〜300 ^ m程 度、 好ましくは 20〜200 m程度の範囲内となるように塗装することが好適 である。 As a method for applying the top coating composition in the method 111, the same method as in the case of the coating composition of the present invention can be employed. The topcoat composition in Method III is preferably applied such that the dry film thickness is generally in the range of about 10 to 300 m, preferably about 20 to 200 m.
また、 上記方法 Ι〜ΠΙ以外の塗装方法として、 被塗物に、 本発明の下塗り塗料 組成物を塗装後、 該塗面上に本発明の上塗り塗料組成物を塗装する二層仕上げ塗 装方法も採用できる。  Further, as a coating method other than the above-mentioned methods (1) to (4), a two-layer finish coating method of coating the object to be coated with the undercoat composition of the present invention and then coating the topcoat composition of the present invention on the coated surface. Can also be adopted.
更に、 被塗物に、 公知の下塗り塗料組成物を塗装後、 本発明の塗料組成物を中 塗り塗料組成物として塗装し、 更にこの中塗り塗面上に公知の上塗り塗料組成物 を塗装する三層仕上げ塗装方法も採用できる。  Further, after applying a known undercoat composition to an object to be coated, the coating composition of the present invention is applied as an intermediate coating composition, and then a known topcoat composition is applied on the intermediate coating surface. A three-layer finish painting method can also be adopted.
かくして、 本発明塗料組成物を用いて、 各種被塗物上に、 遮熱効果等に優れた 塗膜を形成することができる。 図面の簡単な説明  Thus, using the coating composition of the present invention, it is possible to form a coating film having an excellent heat-shielding effect on various kinds of objects to be coated. Brief Description of Drawings
図 1は、 塗膜の遮熱効果の試験に使用する温度測定装置の概略を示した断面図 である。 図 1において符号 1は光源を、 2は試験用の遊離塗膜を、 3は発泡スチ ロール製の箱を、 4〜 6は熱電対温度計を、 それぞれ示す。 発明を実施するための最良の形態  FIG. 1 is a cross-sectional view schematically showing a temperature measuring device used for a test of a thermal barrier effect of a coating film. In FIG. 1, reference numeral 1 denotes a light source, 2 denotes a free coating film for a test, 3 denotes a styrofoam box, and 4 to 6 denote thermocouple thermometers. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 製造例、 実施例及び比較例を挙げて、 本発明をより一層具体的に説明す る。  Hereinafter, the present invention will be described more specifically with reference to Production Examples, Examples, and Comparative Examples.
各例において、 「部」 は 「重量部」 を示す。 顔料の平均 1次粒子径は、 電子顕 微鏡 (商品名 「LUZEX A P」 、 二レコ (株) 製) を使用して、 観察し判定 した。 また、 J I S Z 8729に規定される L*a*b*表色系に基づく L*値 は、 測色計 (商品名 「カラ一コンピュータ SM— 7」 、 スガ試験機 (株) 製) を 用いて測定した。  In each example, “parts” indicates “parts by weight”. The average primary particle size of the pigment was determined by observation using an electron microscope (trade name “LUZEX AP”, manufactured by NIRECO Co., Ltd.). The L * value based on the L * a * b * color system specified in JISZ 8729 is measured using a colorimeter (trade name “Karaichi Computer SM-7”, manufactured by Suga Test Instruments Co., Ltd.). It was measured.
顔料ペーストの製造  Manufacture of pigment paste
1リットルのステレンス容器に、 下記に示す顔料ペースト用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P— 1) を作成した。 上水 100部 エチレングリコール 40部 The following components for a pigment paste were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P-1). Water 100 parts Ethylene glycol 40 parts
分散用樹脂 (注 1) 20部  Dispersion resin (Note 1) 20 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部  Thickener (Note 3) 20 parts
クレー (注 4) 100部  Clay (Note 4) 100 parts
二酸化チタン粉末 (注 5 ) 120部  Titanium dioxide powder (Note 5) 120 parts
二酸化チタン粉末 (注 6 ) 120部  Titanium dioxide powder (Note 6) 120 parts
上記 (注 1) 〜 (注 6) は、 下記のものを示す。  The above (Note 1) to (Note 6) indicate the following.
(注 1) 分散用樹脂:商品名 「ノブコスパース 44 C」 、 サンノプコ社製、 ポ リカルボン酸ナトリウム系樹脂、 固形分 43重量%。  (Note 1) Dispersing resin: brand name “Nobcospars 44C”, manufactured by San Nopco, sodium polycarboxylate resin, solid content 43% by weight.
(注 2) 消泡剤:商品名 「SNデフォーマー 364」 、 サンノプコ社製。  (Note 2) Antifoaming agent: brand name "SN Deformer 364", manufactured by San Nopco.
(注 3) 増粘剤:商品名 「フジケミ HEC KF 100」 、 フジケミカル社製。 (注 4) クレー:商品名 「P〇LYGR〇SS 90」 、 J. M. Hub e r 社製、 平均粒子径 5 zm、 屈折率 1. 30。  (Note 3) Thickener: Fuji Chemical HEC KF 100, manufactured by Fuji Chemical. (Note 4) Clay: trade name “P〇LYGR〇SS 90”, manufactured by J. M. Huber, average particle diameter 5 zm, refractive index 1.30.
(注 5) 二酸化チタン粉末:商品名 「T I ΤΑΝΝ I X J R— 605」 、 テ イカ (株) 製、 屈折率 2. 72、 平均 1次粒子径 250 nm。  (Note 5) Titanium dioxide powder: trade name “TI IIXJR—605”, manufactured by Teica Co., Ltd., refractive index 2.72, average primary particle diameter 250 nm.
(注 6) 二酸化チタン粉末:商品名 「T I ΤΑΝΝ I X J R_ 1000」 、 ティカ (株) 製、 屈折率 2· 72、 平均 1次粒子径 1, 000 nm。  (Note 6) Titanium dioxide powder: trade name “TI IIXR_1000”, manufactured by Tika Co., Ltd., refractive index 2.72, average primary particle diameter 1,000 nm.
製造例 2  Production Example 2
製造例 1において、 二酸化チタン粉末 (注 5) 120部を使用せず、 二酸化チ タン粉末 (注 6) の使用量を 240部とする以外は、 製造例 1と同様にして、 水 性顔料ペースト (P— 2) を作成した。  A water-based pigment paste was prepared in the same manner as in Production Example 1, except that titanium dioxide powder (Note 5) was not used in 120 parts and that the amount of titanium dioxide powder (Note 6) used was 240 parts. (P-2) was created.
製造例 3  Production Example 3
製造例 1において、 二酸化チタン粉末 (注 6) 120部に代えて、 酸化亜鉛粉 末 (注 7) 120部を用いる以外は、 製造例 1と同様にして、 水性顔料ペースト (P-3) を作成した。  The aqueous pigment paste (P-3) was prepared in the same manner as in Production Example 1 except that 120 parts of zinc oxide powder (Note 7) was used instead of 120 parts of titanium dioxide powder (Note 6). Created.
上記 (注 7) は、 下記のものを示す。  The above (Note 7) indicates the following.
(注 7) 酸化亜鉛粉末:商品名 「酸化亜鉛 2種」 、 堺化学工業 (株) 製、 屈折 率 2. 00、 平均 1次粒子径 600 nm。 (Note 7) Zinc oxide powder: Trade name “2 kinds of zinc oxide”, manufactured by Sakai Chemical Industry Co., Ltd. Ratio 2.00, average primary particle diameter 600 nm.
製造例 4  Production Example 4
製造例 1において、 二酸化チタン粉末 (注 6) 120部を使用せず、 二酸化チ タン粉末 (注 5) の使用量を 240部とする以外は、 製造例 1と同様にして、 水 性顔料ペースト (P— 4) を作成した。  The aqueous pigment paste was prepared in the same manner as in Production Example 1 except that 120 parts of the titanium dioxide powder (Note 6) was not used and 240 parts of the titanium dioxide powder (Note 5) was used. (P-4) was created.
製造例 5  Production Example 5
1リットルのステレンス容器に、 下記に示す配合成分を入れ、 攪拌機にて 30 分間攪拌し分散して、 有機溶剤系顔料ペースト (P— 5) を作成した。  The following ingredients were placed in a 1-liter stainless steel container, and stirred and dispersed for 30 minutes with a stirrer to prepare an organic solvent-based pigment paste (P-5).
ミネラルスピリット 100部  100 Mineral Spirits
分散用樹脂 (注 8) 40部  Dispersion resin (Note 8) 40 parts
消泡剤 (注 9) 20部  Antifoam (Note 9) 20 parts
二酸化チタン粉末 (注 6 ) 240部  Titanium dioxide powder (Note 6) 240 parts
上記 (注 8) 及び (注 9) は、 下記のものを示す。  The above (Note 8) and (Note 9) indicate the following.
(注 8) 分散用樹脂:商品名 「BYK_109」 、 ビックケミ一社製、 水酸基 含有カルボン酸エステル系樹脂、 固形分 100重量%。  (Note 8) Dispersion resin: trade name “BYK_109”, manufactured by BYK Chemie Co., Ltd., hydroxyl group-containing carboxylic acid ester resin, solid content 100% by weight.
(注 9) 消泡剤:商品名 「BYK— 066」 、 ビックケミ一社製。  (Note 9) Antifoaming agent: trade name "BYK-066", manufactured by Big Chem Co., Ltd.
製造例 6  Production Example 6
製造例 5において、 二酸化チタン粉末 (注 6) 240部に代えて、 二酸化チタ ン粉末 (注 10) 240部を用いる以外は、 製造例 5と同様にして、 有機溶剤系 顔料ペースト (P— 6) を作成した。  Organic solvent-based pigment paste (P-6) was prepared in the same manner as in Production Example 5, except that 240 parts of titanium dioxide powder (Note 6) was used instead of 240 parts of titanium dioxide powder (Note 6). ) created.
上記 (注 10) は、 下記のものを示す。  The above (Note 10) indicates the following.
(注 10) 二酸化チタン粉末:商品名 「T I TANN I X JR— 805」 、 ティカ (株) 製、 屈折率 2. 72、 平均 1次粒子径 250 nm。  (Note 10) Titanium dioxide powder: trade name “TI TANN I X JR-805”, manufactured by Tika Co., Ltd., refractive index 2.72, average primary particle diameter 250 nm.
製造例 7  Production Example 7
製造例 5において、 二酸化チタン粉末 (注 6) 240部に代えて、 二酸化チタ ン粉末 (注 5) 240部を用いる以外は、 製造例 5と同様にして、 有機溶剤系顔 料ペースト (P— 7) を作成した。  In the same manner as in Production Example 5, except that 240 parts of titanium dioxide powder (Note 5) was used instead of 240 parts of titanium dioxide powder (Note 6), organic solvent-based paint paste (P- 7) was created.
