JP2010006994A - Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft - Google Patents

Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft Download PDF

Info

Publication number
JP2010006994A
JP2010006994A JP2008169638A JP2008169638A JP2010006994A JP 2010006994 A JP2010006994 A JP 2010006994A JP 2008169638 A JP2008169638 A JP 2008169638A JP 2008169638 A JP2008169638 A JP 2008169638A JP 2010006994 A JP2010006994 A JP 2010006994A
Authority
JP
Japan
Prior art keywords
heat
conductive white
resistant conductive
white paint
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169638A
Other languages
Japanese (ja)
Other versions
JP5691121B2 (en
Inventor
Hideji Watakabe
秀治 渡壁
Takeshi Nakajima
武 中嶋
Yasuhiro Fujimoto
康弘 藤本
Fumio Aoki
文雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008169638A priority Critical patent/JP5691121B2/en
Publication of JP2010006994A publication Critical patent/JP2010006994A/en
Application granted granted Critical
Publication of JP5691121B2 publication Critical patent/JP5691121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant electrically-conductive white coating material which is used for components such as the antenna of a spacecraft, which are exposed to a severe environment, and has both of heat resistance and electric conductivity, and to provide the heat-resistant electrically-conductive white coating material for the spacecraft. <P>SOLUTION: The heat-resistant electrically-conductive white coating material is prepared by dispersing or dissolving a binding material which is the mixture of polymetallocarbosilane and a silicone resin, and an inorganic filler in an organic solvent. The inorganic filler is mainly composed of zinc oxide particles having <2 μm average particle size. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、宇宙機などに用いられ、耐熱性や導電性を兼ね備えた耐熱導電性白色塗料及び宇宙機用耐熱導電性白色塗料に関する。   The present invention relates to a heat-resistant conductive white paint having heat resistance and conductivity used for a spacecraft and the like, and a heat-resistant conductive white paint for a spacecraft.

従来から、人工衛星やロケットなどの宇宙機の開発が行われている。宇宙機の中で、例えば水星探索用の人工衛星などは、地球よりも太陽に近づくため、250℃以上の温度に曝されることになる。そのため、人工衛星の本体は、ポリイミドなどからなる熱制御フィルムによって包装することによって温度制御を行っている。しかし、人工衛星に設置されるアンテナのような異型物は、熱制御フィルムで覆うことが困難であるので、アンテナについては、塗料により温度を制御することが考えられる。   Conventionally, spacecraft such as artificial satellites and rockets have been developed. Among spacecrafts, for example, an artificial satellite for searching for Mercury is exposed to a temperature of 250 ° C. or higher because it approaches the sun more than the earth. Therefore, the temperature of the artificial satellite body is controlled by packaging with a heat control film made of polyimide or the like. However, since it is difficult to cover atypical objects such as an antenna installed on an artificial satellite with a heat control film, it is conceivable to control the temperature of the antenna with a paint.

従来の耐熱性塗料としては、例えば、特許文献1には、ポリメタロカルボシラン、シリコーン樹脂、粒状の無機充填材、及び短繊維状の無機充填材を分散した塗料が開示され、高温下での使用に耐え得ることが示されている。
特開平4−91179号公報
As a conventional heat resistant paint, for example, Patent Document 1 discloses a paint in which polymetallocarbosilane, a silicone resin, a granular inorganic filler, and a short fibrous inorganic filler are dispersed. It has been shown to withstand use.
Japanese Patent Laid-Open No. 4-91179

しかしながら、250℃以上の高温に曝される宇宙空間においては、(a)250℃以上の高温に耐えうる耐熱性を有すること、(b)電気機器の保護及びチリの付着を防ぐため導電性を有すること、(c)輻射熱を反射する必要があることから白色であること、という特性を満たす必要があるところ、特許文献1に記載された耐熱性塗料は、これら特性を十分に有していない。   However, in outer space exposed to high temperatures of 250 ° C or higher, (a) heat resistance that can withstand high temperatures of 250 ° C or higher, and (b) electrical conductivity to protect electrical equipment and prevent dust adhesion. And (c) it is necessary to satisfy the characteristics of being white because it is necessary to reflect radiant heat. However, the heat resistant paint described in Patent Document 1 does not have these characteristics sufficiently. .

