JPH05256691A - Aperture for infrared detecting element and setting method thereof - Google Patents

Aperture for infrared detecting element and setting method thereof

Info

Publication number
JPH05256691A
JPH05256691A JP4054667A JP5466792A JPH05256691A JP H05256691 A JPH05256691 A JP H05256691A JP 4054667 A JP4054667 A JP 4054667A JP 5466792 A JP5466792 A JP 5466792A JP H05256691 A JPH05256691 A JP H05256691A
Authority
JP
Japan
Prior art keywords
aperture
light receiving
flat plate
infrared
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4054667A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakayama
博之 若山
Shoji Doi
正二 土肥
Masahiko Narita
正彦 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4054667A priority Critical patent/JPH05256691A/en
Publication of JPH05256691A publication Critical patent/JPH05256691A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a detecting element that makes an incident light quantity and a lens outside incident light quantity controllable to the desired value by setting up two setting frames on a compound semiconductor substrate in and around both ends of the infrared detecting element set up in an arrayal form so as to make their inclines be opposed to each other. CONSTITUTION:Two setting frames 11 are set up on a compound semiconductor substrate 4 in and around a light receiving part 3A at one end of an infrared detecting element set up in an arrayal form and a light receiving part 3B at another end so as to make their inclines 13 be opposed to each other. When a distance between these light receiving parts 3A and 3B is L, thickness of plate part 12 of an aperture, (b) and each angle of the inclines of the setting frames 11, theta, respectively, and when a distance H between a light receiving part 3 and a top face of the plate part 12 is a desired value, the plate part is worked so as to make a size (a) in the longitudinal direction of the plate part 12 come to (a)=L+2X(H-b)/tantheta, and then the plate part 12 is attached tight to the incline 13 of the setting frames 11. With this constitution, a visual angle of infrared rays being incident into the light receiving part 3 is regulatable to the desired value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線検知素子用アパー
チャに係り、特に該検知素子の受光部と、アパーチャ間
の距離が設計寸法に応じて正確に制御できるような赤外
線検知素子用アパーチャ、およびその取付け方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element aperture, and more particularly to an infrared detecting element aperture which allows the distance between the light receiving portion of the detecting element and the aperture to be accurately controlled according to the design dimension, and Regarding the mounting method.

【0002】近年、撮像装置を構成する赤外線検知素子
に於いては、該検知素子を高密度、多画素に一次元、或
いは二次元的に配置することが、益々要求されるように
成っており、そのため、赤外線検知素子の受光部の配置
される位置によって、各々の受光部間で入射光量の差が
無いように、また赤外線を入射するレンズ以外から、該
検知素子の受光部に入射する光量、つまりレンズ外光量
を出来るだけ少なくすることが要求されている。
In recent years, it has become more and more demanded to arrange the infrared detector elements constituting an image pickup device in a high density and in a multi-pixel manner one-dimensionally or two-dimensionally. Therefore, depending on the position where the light receiving portion of the infrared detection element is arranged, there is no difference in the amount of incident light between the respective light receiving portions, and the amount of light that enters the light receiving portion of the detection element from other than the lens that inputs infrared rays. That is, it is required to reduce the amount of light outside the lens as much as possible.

【0003】このため、各赤外線検知素子の画素毎に、
視野角を制限するアパーチャ、つまり個別アパーチャが
提案されているが、この個別アパーチャはSi等の半導体
基板に異方性エッチング液により開口部を所定のパター
ンで設けて形成し、この個別アパーチャを、赤外線検知
素子を形成した化合物半導体基板に密接して接着剤等を
用いて固着して取付けられている。
Therefore, for each pixel of each infrared detecting element,
An aperture for limiting the viewing angle, that is, an individual aperture has been proposed, but this individual aperture is formed by forming an opening in a predetermined pattern on a semiconductor substrate such as Si with an anisotropic etching solution, and forming this individual aperture by The compound semiconductor substrate on which the infrared detection element is formed is closely attached and fixed by using an adhesive or the like.