製造例 8  Production Example 8
製造例 5において、 二酸化チタン粉末 (注 6) 240部に代えて、 酸化亜鉛粉 末 (注 7) 240部を用いる以外は、 製造例 5と同様にして、 有機溶剤系顔料べ 一スト (P— 8) を作成した。 In Preparation Example 5, zinc oxide powder was used instead of 240 parts of titanium dioxide powder (Note 6). (Note 7) An organic solvent-based pigment base (P-8) was prepared in the same manner as in Production Example 5 except that 240 parts were used.
力ルポニル基含有ァクリル共重合体エマルション (a) の製造  Of Acryl Copolymer Emulsion (a) Containing Sulfonyl Group
製造例 9  Production Example 9
フラスコに、 脱イオン水 36部およびァニオン性界面活性剤 (注 11) 0. 3 6部を入れ、 窒素置換後、 80°Cまで加温し、 内液を 80°Cに維持しながら 0. 1部の過硫酸アンモニゥムを加えた後、 下記組成の単量体エマルシヨンを 3時間 にわたつて滴下した。  In a flask, add 36 parts of deionized water and 0.36 parts of anionic surfactant (Note 11) .After purging with nitrogen, heat to 80 ° C, and maintain the internal solution at 80 ° C. After adding 1 part of ammonium persulfate, a monomer emulsion having the following composition was added dropwise over 3 hours.
単量体エマルシヨン組成  Monomer emulsion composition
脱イオン水 52. 4咅 15  Deionized water 52. 4 咅 15
ダイァセ卜: 10部  Diaset: 10 copies
アクリル酸 0. 5¾  Acrylic acid 0.5¾
17. 5咅  17.5 咅
メチルメタクリレ一卜 18部  Methyl methacrylate 18 parts
' 2—ェチルへキシルァクリレート 18部  '2-ethylhexyl acrylate 18 parts
n—ブチルァクリレート 36部  n-Butyl acrylate 36 parts
ァニオン性界面活性剤 (注 11) 9. 6¾  Anionic surfactant (Note 11) 9.6¾
過硫酸アンモニゥム 0. 2部  Ammonia persulfate 0.2 parts
滴下終了後 30分より 30分間に渡り、 0. 1部の過硫酸アンモニゥムを 1部 の脱イオン水に溶かした溶液を滴下し、 さらに 2時間 80 に保ってエマルショ ン (a) を得た。  From 30 minutes to 30 minutes after the completion of the dropwise addition, a solution prepared by dissolving 0.1 part of ammonium persulfate in 1 part of deionized water was added dropwise, and the mixture was kept at 80 for 2 hours to obtain an emulsion (a).
上記 (注 11) は、 下記のものを示す。  The above (Note 11) indicates the following.
(注 11 ) ァニオン性界面活性剤:商品名 「Newc o l 707 SF」 、 日 本乳化剤 (株) 製、 ポリオキシエチレン鎖を有する硫酸アンモニゥム塩、 固形分 30重量%。  (Note 11) Anionic surfactant: brand name “Newcol 707 SF”, manufactured by Japan Emulsifier Co., Ltd., ammonium sulfate having a polyoxyethylene chain, solid content 30% by weight.
得られた榭脂エマルションをガラス板 (15 OmmX 10 OmmX 2mm) に ドクターブレードを用いて塗装し、 温度 23°C、 相対湿度 50%の条件で 2週間、 乾燥及び養生した後、 塗膜を剥離して、 乾燥膜厚約 1 mmの遊離塗膜を得た。 こ の遊離塗膜の屈折率を、 J I S K 0062に記載のアッベ屈折率計を用いて、 測定したところ、 1 . 5 2であった。 The obtained resin emulsion was applied to a glass plate (15 OmmX 10 OmmX 2 mm) using a doctor blade, dried and cured at a temperature of 23 ° C and a relative humidity of 50% for 2 weeks. As a result, a free coating film having a dry film thickness of about 1 mm was obtained. Using the Abbe refractometer described in JISK 0062, the refractive index of this free coating film, The measured value was 1.52.
マレイミド基含有アクリル共重合体エマルシヨン (b ) の製造  Production of maleimide group-containing acrylic copolymer emulsion (b)
製造例 1 0  Production Example 10
フラスコ中で、 下記式 (4 ) で表されるマレイミド基含有モノマー 1 0部、 n 一ブチルメタクリレート 5 0部、 メチルメタクリレー卜 2 5部、 n—プチルァク リレート 1 4部およびメ夕クリル酸 1部を混合し、 その混合物に脱イオン水 1 0 0部およびラジカル重合性界面活性剤 (商品名 「アクアロン H S 1 0」 、 第一ェ 業製薬 (株) 製、 重合性不飽和基及びォキシエチレン基を有する硫酸アンモニゥ ム塩) 0 . 5部を添加し、 回転ホモミキサーを用いて単量体エマルシヨンを作製 した。  In a flask, 10 parts of a maleimide group-containing monomer represented by the following formula (4), 50 parts of n-butyl methacrylate, 25 parts of methyl methacrylate, 14 parts of n-butyl acrylate and 14 parts of methyl methacrylate Parts of the mixture, and 100 parts of deionized water and a radical polymerizable surfactant (trade name “AQUALON HS10”, manufactured by Daiichi Pharmaceutical Co., Ltd.), polymerizable unsaturated groups and oxyethylene groups 0.5 part of ammonium sulfate having the above), and a monomer emulsion was prepared using a rotary homomixer.
一方、 脱イオン水 4 5部およびラジカル重合性界面活性剤 ( 「アクアロン H S 1 0」 ) 0 . 5部を入れたフラスコ内部を窒素置換した後、 温度 8 0 °Cまで加温 し、 内液を温度 8 0 °Cに維持しながら、 そこへ過硫酸アンモニゥム 1部と上記単 量体ェマルジヨンのうち 2重量%分を添加し、 添加後 1 5分後から残りの単量体 ェマルジヨンを 2時間かけて滴下し、 さらにそのまま 2時間熟成した。 熟成後冷 却し、 中和剤として 1 0重量%アンモニア水を 3部滴下して、 樹脂エマルシヨン ( b ) を得た。  On the other hand, the inside of the flask containing 45 parts of deionized water and 0.5 part of a radical polymerizable surfactant (“AQUALON HS10”) was purged with nitrogen, and then heated to a temperature of 80 ° C. While maintaining the temperature at 80 ° C., 1 part of ammonium persulfate and 2% by weight of the above monomer emulsion were added thereto, and 15 minutes after the addition, the remaining monomer emulsion was added for 2 hours. Then, the mixture was aged for 2 hours. After aging, the mixture was cooled, and 3 parts of 10% by weight ammonia water was added dropwise as a neutralizing agent to obtain a resin emulsion (b).
このエマルシヨンから、 製造例 9と同様にして、 遊離塗膜を調製し、 その屈折 率を測定したところ、 1 . 5 2であった。  From this emulsion, a free coating film was prepared in the same manner as in Production Example 9, and the refractive index was measured to be 1.52.
Figure imgf000025_0001
脂肪酸変性アクリル樹脂 (c ) の製造 フラスコ中に、 ミネラルスピリット 1 0 0部を仕込み、 窒素ガスを通気しなが ら、 1 1 5 °Cまで撹拌下に昇温した。 次に、 温度を 1 1 5 °Cに保ちながら、 スチ レン 25部、 n—ブチルメタクリレート 15部、 i一ブチルメタクリレート 2 0部、 2—ェチルへキシルァクリレート 20部、 グリシジルメ夕クリレート 20 部及び 2, 2 '—ァゾビスイソプチロニトリル 1部の混合物を、 4時間かけて滴 下した。 ついで、 115°Cで 2時間熟成した後、 140でに昇温してからアマ二 油脂肪酸 30部及び反応触媒として N, N—ジメチルアミノエ夕ノール 0. 4部 を加え、 160°Cで 5時間保持して脂肪酸の付加反応を行った。 樹脂酸価を K〇 Η滴定法で追跡し、 樹脂酸価が 1. 0以下になった時点を終点とした。 反応終了 後、 キシレン 45部を加えて希釈して不揮発分 50重量%の褐色透明で粘調な脂 肪酸変性共重合体溶液を得た。 次に、 100°Cまで冷却し、 フラスコに水分離器 を装備し、 シリコン樹脂 (シラノール基を有するポリアルキルフエニルシロキサ ン、 商品名 「SH— 6018」 、 東レ ·ダウコーニング ·シリコーン (株) 製) 20部、 ミネラルスピリット 14部、 キシレン 6部及び反応触媒としてのテトラ 一 n—プチルチタネ一ト 0. 20部を加え、 165°Cまで昇温し、 還流系中で水 分離器で水を分離しながら 5時間反応させて不揮発分約 50重量%の褐色透明で 粘調なシリコン含有脂肪酸変性アクリル樹脂 (c) を得た。
Figure imgf000025_0001
Production of Fatty Acid-Modified Acrylic Resin (c) 100 parts of mineral spirits were charged into a flask, and the temperature was raised to 115 ° C. with stirring while flowing nitrogen gas. Next, while maintaining the temperature at 115 ° C, 25 parts of len, 15 parts of n-butyl methacrylate, 20 parts of i-butyl methacrylate, 20 parts of 2-ethylhexyl acrylate, 20 parts of glycidyl methacrylate and 1 part of 2,2'-azobisisobutyronitrile The mixture was allowed to drip over 4 hours. After aging at 115 ° C for 2 hours, the temperature was raised to 140, and 30 parts of linoleic acid fatty acid and 0.4 parts of N, N-dimethylaminoethanol as a reaction catalyst were added. The mixture was kept for 5 hours to perform an addition reaction of the fatty acid. The resin acid value was tracked by the KΗ titration method, and the time when the resin acid value became 1.0 or less was determined as the end point. After completion of the reaction, 45 parts of xylene was added to dilute the mixture to obtain a brown transparent and viscous fatty acid-modified copolymer solution having a nonvolatile content of 50% by weight. Next, the mixture was cooled to 100 ° C, and the flask was equipped with a water separator. Silicon resin (polyalkylphenylsiloxane having silanol groups, trade name “SH-6018”, Dow Corning Toray Silicone Co., Ltd.) 20 parts, 14 parts of mineral spirits, 6 parts of xylene and 0.20 parts of tetra-n-butyl titanate as a reaction catalyst, and the temperature is raised to 165 ° C, and the water is separated by a water separator in a reflux system. The mixture was reacted for 5 hours while separating to obtain a brown transparent viscous silicone-containing fatty acid-modified acrylic resin (c) having a nonvolatile content of about 50% by weight.