そこで、本発明は、宇宙機のアンテナなどの厳しい環境に曝される部品などに用いられ、耐熱性や導電性を兼ね備えた耐熱導電性白色塗料及び宇宙機用耐熱導電性白色塗料を提供することを目的とする。   Accordingly, the present invention provides a heat-resistant conductive white paint having heat resistance and conductivity, and a heat-resistant conductive white paint for spacecraft, which are used for parts exposed to harsh environments such as spacecraft antennas. With the goal.

以上の目的を達成するために、本発明者らは、鋭意研究を重ねた結果、結着材とともに有機溶剤に分散又は溶解される無機充填剤を平均粒径2μm未満の酸化亜鉛とすることにより、十分な白さと耐熱性や導電性を兼ね備えることを見出した。すなわち、本発明は、結着材及び無機充填剤が有機溶剤に分散又は溶解され、前記無機充填剤が平均粒径2μm未満の酸化亜鉛を主成分とすることを特徴とする耐熱導電性白色塗料である。また、前記耐熱導電性白色塗料を含むことを特徴とする宇宙機用耐熱導電性白色塗料である。   In order to achieve the above object, the present inventors have conducted extensive research, and as a result, the inorganic filler dispersed or dissolved in the organic solvent together with the binder is made zinc oxide having an average particle size of less than 2 μm. It has been found that it has sufficient whiteness and heat resistance and conductivity. That is, the present invention provides a heat-resistant conductive white paint characterized in that a binder and an inorganic filler are dispersed or dissolved in an organic solvent, and the inorganic filler is mainly composed of zinc oxide having an average particle size of less than 2 μm. It is. Moreover, it is a heat-resistant conductive white paint for spacecraft, which includes the heat-resistant conductive white paint.

以上のように、本発明によれば、宇宙機のアンテナなどの厳しい環境に曝される部品などに用いられ、耐熱性や導電性を兼ね備えた耐熱導電性白色塗料及び宇宙機用耐熱導電性白色塗料を提供することができる。   As described above, according to the present invention, a heat-resistant conductive white paint that is used in parts exposed to harsh environments such as spacecraft antennas and has both heat resistance and conductivity, and heat-resistant conductive white for spacecraft. A paint can be provided.

本発明に係る耐熱導電性白色塗料において、結着材は、ポリメタロカルボシランとシリコーン樹脂の混合物であることが好ましい。   In the heat-resistant conductive white paint according to the present invention, the binder is preferably a mixture of polymetallocarbosilane and a silicone resin.

ポリメタロカルボシランは、有機ケイ素重合体であり、公知のものを用いることができる。例えば、特公昭61−49335号公報、特公昭62−60414号公報、特公昭63−37139号公報、及び特公昭63−49691号公報に記載の方法に従って調製することができる。ポリメタロカルボシランの代表的な製法は、数平均分子量が200〜1000のポリカルボシランとチタンあるいはジルコニウムのアルコキシドとを反応させる方法である。この反応によって、ポリカルボシランの骨格中のケイ素原子の一部が、酸素原子を介してチタン原子あるいはジルコニウム原子と結合する。これにより、数平均分子量が700〜100000の架橋重合体であるポリチタノカルボシランなどのポリメタロカルボシランが得られる。   Polymetallocarbosilane is an organosilicon polymer, and known ones can be used. For example, it can be prepared according to the methods described in JP-B-61-49335, JP-B-62-60414, JP-B-63-37139, and JP-B-63-49691. A typical method for producing a polymetallocarbosilane is a method in which a polycarbosilane having a number average molecular weight of 200 to 1000 is reacted with an alkoxide of titanium or zirconium. By this reaction, a part of silicon atoms in the skeleton of polycarbosilane is bonded to a titanium atom or a zirconium atom through an oxygen atom. Thereby, polymetallocarbosilane such as polytitanocarbosilane, which is a crosslinked polymer having a number average molecular weight of 700 to 100,000, is obtained.