【0004】そのため、赤外線検知素子の受光部の視野
角は、この個別アパーチャを形成する半導体基板の厚
さ、或いは開口部の面積等の寸法精度、或いは接着剤で
該アパーチャを、素子形成した化合物半導体基板に固着
する際の取付け精度に大きく影響されるので、常に一定
した視野角が安定して得られるような赤外線検知素子用
アパーチャ、およびその取付け方法が要望されている。
Therefore, the viewing angle of the light receiving portion of the infrared detection element is determined by the thickness of the semiconductor substrate forming the individual aperture, the dimensional accuracy of the area of the opening, or the compound in which the aperture is formed by an adhesive. There is a demand for an aperture for an infrared detection element and a method for mounting the aperture that can stably obtain a constant viewing angle, because the mounting accuracy when it is fixed to a semiconductor substrate is greatly affected.

【0005】[0005]

【従来の技術】従来の赤外線検知素子用アパーチャは、
図4(a)の平面図、該図4(a)のA−A´線断面図である図
4(b)に示すように、(110)面を有するSi基板1に、
エチレンジアミンとピロカテコールと水の混合液よりな
る異方性エッチング液を用いてレジスト膜等をマスクと
して用いて異方性エッチングすることで、傾斜面が(1
11)面となる四角錐状の開口部2を図4(c)に示す赤外
線検知素子の受光部3に対応して所定の間隔で設けてい
る。
2. Description of the Related Art A conventional infrared detecting element aperture is
FIG. 4 (a) is a plan view and FIG. 4 (a) is a cross-sectional view taken along the line AA ′.
As shown in 4 (b), on the Si substrate 1 having the (110) plane,
Anisotropic etching using a mixed solution of ethylenediamine, pyrocatechol and water and anisotropic etching using a resist film or the like as a mask produces an inclined surface (1
11) The quadrangular pyramid-shaped opening 2 is provided at a predetermined interval corresponding to the light receiving portion 3 of the infrared detecting element shown in FIG. 4 (c).

【0006】そしてこのようにして形成した個別アパー
チャ6を、図4(c)に示す赤外線検知素子の受光部3を形
成した水銀・カドミウム・テルル( Hg1-x Cdx Te) のよ
うな化合物半導体基板4上にエポキシ樹脂等の接着剤5
を用いて固着することで、この個別アパーチャ6を赤外
線検知素子に取りつけていた。
The individual apertures 6 thus formed are replaced with a compound such as mercury cadmium tellurium (Hg 1-x Cd x Te) forming the light receiving part 3 of the infrared detecting element shown in FIG. 4 (c). Adhesive 5 such as epoxy resin on the semiconductor substrate 4
The individual apertures 6 are attached to the infrared detecting element by being fixed by using.

【0007】[0007]

【発明が解決しようとする課題】然し、このような従来
のような個別アパーチャの取付け方法では、この個別ア
パーチャの高さ、つまり個別アパーチャを形成するSi基
板1の厚さや、接着剤で化合物半導体基板4上に固着す
る際の取付け誤差により、受光部3より開口部2をのぞ
む角度である視野角Φが変動し、入射光量や、入射レン
ズ以外より該受光部3に入射する光量が変動し、形成さ
れる撮像素子の性能に変化を及ぼし、所望の特性の撮像
素子が得られない問題がある。
However, according to such a conventional method of attaching the individual apertures, the height of the individual apertures, that is, the thickness of the Si substrate 1 forming the individual apertures and the compound semiconductor by the adhesive agent are used. The viewing angle Φ, which is the angle through which the opening 2 is viewed from the light receiving portion 3, changes due to a mounting error when the light receiving portion 3 is fixed on the substrate 4, and the amount of incident light and the amount of light incident on the light receiving portion 3 from other than the incident lens change. However, there is a problem in that the performance of the formed image sensor is changed and an image sensor having desired characteristics cannot be obtained.