アクリル共重合体エマルシヨン (d) の製造  Production of acrylic copolymer emulsion (d)
製造例 12  Production Example 12
フラスコに、 脱イオン水 36部およびァニォン性界面活性剤 (注 11 ) 0. 3 6部を入れ、 窒素置換後、 80°Cまで加温し、 内液を 80°Cに維持しながら 0. 1部の過硫酸アンモニゥムを加えた後、 下記組成の単量体エマルシヨンを 3時間 にわたつて滴下した。  In a flask, add 36 parts of deionized water and 0.36 parts of anionic surfactant (Note 11) .After purging with nitrogen, heat to 80 ° C, and maintain the internal solution at 80 ° C. After adding 1 part of ammonium persulfate, a monomer emulsion having the following composition was added dropwise over 3 hours.
単量体エマルシヨン組成  Monomer emulsion composition
脱イオン水 52. 4部  Deionized water 52. 4 parts
アクリル酸 0. 5部  Acrylic acid 0.5 part
スチレン 17. 5部  Styrene 17.5 parts
メチルメタクリレート 28部  Methyl methacrylate 28 parts
2一ェチルへキシルァクリレ一ト 18部  (2) Ethylhexylacrylate 18 parts
n—ブチルァクリレート 36部  n-Butyl acrylate 36 parts
ァニオン性界面活性剤 (注 11) 9. 6部 過硫酸アンモニゥム 0. 2部 滴下終了後 30分より 30分間に渡り、 0. 1部の過硫酸アンモニゥムを 1部 の脱イオン水に溶かした溶液を滴下し、 さらに 2時間 80°Cに保ってエマルショ ン (d) を得た。 Anionic surfactant (Note 11) 9.6 parts 0.2 parts of ammonium persulfate From 30 minutes to 30 minutes after completion of the dropping, a solution prepared by dissolving 0.1 part of ammonium persulfate in 1 part of deionized water is added dropwise, and kept at 80 ° C for 2 hours. Emulsion (d) was obtained.
樹脂エマルシヨン (R— 1) の製造  Production of resin emulsion (R-1)
製造例 13  Production Example 13
2リットルのステンレス容器に、 上記エマルシヨン (a) およびエマルシヨン (b) を、 固形分重量比がエマルシヨン (a) :エマルシヨン (b) =50 : 5 となるように混合したものを 550部、 上水 50部、 アジピン酸ジヒドラジド 1 部を入れ、 均一になるように攪拌して、 樹脂エマルシヨン (R— 1) を得た。  550 parts of a mixture of the above emulsion (a) and emulsion (b) in a 2 liter stainless steel container such that the solid content weight ratio becomes emulsion (a): emulsion (b) = 50: 5. 50 parts and 1 part of adipic dihydrazide were added, and the mixture was stirred so as to be uniform to obtain a resin emulsion (R-1).
樹脂溶液 (R— 2) の製造  Production of resin solution (R-2)
製造例 14  Production Example 14
1リツトルのステンレス容器に、 固形分 55重量%のアクリルポリオール樹脂 (ガラス転移温度 55°C、 商品名 「ァクリディック A— 370」 、 大日本インキ 化学工業 (株) 製) 550部、 ミネラルスピリット 50部を入れ、 均一に攙拌し て、 樹脂溶液 (R— 2) を得た。  In a 1 liter stainless steel container, 550 parts of an acrylic polyol resin with a solid content of 55% by weight (glass transition temperature 55 ° C, trade name “Acridic A-370”, manufactured by Dainippon Ink and Chemicals, Inc.) 550 parts, mineral spirit 50 parts Was added and stirred uniformly to obtain a resin solution (R-2).
遮熱性塗膜形成用上塗り塗料組成物の製造  Manufacture of topcoat composition for forming heat-shielding coating
実施例 1  Example 1
1リットルのステレンス容器に、 水性顔料ペースト (P— 1) 270部を入れ、 さらに、 樹脂エマルシヨン (R— 1) 600部、 2, 2, 4一トリメチルー 1, 3—ペンタンジオール モノイソプチレート 60部を攪拌しながら入れ、 アンモ ニァ水で pH 7〜 9に調整して、 水性塗料組成物を得た。  In a 1-liter stainless steel container, put 270 parts of the aqueous pigment paste (P-1), 600 parts of resin emulsion (R-1), 2,2,4-trimethyl-1,3-pentanediol monoisobutylate 60 The mixture was added with stirring, and the pH was adjusted to 7 to 9 with ammonia water to obtain an aqueous coating composition.
この塗料組成物において、 樹脂成分 100重量部に対する平均 1次粒子径 25 0 n mの二酸化チタン粉末の配合割合は 20部で、 平均 1次粒子径 1, 000 n mの二酸化チタン粉末の配合割合は 20部であった。  In this coating composition, the mixing ratio of titanium dioxide powder having an average primary particle diameter of 250 nm to 20 parts by weight of the resin component was 100 parts by weight, and the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm was 20 parts. Department.
ここで、 塗料組成物中の樹脂成分は、 樹脂エマルシヨン (R— 1) の樹脂固形 分と水性顔料べ一スト (P— 1) 中の樹脂固形分との合計量である。  Here, the resin component in the coating composition is the total amount of the resin solid content of the resin emulsion (R-1) and the resin solid content of the aqueous pigment base (P-1).
実施例 2  Example 2
実施例 1において、 水性顔料ペースト (P— 1) に代えて、 水性顔料ペースト (P-2) を同量配合する以外は、 実施例 1と同様にして、 水性塗料組成物を得 た。 In Example 1, an aqueous pigment paste was used instead of the aqueous pigment paste (P-1). An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of (P-2) was blended.
この塗料組成物において、 樹脂成分 100重量部に対する平均 1次粒子径 1, 000 nmの二酸化チタン粉末の配合割合は 40部であった。  In this coating composition, the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm to 40 parts by weight of the resin component was 40 parts.
ここで、 塗料組成物中の樹脂成分は、 樹脂エマルシヨン (R— 1) の樹脂固形 分と水性顔料ペースト (P— 2) 中の樹脂固形分との合計量である。  Here, the resin component in the coating composition is the total amount of the resin solid content of the resin emulsion (R-1) and the resin solid content of the aqueous pigment paste (P-2).
実施例 3  Example 3
実施例 1において、 樹脂エマルシヨン (R— 1) に代えて、 アクリル共重合体 エマルシヨン (d) を固形分で同量となるように配合する以外は、 実施例 1と同 様にして、 水性塗料組成物を得た。  A water-based paint was prepared in the same manner as in Example 1, except that the acrylic copolymer emulsion (d) was blended in the same amount as the solid content in place of the resin emulsion (R-1). A composition was obtained.
この塗料組成物において、 樹脂成分 100重量部に対する平均 1次粒子径 25 0 n mの二酸化チタン粉末の配合割合は 20部で、 平均 1次粒子径 1, 000 n mの二酸化チタン粉末の配合割合は 20部であった。  In this coating composition, the mixing ratio of titanium dioxide powder having an average primary particle diameter of 250 nm to 20 parts by weight of the resin component was 100 parts by weight, and the mixing ratio of titanium dioxide powder having an average primary particle diameter of 1,000 nm was 20 parts. Department.
実施例 4  Example 4
下記の方法により、 ベース樹脂と硬化剤からなる二液ウレタン硬化型有機溶剤 型塗料組成物を調製した。  A two-part urethane-curable organic solvent-based coating composition comprising a base resin and a curing agent was prepared by the following method.
1リットルのステレンス容器に、 有機溶剤系顔料ペースト (P— 5) 280部 を入れ、 さらに、 製造例 13で得た樹脂溶液 (R- 2) 600部を攪拌しながら 入れ、 アクリルポリオ一ル樹脂を含有するべ一ス樹脂溶液を得た。  Into a 1-liter stainless steel container, add 280 parts of the organic solvent-based pigment paste (P-5), and further stir 600 parts of the resin solution (R-2) obtained in Production Example 13 while stirring. Was obtained.
別に、 へキサメチレンジィソシァネ一トのィソシァヌレート体 (商品名 「デュ ラネート TSS— 100」 、 旭ィ匕成 (株) 製) 50部とェチルシリケートの低縮 合物 (商品名 「ES— 48」 、 コルコート社製) 10部を混合して、 硬化剤を得 た。 塗料として使用する際には、 上記ベース樹脂溶液の固形分 100部に対して 該硬化剤を 20部配合する。  Separately, isocyanurate of hexamethylene diisocyanate (trade name “Duranate TSS-100”, manufactured by Asahi Danisei Co., Ltd.) and 50 parts of low-condensed ethyl silicate (trade name “ES —48 ”, manufactured by Colcoat Co., Ltd.), to obtain a curing agent. When used as a paint, 20 parts of the curing agent is added to 100 parts of the solid content of the base resin solution.
この塗料における樹脂成分 100重量部に対する平均 1次粒子径 1, 00 On mの二酸化チタン粉末の配合割合は 50部であった。  The mixing ratio of the titanium dioxide powder having an average primary particle diameter of 1,000 Onm to 100 parts by weight of the resin component in this coating was 50 parts.
実施例 5  Example 5
1リットルのステレンス容器に、 有機溶剤系顔料ペースト (P— 5) 280部 を入れ、 さらに、 製造例 11で得た脂肪酸変性アクリル樹脂 (c) 600部を混 合し、 攪拌して、 常温架橋型の有機溶剤型塗料組成物を得た。 In a 1-liter stainless steel container, 280 parts of the organic solvent-based pigment paste (P-5) was added, and 600 parts of the fatty acid-modified acrylic resin (c) obtained in Production Example 11 was mixed. The resulting mixture was stirred to obtain a room temperature crosslinking type organic solvent type coating composition.
この塗料における樹脂成分 100重量部に対する平均 1次粒子径 1 , 000 n mの二酸ィヒチタン粉末の配合割合は 50部であった。  The mixing ratio of the titanium dioxide powder having an average primary particle diameter of 1,000 nm to 100 parts by weight of the resin component in this coating material was 50 parts.
濃色上塗り塗料組成物の製造  Manufacture of dark topcoat composition
実施例 6  Example 6
1リットルのステレンス容器に、 下記に示す配合成分を入れ、 攪拌機にて 30 分間攪拌し、 分散した後に、 アンモニア水で PH7〜9に調整して、 水性カラー 塗料組成物 (チョコレート色) を調製した。  The following ingredients were placed in a 1-liter stainless steel container, stirred for 30 minutes with a stirrer, dispersed, and adjusted to pH 7 to 9 with aqueous ammonia to prepare an aqueous color coating composition (chocolate color). .