シリコーン樹脂としては、メチルフェニルポリシロキサンなどのポリアルキルフェニルシロキサン、ジメチルポリシロキサン、及びジフェニルポリシロキサンの純シリコーン樹脂などがあり、またこれら純シリコーン樹脂をアルキッド樹脂、ポリエステル樹脂、アクリル樹脂、又はエポキシ樹脂などの変性用樹脂と反応させた変性シリコーンなどでもよく、ポリアルキルフェニルシロキサンであることが好ましく、メチルフェニルポリシロキサンであることがさらに好ましい。シリコーン樹脂は、ポリメタロカルボシラン100重量部当たり、10〜900重量部であることが好ましく、50〜500重量部であることがさらに好ましい。シリコーン樹脂の配合割合が過度に小さいと焼付け塗膜の可撓性が低下し、その割合が過度に高くなると焼付け塗膜の耐熱性及び耐食性が低下する。   Silicone resins include polyalkylphenylsiloxanes such as methylphenylpolysiloxane, dimethylpolysiloxane, and pure silicone resins of diphenylpolysiloxane. These pure silicone resins are also alkyd resins, polyester resins, acrylic resins, or epoxy resins. Modified silicones reacted with a modifying resin such as polyalkylphenylsiloxane are preferable, and methylphenylpolysiloxane is more preferable. The silicone resin is preferably 10 to 900 parts by weight, more preferably 50 to 500 parts by weight, per 100 parts by weight of polymetallocarbosilane. If the blending ratio of the silicone resin is excessively small, the flexibility of the baked coating film decreases, and if the ratio is excessively high, the heat resistance and corrosion resistance of the baked coating film decrease.

本発明に係る耐熱導電性白色塗料において、無機充填剤は、平均粒子径2μm未満の酸化亜鉛を主成分とするが、マグネシウム、カルシウム、バリウム、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム及びケイ素の酸化物、炭化物、窒化物及びホウ化物、並びにリチウム、ナトリウム、カリウム、マグネシウム、カルシウム及び亜鉛のホウ酸塩、リン酸塩及びケイ酸塩など他の無機充填剤が本発明の効果に影響を与えない範囲で含まれても良い。酸化亜鉛の平均粒子径は、2μm未満であり、0.5〜1.9μmであることが好ましい。このように酸化亜鉛の平均粒子径を調整することにより、塗装し焼付けを行なった後の塗膜の特性が、耐熱性300℃以上、表面抵抗10Ω/sq.以下、及び明度(L*)88%以上となる耐熱導電性白色塗料が得られる。明度(L*)は、色の濃度を表し、0.00%〜100.00%の値まであり、0.00%が真っ黒、100.00%が真っ白を意味し、例えば変角分光システムを用いて測定することができる。平均粒子径が2μm未満の酸化亜鉛は、ロータリー空気式分級機や遠心分級機などを用いて分級により得ることができ、平均粒子径は、散乱型レーザ回折/粒子径分散測定装置によって測定することができる。酸化亜鉛の純度は、99%以上であることが好ましく、99.9〜99.999%であることがさらに好ましい。純度が低いと、白色度が低下し、純度が高すぎると導電性が低下するおそれがある。 In the heat-resistant conductive white paint according to the present invention, the inorganic filler is mainly composed of zinc oxide having an average particle diameter of less than 2 μm, but magnesium, calcium, barium, titanium, zirconium, chromium, manganese, iron, cobalt, nickel Copper, zinc, boron, aluminum and silicon oxides, carbides, nitrides and borides, and other inorganics such as lithium, sodium, potassium, magnesium, calcium and zinc borates, phosphates and silicates A filler may be included as long as the effect of the present invention is not affected. The average particle diameter of zinc oxide is less than 2 μm, preferably 0.5 to 1.9 μm. Thus, by adjusting the average particle diameter of zinc oxide, the properties of the coating film after coating and baking are such that the heat resistance is 300 ° C. or more and the surface resistance is 10 9 Ω / sq. A heat-resistant conductive white paint having a lightness (L *) of 88% or more is obtained below. The lightness (L *) represents the density of the color, ranging from 0.00% to 100.00%, 0.00% being pure black, 100.00% being pure white. Can be measured. Zinc oxide having an average particle size of less than 2 μm can be obtained by classification using a rotary pneumatic classifier or a centrifugal classifier, and the average particle size should be measured with a scattering laser diffraction / particle size dispersion measuring device. Can do. The purity of zinc oxide is preferably 99% or more, and more preferably 99.9 to 99.999%. If the purity is low, the degree of whiteness will decrease, and if the purity is too high, the conductivity may decrease.

酸化亜鉛の含有量は、結着材100重量部に対して、酸化亜鉛が100〜300重量部であることが好ましく、100重量部〜200重量部であることがさらに好ましい。酸化亜鉛の含有量が上記範囲より少ないと塗料の白色度及び導電性の低下を招き、上記範囲より多いと、塗料中の無機充填剤の結着性が低下し塗料の欠落の原因となり好ましくない。   The content of zinc oxide is preferably 100 to 300 parts by weight, more preferably 100 to 200 parts by weight with respect to 100 parts by weight of the binder. If the content of zinc oxide is less than the above range, the whiteness and conductivity of the paint will be reduced, and if it is more than the above range, the binding property of the inorganic filler in the paint will be reduced and the paint may be lost. .