【0008】図4(d)に赤外線検知素子の受光部3と個別
アパーチャ6の上面迄の距離Hと、入射光量の関係図を
示す。図の曲線aに示すように、赤外線検知素子の受光
部3とアパーチャ6の上部迄の距離Hが70μm の時のレ
ンズ光量+レンズ外光量=1とした場合、赤外線検知素
子の受光部3と個別アパーチャの上面迄の距離Hが60μ
m となると、レンズ光量+レンズ外光量=1.5 となり、
レンズ光量は一定であるので、レンズ外光量は50%増加
したことを示している。
FIG. 4 (d) shows the relationship between the distance H from the light receiving portion 3 of the infrared detecting element and the upper surface of the individual aperture 6 and the amount of incident light. As shown by the curve a in the figure, when the distance H between the light receiving portion 3 of the infrared detecting element and the upper portion of the aperture 6 is 70 μm, the light receiving portion 3 of the infrared detecting element is Distance H to the upper surface of individual aperture is 60μ
At m, the lens light amount + lens outside light amount = 1.5,
Since the lens light amount is constant, the amount of light outside the lens is increased by 50%.

【0009】このように赤外線検知素子とアパーチャの
上面迄の距離Hが微小に変化しても該検知素子に入射す
るレンズ外光量の変動は大きく、そのため、所望のレン
ズ外光量に規制するためには、赤外線検知素子とアパー
チャの上部迄の距離Hを精密に制御することが必要とな
る。
As described above, even if the distance H between the infrared detecting element and the upper surface of the aperture is slightly changed, the amount of light outside the lens incident on the detecting element is largely changed. Therefore, in order to regulate the amount of light outside the lens to a desired value. Requires precise control of the distance H between the infrared sensing element and the upper part of the aperture.

【0010】本発明は上記したことより、赤外線検知素
子とアパーチャの上部迄の距離Hが所定の値に制御可能
な赤外線検知素子用アパーチャ、およびその取付け方法
の提供にある。
Based on the above, the present invention provides an aperture for an infrared detecting element capable of controlling the distance H between the infrared detecting element and the upper part of the aperture to a predetermined value, and a mounting method thereof.

【0011】[0011]

【課題を解決するための手段】本発明の赤外線検知素子
用アパーチャは、請求項1に示すように、化合物半導体
基板にアレイ状に配置された赤外線検知素子の視野角を
規制する赤外線検知素子用アパーチャであって、該アパ
ーチャが半導体基板に傾斜面を設けた取り付け枠と、他
の半導体基板に形成され、前記取り付け枠の傾斜面に沿
って設置され、前記アレイ状に配置された赤外線検知素
子の受光部に対応する開口部を備えた平板部とで構成さ
れ、前記アレイ状に配置された赤外線検知素子の一端部
と他端部の近傍の化合物半導体基板上に、前記取り付け
枠の傾斜面が互いに対向するように該取り付け枠を設置
するとともに、該取り付け枠の傾斜面に沿って平板部の
長手方向の寸法を調節ながら該平板部を設置すること
で、前記赤外線検知素子の受光部と、前記開口部を備え
た平板部の上面の間の距離を制御可能とし、該赤外線検
知素子の受光部に入射する赤外線の視野角を規制するよ
うにしたことを特徴とするものである。
An aperture for an infrared detecting element according to the present invention is for an infrared detecting element for regulating a viewing angle of infrared detecting elements arranged in an array on a compound semiconductor substrate, as set forth in claim 1. An infrared detection element, which is an aperture, is formed on a mounting frame in which the semiconductor substrate has an inclined surface and another semiconductor substrate, is installed along the inclined surface of the mounting frame, and is arranged in the array. And a flat plate portion having an opening corresponding to the light receiving portion of the infrared ray detecting elements arranged on the compound semiconductor substrate in the vicinity of the one end portion and the other end portion of the infrared ray detecting element, and the inclined surface of the mounting frame. The infrared detection is performed by installing the mounting frame so that they face each other and by installing the flat plate part while adjusting the dimension of the flat plate part in the longitudinal direction along the inclined surface of the mounting frame. The distance between the light receiving portion of the child and the upper surface of the flat plate portion having the opening can be controlled, and the viewing angle of infrared rays incident on the light receiving portion of the infrared detection element is regulated. It is a thing.