上水 100部  Water supply 100 parts
エチレングリコ一ル 20部  Ethylene glycol 20 parts
顔料分散用樹脂 (注 1) 10部  Pigment dispersion resin (Note 1) 10 parts
消泡剤 (注 2) 10部  Antifoam (Note 2) 10 parts
増粘剤 (注 3 ) 10部  Thickener (Note 3) 10 parts
クレー (注 4) 50部  Clay (Note 4) 50 parts
赤色顔料ペースト (注 12 ) 80部  Red pigment paste (Note 12) 80 parts
緑色顔料ペースト (注 13 ) 20部  Green pigment paste (Note 13) 20 parts
二酸化チタン顔料 (注 6 ) 60部  Titanium dioxide pigment (Note 6) 60 parts
製造例 9で得た樹脂エマルシヨン (a) 500部  Resin emulsion obtained in Production Example 9 (a) 500 parts
製造例 10で得た樹脂エマルシヨン ( b ) 50部  50 parts of the resin emulsion obtained in Production Example 10 (b)
2, 2, 4 _トリメチルー 1, 3—ペン  2, 2, 4 _trimethyl-1,3-pen
タンジオール モノイソブチレ一卜 60部  Tandiol monoisobutylate 60 parts
上記 (注 12) 及び (注 13) は、 下記のものを示す。  The above (Note 12) and (Note 13) indicate the following.
(注 12) 赤色顔料ペースト:商品名 「NS BROWN C 522」 、 山陽 色素社製、 顔料;赤色酸化鉄 (含有量 50重量%) 。  (Note 12) Red pigment paste: trade name “NS BROWN C 522”, manufactured by Sanyo Pigment Co., pigment: red iron oxide (content 50% by weight).
(注 13) 緑色顔料ペースト:商品名 「NS GREEN 4711」 、 山陽 色素社製、 顔料;フタロシアニングリーン (含有量 30重量%) 。  (Note 13) Green pigment paste: NS GREEN 4711 (trade name), manufactured by Sanyo Pigment Co., pigment: phthalocyanine green (content 30% by weight).
実施例 7  Example 7
実施例 1において、 水性顔料ペースト (P— 1) に代えて、 水性顔料ペースト (P— 3) を同量配合する以外は、 実施例 1と同様にして、 水性塗料組成物を得 た。 An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of the aqueous pigment paste (P-3) was used instead of the aqueous pigment paste (P-1). It was.
比較例 1  Comparative Example 1
実施例 1において、 水性顔料ペースト (P_ l) に代えて、 水性顔料ペース卜 (P— 4) を同量配合する以外は、 実施例 1と同様にして、 水性塗料組成物を得 た。  An aqueous coating composition was obtained in the same manner as in Example 1, except that the same amount of the aqueous pigment paste (P-4) was used instead of the aqueous pigment paste (P_l).
比較例 2  Comparative Example 2
実施例 4において、 有機溶剤系顔料ペースト (P— 5) に代えて、 有機溶剤系 顔料ペースト (P— 6) を同量配合する以外は、 実施例 4と同様にして、 ァクリ ルポリオール樹脂を含有するベース樹脂溶液を得た。 このベース樹脂溶液と、 実 施例 4に記載の硬化剤とからなるニ液ゥレタン硬化型有機溶剤型塗料組成物を得 た。  The acryl polyol resin was prepared in the same manner as in Example 4 except that the organic solvent-based pigment paste (P-5) was replaced with the same amount of the organic solvent-based pigment paste (P-6). A containing base resin solution was obtained. A two-component urethane-curable organic solvent-based coating composition comprising the base resin solution and the curing agent described in Example 4 was obtained.
比較例 3  Comparative Example 3
実施例 5において、 有機溶剤系顔料ペースト (P— 5) に代えて、 有機溶剤系 顔料ペースト (P— 7) を同量配合する以外は、 実施例 5と同様にして、 常温架 橋型の有機溶剤型塗料組成物を得た。  In the same manner as in Example 5 except that the same amount of the organic solvent-based pigment paste (P-7) was used instead of the organic solvent-based pigment paste (P-5), An organic solvent type coating composition was obtained.
比較例 4  Comparative Example 4
1リットルのステレンス容器に、 有機溶剤系顔料ペースト (P— 8) 280部 を入れ、 さらに、 塩化ビニル系樹脂 (商品名 「45%カネビラック LE— Y」 、 鐘淵化学社製、 被膜の屈折率 1. 75) 600部を混合し、 攪拌して、 常温乾燥 型の有機溶剤型塗料組成物を得た。  In a 1-liter stainless steel container, put 280 parts of an organic solvent-based pigment paste (P-8) and add a vinyl chloride resin (trade name "45% Kanevilac LE-Y", manufactured by Kaneka Chemical Co., Inc. 1.75) 600 parts were mixed and stirred to obtain a room temperature drying type organic solvent type coating composition.
上記実施例 1〜 7及び比較例 1〜 4で得られた各塗料組成物について、 樹脂被 膜の屈折率、 その塗膜の顔料体積濃度及び破断伸び率を、 下記試験方法に従って 測定した。  For each of the coating compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 4, the refractive index of the resin coating, the pigment volume concentration of the coating and the elongation at break were measured according to the following test methods.
樹脂被膜の屈折率  Refractive index of resin coating
各塗料組成物から顔料成分を除いた組成の樹脂組成物を作成し、 これをガラス 板 (1 5 OmmX 10 Ommx 2mm) にドクターブレードを用いて塗装し、 温 度 23°C、 相対湿度 50%の条件で 2週間、 乾燥及び養生した後、 塗膜を剥離し て、 乾燥膜厚約 1 mmの遊離塗膜を得た。 この遊離塗膜の屈折率を、 J I S K 0062に記載のアッベ屈折率計を用いて、 測定した。 顔料体積濃度 (PVC) A resin composition was prepared by removing the pigment component from each coating composition. This was applied to a glass plate (15 OmmX 10 Ommx 2 mm) using a doctor blade, at a temperature of 23 ° C and a relative humidity of 50%. After drying and curing for 2 weeks under the above conditions, the coating film was peeled off to obtain a free coating film having a dry film thickness of about 1 mm. The refractive index of the free coating film was measured using an Abbe refractometer described in JISK0062. Pigment volume concentration (PVC)
各塗料組成物をガラス板 (15 OmmX 10 OmmX 2mm) にドクターブレ —ドを用いて塗装し、 温度 23° (:、 相対湿度 50%の条件で 2週間、 乾燥及び養 生した後、 塗膜を剥離して、 乾燥膜厚約 1 mmの遊離塗膜を得た。 この遊離塗膜 の断面写真を走査型電子顕微鏡 (商品名 「J SM— 531 OLV」 、 日本電子社 製) にて撮影して、 SEM写真を得た。 塗膜断面の SEM写真において、 樹脂成 分に基づく連続相と顔料成分に基づく分散相とが観察された。 該遊離塗膜を波長 型 EPMA (商品名 「JXA— 8100」 、 日本電子社製) にて解析して、 SE M写真で観察される分散相のうち、 二酸化チタン及び酸化亜鉛に起因する分散相 を特定した。 特定された二酸化チタンに起因する分散相について、 SEM写真に おける拡大倍率から長径と短径を換算し、 これらの平均が 500〜2, 00 On mの分散相を平均 1次粒子径が 1, 000 nmの二酸化チタンとし、 400 nm 未満の分散相を平均 1次粒子径が 25 Onmの二酸化チタンとした。 また、 特定 された酸ィヒ亜鉛に起因する分散相について、 長径と短径の平均が 500〜2, 0 00 nmの分散相を平均 1次粒子径が 600 nmの酸化亜鉛とした。  Each coating composition was applied to a glass plate (15 OmmX 10 OmmX 2 mm) using a doctor blade, dried and cured at a temperature of 23 ° (50% relative humidity for 2 weeks), and then coated. The cross section of the free film was photographed with a scanning electron microscope (trade name “J SM-531 OLV”, manufactured by JEOL Ltd.). In the SEM photograph of the cross section of the coating film, a continuous phase based on the resin component and a dispersed phase based on the pigment component were observed. — 8100 ”(manufactured by JEOL Ltd.), and identified dispersed phases originating from titanium dioxide and zinc oxide among the dispersed phases observed in the SEM photograph. For the phase, the major axis and minor axis were converted from the magnification in the SEM photograph, and the average of these was 500 to 2,000 O The dispersed phase having an average primary particle diameter of 1,000 nm was titanium dioxide having an average primary particle diameter of 1,000 nm, and the dispersed phase having an average primary particle diameter of less than 400 nm was titanium dioxide having an average primary particle diameter of 25 Onm. Regarding the dispersed phase caused by the above, the dispersed phase having an average of major axis and minor axis of 500 to 2,000 nm was defined as zinc oxide having an average primary particle diameter of 600 nm.
該 S EM写真に観察された分散相のうち、 各白色顔料に起因する分散相を上記 基準で夫々特定し、 塗膜断面積に対するその分散相の面積の合計の割合を算出す ることにより顔料体積濃度 (%) を算出した。  Among the disperse phases observed in the SEM photograph, the disperse phase caused by each white pigment was specified based on the above criteria, and the ratio of the total area of the disperse phase to the cross-sectional area of the coating film was calculated. The volume concentration (%) was calculated.
破断伸び率 (¾)  Elongation at break (¾)
各塗料組成物を離型紙 (20 OmmX 20 Omm) にドク夕一ブレードを用い て塗装し、 温度 23°C、 相対湿度 50%の条件で 2週間、 乾燥及び養生した後、 塗膜を剥離して、 乾燥膜厚約 1 mmの遊離塗膜を得た。 この遊離塗膜の破断伸び 率を、 引張試験機 (商品名 「オートグラフ AG2000 B型」 、 島津製作所  Each coating composition was applied to release paper (20 OmmX 20 Omm) using a doctor blade, dried and cured at a temperature of 23 ° C and a relative humidity of 50% for 2 weeks. Thus, a free coating having a dry film thickness of about 1 mm was obtained. The elongation at break of the free coating film was measured using a tensile tester (trade name "Autograph AG2000 B", Shimadzu Corporation).
(株) 製) を用い、 20°Cの温度で、 引張速度 20 OmmZ分の条件で測定した。 上記試験結果を、 表 1に示す。 表 1 Was measured at a temperature of 20 ° C. and a tensile speed of 20 OmmZ. Table 1 shows the test results. table 1
Figure imgf000032_0001
Figure imgf000032_0001
表 1において、 J R— 60 5、 J R— 1 0 0 0及び J R— 8 0 5は、 平均 1次 粒子径 2 5 0 nmの二酸化チタン粉末 「T I TANN I X J R— 6 0 5」 (商 品名、 ティカ (株) 製) 、 平均 1次粒子径 1, 00 O nmの二酸化チタン粉末 In Table 1, JR-605, JR-1000 and JR-805 are titanium dioxide powders with an average primary particle diameter of 250 nm “TI TANN IXJR-605” (trade name, Tika Titanium dioxide powder with an average primary particle diameter of 1,00 O nm
「T I ΤΑΝΝ I X J R_ 1 0 0 0」 (商品名、 ティカ (株) 製) 及び平均 1 次粒子径 2 5 0 nmの二酸化チタン粉末 「T I ΤΑΝΝ I X J R— 8 0 5」“T I ΤΑΝΝI X J R — 100 0” (trade name, manufactured by Tika Co., Ltd.) and titanium dioxide powder with an average primary particle size of 250 nm “T I ΤΑΝΝI X J R—805”
(商品名、 ティカ (株) 製) を、 それぞれ示す。 また、 酸化亜鉛は、 平均 1次粒 子径 60 O nmの酸化亜鉛粉末 (商品名 「酸化亜鉛 2種」 、 堺化学工業 (株) 製) を示す。 (Trade name, manufactured by Tika Co., Ltd.). In addition, zinc oxide refers to zinc oxide powder having an average primary particle diameter of 60 O nm (trade name “2 types of zinc oxide”, manufactured by Sakai Chemical Industry Co., Ltd.).