本発明に係る耐熱導電性白色塗料において、有機溶剤は、結着材が分散又は溶解可能なものであれば制限なく用いることができる。このような有機溶剤として、トルエン、キシレン、1−ブタノール、イソブタノール、酢酸ブチル、ミネラルスピリット、ソルベントナフサ、エチルセロソロブ、及びセロソルブアセテートが挙げられ、キシレンが好ましい。また、本発明の効果に影響を与えない範囲で溶媒を2種ないしそれ以上混合しても良い。有機溶剤の使用量は、結着材や無機充填剤の種類や含有量等に応じて種々異なるが、本発明の開示に従って当業者が適宜決定することができる。   In the heat-resistant conductive white paint according to the present invention, the organic solvent can be used without limitation as long as the binder can be dispersed or dissolved. Examples of such organic solvents include toluene, xylene, 1-butanol, isobutanol, butyl acetate, mineral spirit, solvent naphtha, ethyl cellosolve, and cellosolve acetate, with xylene being preferred. Moreover, you may mix 2 or more types of solvents in the range which does not affect the effect of this invention. The amount of the organic solvent used varies depending on the type and content of the binder and inorganic filler, but can be appropriately determined by those skilled in the art according to the disclosure of the present invention.

本発明に係る耐熱導電性白色塗料は、金属基材、又はセラミック、耐火レンガ、若しくはCFRPなどの非金属基材に塗布される。基材は、アセトンやシンナーなどの有機溶剤により脱脂後、サンドプラスト等で下地処理されていることが好ましい。下地処理の際に用いられる下地処理剤は、例えば、オキツモ社製No.903やNo.983、日本ペイント社製ハイポン20等を使用することができる。これら基材に、本発明に係る耐熱導電性白色塗料が刷毛塗り、ロールコータ、スプレー、及び浸漬などの公知の手段で塗布される。塗布量は20〜100g/mであることが好ましい。塗布量が過度に小さいと塗膜にピンホールが発生しやすくなり、耐食性が低下する。塗布量が過度に大きいと塗膜が高温下又は冷熱サイクルに曝される際に塗膜にクラックが発生しやすくなる。焼付け温度は150℃以上が好ましく、200℃以上がさらに好ましい。焼付け温度が過度に低いと塗料成分である結着材の硬化が十分に起こらず、塗膜の強度が低くなると共に耐衝撃性も低下する。なお、塗料の塗装後に被塗装物が150℃以上の使用環境に置かれる場合は、焼付けを省略することもできる。 The heat-resistant conductive white paint according to the present invention is applied to a metal substrate or a non-metal substrate such as ceramic, refractory brick, or CFRP. It is preferable that the base material is degreased with an organic solvent such as acetone or thinner and then ground with a sand plast or the like. Examples of the base treatment agent used in the base treatment include No. manufactured by Okitsumo Co., Ltd. 903 or No. 983, Hypon 20 manufactured by Nippon Paint Co., Ltd. can be used. The heat-resistant conductive white paint according to the present invention is applied to these substrates by known means such as brush coating, roll coater, spraying, and dipping. The coating amount is preferably 20 to 100 g / m 2 . If the coating amount is excessively small, pinholes are likely to occur in the coating film, and the corrosion resistance is reduced. If the coating amount is excessively large, cracks are likely to occur in the coating film when the coating film is exposed to a high temperature or a cold cycle. The baking temperature is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. When the baking temperature is excessively low, the binder, which is a paint component, is not sufficiently cured, the strength of the coating film is lowered, and the impact resistance is also lowered. In addition, baking can also be abbreviate | omitted when a to-be-coated article is put in the use environment of 150 degreeC or more after the coating of a coating material.