【0012】また本発明の赤外線検知素子用アパーチャ
の取り付け方法は、請求項2に示すように、前記アレイ
状に配置された赤外線検知素子の一端部と他端部間の距
離をL、前記アパーチャを形成する平板部の厚さをb、
前記アパーチャを構成する取り付け枠の傾斜面の角度を
θとし、赤外線検知素子の受光部と、アパーチャを構成
する平板部の上面との間の距離Hを所定の値に設定する
際に、前記アパーチャの平板部の長手方向の寸法aが、
a=L+2×(H−b)/tanθとなるように、前記
平板部の長手方向の寸法を調節して加工した後、該平板
部を前記取り付け枠の傾斜面に固着することを特徴とす
るものである。
According to a second aspect of the present invention, there is provided a method for mounting an aperture for an infrared detecting element, wherein the distance between one end and the other end of the infrared detecting elements arranged in the array is L, and the aperture is The thickness of the flat plate portion forming
When the angle of the inclined surface of the mounting frame forming the aperture is θ and the distance H between the light receiving portion of the infrared detection element and the upper surface of the flat plate portion forming the aperture is set to a predetermined value, the aperture is set. The longitudinal dimension a of the flat plate is
It is characterized in that the flat plate portion is fixed to the inclined surface of the mounting frame after the flat plate portion is processed by adjusting the dimension in the longitudinal direction so that a = L + 2 × (H−b) / tan θ. It is a thing.

【0013】[0013]

【作用】本発明は図1、図2(a)、図2(a) のA−A´線
図の図2(b)、および図2(c)の斜視図に示すように、赤外
線検知素子用アパーチャを、表面が( 110 )面で有る
Si基板を異方性エッチング液でエッチングして(11
1)面を傾斜面13とする取り付け枠11を形成する。そし
てこの取り付け枠11をアレイ状に配置された赤外線検知
素子の一端部の受光部3Aと他端部の受光部3Bの近傍の化
合物半導体基板4上に接着剤で固着する。
The present invention is capable of detecting infrared rays as shown in the perspective views of FIGS. 1, 2 (a), 2 (a), 2 (b) and 2 (c) of FIG. 2 (a). The surface of the element aperture is (110)
Etch the Si substrate with an anisotropic etchant (11
1) A mounting frame 11 whose surface is an inclined surface 13 is formed. Then, the mounting frame 11 is fixed to the compound semiconductor substrate 4 near the light receiving portion 3A at one end and the light receiving portion 3B at the other end of the infrared detecting elements arranged in an array with an adhesive.

【0014】そしてこの赤外線検知素子の受光部3に対
応するように四角錐状の開口部2を異方性エッチングで
形成したSiの平板部12を設置し、この平板部12の厚さを
b、該取り付け枠11の傾斜面の角度をθ、赤外線検知素
子の一端部の受光部3Aより他端部の受光部3B迄の距離を
Lとした時、必要な視野角を得るための検知素子の受光
部3とアパーチャを構成する平板部12の上面迄の距離が
Hである場合には、平板部12の長さa=L+2×(H−
b)/tanθとなり、aの長さを所定の寸法に切断す
ることで、必要な視野角を得るための検知素子の受光部
3と、アパーチャを構成する平板部12の上面迄の距離H
が正確に制御できる。
Then, a flat plate portion 12 made of Si in which a square pyramidal opening 2 is formed by anisotropic etching is provided so as to correspond to the light receiving portion 3 of the infrared detecting element, and the thickness of the flat plate portion 12 is b. When the angle of the inclined surface of the mounting frame 11 is θ and the distance from the light receiving portion 3A at one end of the infrared detecting element to the light receiving portion 3B at the other end is L, a detecting element for obtaining a necessary viewing angle When the distance from the light receiving portion 3 to the upper surface of the flat plate portion 12 forming the aperture is H, the length of the flat plate portion 12 is a = L + 2 × (H−
b) / tan θ, and by cutting the length of a to a predetermined dimension, the distance H between the light receiving portion 3 of the detection element and the upper surface of the flat plate portion 12 forming the aperture for obtaining the required viewing angle.
Can be controlled accurately.