実施例 8〜 14および比較例 5〜 8  Examples 8 to 14 and Comparative Examples 5 to 8
スレート板 ( 7 0 mm X 1 5 0 mmX 5 mm) に、 実施例 1〜 7及び比較例 1 〜4で得られた各塗料組成物を、 乾燥膜厚が 1, 00 0 mとなるようにドク夕 —ブレードを用いて塗装し、 2 3°C (相対湿度 5 0 %) にて 14日間乾燥させて、 試験塗板を得た。  Each coating composition obtained in Examples 1 to 7 and Comparative Examples 1 to 4 was placed on a slate plate (70 mm X 150 mm X 5 mm) so that the dry film thickness became 1,000 m. Doc evening — Coated with a blade and dried at 23 ° C (50% relative humidity) for 14 days to obtain a test coated plate.
また、 スレ一ト板に代えて、 ガラス板 (1 5 0 mmX 1 0 0 mmX 2 mm) を 用いた他は同様に、 塗装及び乾燥し、 次いで乾燥塗膜を剥離して遊離塗膜を得た。 上記で得られた各試験塗板について、 光沢、 下地隠蔽性及び L*値を調べた。 また、 上記で得られた各遊離塗膜について、 遮熱効果を調べた。 各試験方法は、 以下の通りである。  Also, except that a glass plate (150 mm x 100 mm x 2 mm) was used instead of the plate, coating and drying were performed in the same manner, and then the dried coating was peeled off to obtain a free coating. Was. With respect to each of the test coated plates obtained above, the gloss, the background concealing property, and the L * value were examined. Further, the heat shielding effect of each free coating film obtained above was examined. Each test method is as follows.
光沢  Gloss
各試験塗板の鏡面光沢度 (6 0° ダロス) を測定した。 大きいほど光沢が高い ことを意味する。  The specular glossiness (60 ° Darros) of each test coated plate was measured. The larger the value, the higher the gloss.
下地隠蔽性 各試験塗板を目視で観察し、 次の基準で評価した。 Aは下地が観察できず隠蔽 性が良好であることを、 Bは下地が観察でき、 隠蔽性が不良であることを、 それ ぞれ示す。 Underlay hiding Each test coated plate was visually observed and evaluated according to the following criteria. A indicates that the base is not observable and the opacity is good, and B indicates that the base is observable and the concealment is poor.
じ値  Same value
各試験塗板の塗膜について、 測色計 (商品名 「カラ一コンピュータ SM— 7」 、 スガ試験機 (株) 製) を用いて J I S Z 8729に規定される L*a*b*表 色系に基づく L*値を測定した。 上記遊離塗膜の遮熱効果を、 図 1に示した温度測定装置を用いて、 調べた。 図 1は、 該装置の概略を示した断面図である。 図 1において符号 1は光源を、 2は 試験用の遊離塗膜を、 3は発泡スチロール製の箱を、 4〜6は温度センサーとし て用いられる熱電対温度計を、 それぞれ示す。  Using a colorimeter (trade name “Color Computer SM-7”, manufactured by Suga Test Instruments Co., Ltd.), the coating film of each test coated plate was converted to the L * a * b * color system specified in JISZ 8729. Based L * values were measured. The heat shielding effect of the free coating film was examined using the temperature measuring device shown in FIG. FIG. 1 is a cross-sectional view schematically showing the apparatus. In FIG. 1, reference numeral 1 denotes a light source, 2 denotes a free coating film for testing, 3 denotes a styrene foam box, and 4 to 6 denote thermocouple thermometers used as temperature sensors.
光源 1としては、 赤外線を含む光を発する白熱電球 (商品名 「レフランプ」 、 100W、 東芝 (株) 製) を用いた。 乾燥膜厚 1, 000 mの遊離塗膜 (50 mmX 70mm) を、 箱 3の上面に設けられた遊離塗膜と同じ大きさの穴に、 設 置した。 光源 1と遊離塗膜 2の距離は 15 cmとした。 熱電対温度計を、 遊離塗 膜 2の表面と裏面及び箱 3の内部に夫々設置した。  As the light source 1, an incandescent light bulb (trade name “Reflamp”, 100W, manufactured by Toshiba Corporation) that emits light including infrared rays was used. A free paint film (50 mm x 70 mm) with a dry film thickness of 1,000 m was placed in a hole of the same size as the free paint film provided on the upper surface of Box 3. The distance between the light source 1 and the free coating film 2 was 15 cm. Thermocouple thermometers were installed on the front and back surfaces of the free coating film 2 and inside the box 3, respectively.
光源 1の電源を入れ、 遊離塗膜表面に赤外線を含む光を照射しながら、 塗膜の 表面、 裏面及び箱内部の各温度を測定し、 各温度が一定値に収束したときの各温 度を調べた。 箱内部温度が低いほど、 遮熱効果が高いことを意味する。  Turn on the power of the light source 1 and measure the temperature of the front and back surfaces of the coating film and the inside of the box while irradiating the surface of the free coating film with light including infrared rays, and measure each temperature when each temperature converges to a certain value. Was examined. The lower the temperature inside the box, the higher the heat shielding effect.
上記試験結果を、 表 2に示す。  Table 2 shows the test results.
表 2  Table 2
施 例 比 較 例  Example Comparative example
8 9 10 11 12 13 14 5 6 7 8 塗料組成物の種類 実施実施実施実施実施実施実施比較比較比較比較  8 9 10 11 12 13 14 5 6 7 8 Type of coating composition
例 1 例 2 例 3 例 4 例 5 例 6 例 7 例 1 例 2 例 3 例 4 光沢 81 81 80 82 83 81 84 82 81 84 84 下地隠蔽性 A A A A A A A A A A B  Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 1 Example 2 Example 3 Example 4 Gloss 81 81 80 82 83 81 84 82 81 84 84 Underground hiding A A A A A A A A A A A A B
じ値 96.5 94.7 95.8 96.2 95.8 25.4 94.1 95.8 96.3 94.7 93.9 難表面温度 (°C) 49 41 48 40 42 55 47 63 60 68 68 麵裏面温度 (°C) 49 41 48 40 42 55 47 63 59 68 67 箱内部温度 (°c) 35 30 35 30 31 41 40 50 47 55 52 実施例 15および比較例 9 96.5 94.7 95.8 96.2 95.8 25.4 94.1 95.8 96.3 94.7 93.9 Difficult surface temperature (° C) 49 41 48 40 42 55 47 63 60 68 68 麵 Back surface temperature (° C) 49 41 48 40 42 55 47 63 59 68 67 Box Internal temperature (° c) 35 30 35 30 31 41 40 50 47 55 52 Example 15 and Comparative Example 9
スレート板 (7 OmmX 15 OmmX 5mm) に、 アクリル樹脂エマルシヨン 系下塗り塗料組成物 (商品名 「アレスホルダー GII」 、 関西ペイント (株) 製、 顔料体積濃度 62%, 20 °Cでの破断伸び率 120%) を、 乾燥膜厚が 1 mmと なるようにドクターブレードを用いて塗装し、 室温 (23°C) で 16時間乾燥さ せた後、 該塗面上に実施例 1又は比較例 1で得られた塗料組成物を乾燥膜厚が 5 0 mとなるようにドク夕一ブレードを用いて塗装し、 室温 (23°C) で 14日 間乾燥させ、 試験塗板とした。  Acrylic resin emulsion based primer coating composition (Ales Holder GII, manufactured by Kansai Paint Co., Ltd., pigment volume concentration 62%, slate board (7 OmmX 15 OmmX 5mm), pigment volume concentration 62%, elongation at break at 20 ° C 120 %) Was applied using a doctor blade so that the dry film thickness was 1 mm, and dried at room temperature (23 ° C) for 16 hours. The obtained coating composition was applied using a doctor blade to a dry film thickness of 50 m, and dried at room temperature (23 ° C) for 14 days to obtain a test coated plate.
実施例 16〜 17  Examples 16 to 17
スレート板 (7 OmmX 15 OmmX 5mm) に、 実施例 2で得られた塗料組 成物を、 乾燥膜厚が 150 mとなるようにドクターブレードを用いて塗装し、 室温 (23°C) で 16時間乾燥させた。 次いで、 該塗面上に実施例 1又は比較例 1で得られた塗料組成物を、 乾燥膜厚が 50 mとなるように塗装し、 室温 (2 3°C) で 14日間乾燥させ、 試験塗板とした。  The paint composition obtained in Example 2 was applied to a slate plate (7 OmmX 15 OmmX 5 mm) using a doctor blade so that the dry film thickness became 150 m, and was applied at room temperature (23 ° C). Let dry for hours. Then, the coating composition obtained in Example 1 or Comparative Example 1 was applied on the coated surface so that the dry film thickness became 50 m, and dried at room temperature (23 ° C) for 14 days. It was a painted plate.
上記実施例 15〜 17及び比較例 9で得られた各試験塗板について、 前記方法 により、 光沢、 下地隠蔽性及び L*値を調べた。 また、 スレート板に代えてガラ ス板を用いて得られた各遊離塗膜について、 前記方法により遮熱効果を調べた。 上記試験結果を、 表 3に示す。  With respect to each of the test coated plates obtained in Examples 15 to 17 and Comparative Example 9, the gloss, the background concealing property, and the L * value were examined by the above method. Further, the heat shielding effect of each free coating film obtained by using a glass plate instead of the slate plate was examined by the above method. Table 3 shows the test results.
表 3  Table 3
Figure imgf000034_0001
Figure imgf000034_0001
表 3において、 ホルダ一 G IIは、 アクリル樹脂エマルシヨン系下塗り塗料組成 物 (商品名 「アレスホルダー GII」 、 関西ペイント (株) 製) を示す。  In Table 3, Holder-1 G II indicates an acrylic resin emulsion-based primer coating composition (trade name “Ales Holder GII”, manufactured by Kansai Paint Co., Ltd.).
顔料ペーストの製造 製造例 15 Manufacture of pigment paste Production Example 15
1リットルのステレンス容器に、 下記に示す顔料べ一スト用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P— 9) を作成した。  The following ingredients for a pigment base were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P-9).
上水 100部  Water supply 100 parts
エチレングリコール 40部  Ethylene glycol 40 parts
分散用樹脂 (注 1) 20部  Dispersion resin (Note 1) 20 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部  Thickener (Note 3) 20 parts
二酸化チタン粉末 (注 5) 120部  Titanium dioxide powder (Note 5) 120 parts
二酸化チタン粉末 (注 6) 120部  Titanium dioxide powder (Note 6) 120 parts
製造例 16  Production Example 16
1リットルのステレンス容器に、 下記に示す顔料べースト用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P-10) を作成した。  The following ingredients for a pigment base were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P-10).
上水 100部  Water supply 100 parts
エチレングリコール 40部  Ethylene glycol 40 parts
分散用樹脂 (注 1) 20部  Dispersion resin (Note 1) 20 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部  Thickener (Note 3) 20 parts
二酸化チタン粉末 (注 5) 110部  Titanium dioxide powder (Note 5) 110 parts
二酸化チタン粉末 (注 6) 110部  Titanium dioxide powder (Note 6) 110 parts
赤色顔料ペースト (注 12) 10部  Red pigment paste (Note 12) 10 parts
緑色顔料ペースト (注 13) 10部  Green pigment paste (Note 13) 10 parts
製造例 17  Production Example 17
1リットルのステレンス容器に、 下記に示す顔料べース卜用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P 11) を作成した。  The following components for a pigment base were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P11).
上水 100部  Water supply 100 parts
エチレングリコール 40部  Ethylene glycol 40 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部 赤色顔料ペースト (注 12) 40部 緑色顔料ペースト (注 13 ) 40部 Thickener (Note 3) 20 parts Red pigment paste (Note 12) 40 parts Green pigment paste (Note 13) 40 parts
製造例 18  Production Example 18
1リットルのステレンス容器に、 下記に示す顔料ペース卜用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P—12) を作成した。  The following ingredients for pigment paste were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P-12).
上水 100部  Water supply 100 parts
エチレングリコール 40部  Ethylene glycol 40 parts
分散用樹脂 (注 1) 20部  Dispersion resin (Note 1) 20 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部  Thickener (Note 3) 20 parts
二酸化チタン粉末 (注 5 ) 120部  Titanium dioxide powder (Note 5) 120 parts
二酸化チタン粉末 (注 6 ) 120部  Titanium dioxide powder (Note 6) 120 parts
ペリレン系黒色顔料 (注 14) 5部  Perylene black pigment (Note 14) 5 parts
上記 (注 14) は、 下記のものを示す。  The above (Note 14) indicates the following.
(注 14) ペリレン系黒色顔料:商品名 「PAL I OGEN BLACK S 0084」、 BAS F社製。  (Note 14) Perylene black pigment: trade name “PAL I OGEN BLACK S 0084”, manufactured by BAS F.
製造例 19  Production Example 19
1リットルのステレンス容器に、 下記に示す顔料ペース卜用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P— 13) を作成した。  The following components for pigment paste were placed in a 1-liter stainless steel container, and stirred for 30 minutes with a stirrer to form an aqueous pigment paste (P-13).
上水 100部  Water supply 100 parts
エチレングリコ一ル 40部  Ethylene glycol 40 parts
消泡剤 (注 2) 20部  Antifoam (Note 2) 20 parts
増粘剤 (注 3) 20部  Thickener (Note 3) 20 parts
カーボンブラック顔料ペースト (注 15) 20部  Carbon black pigment paste (Note 15) 20 parts
上記 (注 15) は、 下記のものを示す。  The above (Note 15) indicates the following.
(注 15) カーボンブラック顔料べ一スト:商品名「NSブラック C— 62 8」、 山陽色素社製。  (Note 15) Carbon black pigment base: NS Black C—628, trade name, manufactured by Sanyo Dyeing Co.
製造例 20  Production Example 20
1リットルのステレンス容器に、 下記に示す顔料ペース卜用の配合成分を入れ、 攪拌機にて 30分間攪拌し分散して水性顔料ペースト (P— 14) を作成した 上水 100咅 In a 1-liter stainless steel container, put the following ingredients for pigment paste, Agitated for 30 minutes with a stirrer and dispersed to form aqueous pigment paste (P-14).
ヒドロキシェチルセルロース (増粘剤) 0. 5咅 15  Hydroxyethyl cellulose (thickener) 0.5 咅 15
分散用樹脂 (注 16) 6. 6咅 15  Dispersion resin (Note 16) 6. 6 咅 15
ペリレン系黒色顔料 (注 14) 33. 3部  Perylene black pigment (Note 14) 33.3 parts
上記 (注 16) は、 下記のものを示す。  The above (Note 16) indicates the following.
(注 16) 分散用樹脂:商品名 「BYK— 190」 、 ビッグ ·ケミ一社製、 ポ リカルボン酸系樹脂、 固形分 40重量%。  (Note 16) Dispersing resin: trade name “BYK-190”, manufactured by Big Chemical Co., Ltd., polycarboxylic acid resin, solid content 40% by weight.
遮熱性塗膜形成用下塗り塗料組成物の製造  Manufacture of primer coating composition for forming thermal barrier coating
実施例 18  Example 18
1リットルのステレンス容器に、 下記配合成分を、 攪拌機にて 30分間攪拌混 合することにより、 水性下塗り塗料組成物を得た。  The following components were stirred and mixed in a 1-liter stainless steel container with a stirrer for 30 minutes to obtain an aqueous primer coating composition.
水性顔料ペースト (P— 10) 350部  Aqueous pigment paste (P-10) 350 parts
製造例 9で得た樹脂エマルシヨン ( a ) 200部  200 parts of the resin emulsion obtained in Production Example 9 (a)
2, 2, 4—トリメチルー 1, 3—ペン  2, 2, 4-trimethyl-1, 3-pen
タンジオール モノイソプチレート 20部  Tandiol monoisobutylate 20 parts
増粘剤 (注 17 ) 5部  Thickener (Note 17) 5 parts
上水 50部  Tap water 50 parts
上記 (注 17) は、 下記のものを示す。  The above (Note 17) indicates the following.
(注 17) 増粘剤:商品名「DKシックナ一 SCT— 275」、 サンノプコ社製。 実施例 19〜 22及び比較例 10〜: 12  (Note 17) Thickener: Trade name “DK Sicuna I SCT-275”, manufactured by San Nopco. Examples 19 to 22 and Comparative Examples 10 to: 12
実施例 18において、 顔料ペースト及び樹脂エマルシヨンを下記表 4に示す組 み合わせとする以外は、 実施例 18と同様の配合組成にて、 各下塗り塗料組成物 を得た。  In Example 18, each undercoat paint composition was obtained with the same composition as in Example 18, except that the pigment paste and the resin emulsion were combined as shown in Table 4 below.
表 4には、 各下塗り塗料組成物から形成される塗膜の L*値を併記した。 L*値 は、 各塗料組成物をガラス板に、 乾燥膜厚が 15 O mとなるように、 ドクター ブレードを用いて塗装し、 温度 23°C、 相対湿度 65%で 2日間乾燥後、 前記と 同様に測色計を使用して測定した。 表 4 Table 4 also shows the L * values of the coating films formed from each of the primer coating compositions. The L * value was determined by applying each coating composition to a glass plate using a doctor blade so that the dry film thickness was 15 Om, drying at 23 ° C and 65% relative humidity for 2 days, It measured using the colorimeter similarly to and. Table 4
Figure imgf000038_0001
Figure imgf000038_0001
表 4における樹脂エマルシヨン R— 3、 尺_4及び尺— 5は、 以下のものを示 す。  The resin emulsion R-3, shaku_4 and shaku-5 in Table 4 indicate the following.
R— 3 :シリコーン樹脂エマルシヨン、 商品名 「38%サンモール EW10 21 、 サンノプコ社製、 被膜の屈折率 1. 55。  R-3: Silicone resin emulsion, trade name "38% Sunmall EW1021, manufactured by San Nopco Co., with a refractive index of the coating of 1.55.
R— 4 :アクリル樹脂エマルシヨン、 商品名 「54%MK— 250」 、 大日本 インキ化学工業 (株) 製、 被膜の屈折率 1. 55。  R-4: Acrylic resin emulsion, trade name "54% MK-250", manufactured by Dainippon Ink and Chemicals, Inc., with a refractive index of coating of 1.55.
R— 5 :塩化ビニル樹脂エマルシヨン、 商品名「45%モビニール」、 クラリア ントポリマ一 (株) 製、 被膜の屈折率 1. 75。  R-5: Emulsion of vinyl chloride resin, trade name "45% Movinyl", manufactured by Clariant Polymer Co., Ltd. The refractive index of the coating is 1.75.
製造例 21  Production Example 21
1リットルのステレンス容器に、 下記配合成分を、 攪拌機にて 30分間攪拌混 合することにより、 黒色水性上塗り塗料組成物を得た。  The following components were stirred and mixed in a 1-liter stainless steel container with a stirrer for 30 minutes to obtain a black aqueous topcoat composition.
水性顔料ペースト (P— 14) 265部  Aqueous pigment paste (P-14) 265 parts
製造例 9で得た樹脂エマルシヨ ン (a) 200部  Resin emulsion obtained in Production Example 9 (a) 200 parts
2, 2, 4一トリメチルー 1, 3—ペン  2,2,4-trimethyl-1,3-pen
タンジオール モノイソブチレ一ト 20部  Tandiol monoisobutylate 20 parts
増粘剤 (注 17 ) 5部  Thickener (Note 17) 5 parts
上水 50部  Tap water 50 parts
実施例 23〜 30及び比較例 13〜 1 5  Examples 23 to 30 and Comparative Examples 13 to 15
スレート板 (10 OmmX 1 5 OmmX 4 mm) に、 表 5の組み合わせにて各 下塗り塗料組成物及び上塗り塗料組成物をドク夕一ブレードを用いて塗装し、 試 験塗板を作成し、 各試験に供した。 下塗り塗料組成物は乾燥膜厚が 1 5 O mに、 上塗り塗料組成物は乾燥膜厚が 60 mとなるように塗装し、 乾燥条件は共に温 度 23° (:、 相対湿度 50%にて 14日間である。  Each priming composition and top coating composition were applied to a slate board (10 OmmX 15 OmmX 4 mm) using the combination of Table 5 using a doctor blade, and a test coating board was prepared. Provided. The undercoat paint composition was applied to a dry film thickness of 15 Om, and the overcoat paint composition was applied to a dry film thickness of 60 m. The drying conditions were both 23 ° C (: at a relative humidity of 50%). 14 days.
上記実施例 23〜30及び比較例 13〜1 5で得られた各試験塗板について、 前記方法により、 光沢、 下地隠蔽性及び L *値を調べた。 For each test coated plate obtained in the above Examples 23 to 30 and Comparative Examples 13 to 15, According to the above-mentioned method, gloss, background hiding property and L * value were examined.
また、 スレート板に代えてガラス板を用いて得られた各遊離塗膜について、 前 記方法と同様にして、 遮熱効果を調べた。 更に、 各遊離塗膜について、 赤外線反 射率を、 下記方法により、 調べた。  In addition, the heat shielding effect of each free coating film obtained using a glass plate instead of the slate plate was examined in the same manner as described above. Further, each free coating film was examined for infrared reflectance by the following method.
赤外線反射率  Infrared reflectance
乾燥した遊離塗膜について、 分光反射率測定機 (商品名 「U V— 3 1 0 0 P C」 、 島津製作所 (株) 製) を使用して、 波長7 8 0 11111〜2, l O O n mの近 赤外線領域における分光反射率を測定し、 次いで J I S A 5 7 5 9に定義さ れる日射反射率を算出し、 その結果を赤外線反射率 (%) とした。  For the dried free coating film, use a spectral reflectance measuring instrument (trade name “UV-310 PC”, manufactured by Shimadzu Corporation) to obtain a wavelength around 780 11111-2, 100 nm. The spectral reflectance in the infrared region was measured, and then the solar reflectance as defined in JISA 579-59 was calculated, and the result was taken as the infrared reflectance (%).
上記試験結果を、 表 5に併記する。  Table 5 shows the test results.
表 5  Table 5
Figure imgf000039_0001
Figure imgf000039_0001
表 5 (続き)  Table 5 (continued)
Figure imgf000039_0002
Figure imgf000039_0002
表 5における上塗り塗料 T— 1、 T一 2及び T一 3は、 以下のものを示す。 T一 1 :商品名 「アレスアクアダロス 白」 、 関西ペイント (株) 製、 カルボ ニル基含有アクリル樹脂エマルシヨン塗料、 樹脂成分 1 0 0部に対して平均粒子 径 2 2 0 n mの二酸化チタン顔料 5 0部含有。 The top coatings T-1, T-12 and T-13 in Table 5 are as follows. T-1: Trade name "Ales Aquadalos White", Kansai Paint Co., Ltd., Carbo Nyl group-containing acrylic resin emulsion paint, containing 100 parts of a resin component and 50 parts of a titanium dioxide pigment having an average particle diameter of 220 nm.
T一 2 :商品名 「アレスアクアャネシリコン グレー J 、 関西ペイント (株) 製、 力ルポニル基含有アクリル樹脂エマルシヨン塗料、 樹脂成分 1 0 0部に対し て平均粒子径 2 2 0 nmの二酸化チタン顔料 5 0部及びカーボンブラック 0 . 8 部含有。  T-II: Trade name “Ales Aquayane Silicon Gray J”, manufactured by Kansai Paint Co., Ltd. Acrylic resin emulsion paint containing liponyl group, titanium dioxide with an average particle size of 220 nm for 100 parts of resin component Contains 50 parts of pigment and 0.8 part of carbon black.
T一 3 :商品名 「アレスアクアャネシリコン クリーム」 、 関西ペイント (株) 製、 力ルポニル基含有アクリル樹脂エマルシヨン塗料、 樹脂成分 1 0 0部 に対して平均粒子径 2 2 0 n mの二酸化チタン顔料 5 0部及び黄色酸化鉄 2部含 有。  T-1-3: ARES AQUAYANE Silicone Cream, manufactured by Kansai Paint Co., Ltd., acrylic resin emulsion paint containing liponyl group, titanium dioxide with an average particle size of 220 nm for 100 parts of resin component Contains 50 parts of pigment and 2 parts of yellow iron oxide.

Claims

請 求 の 範 囲 The scope of the claims
1. (A) 屈折率 1. 30〜1. 60の範囲内の被膜を形成する樹脂成分、 及 び 1. (A) Refractive index 1. Resin component that forms a film within the range of 30 to 1.60, and
(B) 平均 1次粒子径が 500〜 2, 000 nmの範囲内で、 且つ屈折率が 1. 80〜3. 00の範囲内である白色顔料  (B) a white pigment having an average primary particle size in the range of 500 to 2,000 nm and a refractive index in the range of 1.80 to 3.00
を含有する遮熱性被膜形成用塗料組成物。 A coating composition for forming a thermal barrier coating, comprising:
2. 樹脂成分 (A) が、 架橋型アクリル樹脂又は非架橋型アクリル樹脂を含有 する請求項 1に記載の塗料組成物。 2. The coating composition according to claim 1, wherein the resin component (A) contains a crosslinked acrylic resin or a non-crosslinked acrylic resin.
3. 樹脂成分 (A) が、 カルボニル基含有アクリル共重合体及びヒドラジン誘 導体を含有する請求項 1に記載の塗料組成物。 3. The coating composition according to claim 1, wherein the resin component (A) contains a carbonyl group-containing acrylic copolymer and a hydrazine derivative.
4. 樹脂成分 (A) が、 マレイミド基含有アクリル共重合体を含有する請求項 1に記載の塗料組成物。 4. The coating composition according to claim 1, wherein the resin component (A) contains a maleimide group-containing acrylic copolymer.
5. 樹脂成分 (A) が、 不飽和脂肪酸変性アクリル樹脂を含有する請求項 1に 記載の塗料組成物。 5. The coating composition according to claim 1, wherein the resin component (A) contains an unsaturated fatty acid-modified acrylic resin.
6. 白色顔料 (B) が、 二酸化チタン及び Z又は酸化亜鉛である請求項 1に記 載の塗料組成物。 6. The coating composition according to claim 1, wherein the white pigment (B) is titanium dioxide and Z or zinc oxide.
7. 白色顔料 (B) の配合割合が、 樹脂成分 (A) 100重量部に対して、 1 0〜 140重量部である請求項 1に記載の塗料組成物。 7. The coating composition according to claim 1, wherein the mixing ratio of the white pigment (B) is 10 to 140 parts by weight based on 100 parts by weight of the resin component (A).
8. 更に、 平均 1次粒子径が 400 nm未満の白色顔料 (C) を含有する請求 項 1に記載の塗料組成物。 8. The coating composition according to claim 1, further comprising a white pigment (C) having an average primary particle diameter of less than 400 nm.
9. 白色顔料 (C) が、 二酸化チタン及び/又は酸化亜鉛である請求項 8に記 載の塗料組成物。 9. The coating composition according to claim 8, wherein the white pigment (C) is titanium dioxide and / or zinc oxide.
10. 白色顔料 (C) の配合割合が、 樹脂成分 (A) 100重量部に対して、 10〜 140重量部である請求項 8に記載の塗料組成物。 10. The coating composition according to claim 8, wherein the blending ratio of the white pigment (C) is 10 to 140 parts by weight based on 100 parts by weight of the resin component (A).
11. 白色顔料 (B) 及び白色顔料 (C) の重量比が、 10/90〜 90/1 0の範囲内である請求項 8に記載の塗料組成物。 11. The coating composition according to claim 8, wherein the weight ratio of the white pigment (B) to the white pigment (C) is in the range of 10/90 to 90/10.
12. 更に、 着色顔料 (D) を含有する請求項 1に記載の塗料組成物。 12. The coating composition according to claim 1, further comprising a coloring pigment (D).
13. 着色顔料 (D) として、 補色関係にある複数の有彩色顔料を含有する請 求項 12に記載の塗料組成物。 13. The coating composition according to claim 12, which contains, as the color pigment (D), a plurality of chromatic pigments having a complementary color relationship.
14. 請求項 1に記載の遮熱性被膜形成用塗料組成物である上塗り塗料組成物。 14. An overcoating composition which is the coating composition for forming a heat-shielding film according to claim 1.
15. 更に、 着色塗料 (D) を含有し、 J I S Z 8729に規定される L *a*b*表色系に基づく明度 (L*値) 20〜70の塗膜を形成し得る請求項 13 に記載の上塗り塗料組成物。 15. The method according to claim 13, further comprising a colored paint (D), capable of forming a coating film having a lightness (L * value) of 20 to 70 based on the L * a * b * color system specified in JISZ 8729. The top coating composition according to any one of the preceding claims.
16. 請求項 1に記載の遮熱性被膜形成用塗料組成物である下塗り塗料組成物。 16. An undercoat paint composition, which is the paint composition for forming a heat-shielding film according to claim 1.
17. J I S Z 8729に規定される L*a*b*表色系に基づく明度 (L *値) 70〜 98の塗膜を形成し得る請求項 16に記載の下塗り塗料組成物。 17. The undercoat coating composition according to claim 16, which can form a coating film having a lightness (L * value) of 70 to 98 based on the L * a * b * color system specified in JIS Z 8729.
18. 被塗物に、 請求項 14に記載の上塗り塗料組成物を、 単層で塗装する塗 装方法。 18. A coating method in which a top coat composition according to claim 14 is applied in a single layer to a substrate.
19. 被塗物に、 下塗り塗料組成物を塗装後、 該塗面上に請求項 14に記載の 上塗り塗料組成物を塗装する塗装方法。 19. The method according to claim 14, wherein the undercoat composition is applied to the substrate, and A coating method for applying a top coating composition.
20. 被塗物に、 請求項 16に記載の下塗り塗料組成物を塗装後、 該塗面上に 上塗り塗料組成物を塗装する塗装方法。 20. A coating method in which the undercoat composition according to claim 16 is applied to an object to be coated, and the topcoat composition is applied on the coated surface.
21. 上塗り塗料組成物が、 ペリレン系顔料を含有する塗料組成物である請求 項 20に記載の塗装方法。 21. The coating method according to claim 20, wherein the top coating composition is a coating composition containing a perylene pigment.
PCT/JP2004/012332 2003-08-22 2004-08-20 Coating composition for heat-insulating film formation and method of coating with the same WO2005019358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513377A JPWO2005019358A1 (en) 2003-08-22 2004-08-20 Coating composition for forming a heat-shielding film and coating method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003298353 2003-08-22
JP2003-298353 2003-08-22

Publications (1)

Publication Number Publication Date
WO2005019358A1 true WO2005019358A1 (en) 2005-03-03

Family

ID=34213715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012332 WO2005019358A1 (en) 2003-08-22 2004-08-20 Coating composition for heat-insulating film formation and method of coating with the same

Country Status (2)

Country Link
JP (1) JPWO2005019358A1 (en)
WO (1) WO2005019358A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
JP2006298967A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Coating and coated article
JP2007128943A (en) * 2005-11-01 2007-05-24 Toray Ind Inc Back sheet for solar cell, and solar cell module
JP2007145989A (en) * 2005-11-28 2007-06-14 Sk Kaken Co Ltd Coating composition
JP2010006994A (en) * 2008-06-27 2010-01-14 Ube Ind Ltd Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft
JP2013509484A (en) * 2009-10-28 2013-03-14 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Solar reflective coatings and coating systems
JP2013519780A (en) * 2010-02-17 2013-05-30 テイオキサイド・ユーロプ・リミテツド titanium dioxide
JP2013147571A (en) * 2012-01-19 2013-08-01 Kikusui Chemical Industries Co Ltd Heat-shielding coating
JP2013538237A (en) * 2010-03-02 2013-10-10 ネペス リグマ リミテッド Solar thermal barrier coating liquid and solar thermal barrier coating glass using the same
US8822025B2 (en) 2007-02-05 2014-09-02 Ppg Industries Ohio, Inc. Coating system exhibiting cool dark color
JP2014189580A (en) * 2013-03-26 2014-10-06 Kansai Paint Co Ltd Heat-insulating matte aqueous coating composition and method of forming heat-insulating matte coating film
JP2014196401A (en) * 2013-03-29 2014-10-16 関西ペイント株式会社 Heat shield matte coating material composition and method for forming heat shield matte coating film
KR101480105B1 (en) * 2014-03-06 2015-01-07 (주) 벽송하이텍 Aqueous anti-corrosive and high weatherproof silicone acrylic paints using dissolved hydrogen water
JP2015051385A (en) * 2013-09-05 2015-03-19 日本ペイントホールディングス株式会社 Method for forming multi-layered coating film and multi-layered coating film obtained by using the same
JP2016027384A (en) * 2014-06-25 2016-02-18 Jsr株式会社 Photosensitive composition for bezel formation, bezel, and display device
JP2016097592A (en) * 2014-11-21 2016-05-30 マツダ株式会社 Laminated coating film and coated object
JPWO2014024884A1 (en) * 2012-08-07 2016-07-25 日本ペイント・オートモーティブコーティングス株式会社 Glittering paint composition, multilayer coating film forming method and multilayer coating film using the same
CN106082777A (en) * 2016-06-27 2016-11-09 无锡强工机械工业有限公司 A kind of silicon dioxide composite thermal barrier coatings and preparation method thereof
JP2017509720A (en) * 2013-12-23 2017-04-06 サン−ゴバン パフォーマンス プラスティックス コーポレイション Coating material and low haze heat barrier composite
JP2017194493A (en) * 2016-04-18 2017-10-26 キヤノン株式会社 Heat-blocking film for optical instrument, heat-blocking paint for optical instrument, and optical instrument using these
JP2018028015A (en) * 2016-08-17 2018-02-22 旭化成ホームズ株式会社 Heat-shielding coating material, heat-shielding laminated coating film, and coated product
JP2018178082A (en) * 2017-04-20 2018-11-15 関西ペイント株式会社 Multi-component-type water-based undercoat coating composition and coating method
WO2024158661A1 (en) * 2023-01-24 2024-08-02 Nanotech Inc. Thermally insulative compositions
WO2024158714A1 (en) * 2023-01-24 2024-08-02 Nanotech Inc. Thermally insulative compositions for a roof coating
JP7549968B2 (en) 2020-03-16 2024-09-12 株式会社Lixil Aluminum Building Materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12098799B2 (en) 2020-07-13 2024-09-24 Nanotech, Inc. Hybrid insulating compound for use in systems requiring high power of thermal insulation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571548A (en) * 1978-11-24 1980-05-29 Jirou Takei Preparation of heat shielding dressing metal plate
JPH11323197A (en) * 1998-05-13 1999-11-26 Nagashima Tokushu Toryo Kk Heat insulating coating
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
JP2000212475A (en) * 1999-01-26 2000-08-02 Katsuo Miki Solar heat shielding paint
JP2001064544A (en) * 1999-08-25 2001-03-13 Asahi Glass Co Ltd Heat-insulation coating film
JP2002309157A (en) * 2001-04-17 2002-10-23 Nippon Paint Co Ltd Infrared light-shielding coating for transparent base material, and coating film-forming method and transparent base material
JP2003238897A (en) * 2002-02-14 2003-08-27 Nippon Tokushu Toryo Co Ltd Heat and sound insulating paint and process
JP2003261828A (en) * 2002-03-07 2003-09-19 Sk Kaken Co Ltd Coating composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571548A (en) * 1978-11-24 1980-05-29 Jirou Takei Preparation of heat shielding dressing metal plate
JPH11323197A (en) * 1998-05-13 1999-11-26 Nagashima Tokushu Toryo Kk Heat insulating coating
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
JP2000212475A (en) * 1999-01-26 2000-08-02 Katsuo Miki Solar heat shielding paint
JP2001064544A (en) * 1999-08-25 2001-03-13 Asahi Glass Co Ltd Heat-insulation coating film
JP2002309157A (en) * 2001-04-17 2002-10-23 Nippon Paint Co Ltd Infrared light-shielding coating for transparent base material, and coating film-forming method and transparent base material
JP2003238897A (en) * 2002-02-14 2003-08-27 Nippon Tokushu Toryo Co Ltd Heat and sound insulating paint and process
JP2003261828A (en) * 2002-03-07 2003-09-19 Sk Kaken Co Ltd Coating composition

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
JP2006298967A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Coating and coated article
JP2007128943A (en) * 2005-11-01 2007-05-24 Toray Ind Inc Back sheet for solar cell, and solar cell module
JP2007145989A (en) * 2005-11-28 2007-06-14 Sk Kaken Co Ltd Coating composition
US9056988B2 (en) 2007-02-05 2015-06-16 Ppg Industries Ohio, Inc. Solar reflective coatings and coating systems
US8822025B2 (en) 2007-02-05 2014-09-02 Ppg Industries Ohio, Inc. Coating system exhibiting cool dark color
JP2010006994A (en) * 2008-06-27 2010-01-14 Ube Ind Ltd Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft
KR101426179B1 (en) 2009-10-28 2014-07-31 피피지 인더스트리즈 오하이오 인코포레이티드 Solar reflective coatings and coating systems
JP2013509484A (en) * 2009-10-28 2013-03-14 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Solar reflective coatings and coating systems
JP2013519780A (en) * 2010-02-17 2013-05-30 テイオキサイド・ユーロプ・リミテツド titanium dioxide
JP2013538237A (en) * 2010-03-02 2013-10-10 ネペス リグマ リミテッド Solar thermal barrier coating liquid and solar thermal barrier coating glass using the same
JP2013147571A (en) * 2012-01-19 2013-08-01 Kikusui Chemical Industries Co Ltd Heat-shielding coating
JPWO2014024884A1 (en) * 2012-08-07 2016-07-25 日本ペイント・オートモーティブコーティングス株式会社 Glittering paint composition, multilayer coating film forming method and multilayer coating film using the same
JP2014189580A (en) * 2013-03-26 2014-10-06 Kansai Paint Co Ltd Heat-insulating matte aqueous coating composition and method of forming heat-insulating matte coating film
JP2014196401A (en) * 2013-03-29 2014-10-16 関西ペイント株式会社 Heat shield matte coating material composition and method for forming heat shield matte coating film
JP2015051385A (en) * 2013-09-05 2015-03-19 日本ペイントホールディングス株式会社 Method for forming multi-layered coating film and multi-layered coating film obtained by using the same
JP2017509720A (en) * 2013-12-23 2017-04-06 サン−ゴバン パフォーマンス プラスティックス コーポレイション Coating material and low haze heat barrier composite
KR101480105B1 (en) * 2014-03-06 2015-01-07 (주) 벽송하이텍 Aqueous anti-corrosive and high weatherproof silicone acrylic paints using dissolved hydrogen water
JP2016027384A (en) * 2014-06-25 2016-02-18 Jsr株式会社 Photosensitive composition for bezel formation, bezel, and display device
JP2016097592A (en) * 2014-11-21 2016-05-30 マツダ株式会社 Laminated coating film and coated object
JP2017194493A (en) * 2016-04-18 2017-10-26 キヤノン株式会社 Heat-blocking film for optical instrument, heat-blocking paint for optical instrument, and optical instrument using these
CN106082777B (en) * 2016-06-27 2018-05-25 无锡强工机械工业有限公司 A kind of silica composite thermal barrier coatings and preparation method thereof
CN106082777A (en) * 2016-06-27 2016-11-09 无锡强工机械工业有限公司 A kind of silicon dioxide composite thermal barrier coatings and preparation method thereof
JP2018028015A (en) * 2016-08-17 2018-02-22 旭化成ホームズ株式会社 Heat-shielding coating material, heat-shielding laminated coating film, and coated product
JP2018178082A (en) * 2017-04-20 2018-11-15 関西ペイント株式会社 Multi-component-type water-based undercoat coating composition and coating method
JP7306793B2 (en) 2017-04-20 2023-07-11 関西ペイント株式会社 Multi-component water-based undercoat paint composition and coating method
JP7549968B2 (en) 2020-03-16 2024-09-12 株式会社Lixil Aluminum Building Materials
WO2024158661A1 (en) * 2023-01-24 2024-08-02 Nanotech Inc. Thermally insulative compositions
WO2024158714A1 (en) * 2023-01-24 2024-08-02 Nanotech Inc. Thermally insulative compositions for a roof coating

Also Published As

Publication number Publication date
JPWO2005019358A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
WO2005019358A1 (en) Coating composition for heat-insulating film formation and method of coating with the same
JP6026938B2 (en) Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method
JP5148480B2 (en) Method for forming glittering multilayer coating film
JP5049963B2 (en) Aqueous base coat paint containing glitter pigment
JP6026933B2 (en) Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method
JP5116486B2 (en) Method for forming glittering multilayer coating film
CN113652134B (en) Stain-resistant matte aqueous coating composition and method for forming stain-resistant matte coating film
CA2693792A1 (en) Coating composition with accelerated low temperature cure
JP2015074769A (en) Heat-shielding water-based coating composition and heat-shielding coating film formation method
JP4896299B2 (en) Glittering paint composition, coating film forming method, and painted product
JP2018024828A (en) Mixed layer control agent
JP5199922B2 (en) Multi-layer coating formation method
JP2009034579A (en) Heat ray highly reflecting coated material and coating method
JP2001072933A (en) Brilliant coating composition, film-forming method and multi-layered coated film
JP2013215887A (en) Metallic plastic and method of coating plastic
JP2005162825A (en) Emulsion coating and method for producing inorganic decorative plate
JP2002155240A (en) Bright coating composition, method for forming film and multilayered film
JPS62277474A (en) Coating material composition
JP7370202B2 (en) Sealer composition for inorganic building materials and its uses
JP2505387B2 (en) Emulsion coating method
JP2001131488A (en) Brilliant matte clear coating, brilliant matte composite coating film and method for forming it
JP2002501962A (en) Solvent-based thermal paint
WO2024204719A1 (en) Aqueous coating material composition and method for forming multilayer coating film
JP3863718B2 (en) Clear coating composition, coating film forming method and laminated coating film
JP2008012373A (en) Coating finishing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513377

Country of ref document: JP

122 Ep: pct application non-entry in european phase