実施例1
次に、耐熱導電性白色塗料の製造について説明する。500mlポリエチレン製広口ビンに結着材としてのポリチタノカルボシランとメチルフェニルポリシロキサンの混合物(これらの割合が(47.4重量%):(52.6重量%))の45.7重量%のキシレン/1−ブタノール溶液(チラノワニス、宇部興産社製VN−100)70.0g、無機充填剤としての酸化亜鉛(高純度化学社製3N、平均粒子径1μm)70.0g、キシレン3.0g及びジルコニアボール(東ソー製YTZボール)91.7gを入れ密栓をした後、ポットミル機に設置し20℃の環境下で、20rpmの回転速度で24時間かけ酸化亜鉛を結着材等に均一分散させて実施例1に係る耐熱導電性白色塗料を得た。実施例1に係る耐熱導電性白色塗料について、東京計器社製E型粘度計を用いて25℃の時の粘度を測定した。その結果を表1に示す。
Example 1
Next, production of the heat-resistant conductive white paint will be described. 45.7% by weight of a mixture of polytitanocarbosilane and methylphenylpolysiloxane as binders in a 500 ml polyethylene wide-mouth bottle (the proportion of which is (47.4% by weight) :( 52.6% by weight)) 70.0 g of xylene / 1-butanol solution (Tyrannovarnish, VN-100, manufactured by Ube Industries), 70.0 g of zinc oxide (3N, high-purity chemical company, average particle size 1 μm) as an inorganic filler, 3.0 g of xylene And 91.7 g of zirconia balls (Tosoh YTZ balls) were put in tightly sealed caps and then placed in a pot mill, and zinc oxide was uniformly dispersed in the binder over a period of 24 hours at 20 rpm in an environment of 20 ° C. Thus, a heat-resistant conductive white paint according to Example 1 was obtained. For the heat-resistant conductive white paint according to Example 1, the viscosity at 25 ° C. was measured using an E-type viscometer manufactured by Tokyo Keiki Co., Ltd. The results are shown in Table 1.

次に、この実施例1に係る耐熱導電性白色塗料を用いて塗装を行った。40mm×40mm、厚み1mmのアルミニウム板をシンナーで脱脂後、320番のサンドペーパーで一方向に向かって全面を5回研磨し表面を清浄化した。清浄化した後、アルミニウム板の清浄化した面を上にして平らな場所に置き、アルミニウム板の清浄化した面に実施例1に係る耐熱導電性白色塗料をスプレー(アネスト岩田社製W−101)を用いて全面に塗装した。塗装されたアルミニウム板はそのままの状態で、3分間室温で静置した後、再度、実施例1に係る耐熱導電性白色塗料を塗装した。同様の塗装を更に2回繰り返した。塗装が完了したアルミニウム板はそのままの状態で、30分間室温で静置した。その後、熱風乾燥機(ヤマト科学社製DK−400)にアルミニウム板の塗装面を上にして平らに置いた状態で、60℃で10分間、80℃で10分間、100℃で10分間、160℃で10分間、200℃で10分間乾燥させた。次いで、乾燥させたアルミニウム板をアルミニウム板の塗装面を上にして平らに置いた状態で熱風乾燥機(エスペック社製STPH−201)を用いて、250℃で10分間及び380℃で10分間熱処理をして塗装を定着及び硬化させて、アルミニウム板の片面を実施例1に係る耐熱導電性白色塗料で塗装し焼付けしたアルミニウム板Aを得た。実施例1に係る耐熱導電性白色塗料の塗装厚みは0.14mmであった。このアルミニウム板Aについて、カラーテクノシステム社製変角分光システムを用いて、塗装表面の明度(L*)を測定した。その結果を表1に示す。   Next, the heat-resistant conductive white paint according to Example 1 was used for coating. An aluminum plate having a size of 40 mm × 40 mm and a thickness of 1 mm was degreased with thinner, and then the entire surface was polished five times in one direction with a # 320 sandpaper to clean the surface. After cleaning, place the aluminum plate on a flat surface with the cleaned surface facing up, and spray the heat-resistant conductive white paint according to Example 1 on the cleaned surface of the aluminum plate (W-101 manufactured by Anest Iwata Co., Ltd.). ) Was used to paint the entire surface. The coated aluminum plate was left as it was for 3 minutes at room temperature, and then the heat-resistant conductive white paint according to Example 1 was applied again. The same coating was repeated twice more. The painted aluminum plate was left as it was for 30 minutes at room temperature. Thereafter, in a hot air dryer (DK-400 manufactured by Yamato Kagaku Co., Ltd.) with the coated surface of the aluminum plate facing up, it is placed at 60 ° C. for 10 minutes, 80 ° C. for 10 minutes, 100 ° C. for 10 minutes, 160 Drying was performed at 10 ° C. for 10 minutes and at 200 ° C. for 10 minutes. Next, heat treatment was performed at 250 ° C. for 10 minutes and at 380 ° C. for 10 minutes using a hot air dryer (STPH-201 manufactured by Espec Corp.) with the dried aluminum plate placed flat with the coated surface of the aluminum plate facing up. Then, the coating was fixed and cured to obtain an aluminum plate A in which one side of the aluminum plate was painted and baked with the heat-resistant conductive white paint according to Example 1. The coating thickness of the heat-resistant conductive white paint according to Example 1 was 0.14 mm. About this aluminum plate A, the lightness (L *) of the coating surface was measured using a variable angle spectroscopic system manufactured by Color Techno System. The results are shown in Table 1.