【0015】また平板部12の長手方向の寸法aを変える
のみで、検知素子の受光部3とアパーチャを構成する平
板部12の上面迄の距離Hを変えることができ、それに依
って視野角を自由に制御できる。
Further, the distance H between the light receiving portion 3 of the detecting element and the upper surface of the flat plate portion 12 forming the aperture can be changed only by changing the longitudinal dimension a of the flat plate portion 12, and the viewing angle is accordingly changed. You can control it freely.

【0016】[0016]

【実施例】以下、図面を用いて本発明の実施例につき詳
細に説明する。図2(a)および図2(a)のA−A´線断面図
の図2(b)に示すように、表面が( 110) 面のSi基板1
にエチレンジアミンとピロカテコールと水の混合液より
成る異方性エッチング液を用いて傾斜面が(111)面
となる四角錐状の開口部2をレジスト膜をマスクとして
所定の間隔で受光部に対応するようにしてアパーチャの
平板部12を形成する。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 2 (a) and FIG. 2 (b) of the sectional view taken along the line AA ′ of FIG. 2 (a), the surface of the Si substrate 1 is the (110) plane.
Anisotropic etching liquid composed of a mixed liquid of ethylenediamine, pyrocatechol and water is used to correspond to the light receiving parts at predetermined intervals by using the resist film as a mask for the quadrangular pyramid-shaped openings 2 whose inclined surface is (111) Thus, the flat plate portion 12 of the aperture is formed.

【0017】また図2(c)の斜視図に示すように、表面が
(110)面のSi基板1に上記した組成の異方性エッチ
ング液を用いて傾斜面13の角度が30°の取り付け枠11を
形成する。
Further, as shown in the perspective view of FIG. 2 (c), the surface of the (110) surface is attached to the Si substrate 1 by using the anisotropic etching solution having the above composition and the inclined surface 13 having the angle of 30 °. The frame 11 is formed.

【0018】そして図1に示すように、この取り付け枠
11の傾斜面の各々が対向するように、赤外線検知素子の
受光部3が列状に配置された一端部の受光部3Aと他端部
の受光部3Bを近傍の化合物半導体基板4上にエポキシ樹
脂のような接着剤にて接着する。
Then, as shown in FIG. 1, this mounting frame
The light receiving parts 3A of the infrared detecting elements are arranged in a row so that the respective inclined surfaces of 11 face each other, and the light receiving part 3A at one end and the light receiving part 3B at the other end are placed on the compound semiconductor substrate 4 in the vicinity. Bond with an adhesive such as resin.

【0019】次いで、この平板部12の厚さbを50μm 、
該取り付け枠11の傾斜面13の角度を30度、取り付け枠11
の赤外線検知素子の受光部の一端部より他端部迄の距離
をL=650 μm とした時、必要なF1.4 の視野角を得る
ための検知素子の受光部3と、アパーチャを構成する平
板部12の上面迄の距離がHが70μm である場合には、平
板部12の長さa=L+2×(H−b)/tan30°とな
り、a=719 μm の長さとなり、このa の長さで所定の
寸法に平板部12を切断し、該平板部12の両端部を異方性
エッチング液で30°の角度で斜め方向にエッチングし
て、上記した取り付け枠11の傾斜面13上を密着して移動
できるようにする。
Next, the thickness b of the flat plate portion 12 is 50 μm,
The angle of the inclined surface 13 of the mounting frame 11 is 30 degrees,
When the distance from one end to the other end of the light receiving part of the infrared detecting element is set to L = 650 μm, the light receiving part 3 of the detecting element for obtaining the necessary F1.4 viewing angle and the aperture are formed. When the distance H to the upper surface of the flat plate portion 12 is 70 μm, the length of the flat plate portion 12 is a = L + 2 × (H−b) / tan30 °, and the length of a = 719 μm. The flat plate portion 12 is cut into a predetermined size with a length, and both ends of the flat plate portion 12 are etched in an oblique direction at an angle of 30 ° with an anisotropic etching solution, and then on the inclined surface 13 of the mounting frame 11 described above. To be able to move closely.