次に、実施例1に係る耐熱導電性白色塗料を別の塗装に用いた。100mm×100mm、厚み3mmのアルミニウム板に変えた以外は、上記と同様に耐熱導電性白色塗料の塗装を行なって、アルミニウム板の片面を実施例1に係る耐熱導電性白色塗料で塗装し焼付けしたアルミニウム板Bを得た。実施例1に係る耐熱導電性白色塗料の塗装厚みは0.07mmであった。このアルミニウム板Bについて、表面抵抗計(シムコジャパン社製ST−3型)を用いて23℃で、アルミニウム板Bの塗装表面の抵抗を測定した。その結果を表1に示す。   Next, the heat-resistant conductive white paint according to Example 1 was used for another coating. Except for changing to an aluminum plate having a size of 100 mm × 100 mm and a thickness of 3 mm, the heat-resistant conductive white paint was applied in the same manner as described above, and one side of the aluminum plate was painted and baked with the heat-resistant conductive white paint according to Example 1. An aluminum plate B was obtained. The coating thickness of the heat-resistant conductive white paint according to Example 1 was 0.07 mm. About this aluminum plate B, the resistance of the coating surface of the aluminum plate B was measured at 23 ° C. using a surface resistance meter (ST-3 type manufactured by Simco Japan). The results are shown in Table 1.

実施例2〜6
表1及び2に示す配合で耐熱導電性白色塗料を作製した以外は、実施例1と同様の製造方法により実施例2乃至6に係る耐熱導電性白色塗料を得た。また、実施例2乃至6に係る耐熱導電性白色塗料を用いて実施例1と同様に塗装したアルミニウム板A及びBを得た。それらを用いて実施例1と同様に粘度、明度、及び表面抵抗を測定した。結果を表1及び2に示す。
Examples 2-6
A heat-resistant conductive white paint according to Examples 2 to 6 was obtained by the same production method as in Example 1, except that a heat-resistant conductive white paint was prepared with the formulation shown in Tables 1 and 2. Moreover, the aluminum plates A and B coated in the same manner as in Example 1 using the heat-resistant conductive white paint according to Examples 2 to 6 were obtained. Using them, the viscosity, brightness, and surface resistance were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2.

Figure 2010006994
Figure 2010006994

Figure 2010006994
比較例1〜5
表3及び4に示す配合で耐熱導電性白色塗料を作製した以外は、実施例1と同様の製造方法により比較例1乃至5に係る耐熱導電性白色塗料を得た。また、比較例1乃至5に係る耐熱導電性白色塗料を用いて実施例1と同様に塗装し焼付けしたアルミニウム板A及びBを得た。それらを用いて実施例1と同様に粘度、明度、及び表面抵抗を測定した。結果を表3及び4に示す。
Figure 2010006994
Comparative Examples 1-5
A heat-resistant conductive white paint according to Comparative Examples 1 to 5 was obtained by the same production method as in Example 1, except that a heat-resistant conductive white paint was prepared with the formulation shown in Tables 3 and 4. Moreover, the aluminum plates A and B coated and baked in the same manner as in Example 1 using the heat-resistant conductive white paint according to Comparative Examples 1 to 5 were obtained. Using them, the viscosity, brightness, and surface resistance were measured in the same manner as in Example 1. The results are shown in Tables 3 and 4.

Figure 2010006994
Figure 2010006994

Figure 2010006994
Figure 2010006994

実施例7
実施例4に係る耐熱導電性白色塗料が塗装され焼付けされた前記アルミニウム板A及びBについて、塗装面を上にして平らに置いた状態で熱風乾燥機(エスペック社製STPH−201)を用いて、大気中、350℃で100時間処理を行なった。アルミニウム板Aについては白色度、アルミニウム板Bについては導電性を測定したところ、熱処理前と変化はなかった。
Example 7
With respect to the aluminum plates A and B coated with the heat-resistant conductive white paint according to Example 4 and baked, a hot air dryer (STPH-201 manufactured by Espec Co., Ltd.) was used with the painted surface placed flat. In the atmosphere, the treatment was performed at 350 ° C. for 100 hours. When whiteness was measured for the aluminum plate A and conductivity was measured for the aluminum plate B, there was no change from before the heat treatment.