【0020】また、本実施例の他に前記した個別アパー
チャを構成する平板部を形成するには、本出願人が以前
に特願平2-324107号に於いて提案した方法を用いても良
い。この方法は、図3(a)に示すように、P型Si基板21上
に第1層のP+ Si層22を形成後、その上に第2層のP型
Si層23を積層し、その表面をSiO2膜24で被覆し、図3(b)
に示すように、該SiO2膜24を所定のパターンにエッチン
グして開口してイオン注入用のマスクを形成する。
In addition to the present embodiment, in order to form the flat plate portion constituting the individual aperture described above, the method previously proposed by the applicant in Japanese Patent Application No. 2-324107 may be used. .. As shown in FIG. 3 (a), this method forms a first layer P + Si layer 22 on a P type Si substrate 21 and then forms a second layer P type Si layer 22 thereon.
A Si layer 23 is laminated and the surface thereof is covered with a SiO 2 film 24, as shown in FIG.
As shown in, the SiO 2 film 24 is etched into a predetermined pattern and opened to form a mask for ion implantation.

【0021】次いで該基板にボロン(B) をイオン注入し
て図3(c)に示すP+ Si層25を形成する。次いでP+ Si層
22と25を選択的にエッチングする弗化水素酸、硝酸、酢
酸の混合液よりなる選択エッチング液を用いてP+ Si層
22と25とを選択的にエッチングして図3(d)に示すSiの平
板部12を形成する。
Next, boron (B) is ion-implanted into the substrate to form a P + Si layer 25 shown in FIG. 3 (c). Then P + Si layer
P + Si layer using a selective etching solution consisting of a mixed solution of hydrofluoric acid, nitric acid and acetic acid that selectively etches 22 and 25
22 and 25 are selectively etched to form the flat plate portion 12 of Si shown in FIG. 3 (d).

【0022】以上述べたように、本発明の個別アパーチ
ャ、および該アパーチャの取付け方法によると、視野角
が所定の値に規制された個別アパーチャが得られ、赤外
線検知素子の受光部に入射する赤外線の光量が均一とな
るので、高信頼度の赤外線検知素子が得られる効果があ
る。
As described above, according to the individual aperture of the present invention and the method of mounting the aperture, the individual aperture whose viewing angle is regulated to a predetermined value can be obtained, and the infrared light incident on the light receiving portion of the infrared detecting element can be obtained. Since the amount of light is uniform, there is an effect that a highly reliable infrared detecting element can be obtained.

【0023】[0023]

【発明の効果】以上述べたように、本発明の赤外線検知
素子用アパーチャによると、視野角が所定の値に規定さ
れるので、入射光量、レンズ外入射光量が所定の値に制
御された高信頼度の赤外線検知素子が得られる効果があ
る。
As described above, according to the aperture for the infrared detecting element of the present invention, the viewing angle is regulated to a predetermined value, so that the incident light quantity and the light quantity outside the lens are controlled to a predetermined value. There is an effect that an infrared detecting element with high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の赤外線検知素子用アパーチャの説明
図である。
FIG. 1 is an explanatory diagram of an infrared detection element aperture of the present invention.

【図2】 本発明の赤外線検知素子用アパーチャの説明
図である。
FIG. 2 is an explanatory diagram of an aperture for an infrared detection element of the present invention.

【図3】 本発明の製造方法の他の実施例を示す断面図
である。
FIG. 3 is a cross-sectional view showing another embodiment of the manufacturing method of the present invention.

【図4】 従来の赤外線検知素子用アパーチャの説明図
とその特性図である。
FIG. 4 is an explanatory diagram of an aperture for a conventional infrared detecting element and a characteristic diagram thereof.

【符号の説明】[Explanation of symbols]

1 Si基板 2 開口部 3,3A,3B 受光部 4 化合物半導体基板 11 取り付け枠 12 平板部 21 P型Si基板 22,25 P+ Si層 23 P型Si層 24 SiO21 Si substrate 2 Opening 3,3A, 3B Light receiving part 4 Compound semiconductor substrate 11 Mounting frame 12 Flat plate 21 P-type Si substrate 22,25 P + Si layer 23 P-type Si layer 24 SiO 2 film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 27/14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板にアレイ状に配置され
た赤外線検知素子の視野角を規制する赤外線検知素子用
アパーチャであって、 該アパーチャが半導体基板に傾斜面(13)を設けた取り付
け枠(11)と、他の半導体基板に形成され、前記取り付け
枠(11)の傾斜面(13)に沿って設置され、前記アレイ状に
配置された赤外線検知素子の受光部(3) に対応する開口
部(2) を備えた平板部(12)とで構成され、 前記アレイ状に配置された赤外線検知素子の一端部の受
光部(3A)と他端部の受光部(3B)近傍の化合物半導体基板
(4) 上に、前記取り付け枠(11)の傾斜面(13)が互いに対
向するように該取り付け枠(11)を設置するとともに、該
取り付け枠(11)の傾斜面(13)に沿って平板部(12)の長手
方向の寸法を調節ながら該平板部(12)を設置すること
で、前記赤外線検知素子の受光部(3) と、前記開口部
(2) を備えた平板部(12)の上面の間の距離を制御可能と
し、該赤外線検知素子の受光部(3) に入射する赤外線の
視野角を規制するようにしたことを特徴とする赤外線検
知素子用アパーチャ。
1. An aperture for an infrared detecting element for regulating a viewing angle of infrared detecting elements arranged in an array on a compound semiconductor substrate, the aperture comprising a mounting frame (13) provided with an inclined surface (13) on a semiconductor substrate. 11) and an opening formed on another semiconductor substrate and installed along the inclined surface (13) of the mounting frame (11) and corresponding to the light receiving part (3) of the infrared detection elements arranged in the array. A compound semiconductor in the vicinity of the light receiving part (3A) at one end and the light receiving part (3B) at the other end of the infrared detection elements arranged in an array, substrate
(4) The mounting frame (11) is installed on the mounting frame (11) so that the slanted surfaces (13) of the mounting frame (11) face each other, and along the slanted surface (13) of the mounting frame (11). By installing the flat plate portion (12) while adjusting the dimension of the flat plate portion (12) in the longitudinal direction, the light receiving portion (3) of the infrared detecting element and the opening portion
It is characterized in that the distance between the upper surfaces of the flat plate portion (12) provided with (2) can be controlled, and the viewing angle of infrared rays incident on the light receiving portion (3) of the infrared detection element is regulated. Aperture for infrared detector.
【請求項2】 請求項1記載のアレイ状に配置された赤
外線検知素子の一端部の受光部(3A)と他端部の受光部(3
B)間の距離をL、前記アパーチャを構成する平板部(12)
の厚さをb、前記アパーチャを構成する取り付け枠(11)
の傾斜面(13)の角度をθとし、赤外線検知素子の受光部
(3) と、アパーチャを構成する平板部(12)の上面との間
の距離Hを所定の値に設定する際に、前記アパーチャの
平板部(12)の長手方向の寸法aが、a=L+2×(H−
b)/tanθとなるように、前記平板部(12)の長手方
向の寸法を調節して加工した後、該平板部(12)を前記取
り付け枠(11)の傾斜面(13)に固着することを特徴とする
赤外線素子用アパーチャの取付け方法。
2. The light receiving section (3A) at one end and the light receiving section (3) at the other end of the infrared detecting elements arranged in an array according to claim 1.
The distance between B) is L, and the flat plate portion (12) that constitutes the aperture
The thickness of b, the mounting frame (11) that constitutes the aperture
Let θ be the angle of the inclined surface (13) of the
When the distance H between (3) and the upper surface of the flat plate portion (12) forming the aperture is set to a predetermined value, the longitudinal dimension a of the flat plate portion (12) of the aperture is a = L + 2 × (H-
b) / tan θ, after the length of the flat plate portion (12) is adjusted and processed, the flat plate portion (12) is fixed to the inclined surface (13) of the mounting frame (11). A method for mounting an aperture for an infrared device, which is characterized in that
JP4054667A 1992-03-13 1992-03-13 Aperture for infrared detecting element and setting method thereof Withdrawn JPH05256691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054667A JPH05256691A (en) 1992-03-13 1992-03-13 Aperture for infrared detecting element and setting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054667A JPH05256691A (en) 1992-03-13 1992-03-13 Aperture for infrared detecting element and setting method thereof

Publications (1)

Publication Number Publication Date
JPH05256691A true JPH05256691A (en) 1993-10-05

Family

ID=12977133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054667A Withdrawn JPH05256691A (en) 1992-03-13 1992-03-13 Aperture for infrared detecting element and setting method thereof

Country Status (1)

Country Link
JP (1) JPH05256691A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006994A (en) * 2008-06-27 2010-01-14 Ube Ind Ltd Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft
JP2011203247A (en) * 2010-03-05 2011-10-13 Seiko Epson Corp Optical sensor and electronic apparatus
JP2013044537A (en) * 2011-08-22 2013-03-04 Seiko Epson Corp Optical sensor and electronic apparatus
US8462325B2 (en) 2008-10-10 2013-06-11 Koninklijke Philips Electronics N.V. Light directionality sensor
CN109843500A (en) * 2016-08-24 2019-06-04 奥斯特公司 Optical system for the range information in collecting field

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006994A (en) * 2008-06-27 2010-01-14 Ube Ind Ltd Heat-resistant electrically-conductive white coating material and heat-resistant electrically-conductive white coating material for spacecraft
US8462325B2 (en) 2008-10-10 2013-06-11 Koninklijke Philips Electronics N.V. Light directionality sensor
JP2011203247A (en) * 2010-03-05 2011-10-13 Seiko Epson Corp Optical sensor and electronic apparatus
JP2013044537A (en) * 2011-08-22 2013-03-04 Seiko Epson Corp Optical sensor and electronic apparatus
CN109843500A (en) * 2016-08-24 2019-06-04 奥斯特公司 Optical system for the range information in collecting field
US10948572B2 (en) 2016-08-24 2021-03-16 Ouster, Inc. Optical system for collecting distance information within a field
CN109843500B (en) * 2016-08-24 2021-06-29 奥斯特公司 Optical system for collecting distance information within a field
US11422236B2 (en) 2016-08-24 2022-08-23 Ouster, Inc. Optical system for collecting distance information within a field

Similar Documents

Publication Publication Date Title
KR970002120B1 (en) Solid state image pick-up apparatus having microlens
US6507083B1 (en) Image sensor with light-reflecting via structures
JPS61182533A (en) Matrix device for detecting beam with independent cold screen unified in substrate and manufacture thereof
US20110285880A1 (en) Color filter array alignment mark formation in backside illuminated image sensors
US20060188400A1 (en) Thermal-type infrared detection element
JP6051399B2 (en) Solid-state imaging device and manufacturing method thereof
KR100628231B1 (en) Image Sensor comprising a squre microlens and Method of manufacturing the same
JPH06112459A (en) On-chip lens and manufacture thereof
US20110108180A1 (en) Method for producing a curved circuit
JPH05256691A (en) Aperture for infrared detecting element and setting method thereof
JPH0727863A (en) Radiation detecting element and its manufacture
US6949286B2 (en) Radiation-absorbing layers for thermopile radiation detectors
US5422475A (en) Method and apparatus for concentrating optical flux in a focal plane array
JP2825966B2 (en) Solid-state imaging device with micro lens
US20070090418A1 (en) Method for fabricating a high performance PIN focal plane structure using three handle wafers
US6483115B1 (en) Method for enhancing scintillator adhesion to digital x-ray detectors
US4016590A (en) Electromagnetic radiation detector
JP2556122B2 (en) Optical aperture manufacturing method
US20060194153A1 (en) Microlens manufacturing method and solid-state image pick-up unit manufacturing method
JP2008147582A (en) Imaging device, electronic equipment, and method of manufacturing imaging device
JP2682313B2 (en) Semiconductor microfabrication method
JP2810261B2 (en) Method of forming bump electrodes
JPH05315582A (en) Infrared detector
KR100308787B1 (en) Photodetection device manufacturing method
JPH0575086A (en) Solid state image pickup device and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518