実施例8
実施例4に係る耐熱導電性白色塗料が塗装され焼付けされた前記アルミニウム板A及びBについて塗装面を上にして平らに置いた状態で熱風乾燥機(エスペック社製STPH−201)を用いて、大気中、400℃で1.5時間処理を行なった。アルミニウム板Aについては白色度、アルミニウム板Bについては導電性を測定したところ、熱処理前と変化はなかった。
Example 8
Using the hot air dryer (STPH-201 manufactured by Espec Corp.) in a state where the aluminum plates A and B coated and baked with the heat-resistant conductive white paint according to Example 4 are placed flat with the coated surface facing upward, The treatment was performed at 400 ° C. for 1.5 hours in the atmosphere. When whiteness was measured for the aluminum plate A and conductivity was measured for the aluminum plate B, there was no change from before the heat treatment.

実施例7及び8より、一般的な有機系白色塗料であれば高温に放置すると分解により着色が起き、また導電性も何らかの影響を受けると考えられるが、本発明に係る耐熱導電性白色塗料においては、高温で熱処理を行っても白色度及び導電性を維持することができることが分かる。   From Examples 7 and 8, if it is a general organic white paint, it is considered that coloring occurs due to decomposition when left at high temperature, and the conductivity is also affected in some way, but in the heat-resistant conductive white paint according to the present invention, It can be seen that whiteness and conductivity can be maintained even when heat treatment is performed at a high temperature.

Claims (5)

結着材及び無機充填剤が有機溶剤に分散又は溶解され、
前記無機充填剤が平均粒子径2μm未満の酸化亜鉛を主成分とすることを特徴とする耐熱導電性白色塗料。
The binder and inorganic filler are dispersed or dissolved in an organic solvent,
A heat-resistant conductive white paint characterized in that the inorganic filler is mainly composed of zinc oxide having an average particle diameter of less than 2 µm.
前記結着材は、ポリメタロカルボシランとシリコーン樹脂の混合物であることを特徴とする請求項1記載の耐熱導電性白色塗料。   The heat-resistant conductive white paint according to claim 1, wherein the binder is a mixture of polymetallocarbosilane and silicone resin. 前記結着材100重量部に対して、前記酸化亜鉛の含有量が100〜300重量部であることを特徴とする請求項1又は2記載の耐熱導電性白色塗料。   The heat resistant conductive white paint according to claim 1 or 2, wherein the content of the zinc oxide is 100 to 300 parts by weight with respect to 100 parts by weight of the binder. 塗装し焼付けを行なった後の塗膜の特性が、耐熱性300℃以上、表面抵抗10Ω/sq.以下、及び明度88%以上となることを特徴とする請求項1乃至3いずれか記載の耐熱導電性白色塗料。 The properties of the coated film after painting and baking are as follows: heat resistance of 300 ° C. or higher, surface resistance of 10 9 Ω / sq. The heat-resistant conductive white paint according to any one of claims 1 to 3, having a brightness of 88% or more. 請求項1乃至4いずれか記載の耐熱導電性白色塗料を含むことを特徴とする宇宙機用耐熱導電性白色塗料。


A heat-resistant conductive white paint for spacecraft, comprising the heat-resistant conductive white paint according to any one of claims 1 to 4.


JP2008169638A 2008-06-27 2008-06-27 Heat-resistant conductive white paint for spacecraft Expired - Fee Related JP5691121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169638A JP5691121B2 (en) 2008-06-27 2008-06-27 Heat-resistant conductive white paint for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169638A JP5691121B2 (en) 2008-06-27 2008-06-27 Heat-resistant conductive white paint for spacecraft

Publications (2)

Publication Number Publication Date
JP2010006994A true JP2010006994A (en) 2010-01-14
JP5691121B2 JP5691121B2 (en) 2015-04-01

Family

ID=41587838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169638A Expired - Fee Related JP5691121B2 (en) 2008-06-27 2008-06-27 Heat-resistant conductive white paint for spacecraft

Country Status (1)

Country Link
JP (1) JP5691121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374844A1 (en) * 2010-04-08 2011-10-12 Centre National D'etudes Spatiales Silylated anti-static white covering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274893B2 (en) * 2019-03-18 2023-05-17 東芝産業機器システム株式会社 Manufacturing method of rotary electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491179A (en) * 1990-08-07 1992-03-24 Ube Ind Ltd Heat-resistant paint
JPH05256691A (en) * 1992-03-13 1993-10-05 Fujitsu Ltd Aperture for infrared detecting element and setting method thereof
JPH1086900A (en) * 1996-09-13 1998-04-07 Uchu Kagaku Kenkyusho Thruster for artificial satellite
JPH11510555A (en) * 1996-05-21 1999-09-14 サントル・ナシヨナル・デテュド・スパシアル White pigment stable to UV irradiation by oxidizing agent
JP2001072932A (en) * 1999-09-07 2001-03-21 Hakusui Tech Co Ltd Preparation of antistatic coating material
WO2005019358A1 (en) * 2003-08-22 2005-03-03 Kansai Paint Co., Ltd. Coating composition for heat-insulating film formation and method of coating with the same
JP2007217584A (en) * 2006-02-17 2007-08-30 Furukawa Sky Kk Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491179A (en) * 1990-08-07 1992-03-24 Ube Ind Ltd Heat-resistant paint
JPH05256691A (en) * 1992-03-13 1993-10-05 Fujitsu Ltd Aperture for infrared detecting element and setting method thereof
JPH11510555A (en) * 1996-05-21 1999-09-14 サントル・ナシヨナル・デテュド・スパシアル White pigment stable to UV irradiation by oxidizing agent
JPH1086900A (en) * 1996-09-13 1998-04-07 Uchu Kagaku Kenkyusho Thruster for artificial satellite
JP2001072932A (en) * 1999-09-07 2001-03-21 Hakusui Tech Co Ltd Preparation of antistatic coating material
WO2005019358A1 (en) * 2003-08-22 2005-03-03 Kansai Paint Co., Ltd. Coating composition for heat-insulating film formation and method of coating with the same
JP2007217584A (en) * 2006-02-17 2007-08-30 Furukawa Sky Kk Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374844A1 (en) * 2010-04-08 2011-10-12 Centre National D'etudes Spatiales Silylated anti-static white covering
FR2958653A1 (en) * 2010-04-08 2011-10-14 Centre Nat Etd Spatiales ANTISTATIC WHITE COATING WITH SILYLATED BASE

Also Published As

Publication number Publication date
JP5691121B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US5436084A (en) Electronic coatings using filled borosilazanes
EP3167013B1 (en) Thermal control coatings
US8029702B2 (en) Low solar absorptance, high emissivity, inorganic electrostatic dissipative thermal control coating
JP4651098B2 (en) Anticorrosion film using nano hollow particles made of silica shell and anticorrosion coating using nano hollow particles made of silica shell
TWI615449B (en) Water-based coating, heat dissipation member, metal component, electronic device
JP5691121B2 (en) Heat-resistant conductive white paint for spacecraft
US20210207272A1 (en) Magnesium alloy layered composites for electronic devices
KR101069950B1 (en) Steel Sheet Having Superior Electro-Conductivity and Resin Composition Therefor
US5876856A (en) Article having a high-temperature thermal control coating
WO2020046324A1 (en) Coated substrates for electronic devices
KR101115745B1 (en) A Black Coloring Resin Coated Steel Sheet, Black Coloring Resin Composition Having Anti-Fingerprint Property and An Adhesive Resin Composition
US8038910B2 (en) Low solar absorptance, high emissivity, inorganic electrostatic dissipative thermal control coating
JPH11279488A (en) Heat-resistant coating composition
CN113502096A (en) Low-cost color water-based super high temperature resistant coating prepared by self-crosslinking and sintering crosslinking, and preparation method and use method thereof
US11549023B2 (en) Paint for high temperature and method of preparing the paint
JPH0491179A (en) Heat-resistant paint
KR101054600B1 (en) Heavy-duty ceramic coating composition with environmental friendliness
JPH0643267B2 (en) Infrared radiation coating
EP1405317B1 (en) Charge-dissipating, white thermal control film, and structures utilizing the thermal control film
CN109913004A (en) A kind of preparation method of ceramic coating
KR101723102B1 (en) Coating composition for radiating heat, its preparing method, and coating method using the same
KR101611747B1 (en) Method of manufacturing heat sink having roughness
KR20220029351A (en) Method for forming high heat resistant coating film using liquid ceramic composition and high heat resistant coating film prepared thereby
US20220064070A1 (en) Method for forming high heat-resistant coating film using liquid ceramic composition and high heat-resistant coating film prepared thereby
CN105802439A (en) Powdery paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees