JP2013146266A - Propagated body coating, cultivation method, and method of manufacturing the propagated body coating - Google Patents

Propagated body coating, cultivation method, and method of manufacturing the propagated body coating Download PDF

Info

Publication number
JP2013146266A
JP2013146266A JP2012272781A JP2012272781A JP2013146266A JP 2013146266 A JP2013146266 A JP 2013146266A JP 2012272781 A JP2012272781 A JP 2012272781A JP 2012272781 A JP2012272781 A JP 2012272781A JP 2013146266 A JP2013146266 A JP 2013146266A
Authority
JP
Japan
Prior art keywords
pva
seeds
weight
seed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012272781A
Other languages
Japanese (ja)
Other versions
JP6024972B2 (en
Inventor
Yoshitaka Hara
嘉隆 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2012272781A priority Critical patent/JP6024972B2/en
Publication of JP2013146266A publication Critical patent/JP2013146266A/en
Application granted granted Critical
Publication of JP6024972B2 publication Critical patent/JP6024972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated seed superior in water resistance, and a method of manufacturing the same.SOLUTION: Provided is a method of manufacturing a propagated body coating that includes the following: a step of mixing polyvinyl alcohol as a granular solid whose saponification degree is 78 mol.% or more with functional materials without being substantially melted, and forming, by using a liquid, a coating layer containing the polyvinyl alcohol, functional materials, and liquid on the surface of the propagated body coating; and a step of drying the coating layer.

Description

本発明は、耐水性に優れた繁殖体被覆物、栽培方法、及び繁殖体被覆物の製造方法に関するものである。   The present invention relates to a propagation material coating excellent in water resistance, a cultivation method, and a production method of the propagation material coating.

米は世界三大穀物の1つであり、イネは日本において最も作付面積が広い重要な作物である。現在の日本で行われている一般的な稲作は、育苗箱に種子を播いて生長させた苗を本田に植えるため、諸外国の稲作と比べてコスト高であり、コスト削減が望まれている。また、農家の高齢化が進んでおり、省力化も求められている。このように、稲作のコスト削減及び省力化を実現する観点から、イネの種子を本田に直接播種する直播が注目されている。   Rice is one of the three largest crops in the world, and rice is an important crop with the largest acreage in Japan. In general rice cultivation in Japan today, seedlings grown in seedling boxes are planted in Honda, which is more expensive than rice cultivation in other countries, and cost reduction is desired. . Farmers are also aging and labor saving is required. Thus, from the viewpoint of realizing cost reduction and labor saving of rice cultivation, direct sowing in which rice seeds are directly sown in Honda has been attracting attention.

しかし、直播のうち、湛水及び代かきの後の水田に種子を播種する湛水直播では苗立ちが不安定になりやすく、その原因は、一般に、酸素不足であるとされている。また、非特許文献1には、土壌中の酸素が無くなったのちに酸素の代わりに電子を受け取る物質が消費される土壌還元が原因であることが記載されている。   However, in direct sowing, direct seeding sowing seeds in paddy fields after paddy and paddling tends to make seedling establishment unstable, and the cause is generally considered to be lack of oxygen. Further, Non-Patent Document 1 describes that the cause is soil reduction in which a substance that receives electrons instead of oxygen is consumed after oxygen in the soil disappears.

そこで、湛水直播では、苗立ちを改善する目的で、播種前に、種子の表面を、酸素発生剤等の苗立ちを安定化させる資材で被覆する方法が普及している(非特許文献2)。   Accordingly, in direct sowing of flooded water, for the purpose of improving seedling establishment, a method of covering the seed surface with a material that stabilizes seedling establishment such as an oxygen generating agent is prevalent before sowing (Non-Patent Document 2). ).

また、鳥害及び浮き苗の発生を避けるために、鉄等を被覆した種子を酸素不足が起きない土壌の表面に播種する方法も試みられている(特許文献1)。   In addition, in order to avoid the occurrence of bird damage and floating seedlings, a method of sowing seeds coated with iron or the like on the surface of soil where oxygen deficiency does not occur has been attempted (Patent Document 1).

特開2005−192458(2005年7月21日公開)JP 2005-192458 (released July 21, 2005)

萩原素之、石川県農業短期大学特別研究報告第20号、「水稲の湛水土壌中直播における出芽・苗立ちに関する研究」、1993年3月Motoyuki Sugawara, Special Research Report No. 20 of Ishikawa Prefectural Agricultural College, “Study on seedling emergence and seedling in direct sowing of paddy rice in flooded soil”, March 1993 農林水産省第9回検討会資料1、「米の直播技術等の現状」、p.13、2008年3月(http://www.maff.go.jp/j/study/kome_sys/09/pdf/data1.pdf)Ministry of Agriculture, Forestry and Fisheries Ninth Review Meeting Document 1, “Current status of direct sowing technology for rice”, p. 13, March 2008 (http://www.maff.go.jp/j/study/kome_sys/09/pdf/data1.pdf) 古畑ら2008,酸化鉄コーティング種子における異なるのり成分が湛水直播水稲の出芽・苗立ちに及ぼす影響、北陸作物学会報43、15〜18Furuhata et al. 2008, Effects of different paste components in iron oxide-coated seeds on the emergence and seedling establishment of flooded direct sowing rice, Hokuriku Crop Science Report 43, 15-18

しかし、酸素発生剤等の資材を用いる方法では、被覆する資材にコストがかかり、また、種子に対する資材の必要量が多いため、被覆の手間もかかる。   However, in the method using a material such as an oxygen generating agent, the cost for the material to be coated is high, and the amount of the material necessary for the seed is large, so that it takes time and effort for the coating.

また、鉄等を用いる方法では、そもそも土壌表面に播種しなければならず、種子が土壌中に潜ってしまった場合は、苗立ち低下が起きる。   In addition, in the method using iron or the like, seeds must be sown in the first place, and if seeds are submerged in the soil, seedling reduction occurs.

本発明者による検討の結果、多量の酸素発生剤等を被覆しないと苗立ちが安定しないこと、及び鉄を被覆すると土壌中での苗立ちが低下すること、という両者の原因の一つはいずれも結合剤として用いる石膏に起因することが判明した。   As a result of the study by the present inventor, one of the causes of both the fact that seedling establishment is not stable unless a large amount of oxygen generator or the like is coated, and that the seedling establishment in soil decreases when iron is coated Was also found to be due to gypsum used as a binder.

さらに、鉄を用いた被覆では、石膏による結合効果と共に、石膏によって促進される還元鉄の酸化による結合効果によって硬い被覆層を形成しているが、還元鉄の酸化過程では発熱が大きく、冷却作業の必要性、及び熱による種子の劣化などの問題を有する。   Furthermore, in the coating using iron, a hard coating layer is formed by the bonding effect by the oxidation of reduced iron promoted by gypsum in addition to the bonding effect by gypsum, but heat generation is large in the oxidation process of reduced iron, and cooling work And the need for seed deterioration due to heat.

しかし、石膏は安価で強力かつ水に安定な結合剤であり、これに代わる結合剤は見当たらない。例えば、他の代表的な結合剤であるPVA(ポリビニルアルコール)又はCMC(カルボキシメチルセルロース)を用いた種子被覆の検討もなされているが、これらは元来水溶性であるために、湛水した水田に入れると被覆が崩壊してしまう。このため、湛水土壌中で資材を種子に保持させる評力が乏しく、実用的ではないという問題がある(非特許文献3)。   However, gypsum is an inexpensive, strong and water-stable binder, and no alternative binder is found. For example, seed coatings using PVA (polyvinyl alcohol) or CMC (carboxymethyl cellulose), which are other typical binders, have been studied. If put in, the coating will collapse. For this reason, there is a problem that the evaluation of holding the material on the seed in the flooded soil is poor and is not practical (Non-patent Document 3).

なお、耐水性が付与されたPVAもあるが、そのようなPVAは水溶性に劣るために予め加熱下(80〜90℃)でPVAを水に溶解して高粘稠溶液を調製しなければならない。そのため、加熱作業が必要になり、作業性に劣る。また、高温の溶液を使うことで種子が障害を受けることが懸念される。   In addition, although there is PVA to which water resistance is imparted, since such PVA is inferior in water solubility, it is necessary to prepare a highly viscous solution by dissolving PVA in water under heating (80 to 90 ° C.) in advance. Don't be. Therefore, heating work is required and workability is poor. Moreover, there is a concern that seeds are damaged by using a high-temperature solution.

本発明は、上記の従来技術が有する問題に鑑みてなされたものであり、その目的は、PVAを用いて耐水性に優れた繁殖体被覆物(被覆種子等)を提供すること、及びその簡便な製造方法を提供することにある。   The present invention has been made in view of the problems of the above-described conventional techniques, and the object thereof is to provide a propagation material coating (coated seeds, etc.) excellent in water resistance using PVA, and its simplicity. Is to provide a simple manufacturing method.

本願発明者らは上記課題を解決するために鋭意検討を行った。その結果、所定のケン化度以上のポリビニルアルコール(PVA)を固体のまま使用することで、耐水性に優れた繁殖体被覆物(被覆種子等)を簡便に製造できることを見出し、本願発明に想到するに至った。   The inventors of the present application have made extensive studies to solve the above problems. As a result, it has been found that by using polyvinyl alcohol (PVA) having a predetermined saponification degree or more as a solid, it is possible to easily produce a propagation material coating (coated seeds, etc.) excellent in water resistance, and arrived at the present invention. It came to do.

すなわち、本願発明は、その一態様として以下の何れかのものを提供する。
(1)粒子状固体であってケン化度が78モル%以上のポリビニルアルコールを、実質的に溶解をさせずに機能性資材と混合し、液体を用いて、ポリビニルアルコール、機能性資材、及び、液体を含む被覆層を植物繁殖体の表面に形成する工程と、上記被覆層を乾燥させる工程とを含む、繁殖体被覆物の製造方法。
(2)被覆層を植物繁殖体の表面に形成する上記工程は、1)上記ポリビニルアルコール及び上記機能性資材を上記液体中に懸濁させた懸濁液を植物繁殖体と接触させる、又は、2)上記ポリビニルアルコール及び上記機能性資材を乾燥状態で混合した後に、得られた混合物を上記液体を介して植物繁殖体の表面に付着させる、ことにより行う、(1)に記載の製造方法。
(3)上記ポリビニルアルコールのケン化度が90モル%を越える範囲内である、(1)又は(2)に記載の製造方法。
(4)上記ポリビニルアルコールのケン化度が90モル%を越え98モル%未満の範囲内である、(1)から(3)の何れかに記載の製造方法。
(5)上記ポリビニルアルコールの重合度が1000以上で5000以下の範囲内である、(1)から(4)の何れかに記載の製造方法。
(6)上記ポリビニルアルコールの重合度が1500以上で3500以下の範囲内である、(1)から(5)の何れかに記載の製造方法。
(7)上記ポリビニルアルコールの粒径が150μm以下である、(1)から(6)の何れかに記載の製造方法。
(8)上記ポリビニルアルコールは、上記機能性資材の重量に対して、0.02%重以上で10%重以下の範囲内で使用される、(1)から(7)の何れかに記載の製造方法。
(9)上記機能性資材が、モリブデン資材、タングステン資材、鉄資材、酸素発生剤、粘土からなる群より選択される少なくとも1つである、(1)から(8)の何れかに記載の製造方法。
(10)上記モリブデン資材は、モリブデン金属、酸化モリブデン、モリブデン酸とその塩、モリブドリン酸とその塩、モリブドケイ酸とその塩からなる群より選択される少なくとも1つであり、上記タングステン資材は、タングステン金属、タングストリン酸とその塩、タングストケイ酸とその塩、酸化タングステン、及びタングステン酸とその塩からなる群より選択される少なくとも1つであり、上記鉄資材は酸化鉄及び還元鉄の少なくとも1方であり、上記酸素発生剤は過酸化カルシウム(CaO)を機能成分とする資材である、(9)に記載の製造方法。
(11)上記鉄資材は、粒径1μm以下の酸化鉄を5重量%以上で50重量%以下の割合で含んでいる、(9)又は(10)に記載の製造方法。
(12)上記植物繁殖体は種子である、(1)から(11)の何れかに記載の製造方法。
(13)上記(1)〜(12)の何れかに記載の製造方法で製造される、繁殖体被覆物。
(14)上記(13)に記載の繁殖体被覆物を植え付ける植付工程を含む、植物の栽培方法。
(15)上記植付工程以降から苗立ち期の間に、植物体の少なくとも一部が湛水状態となる期間を有する、(14)に記載の植物の栽培方法。
That is, the present invention provides one of the following as one aspect thereof.
(1) A polyvinyl alcohol which is a particulate solid and has a saponification degree of 78 mol% or more is mixed with a functional material without being substantially dissolved, and using the liquid, the polyvinyl alcohol, the functional material, and A method for producing a propagation material covering, comprising the steps of: forming a coating layer containing a liquid on the surface of a plant propagation material; and drying the coating layer.
(2) The step of forming the coating layer on the surface of the plant propagation body is as follows: 1) Contacting the plant propagation body with a suspension obtained by suspending the polyvinyl alcohol and the functional material in the liquid, or 2) The production method according to (1), wherein the polyvinyl alcohol and the functional material are mixed in a dry state, and then the obtained mixture is adhered to the surface of the plant propagation body via the liquid.
(3) The production method according to (1) or (2), wherein the saponification degree of the polyvinyl alcohol is in a range exceeding 90 mol%.
(4) The production method according to any one of (1) to (3), wherein the degree of saponification of the polyvinyl alcohol is in the range of more than 90 mol% and less than 98 mol%.
(5) The production method according to any one of (1) to (4), wherein the degree of polymerization of the polyvinyl alcohol is in the range of 1000 or more and 5000 or less.
(6) The production method according to any one of (1) to (5), wherein the degree of polymerization of the polyvinyl alcohol is in the range of 1500 or more and 3500 or less.
(7) The production method according to any one of (1) to (6), wherein a particle diameter of the polyvinyl alcohol is 150 μm or less.
(8) The polyvinyl alcohol according to any one of (1) to (7), which is used within a range of 0.02% by weight to 10% by weight with respect to the weight of the functional material. Production method.
(9) The production according to any one of (1) to (8), wherein the functional material is at least one selected from the group consisting of molybdenum material, tungsten material, iron material, oxygen generator, and clay. Method.
(10) The molybdenum material is at least one selected from the group consisting of molybdenum metal, molybdenum oxide, molybdic acid and its salt, molybdophosphoric acid and its salt, molybdosilicate and its salt, and the tungsten material is tungsten It is at least one selected from the group consisting of metal, tungstophosphoric acid and its salt, tungstosilicic acid and its salt, tungsten oxide, and tungstic acid and its salt, and the iron material is at least one of iron oxide and reduced iron And the oxygen generator is a material containing calcium peroxide (CaO 2 ) as a functional component.
(11) The manufacturing method according to (9) or (10), wherein the iron material includes iron oxide having a particle size of 1 μm or less in a proportion of 5 wt% or more and 50 wt% or less.
(12) The production method according to any one of (1) to (11), wherein the plant propagation material is a seed.
(13) A propagation material covering produced by the production method according to any one of (1) to (12) above.
(14) A method for cultivating a plant, comprising a planting step for planting the propagation material covering according to (13).
(15) The method for cultivating a plant according to (14), wherein the plant has a period in which at least a part of the plant body is in a flooded state between the planting step and the seedling establishment period.

本発明によれば、PVAを用いて耐水性に優れた繁殖体被覆物(被覆種子)を提供すること、及びその簡便な製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the propagation body coating | coated (coated seed) excellent in water resistance using PVA can be provided, and its simple manufacturing method can be provided.

実施例1における耐水性の試験の結果を示す図である。It is a figure which shows the result of the water resistance test in Example 1. 実施例7−1における耐水性の試験の結果を示す図である。It is a figure which shows the result of the water resistance test in Example 7-1. 実施例8−2における耐水性の試験の結果を示す図である。It is a figure which shows the result of the water resistance test in Example 8-2.

〔1. 繁殖体被覆物の製造方法〕
本発明に係る繁殖体被覆物の製造方法は、粒子状固体であってケン化度が78モル%以上のポリビニルアルコールを、実質的に溶解をさせずに機能性資材と混合し、液体を用いて、ポリビニルアルコール、機能性資材、及び、液体を含む被覆層を植物繁殖体の表面に形成する工程(被覆層形成工程)と、上記被覆層を乾燥させる工程(乾燥工程)とを含む、方法である。
[1. (Producing method of breeding material covering)
In the method for producing a propagation material covering according to the present invention, a polyvinyl alcohol which is a particulate solid and has a saponification degree of 78 mol% or more is mixed with a functional material without substantially dissolving it, and a liquid is used. The method includes a step of forming a coating layer containing polyvinyl alcohol, a functional material, and a liquid on the surface of the plant propagation body (covering layer forming step), and a step of drying the coating layer (drying step). It is.

被覆層形成工程により、植物繁殖体の外表面に、PVAと機能性資材との混合物を付着させ、乾燥工程により、植物繁殖体上の被覆層の液体含有率を適切に調整して当該被覆層を安定化することができる。本発明に係る製造方法は、一般に70℃〜90℃といった高温で予め加熱して溶かすことが必要とされる水溶性の低いPVAを、粒子状固体のまま機能性資材に混合して、植物繁殖体上に被覆層を形成することを特徴の一つとしている。   The coating layer is formed by attaching a mixture of PVA and a functional material to the outer surface of the plant propagation body by the coating layer forming process, and appropriately adjusting the liquid content of the coating layer on the plant propagation body by the drying process. Can be stabilized. In the production method according to the present invention, generally, PVA having low water solubility, which is required to be preheated and melted at a high temperature such as 70 ° C. to 90 ° C., is mixed with a functional material in the form of a particulate solid to propagate plants. One of the features is that a covering layer is formed on the body.

なお、上記液体の機能の1つは、PVA及び機能性資材を種子の表面になじませ、付着させることである。液体は植物繁殖体に障害を与えにくければ様々な溶媒が利用可能であるが、具体的には例えば、水、又は、親水性溶剤で、種子表面の殺菌もでき、乾燥が速いエタノール等を例示することができ、中でも費用の面から水が好ましい。なお、機能性資材、及びPVAについては後述する。   One of the functions of the liquid is to make PVA and a functional material adhere to and adhere to the seed surface. Various liquids can be used as the liquid if it is difficult to damage the plant propagation body. Specifically, for example, water or a hydrophilic solvent can be used to sterilize the seed surface, and fast drying ethanol is exemplified. Of these, water is preferable from the viewpoint of cost. Functional materials and PVA will be described later.

被覆層形成工程を行う方法は特に限定されないが、具体的には、例えば、1)粒子状の機能性資材、及び粒子状のPVAを十分に混ぜ合わせて、そこに種子等の植物繁殖体を加えて、適量の液体(水等)を噴霧器等を用いて添加しながら塑性状の被覆層を植物繁殖体の表面に形成する方法、2)粒子状の機能性資材、粒子状のPVA、及び液体を混合して懸濁状態にして攪拌をし、そこに種子等の植物繁殖体を加えて、さらに液体以外の資材を追加で添加して相対的に水分含量を減らし、塑性状の被覆層を形成する方法、3)懸濁状態にして攪拌するまでは2)と同様にし、次いで、熱、通風、及び/又は放置(保管又は運搬等の他の作業と兼ねて、時間の経過に伴い、徐々に水分含量が低下する工程も放置の範疇に包含される)等で水分を減らし、塑性状の被覆層を形成する方法、4)懸濁状態にして攪拌するまでは2)と同様にし、次いで、植物繁殖体を液体から取り出して、塑性状の被覆層を植物繁殖体の表面に形成する方法、5)植物繁殖体の表面又は内部(植物繁殖体に吸水させておく等)に液体を予め付与しておき、次いで粒子状の機能性資材、及び粒子状のPVAをまぶして、塑性状の被覆層を植物繁殖体の表面に形成する方法、等が挙げられる。ただし、植物繁殖体は最初から機能性資材等と混合しても構わないし、植物繁殖体を予め十分湿らせてから、機能性資材等と混合しても構わない。これらを混合するタイミングは同時でもよく、または適宜順番を変えても構わない。   The method for performing the coating layer forming step is not particularly limited. Specifically, for example, 1) The particulate functional material and the particulate PVA are sufficiently mixed, and a plant propagation body such as a seed is added thereto. In addition, a method of forming a plastic coating layer on the surface of a plant propagation body while adding an appropriate amount of liquid (water, etc.) using a sprayer or the like, 2) a particulate functional material, particulate PVA, and Mix the liquid in suspension, stir it, add plant propagation material such as seeds to it, and add additional materials other than liquid to reduce the water content relatively, and the plastic coating layer 3) Until suspension and stirring, the same as 2), and then with heat, ventilation, and / or leaving (other storage and transport work, etc. as time passes) The process of gradually lowering the moisture content is also included in the category of neglected) The method of forming the plastic covering layer is as follows. 4) The process is the same as in 2) until it is suspended and stirred. Then, the plant propagation material is removed from the liquid, and the plastic coating layer is removed from the plant propagation material. 5) Method of forming on the surface 5) Preliminarily apply a liquid to the surface or the inside of the plant propagation body (for example, let the plant propagation body absorb water), and then spray the particulate functional material and the particulate PVA And a method of forming a plastic covering layer on the surface of a plant propagation material. However, the plant propagation material may be mixed with a functional material from the beginning, or may be mixed with the functional material after the plant propagation material is sufficiently moistened in advance. These may be mixed at the same time, or the order may be appropriately changed.

なお、上記2)において用いる液体以外の資材の種類は特に限定されないが、例えば、粒子状の機能性資材及び粒子状のPVAの少なくとも一方(好ましくは両方)が挙げられる。   In addition, although the kind of materials other than the liquid used in said 2) is not specifically limited, For example, at least one (preferably both) of particulate functional material and particulate PVA is mentioned.

被覆層形成工程において、「PVAを実質的に溶解をさせずに」とは、PVAが粒子状固体の形態を維持したままであることと同義である(なお、粒子状固体の形態を維持していればよく、PVA粒子の表面が一部溶解している状態も含まれる)。具体的には例えば、ケン化度が78モル%以上のPVAを十分に溶解させる温度下にPVAを晒さないことを意図し、より具体的には例えば、70℃以上の高温に晒さないことを意図する。なお、PVAは50℃以上の温度下に晒さないことが好ましく、40℃以上の温度に晒さないことがより好ましい。   In the coating layer forming step, “without substantially dissolving PVA” is synonymous with the fact that PVA remains in the form of particulate solid (note that the form of particulate solid is maintained). And a state in which the surface of the PVA particles is partially dissolved is also included). Specifically, for example, it is intended not to expose PVA under a temperature at which PVA having a saponification degree of 78 mol% or more is sufficiently dissolved, and more specifically, for example, not to be exposed to a high temperature of 70 ° C. or more. Intended. In addition, it is preferable not to expose PVA to the temperature of 50 degreeC or more, and it is more preferable not to expose to the temperature of 40 degreeC or more.

被覆層形成工程では、PVAを、加熱下で液体に溶解して高粘稠溶液を形成する必要がなく、粒子状固体のまま用いる方法であるから、何れのやり方を選択しても作業が非常に簡便である。ただし、用いるPVAは、本来、高温で溶かして用いるものであることから、被覆する機能性資材、植物繁殖体、又は液体を冷やさずに用いる方が好ましい場合がありえ、また作業に支障がない程度(例えば、30℃程度)に、機能性資材、植物繁殖体又は液体を予め加温しておいた方が好ましい場合もありえる。   In the coating layer forming process, it is not necessary to dissolve PVA in a liquid under heating to form a highly viscous solution, and it is a method of using it as a particulate solid. It is simple. However, since the PVA to be used is originally melted at a high temperature, it may be preferable to use the functional material to be coated, the plant propagation material, or the liquid without cooling, and the work is not hindered. It may be preferable that the functional material, the plant propagation material, or the liquid is preheated to (for example, about 30 ° C.).

乾燥工程は被覆層形成工程と同時、又は被覆層形成工程の後に行われる。乾燥工程を行う方法は特に限定されないが、具体的には、例えば、強制乾燥、又は自然乾燥によって、被覆層形成工程で形成された被覆層から液体を蒸発させる方法が挙げられる。乾燥工程はまた、保管又は運搬等の他の作業と兼ねて、時間の経過に伴い、徐々に被覆層の液体含量を低下させる工程でも構わない。乾燥工程はまた、植物繁殖体による水分吸収によって、被覆層の液体含量を低下させる工程でも構わない。   The drying step is performed simultaneously with the coating layer forming step or after the coating layer forming step. Although the method of performing a drying process is not specifically limited, For example, the method of evaporating a liquid from the coating layer formed at the coating layer formation process by forced drying or natural drying is mentioned, for example. The drying step may also be a step of gradually reducing the liquid content of the coating layer with the passage of time in combination with other operations such as storage or transportation. The drying step may also be a step of reducing the liquid content of the coating layer by moisture absorption by the plant propagation material.

(植物繁殖体の種類等)
本発明に係る繁殖体被覆物を構成する「植物繁殖体」の種類は特に限定されず、例えば、種子、むかご等の栄養繁殖器官、幼植物(苗)等が挙げられ、中でも種子が好ましい。
植物繁殖体は、具体的には、例えば、水稲、オオムギ、コムギ等のイネ科植物の種子;ダイズ、ソラマメ、インゲンマメ等のマメ科植物の種子;アブラナ、チンゲンサイ、コマツナ、ダイコン等のアブラナ科植物の種子;ソバ等のソバ科植物の種子等が挙げられる。
(Types of plant propagation material, etc.)
The kind of “plant propagation body” constituting the propagation material covering according to the present invention is not particularly limited, and examples thereof include vegetative propagation organs such as seeds and baskets, seedlings (seedlings), etc. Among them, seeds are preferable.
Specifically, the plant propagation material is, for example, seeds of gramineous plants such as rice, barley, and wheat; seeds of leguminous plants such as soybean, broad bean, and kidney bean; cruciferous plants such as rape, Chingsai, Komatsuna, and radish. Seeds of buckwheat plants such as buckwheat.

なお、「種子」は、発芽に必須ではない構造(例えば、籾殻、外種皮、内種皮等)を取り除いた後の種子であってもよい。   The “seed” may be a seed after removing a structure that is not essential for germination (eg, rice husk, outer seed coat, inner seed coat, etc.).

(PVA)
本発明に係る繁殖体被覆物の製造方法に用いるPVAは、ケン化度が78モル%以上でかつ粒子状固体である。PVAのケン化度は78モル%以上であれば、被覆層に一定の耐水性を付与することができるが、耐水性により優れるという観点ではケン化度が90モル%を越えることが好ましい。PVAのケン化度は、例えばPVAの耐水性に影響を与えるもので、ケン化度が大きくなるほど耐水性が増す傾向がある。
(PVA)
PVA used in the method for producing a propagation material covering according to the present invention has a saponification degree of 78 mol% or more and is a particulate solid. If the degree of saponification of PVA is 78 mol% or more, a certain level of water resistance can be imparted to the coating layer, but the degree of saponification preferably exceeds 90 mol% from the standpoint of superior water resistance. The degree of saponification of PVA affects the water resistance of PVA, for example, and the water resistance tends to increase as the degree of saponification increases.

他方で、PVAのケン化度の上限は特に限定されないが、乾燥状態における擦れ(例えば、繁殖体被覆物同士の擦れ)に対して被覆層により十分な耐性を付与する観点では、98モル%未満であることが好ましい。   On the other hand, the upper limit of the degree of saponification of PVA is not particularly limited, but is less than 98 mol% from the viewpoint of imparting sufficient resistance to the rubbing in the dry state (for example, rubbing between the propagation material coatings) by the coating layer. It is preferable that

すなわち、乾燥状態における擦れに対する耐性、及び耐水性の双方に優れるという観点では、PVAのケン化度は、90モル%を越え、98モル%未満の範囲内であることが好ましく、93モル%を越え、98モル%未満の範囲内であることがより好ましく、95モル%を越え、98モル%未満の範囲内であることがさらに好ましい。   That is, from the viewpoint of being excellent in both resistance to rubbing in a dry state and water resistance, the saponification degree of PVA is preferably in the range of more than 90 mol% and less than 98 mol%, and 93 mol%. More preferably, it is within the range of less than 98 mol%, more preferably more than 95 mol% and less than 98 mol%.

ただし、PVAとしてそのケン化度が98モル%以上の粒子状固体と、ケン化度が98モル%のPVAよりは水溶性のある結合剤とを併用することで、乾燥状態(水中に浸漬されない状態)における擦れに対する耐性、及び耐水性の双方に優れる被覆種子を製造することも可能である。混合する結合剤として、ケン化度が78モル%以上で90モル%以下の範囲内の粒子状固体のPVAが好ましいが、それ以外のPVA又はカルボキシメチルセルロース(CMC)などでも良い。   However, a dry state (not immersed in water) by using a particulate solid having a saponification degree of 98 mol% or more as PVA and a binder that is more water-soluble than PVA having a saponification degree of 98 mol%. It is also possible to produce coated seeds that are excellent in both resistance to rubbing in the state) and water resistance. As the binder to be mixed, particulate solid PVA having a saponification degree in the range of 78 mol% or more and 90 mol% or less is preferable, but other PVA or carboxymethyl cellulose (CMC) may be used.

なお、本発明において「PVAのケン化度(モル%)」とは、化学の技術分野における一般的な意味で用いており、すなわち、ポリ酢酸ビニルをケン化してPVAを製造するに際して、各酢酸ビニル繰返し単位の何パーセントがケン化されて水酸基になっているか、を意図している。   In the present invention, “degree of saponification (mol%) of PVA” is used in a general meaning in the technical field of chemistry, that is, when producing PVA by saponifying polyvinyl acetate, The percentage of vinyl repeat units is intended to be saponified to a hydroxyl group.

また、PVAの重合度は特に限定されないが、機能性資材の保持性により優れるという観点では、重合度が1000以上で5000以下の範囲内であることが好ましく、1500以上で3500以下の範囲内であることがより好ましく、1500以上で2500以下の範囲内であることがさらに好ましく、1700以上で2400以下であることが特に好ましい。なお、PVAの重合度は例えばPVAの粘性に影響を与えるもので、重合度が大きくなるほど粘性が増す傾向がある。そして、この重合度が1000以上であれば、より確実に機能性資材を種子に付着させることができる。一方、この重合度が5000以下であれば、より容易かつほぼ均一に機能性資材とPVAとを混合することができる。   Further, the degree of polymerization of PVA is not particularly limited, but from the viewpoint of being superior in the retention of functional materials, the degree of polymerization is preferably in the range of 1000 or more and 5000 or less, preferably in the range of 1500 or more and 3500 or less. More preferably, it is more preferably 1500 or more and 2500 or less, and particularly preferably 1700 or more and 2400 or less. The degree of polymerization of PVA affects the viscosity of PVA, for example, and the viscosity tends to increase as the degree of polymerization increases. And if this polymerization degree is 1000 or more, a functional material can be made to adhere to a seed more reliably. On the other hand, if the degree of polymerization is 5000 or less, the functional material and PVA can be mixed more easily and substantially uniformly.

なお、本発明において「PVAの重合度」とは、化学の技術分野における一般的な意味で用いており、ポリ酢酸ビニルをケン化してPVAを製造するに際して、重合鎖を構成する酢酸ビニル繰返し単位の個数を指す。   In the present invention, “degree of polymerization of PVA” is used in a general sense in the technical field of chemistry, and when vinyl acetate is saponified to produce PVA, a vinyl acetate repeating unit constituting a polymer chain Refers to the number of

本発明に係る方法において、PVAは粒子状の固体(粒子状固体)のまま使用される。粒子状の固体としてのPVAの形態の一例としては、粉末状の形態、又は、粉末を固めた顆粒状等の形態が挙げられる。粒子状固体の大きさは、機能性資材と混合して植物繁殖体表面の被覆に用いることができる大きさであれば特に限定されない。また、粒径が粉末より大きい顆粒状でも、植物繁殖体に被覆する際に添加する溶媒の量を多めにし、被覆層の粘性を一時的に下げることなどで、機能性資材の保持が可能である。ただし、機能性資材とより均一に混合し易いとの観点と、水などを用いて被覆層を形成する際に、比表面積が大きいので表面近傍が溶解しやすい観点では、PVAの粒径が150μm以下であることがより好ましい。PVAの粒径の好ましい下限は特に限定されないが、例えば、0.1μm以上であるか、或いは1μm以上である。また、粉末状のPVAは、顆粒状のPVAよりも好ましい。   In the method according to the present invention, PVA is used as a particulate solid (particulate solid). As an example of the form of PVA as a particulate solid, a powdery form or a granular form obtained by solidifying a powder can be given. The size of the particulate solid is not particularly limited as long as it is a size that can be mixed with a functional material and used for coating the surface of a plant propagation material. In addition, even if the particle size is larger than the powder, functional materials can be retained by increasing the amount of solvent added to coat the plant propagation material and temporarily lowering the viscosity of the coating layer. is there. However, the PVA particle size is 150 μm from the viewpoint that it is easy to mix more uniformly with the functional material and from the viewpoint that the vicinity of the surface easily dissolves when the coating layer is formed using water or the like. The following is more preferable. The preferable lower limit of the particle size of PVA is not particularly limited, but is, for example, 0.1 μm or more, or 1 μm or more. Powdered PVA is more preferable than granular PVA.

なお、本発明に係る方法では、PVAを高粘稠な溶液としてではなく粒子状の固体のまま利用するために作業性に優れるという利点もある。また、結合剤の溶解の手間を無くすために、水に溶けにくい結合剤を予め溶解させて溶液として流通させる場合(耐水性のPVA、ラテックスの懸濁液など)に比べて、流通させる資材の重量が低くすむため、流通コストの削減が図れる。ただし、植え付けられる以前の繁殖体被覆物に関して、被覆層が水分を含んでPVAの一部が粘性を示している状態は、本発明の範疇である。   In the method according to the present invention, there is an advantage in that workability is excellent because PVA is used as a particulate solid rather than as a highly viscous solution. In addition, in order to eliminate the hassle of dissolving the binder, compared to the case where a binder that is not soluble in water is dissolved in advance and distributed as a solution (water-resistant PVA, latex suspension, etc.) Since the weight is low, the distribution cost can be reduced. However, regarding the propagation material covering before being planted, the state in which the covering layer contains moisture and a part of the PVA is viscous is within the scope of the present invention.

(機能性資材)
本発明に係る繁殖体被覆物の製造方法に用いる機能性資材(繁殖体被覆物に所定の機能を付与する資材)の種類は特に限定されないが、具体的には、例えば、モリブデン資材、タングステン資材、鉄資材、酸素発生剤、粘土、又は、水中での急速な放出を望まない遅効性の農薬等が挙げられる。粒子状固体であるPVAとの混合が容易という観点では、これら機能性資材も、粉末状の形態、又は、粉末を固めた顆粒状等の形態等の粒子状固体であることが好ましい。機能性資材の粒径は特に限定されないが、被覆の作業性の観点では、例えば、0.1μm以上で150μm以下の範囲内である。なお、機能性資材は1種のみを用いてもよく、複数種を併用してもよい。
(Functional materials)
The type of functional material (material that imparts a predetermined function to the propagation material covering) used in the method for producing the propagation material covering according to the present invention is not particularly limited. Specifically, for example, molybdenum material, tungsten material, etc. , Iron materials, oxygen generators, clay, or slow-acting agricultural chemicals that do not require rapid release in water. From the viewpoint of easy mixing with PVA which is a particulate solid, these functional materials are also preferably a particulate solid such as a powder form or a granular form obtained by solidifying a powder. The particle size of the functional material is not particularly limited, but from the viewpoint of the workability of the coating, for example, it is in the range of 0.1 μm to 150 μm. In addition, only 1 type may be used for a functional material and you may use multiple types together.

上記例示の機能性資材のうち、モリブデン資材、及びタングステン資材はオキソアニオンを生成することで、植物の生育環境中における硫化物イオンの生成を抑制する。さらに、これらのオキソアニオンは、植物の生育環境中における腐敗等の微生物の活動を抑制する。したがって、モリブデン資材又はタングステン資材を用いることにより、植物の苗立ち及び生育の低下を抑制することができる。   Among the functional materials exemplified above, the molybdenum material and the tungsten material generate oxoanions, thereby suppressing the generation of sulfide ions in the plant growth environment. Furthermore, these oxoanions suppress the activity of microorganisms such as spoilage in the plant growth environment. Therefore, by using a molybdenum material or a tungsten material, it is possible to suppress plant seedling and a decrease in growth.

なお、モリブデン資材とタングステン資材とを比較した場合、モリブデン資材の方がより好ましい場合がある。より具体的には、モリブデン資材は、植物に対する施用実績も十分にある。また、モリブデン資材は、タングステン資材と比較して腐敗抑制効果がより強い。タングステンも、植物及び動物等への毒性は報告されておらず、安全性が高い。   When molybdenum material and tungsten material are compared, molybdenum material may be more preferable. More specifically, molybdenum materials have a sufficient track record of application to plants. In addition, the molybdenum material has a stronger anti-corrosion effect than the tungsten material. Tungsten is not highly toxic to plants and animals, and is highly safe.

上記モリブデン資材の種類は特に限定されず、種々の物質がその範疇に含まれるが、モリブデン酸イオンを供給し、かつ対象となる植物への安全性が高い資材又は単体を選択することが好ましい。したがって、モリブデン資材は、金属モリブデン(単体)、酸化モリブデン(無水モリブデン酸)、モリブデン酸とその塩、モリブドリン酸(リンモリブデン酸)とその塩、モリブドケイ酸(ケイモリブデン酸)とその塩からなる群より選択される少なくとも1種であることが好ましい。安価で市販されているものでは、金属モリブデン、酸化モリブデン、モリブデン酸、モリブデン酸カルシウム、モリブデン酸マグネシウム、モリブドリン酸アンモニウム(リンモリブデン酸アンモニウム)、モリブドリン酸カリウム(リンモリブデン酸カリウム)、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブドリン酸、モリブドリン酸ナトリウム(リンモリブデン酸ナトリウム)、モリブドケイ酸からなる群より選択される少なくとも1種であることが好ましい。なお、これらの機能性資材は、繁殖体被覆物に実際に含まれる場合に限らず、繁殖体被覆物の製造に用いる原料の場合も含む。すなわち、植物繁殖体への被覆前又は被覆時に、これらの機能性資材と反応する別の資材を添加することで、繁殖体被覆物中では異なる化合物に変化している場合もある。   The type of the molybdenum material is not particularly limited, and various substances are included in its category, but it is preferable to select a material or a simple substance that supplies molybdate ions and has high safety to the target plant. Therefore, the molybdenum material is a group consisting of metal molybdenum (simple substance), molybdenum oxide (molybdic anhydride), molybdic acid and its salt, molybdophosphoric acid (phosphomolybdic acid) and its salt, molybdosilicic acid (silicomolybdic acid) and its salt It is preferable that it is at least one selected from more. Inexpensive and commercially available metal molybdenum, molybdenum oxide, molybdate, calcium molybdate, magnesium molybdate, ammonium molybdate (ammonium phosphomolybdate), potassium molybdate (potassium phosphomolybdate), ammonium molybdate, It is preferably at least one selected from the group consisting of sodium molybdate, potassium molybdate, molybdophosphoric acid, sodium molybdophosphate (sodium phosphomolybdate), and molybdosilicate. In addition, these functional materials are not limited to the case where they are actually included in the breeding material covering, but also include the case of raw materials used for the production of the breeding material covering. That is, by adding another material that reacts with these functional materials before or at the time of coating on the plant propagation material, it may be changed to a different compound in the propagation material coating.

また、水に対してわずかに溶ける微溶性のモリブデン資材は、対象となる植物に対する安全性の観点では特に好ましい。微溶性のモリブデン資材とは、水に対する可溶割合が重量比10%以下の資材又は単体であり、例えば、金属モリブデン、酸化モリブデン、モリブデン酸、モリブデン酸カルシウム、モリブデン酸マグネシウム、モリブドリン酸アンモニウム、及びモリブドリン酸カリウム等が挙げられる。また、オキソアニオンが縮合したポリ酸やヘテロ酸、およびそれらの塩やそれらを含む資材は、モリブデン酸イオンが容易に供給されにくく、対象となる植物に対する安全性の観点で特に好ましい。   A slightly soluble molybdenum material that is slightly soluble in water is particularly preferable from the viewpoint of safety with respect to the target plant. The slightly soluble molybdenum material is a material or a simple substance having a water soluble ratio of 10% or less by weight, for example, metal molybdenum, molybdenum oxide, molybdate, calcium molybdate, magnesium molybdate, ammonium molybdophosphate, and Examples thereof include potassium molybdate. In addition, polyacids and heteroacids condensed with oxoanions, salts thereof, and materials containing them are not particularly easily supplied with molybdate ions, and are particularly preferable from the viewpoint of safety with respect to the target plant.

これらのうち、モリブドリン酸アンモニウム及びモリブドリン酸カリウムは、水に対して微溶性であり、かつ、モリブデン酸イオンを容易に供給しないヘテロ酸の塩であるとともに、植物の苗立ち及び生育の低下を抑制する効果に優れている。また、これらの資材は黄色に着色しているため、被覆処理した種子の誤飲が防止できる点からも好ましい。   Among these, ammonium molybdophosphate and potassium molybdophosphate are salts of heteroacids that are slightly soluble in water and do not easily supply molybdate ions, and suppress the deterioration of plant seedling and growth. Excellent effect. Moreover, since these materials are colored yellow, it is preferable also from the point which can prevent accidental ingestion of the seed which carried out the coating process.

同様に上記タングステン資材の種類は特に限定されず、種々の物質がその範疇に含まれるが、タングステン酸イオンを供給し、かつ対象となる植物への安全性が高い資材又は単体を選択することが好ましい。したがって、タングステン資材としては、金属タングステン、酸化タングステン(無水タングステン酸)、タングステン酸とその塩、タングストリン酸(リンタングステン酸)とその塩、タングストケイ酸(ケイタングステン酸)とその塩からなる群より選択される少なくとも1種であることが好ましい。安価で市販されているものでは、微溶性の金属タングステン、酸化タングステン、タングステン酸、パラタングステン酸アンモニウム、又はタングストリン酸アンモニウム(リンタングステン酸アンモニウム)が好ましい。   Similarly, the type of the tungsten material is not particularly limited, and various substances are included in its category. However, it is possible to select a material or a simple substance that supplies tungstate ions and has high safety to the target plant. preferable. Therefore, the tungsten material includes metal tungsten, tungsten oxide (anhydrous tungstic acid), tungstic acid and its salt, tungstophosphoric acid (phosphotungstic acid) and its salt, and tungstosilicic acid (silicotungstic acid) and its salt. It is preferable that at least one selected. Of those that are inexpensive and commercially available, slightly soluble metal tungsten, tungsten oxide, tungstic acid, ammonium paratungstate, or ammonium tungstate phosphate (ammonium phosphotungstate) is preferred.

また、モリブデン資材の場合と同様に、タングステン資材は微溶性のものが好ましく、また、タングステン酸イオンを容易に供給しにくいポリ酸又はヘテロ酸の形態をとる資材が好ましい。なお、上記具体的に化合物名を例示した化合物は、何れも微溶性のものである。また、タングストリン酸アンモニウム及びタングストリン酸カリウムは、水に対して微溶性であり、かつタングステン酸イオンを容易に供給しないヘテロ酸の塩である。   As in the case of molybdenum materials, tungsten materials are preferably slightly soluble, and materials in the form of polyacids or heteroacids that are difficult to supply tungstate ions are preferred. In addition, the compounds specifically exemplified by the above compound names are all slightly soluble. In addition, ammonium tungstophosphate and potassium tungstate phosphate are salts of hetero acids that are slightly soluble in water and do not easily supply tungstate ions.

なお、モリブデン資材及びタングステン資材の使用量は、特に限定されないが、例えば、被覆の対象が種子の場合には、風乾種子重量1kgに対して、モリブデン元素やタングステン元素として0.01mol以上で10mol以下の範囲内とすればよく、資材費用を抑制しつつ充分な効力を発揮させる観点では、好ましくは、風乾種子重量1kgに対して、モリブデン元素やタングステン元素として0.01mol以上で0.2mol以下の範囲内とすればよい。   In addition, although the usage-amount of molybdenum material and tungsten material is not specifically limited, For example, when the object of coating | cover is a seed, it is 0.01 mol or more and 10 mol or less as molybdenum element or tungsten element with respect to 1 kg of air-dried seed weight. From the viewpoint of exerting sufficient efficacy while suppressing material costs, it is preferably 0.01 mol or more and 0.2 mol or less as molybdenum element or tungsten element with respect to 1 kg of air-dried seed weight. It may be within the range.

機能性資材としての上記鉄資材は、例えば、種子の重量又はかさを増す目的で利用される。また、種子が鉄資材を含む被覆層によって被覆される場合には、種子の周囲における硫化物イオンを鉄が不溶化することで硫化物イオンの増加を抑制できるため、種子の苗立ち低下を抑制することができる。さらに、種子に鉄資材を被覆することによって、硬い被覆層を形成させ、土壌に対して目立たなくすることができるため、鳥害を避けることができる。   The iron material as a functional material is used, for example, for the purpose of increasing the weight or bulk of the seed. In addition, when seeds are covered with a coating layer containing iron material, the increase in sulfide ions can be suppressed by iron insolubilization of sulfide ions around the seeds, thus suppressing the seedling decline in seeds. be able to. Furthermore, by covering the seed with an iron material, a hard coating layer can be formed and made inconspicuous with respect to the soil, so that bird damage can be avoided.

鉄資材としては、特に限定されないが、具体的には、例えば、還元鉄(Fe)、酸化鉄(III)(Fe)、酸化鉄(II,III)(Fe)、酸化鉄(II)(FeO)等が挙げられ、これらの組成物であっても良い。発熱が生じる虞が無いという観点では各種の酸化鉄がより好ましい。 The iron material is not particularly limited, specifically, for example, reduced iron (Fe), iron oxide (III) (Fe 2 O 3 ), iron oxide (II, III) (Fe 3 O 4), oxide Iron (II) (FeO) etc. are mentioned, These compositions may be sufficient. Various iron oxides are more preferable from the viewpoint that there is no possibility of heat generation.

還元鉄は、通常、石膏と混合し、石膏が促進する酸化によって生じる錆によって、種子等(植物繁殖体)への結合を強固とする方法が行われる。しかし、錆が生じるまでには時間がかかるため、その間は水による表面張力とともに石膏による結合作用によって被覆層を維持している。このため、石膏の代わりに、結合作用を持たない、単に酸化を促進するだけの物質を使うと、錆が生成するまでの被覆層が弱く、被覆の作業性が低下する。このため、生育障害の原因となる硫黄を含む石膏を別の物質で代替することが難しかった。しかし、PVAを用いれば、錆を生成するまでの間も、被覆層を維持でき、錆の生成後も錆と伴に被覆層の維持に寄与する。また、還元鉄から作成した鉄被覆種子を水中に播種すると、ゆっくりと錆が軟化し、周囲の水が懸濁する。そこで、還元鉄の被覆時においても、完全ケン化や中間ケン化のPVAを用いることで、耐水性を向上できる。以上から、還元鉄を用いた被覆においてもPVAを用いることが好ましい。   Reduced iron is usually mixed with gypsum, and a method of strengthening the bond to seeds (plant propagation body) by rust caused by oxidation promoted by gypsum is performed. However, since it takes time until rust is generated, the coating layer is maintained by the bonding action of gypsum together with the surface tension of water. For this reason, when a substance that does not have a binding action and merely promotes oxidation is used instead of gypsum, the coating layer until rust is generated is weak and the workability of the coating is reduced. For this reason, it has been difficult to substitute gypsum containing sulfur which causes growth failure with another substance. However, if PVA is used, the coating layer can be maintained until rust is generated, and it contributes to the maintenance of the coating layer along with rust after the rust is generated. Also, when iron-coated seeds made from reduced iron are sown in water, the rust slowly softens and the surrounding water is suspended. Therefore, even when the reduced iron is coated, water resistance can be improved by using completely saponified or intermediate saponified PVA. From the above, it is preferable to use PVA also in coating using reduced iron.

上記鉄資材は、粒径が異なる鉄資材を併用したものであってもよい。粒径が比較的大きな(例えば、粒径が10μmを越え100μm以下の範囲内)鉄資材は、資材が飛散する虞が少なく、被覆作業の作業性にも優れるという利点がある。他方で、粒径が比較的小さな(例えば、粒径が10μm以下)鉄資材は、PVAの必要量をより低減することができ、少ないPVAの使用でも乾燥状態(水中に浸漬されない状態)における擦れに対する耐性がとりわけ向上するという利点がある。この併用とは、異なる資材を単純に混合する場合だけでなく、順序を変えて別々に種子に被覆することも含む。例えば、粒径が比較的小さい資材を外層として被覆することで、被覆種子の表面を滑らかにするための、粒径が比較的小さい資材の量を減らすこともできる。したがって、粒径が異なる鉄資材を併用すれば、これらの利点を何れも享受可能な鉄資材による被覆を実現できる。   The iron material may be a combination of iron materials having different particle sizes. An iron material having a relatively large particle size (for example, a particle size in the range of more than 10 μm and 100 μm or less) has an advantage that the material is less likely to scatter and is excellent in workability of coating work. On the other hand, an iron material having a relatively small particle size (for example, a particle size of 10 μm or less) can further reduce the required amount of PVA, and can be rubbed in a dry state (a state in which it is not immersed in water) even when a small amount of PVA is used. There is an advantage that resistance to is particularly improved. This combination includes not only simple mixing of different materials but also covering the seeds separately in different orders. For example, by coating a material having a relatively small particle size as an outer layer, the amount of the material having a relatively small particle size for smoothing the surface of the coated seed can be reduced. Therefore, if iron materials having different particle sizes are used in combination, it is possible to realize coating with an iron material that can enjoy all of these advantages.

粒径が異なる鉄資材を併用する一つの例では、鉄資材中に占める粒径1μm以下の酸化鉄の割合を5重量%以上で50重量%以下の範囲内とすることが挙げられる。このとき、残りの50重量%以上で95重量%以下の鉄資材は粒径1μmを越えるものであればよいが、粒径10μm以上で150μm以下程度のものがより好ましく、20μm以上で100μm以下程度のものがさらに好ましい。   In one example in which iron materials having different particle diameters are used in combination, the ratio of iron oxide having a particle diameter of 1 μm or less in the iron materials may be in the range of 5 wt% to 50 wt%. At this time, the remaining 50 wt% or more and 95 wt% or less of the iron material only needs to have a particle size of more than 1 μm, more preferably 10 μm or more and 150 μm or less, more preferably 20 μm or more and about 100 μm or less. Are more preferred.

また、PVAの必要量をより低減することができ、少ないPVAの使用でも乾燥状態における擦れに対する耐性がとりわけ向上するという観点では、鉄資材の粒径は0.1μm以上で1μm以下の範囲内であることが好ましい場合がある。   In addition, the required amount of PVA can be further reduced, and the particle size of the iron material is within the range of 0.1 μm or more and 1 μm or less from the viewpoint that the resistance to rubbing in the dry state is particularly improved even with the use of a small amount of PVA. It may be preferable to be.

なお、鉄資材の使用量は、特に限定されないが、例えば、被覆の対象が種子の場合には、風乾種子重量の5%重以上で200%重以下の範囲内とすればよく、風乾種子重量の5%重以上で50%重以下の範囲内とすることが好ましい。
機能性資材としての上記酸素発生剤は、例えば、種子等(植物繁殖体)の周囲における硫化物イオンの増加を抑制して、種子の苗立ち(植物繁殖体の初期生育)低下を抑制する目的で利用される。酸素発生剤は、酸素の供給源となる資材であればよく、例えば過酸化カルシウム(CaO)、過酸化マグネシウム等、及びこれらを有効成分(機能成分)として含む組成物などが挙げられる。これら例示の中では、過酸化カルシウムを有効成分とする資材が好ましい。
The amount of the iron material used is not particularly limited. For example, when the object to be coated is seeds, the amount may be within the range of 5% to 200% by weight of the air-dried seed weight. It is preferable to be within the range of 5% weight or more and 50% weight or less.
The oxygen generator as a functional material, for example, suppresses an increase in sulfide ions in the vicinity of seeds (plant propagation bodies), and suppresses seedling establishment (initial growth of plant propagation bodies). Used in The oxygen generator may be any material as a supply source of oxygen, and examples thereof include calcium peroxide (CaO 2 ), magnesium peroxide and the like, and compositions containing these as active ingredients (functional ingredients). In these illustrations, the material which uses calcium peroxide as an active ingredient is preferable.

酸素発生剤は、現在、石膏を用いて種子等に結合させるが、乾燥が進むと、被覆層に亀裂が生じやすく、長期の保存が難しいという問題がある。石膏の代わりにPVAを用いれば、種子に害を及ぼす硫黄を無くすだけでなく、耐水性が向上し、かつ亀裂が生じにくくなるため好ましい。   Currently, oxygen generators are bonded to seeds using gypsum, but as drying progresses, there is a problem that cracks are likely to occur in the coating layer, making long-term storage difficult. Use of PVA instead of gypsum is preferable because it not only eliminates sulfur that is harmful to seeds, but also improves water resistance and makes cracks less likely to occur.

酸素発生剤の使用量は、特に限定されないが、例えば、被覆の対象が種子の場合には、風乾種子重量の1%重以上で50%重以下の範囲内で有効成分(例えば、過酸化カルシウム)を含むようにすればよい。   The amount of oxygen generator used is not particularly limited. For example, when the target of coating is seeds, the active ingredient (for example, calcium peroxide) is within a range of 1% to 50% by weight of the air-dried seed weight. ).

機能性資材としての上記粘土は、鉄資材と同様に、例えば、種子等(植物繁殖体)の重量又はかさを増すという目的で利用される。粘土の使用量は特に限定されないが、例えば、被覆の対象が種子の場合には、風乾種子重量の5%重以上で200%重以下の範囲内とすればよい。   The above-mentioned clay as a functional material is used for the purpose of increasing the weight or bulk of seeds (plant propagation material), for example, as with iron materials. The amount of clay used is not particularly limited. For example, when the object to be coated is seeds, it may be within a range of 5% to 200% by weight of the air-dried seed weight.

(被覆層)
本発明に係る製造方法で得られる繁殖体被覆物(被覆種子等)において、植物繁殖体の外表面を被覆する被覆層は、上記のPVAと機能性資材とを含む組成物から構成される層である。被覆層は、植物繁殖体の外表面の少なくとも一部を被覆していればよいが、植物繁殖体が種子である場合は、種子の外表面全体を実質的に均一に被覆していることが好ましい。
(Coating layer)
In the propagation material coverings (coated seeds, etc.) obtained by the production method according to the present invention, the coating layer covering the outer surface of the plant propagation material is a layer composed of a composition containing the above PVA and a functional material. It is. The covering layer only needs to cover at least a part of the outer surface of the plant propagation material. However, when the plant propagation material is a seed, the entire outer surface of the seed must be coated substantially uniformly. preferable.

また、被覆層を構成するPVAと機能性資材との混合割合は、機能性資材を植物繁殖体に付着可能な限りにおいて特に限定されない。一例では、PVAは、機能性資材の重量に対して、0.02%重以上で10%重以下の範囲内で使用され、0.1%重以上で5%重以下の範囲内で使用されることが好ましく、0.5%重以上で5%重以下の範囲内で使用されることがより好ましく、0.5%重以上で3%重以下の範囲内で使用されることがさらに好ましい。   The mixing ratio of the PVA and the functional material constituting the coating layer is not particularly limited as long as the functional material can be attached to the plant propagation material. In one example, PVA is used in a range of 0.02% to 10% by weight, and in a range of 0.1% to 5% by weight with respect to the weight of the functional material. More preferably, it is used within the range of 0.5% weight or more and 5% weight or less, more preferably 0.5% weight or more and 3% weight or less. .

被覆層は、植物繁殖体の被覆に用いられる結合剤その他の資材をさらに含んでいてもよい。ただし、硫酸塩又は硫酸イオン等の硫黄成分を実質的に含まないことが好ましい。ここで「硫黄成分を含まない」とは、硫黄原子を含む成分を実質的に含まないことを意味する。硫黄原子を含む成分とは、例えば硫酸塩又は硫酸イオン等をさし、より具体的な化合物名を例示すれば、硫酸カルシウム、硫酸マグネシウム、硫酸カリウム、硫酸アンモニウム等が挙げられる。すなわち、本発明では、被覆層を構成する成分中に、例えば硫酸カルシウムを主成分とする石膏等が含まれないことが好ましい。   The coating layer may further contain a binder or other materials used for coating the plant propagation material. However, it is preferable that a sulfur component such as sulfate or sulfate ion is not substantially contained. Here, “does not contain a sulfur component” means that a component containing a sulfur atom is not substantially contained. The component containing a sulfur atom refers to, for example, a sulfate or sulfate ion, and examples of specific compound names include calcium sulfate, magnesium sulfate, potassium sulfate, and ammonium sulfate. That is, in this invention, it is preferable that the component which comprises a coating layer does not contain the gypsum etc. which have a calcium sulfate as a main component, for example.

被覆層が硫黄成分を実質的に含まない場合には、植物繁殖体の周囲の硫酸イオン濃度を上昇させない。したがって、酸素が不足して還元条件となった場合、苗立ちを低下させる硫化物イオンの生成を抑制することができる。また、被覆層に含まれる機能性資材が植物繁殖体の周囲の硫化物イオン濃度を低下させることができる資材(例えば、上記した酸素発生剤、鉄資材、モリブデン資材、タングステン資材等)である場合、機能性資材の必要量を低減させて、製造コストを低下させることができる。   When the coating layer does not substantially contain a sulfur component, the sulfate ion concentration around the plant propagation material is not increased. Therefore, when oxygen is insufficient and the reduction conditions are satisfied, the generation of sulfide ions that reduce seedling establishment can be suppressed. In addition, when the functional material included in the coating layer is a material that can reduce the concentration of sulfide ions around the plant propagation material (for example, the above-described oxygen generator, iron material, molybdenum material, tungsten material, etc.) The required amount of functional materials can be reduced and the manufacturing cost can be reduced.

なお、石膏は、耐水性があり安価な結合剤の代表例であり、これまで、耐水性、取扱い性、並びに価格の観点で石膏に代わり得る資材は実質的に見当たらなかった。しかし、本発明によれば、苗立ち抑制効果を持つ石膏を用いずに、安価なPVAを比較的少量用いて、機能性資材を、耐水性を兼ね備えた状態で植物繁殖体に結合させることもできる。   Note that gypsum is a representative example of a water-resistant and inexpensive binder, and until now, there has been virtually no material that can replace gypsum in terms of water resistance, handling properties, and cost. However, according to the present invention, a functional material can be bound to a plant propagation body in a state of having water resistance, using a relatively small amount of inexpensive PVA without using gypsum having a seedling-inhibiting effect. it can.

本発明のように所定の性質を有するPVAを用いることで、より具体的には次のことを実現することもできる。(1)PVAは硫黄を含まず、硫化物イオンの発生を助長しないことから、酸素発生剤の被覆に用いることで、酸素発生剤の必要量の削減に寄与できる。(2)同様に、PVAは硫化物イオンの発生を助長しないことから、鉄被覆した種子において土壌中での苗立ちの安定化に繋がることが期待される。(3)PVAを用いることで、発熱する還元鉄を用いずに、発熱しない酸化鉄のみで被覆することもできる。そのため、発熱による植物繁殖体の損傷をなくす事ができる。(4)モリブデン又は粘土などの様々な機能性資材を付着させることができる。石膏と比べても、PVAは必要量が少なく、費用も安いことから、石膏に代わって広く利用できると考えられる。   More specifically, the following can be realized by using PVA having predetermined properties as in the present invention. (1) Since PVA does not contain sulfur and does not promote the generation of sulfide ions, it can contribute to the reduction of the required amount of oxygen generating agent by using it for coating of the oxygen generating agent. (2) Similarly, since PVA does not promote the generation of sulfide ions, it is expected to lead to stabilization of seedling establishment in soil in iron-coated seeds. (3) By using PVA, it is possible to cover only with iron oxide that does not generate heat without using reduced iron that generates heat. Therefore, it is possible to eliminate damage to the plant propagation body due to heat generation. (4) Various functional materials such as molybdenum or clay can be attached. Compared to gypsum, PVA is considered to be widely available in place of gypsum because it requires less and is less expensive.

〔2. 繁殖体被覆物〕
本発明に係る繁殖体被覆物は、上記〔1.〕欄で説明した、繁殖体被覆物の製造方法に従い得られるものである。
[2. (Propagation cover)
The propagation material covering according to the present invention is obtained in accordance with the method for producing a propagation material covering described in the section [1.].

すなわち、繁殖体被覆物は、ケン化度が78モル%以上のPVA及び機能性資材を含む被覆層を植物繁殖体の表面に備えているものである。繁殖体被覆物の特に具体的な一例はこれら被覆層で種子が被覆されてなる被覆種子である。ここで、PVAは当初の粒子形状を保持している必要はないが、そのケン化度が高まるにつれて粒子形状を維持したPVAの比率が高まるという外形的な特徴を有する。なお、被覆層は、繁殖体被覆物の製造プロセスで用いた液体を含みうる。   That is, the propagation material covering is provided with a coating layer containing PVA having a saponification degree of 78 mol% or more and a functional material on the surface of the plant propagation material. A particularly specific example of the propagation material coating is a coated seed in which the seed is coated with these coating layers. Here, although PVA does not need to hold | maintain the initial particle shape, it has the external characteristic that the ratio of PVA which maintained particle shape increases as the saponification degree increases. In addition, a coating layer may contain the liquid used in the manufacturing process of a propagation body coating.

本発明に係る繁殖体被覆物は、被覆層の耐水性に優れており、水中でも機能性資材を十分に保持可能である。したがって、繁殖体被覆物は、その植付工程以降から苗立ち期の間に、植物体(種子自体も含む概念)の少なくとも一部が湛水状態となる期間を有する植物のものであってよい。換言すれば、繁殖体被覆物は、少なくとも一時的に湛水状態となる条件で植付及び/又は出芽するものであってよい。このような繁殖体被覆物としては、例えば、湛水状態の水田等に直播して栽培される種子、水耕栽培されるもの、排水が不良な土壌又は土壌代替物に植付られるもの、植え付けの直前又は直後に多雨に見舞われる可能性があるもの、等が挙げられ、より具体的な一例は水稲の種子である。   The propagation material covering which concerns on this invention is excellent in the water resistance of a coating layer, and can fully hold | maintain a functional material also in water. Therefore, the propagation material covering may be a plant having a period in which at least a part of the plant body (concept including the seed itself) is in a flooded state between the planting step and the seedling establishment period. . In other words, the propagation material covering may be planted and / or budding at least temporarily under the condition of being inundated. Examples of such propagation material coverings include, for example, seeds cultivated by direct sowing in flooded paddy fields, those cultivated by hydroponics, those planted in soil with poor drainage or soil substitutes, and planting There are those that may be hit by heavy rain immediately before or after, and a more specific example is rice seeds.

〔3.植物の栽培方法〕
本発明は、得られた繁殖体被覆物を植え付けて植物を栽培する方法も提供する。すなわち、本発明に係る繁殖体被覆物は、植え付けられ(植付工程)た後に、利用可能な大きさの植物体となるまで栽培される。
[3. Plant cultivation method)
The present invention also provides a method for cultivating a plant by planting the obtained propagation material covering. That is, the propagation material covering which concerns on this invention is cultivated until it becomes a plant body of the size which can be used after planting (planting process).

繁殖体被覆物を植え付ける方法は特に限定されず、例えば、被覆種子の場合であれば、点播機、条播機、又は散播機等の播種機を用いて農地等に播種してもよく、人の手で直接播種してもよい。また、繁殖体被覆物が、機能性資材を付着させた幼植物(苗)の場合には、植え付け機又は人手により植え付ければよい。   The method for planting the propagation material cover is not particularly limited. For example, in the case of coated seeds, seeding may be performed on farmland using a seeding machine such as a spot seeder, a streaker, or a seeder. You may sow directly by hand. Moreover, what is necessary is just to plant by a planting machine or a hand, when the propagation body covering is the young plant (seedling) to which the functional material was made to adhere.

繁殖体被覆物の植え付けは、例えば、土壌又は土壌代替物に対して行われる。ここで、土壌代替物とは、例えば、人工土(ピートモス等)、水耕用等の培地、等の、土壌の代わりに植物を生育させることが可能な培地を指す。   Planting of the propagation material covering is performed, for example, on soil or soil substitute. Here, the soil substitute refers to a medium capable of growing plants instead of soil, such as artificial soil (peat moss, etc.), a medium for hydroponics, and the like.

本発明に係る繁殖体被覆物は被覆層の耐水性に優れる。そのため、本発明に係る植物の栽培方法において、上記植付工程以降から苗立ち期の間に、植物体の少なくとも一部が湛水状態となる期間を有する場合でも、機能性資材が種子から剥離する虞が少ない。   The propagation material covering which concerns on this invention is excellent in the water resistance of a coating layer. Therefore, in the plant cultivation method according to the present invention, even when the plant material has a period in which at least a part of the plant body is flooded during the seedling establishment period after the planting step, the functional material is detached from the seed. There is little possibility to do.

すなわち、本発明に係る栽培方法の一例では、繁殖体被覆物は、少なくとも一時的に湛水状態となる条件で植付及び/又は出芽するものである。なお、少なくとも一時的に湛水状態となる条件とは、水田、水耕等のような長期湛水状態のみならず、多雨等によって、一時的に湛水状態となる場合をも含む。   That is, in an example of the cultivation method according to the present invention, the propagation material covering is planted and / or budding at least temporarily under the condition of being flooded. The conditions for at least temporarily flooding include not only long-term flooding such as paddy fields and hydroponics, but also the case of temporary flooding due to heavy rain.

また、本発明において、上記植付工程は、湛水直播の形態で行われてもよい。ここで、湛水直播とは、湛水状態の土壌又は土壌代替物等に直接播種(直播)することを意味する。湛水状態の土壌又は土壌代替物とは、例えば、代かき後の水田、水耕培地、雨等によって湛水した畑、水耕栽培用の培地等である。なお、「水田」とは、稲を栽培する耕地に限らず、水を引いて作物を栽培する耕地であればよい。   Moreover, in this invention, the said planting process may be performed with the form of flooded direct seeding. Here, flooded direct sowing means direct sowing (direct sowing) on flooded soil or soil substitutes. The submerged soil or soil substitute is, for example, a paddy field after substitution, a hydroponic medium, a field submerged by rain, a hydroponic culture medium, or the like. The “paddy field” is not limited to the cultivated land where rice is cultivated, but may be any cultivated land where water is drawn to grow the crop.

〔4.被覆種子のより具体的な例示〕
以下、本発明に係る繁殖体被覆物の一形態である被覆種子のより具体的な構成例を示す。
[4. More specific examples of coated seeds)
Hereinafter, more specific structural examples of the coated seeds which are one form of the propagation material covering according to the present invention will be shown.

被覆種子(1)
PVA: 重合度1500以上で2500以下の範囲内で、ケン化度は90モル%を越え98モル%未満の範囲内。PVAの粒径は限定されないが、好ましくは150μm以下である。機能性資材の重量の0.5%重以上で3%重以下の範囲内で、機能性資材と混合。
機能性資材:三酸化モリブデン、モリブドリン酸カリウム、またはモリブドリン酸アンモニウムから選択される少なくとも一種類。機能性資材は、風乾種子1kgあたりモリブデン元素で0.01mol以上で0.2mol以下の範囲内で用いる。
なお、種子の種類は限定されない。PVAと機能性資材とが混合された組成物により種子の外表面の被覆が行われる。
Coated seed (1)
PVA: The degree of polymerization is in the range of 1500 to 2500, and the saponification degree is in the range of more than 90 mol% and less than 98 mol%. The particle size of PVA is not limited, but is preferably 150 μm or less. Mixed with functional materials within the range of 0.5% to 3% by weight of functional materials.
Functional material: At least one selected from molybdenum trioxide, potassium molybdophosphate, or ammonium molybdophosphate. The functional material is used in a range of 0.01 mol or more and 0.2 mol or less of molybdenum element per kg of air-dried seeds.
In addition, the kind of seed is not limited. The outer surface of the seed is coated with a composition in which PVA and a functional material are mixed.

被覆種子(2)
PVA: 重合度1500以上で2500以下の範囲内で、ケン化度は90モル%を越えてで98モル%未満の範囲内。PVAの粒径は150μm以下。機能性資材の重量の0.5%重以上で3%重以下の範囲内で、機能性資材と混合。
機能性資材:酸化鉄。粒径は1μm以下が好ましい。機能性資材は、風乾種子の重量の5%重以上で50%重以下の範囲内で用いる。
種子の種類は限定されない。PVAと機能性資材とが混合された組成物により種子の外表面の被覆が行われる。
なお、機能性資材として、さらに、三酸化モリブデン、モリブドリン酸カリウム、モリブドリン酸アンモニウム、モリブドリン酸、またはモリブドリン酸ナトリウムから選択される少なくとも一種類を、風乾種子1kgあたりモリブデン元素で0.01mol以上で0.2mol以下の範囲内で添加してもよい。
Coated seed (2)
PVA: The degree of polymerization is in the range of 1500 to 2500, and the degree of saponification is in the range of more than 90 mol% and less than 98 mol%. The particle size of PVA is 150 μm or less. Mixed with functional materials within the range of 0.5% to 3% by weight of functional materials.
Functional material: Iron oxide. The particle size is preferably 1 μm or less. The functional material is used within a range of 5% to 50% by weight of the weight of the air-dried seed.
The kind of seed is not limited. The outer surface of the seed is coated with a composition in which PVA and a functional material are mixed.
In addition, as the functional material, at least one selected from molybdenum trioxide, potassium molybdophosphate, ammonium molybdophosphate, molybdophosphoric acid, or sodium molybdophosphate is used. You may add within the range of 2 mol or less.

被覆種子(3)
PVA: 重合度1500以上で2500以下の範囲内で、ケン化度は90モル%を越え98モル%未満の範囲内。粒径は150μm以下。機能性資材の重量の0.5%重以上で3%重以下の範囲内で、機能性資材と混合。
機能性資材:酸化鉄、還元鉄、または粘土から選択される少なくとも一種類。機能性資材は、風乾種子の重量の5%重以上で50%重以下の範囲内で用いる。
種子の種類は限定されない。PVAと機能性資材とが混合された組成物により種子の外表面の被覆が行われる。
なお、機能性資材として、さらに、三酸化モリブデン、モリブドリン酸カリウム、モリブドリン酸アンモニウム、モリブドリン酸、またはモリブドリン酸ナトリウムから選択される少なくとも一種類を、風乾種子1kgあたりモリブデン元素で0.01mol以上で0.2mol以下の範囲内で添加してもよい。
Coated seed (3)
PVA: The degree of polymerization is in the range of 1500 to 2500, and the saponification degree is in the range of more than 90 mol% and less than 98 mol%. The particle size is 150 μm or less. Mixed with functional materials within the range of 0.5% to 3% by weight of functional materials.
Functional material: at least one selected from iron oxide, reduced iron, or clay. The functional material is used within a range of 5% to 50% by weight of the weight of the air-dried seed.
The kind of seed is not limited. The outer surface of the seed is coated with a composition in which PVA and a functional material are mixed.
In addition, as the functional material, at least one selected from molybdenum trioxide, potassium molybdophosphate, ammonium molybdophosphate, molybdophosphoric acid, or sodium molybdophosphate is used. You may add within the range of 2 mol or less.

被覆種子(4)
PVA: 重合度1500以上で2500以下の範囲内で、ケン化度は90モル%を越え98モル%未満の範囲内。粒径は150μm以下。機能性資材の重量の0.5%重以上で3%重以下の範囲内で、機能性資材と混合。
機能性資材:過酸化カルシウムを含む資材(酸素発生剤の一種)。機能性資材は、含まれる過酸化カルシウムが、風乾種子の重量の2%重以上で20%重以下となる範囲内で用いる。
種子の種類は限定されない。PVAと機能性資材とが混合された組成物により種子の外表面の被覆が行われる。
なお、機能性資材として、さらに、三酸化モリブデン、モリブドリン酸カリウム、モリブドリン酸アンモニウム、モリブドリン酸、またはモリブドリン酸ナトリウムから選択される少なくとも一種類を、風乾種子1kgあたりモリブデン元素で0.01mol以上で0.2mol以下の範囲内で添加してもよい。
Coated seed (4)
PVA: The degree of polymerization is in the range of 1500 to 2500, and the saponification degree is in the range of more than 90 mol% and less than 98 mol%. The particle size is 150 μm or less. Mixed with functional materials within the range of 0.5% to 3% by weight of functional materials.
Functional materials: Materials containing calcium peroxide (a kind of oxygen generator). The functional material is used in a range where the calcium peroxide contained is 2% or more and 20% or less of the weight of the air-dried seed.
The kind of seed is not limited. The outer surface of the seed is coated with a composition in which PVA and a functional material are mixed.
In addition, as the functional material, at least one selected from molybdenum trioxide, potassium molybdophosphate, ammonium molybdophosphate, molybdophosphoric acid, or sodium molybdophosphate is used. You may add within the range of 2 mol or less.

被覆種子(5)
酸化鉄粉末(森下弁柄工業(株)製、品名:No.1094、酸化鉄(III)(99重量%)、平均粒径 0.57μm)に、当該酸化鉄粉末の0.5%重〜3%重(好ましくは1%重)に相当するポリビニルアルコール粉末(日本酢ビ・ポバール(株)製、品名:JM−17S、ケン化度:95.5〜97.5mol%、重合度:約1700、粒径:150μm以下)を混合する。この混合物は、酸化鉄粉末重が風乾種子重の5〜50%重となる量を用いる。
なお、機能性資材として、さらに、三酸化モリブデン、モリブドリン酸アンモニウムから選択される少なくとも一種類を、風乾種子1kgあたりモリブデン元素で0.01mol以上で0.2mol以下の範囲内で添加してもよい。
Coated seed (5)
Iron oxide powder (Morishita Bengar Kogyo Co., Ltd., product name: No. 1094, iron oxide (III) (99% by weight), average particle size 0.57 μm) is added to 0.5% weight of the iron oxide powder. Polyvinyl alcohol powder corresponding to 3% weight (preferably 1% weight) (product name: JM-17S, product name: JM-17S, degree of saponification: 95.5-97.5 mol%, degree of polymerization: about 1700, particle size: 150 μm or less). This mixture is used in such an amount that the iron oxide powder weight is 5 to 50% of the air-dried seed weight.
In addition, as the functional material, at least one selected from molybdenum trioxide and ammonium molybdophosphate may be added within a range of 0.01 mol to 0.2 mol of molybdenum element per kg of air-dried seed. .

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, examples will be shown and the embodiment of the present invention will be described in more detail. However, the present invention is not limited to the following examples.

はじめに、実施例で評価をした「浸漬前剥離割合」、「耐水性」、及び「作業性」の評価方法について纏めて説明する。   First, evaluation methods of “peeling ratio before immersion”, “water resistance”, and “workability” evaluated in Examples will be described together.

「浸漬前剥離割合」は、室温で自然乾燥した評価すべき被覆種子2.5g程度をプラスティック遠沈管(45mL容)に入れて、試験管ミキサー(SCIENTIFIC INDUSTRIES G−560、強度最大)で30秒又は60秒震盪させた。その後、被覆種子から剥離した粉末を秤量し、付着させた資材の重量に対する剥離した資材の重量の割合を、浸漬前剥離割合(剥離無しは0%、全て剥離は100%)とした。なお、ここで「資材」とは、PVAを用いない場合は機能性資材を指し、PVAを用いる場合には機能性資材とPVAとを指す。   “Peeling ratio before immersion” is about 30 seconds with a test tube mixer (SCIENTIFIC INDUSTRIES G-560, maximum strength) after putting about 2.5 g of the coated seed to be evaluated, which is naturally dried at room temperature, into a plastic centrifuge tube (45 mL). Or shake for 60 seconds. Thereafter, the powder peeled off from the coated seeds was weighed, and the ratio of the weight of the peeled material to the weight of the adhered material was defined as a peel ratio before immersion (0% for no peeling and 100% for all peeling). Here, the “material” indicates a functional material when PVA is not used, and indicates a functional material and PVA when PVA is used.

被覆種子の「耐水性」は、評価すべき被覆種子について10粒(又は5粒)を試験管に入れて蒸留水10mL(又は5mL)を加えた。次いで、試験管立てに試験管をテープで固定し、水を添加して所定の日数後に、水がこぼれないように、試験管立てを両手で持ち、水平に円を描くように激しく震盪し、その直後に様子を観察した。そして、観察時における水が濁った程度によって、被覆層の耐水性を○(ほとんど濁らない)、△(少し濁る=機能性資材の大半は種子に付着を維持)、×(著しく濁る=機能性資材の大半は種子から剥離)に分類して評価した。   For the “water resistance” of the coated seeds, 10 (or 5) of the coated seeds to be evaluated were placed in a test tube and 10 mL (or 5 mL) of distilled water was added. Next, tape the test tube to the test tube stand, add water, and after a predetermined number of days, hold the test tube stand with both hands so that water does not spill, shake vigorously in a horizontal circle, The situation was observed immediately after that. And, depending on the degree of water turbidity at the time of observation, the water resistance of the coating layer is ○ (almost turbid), △ (slightly turbid = most of the functional materials remain attached to the seed), × (remarkably turbid = functional The majority of the materials were classified and evaluated as peeling from seeds.

被覆種子を製造する「作業性」は、被覆種子を製造したときに、種子同士の結合が実質的にない場合を○、種子同士の結合が見られるが、乾燥後に容易に分離できる(容器に入れて揺することで分離可)場合を△、種子同士が強く結合し、乾燥後に分離しにくく、分離に手間がかかる場合を×に分類して評価した。   “Workability” for producing coated seeds means that when the coated seeds are produced, the seeds are not substantially bound to each other, and the seeds are bound to each other. The case where separation was possible by placing and shaking) was evaluated by classifying the cases where the seeds were strongly bonded to each other, were difficult to separate after drying, and it took time and effort to separate.

〔実施例1:PVAのケン化度が、種子の被覆強度に及ぼす影響〕
風乾水稲種子(品種:にこまる)に対し、風乾種子重の50%重の酸化鉄(ヘマタイト、三酸化二鉄)粉末(DOWA IPクリエイション(株)製、ヘマタイト#32、平均粒径90μm前後、以下「粗粒酸化鉄」と称する:機能性資材の一例)と、0.2mmolMo/g風乾種子(風乾種子重の3.3%重)に相当するモリブドリン酸カリウム(日本新金属(株)製:機能性資材の一例)とをよく混合した。なお、モリブドリン酸カリウムは、湛水条件下での硫化物イオンの生成抑制剤としても機能する。
[Example 1: Effect of saponification degree of PVA on seed coating strength]
For air-dried rice seeds (variety: Nikomaru), iron oxide (hematite, ferric trioxide) powder (DOWA IP Creation Co., Ltd., hematite # 32, average particle size around 90 μm, 50% of air-dried seed weight, Hereinafter referred to as “coarse iron oxide”: an example of a functional material) and potassium molybdophosphate equivalent to 0.2 mmol Mo / g air-dried seed (3.3% weight of air-dried seed weight) (manufactured by Nippon Shin Metal Co., Ltd.) : An example of a functional material). It should be noted that potassium molybdophosphate also functions as a sulfide ion production inhibitor under flooding conditions.

次いで、室温において霧吹きで水を添加しながら機能性資材の混合物と種子とを一緒に攪拌することで、種子の表面に機能性資材の混合物を付着させた後、室温で自然乾燥させて参照用の被覆種子を製造した。   Next, the mixture of functional materials and seeds are stirred together while adding water by spraying at room temperature. After the functional material mixture is adhered to the seed surface, it is naturally dried at room temperature for reference. Coated seeds were produced.

また、これとは別に、粗粒酸化鉄とモリブドリン酸カリウムとの混合物(機能性資材の混合物)に対し、当該混合物の総重量の1%重のPVAを粒子状固体のままよく混合して用いた点以外は、PVAを混合しない上記場合と同様にして、水を添加しながら、風乾水稲種子の表面に機能性資材の混合物とPVAとを付着させた後、室温で自然乾燥させて被覆種子を製造した。   Separately, a mixture of coarse iron oxide and potassium molybdophosphate (a mixture of functional materials) is used by thoroughly mixing 1% PVA of the total weight of the mixture as a particulate solid. In the same manner as in the above case in which PVA is not mixed, except that water is added, the mixture of functional materials and PVA are adhered to the surface of the air-dried rice seed, and then naturally dried at room temperature to cover the seed. Manufactured.

用いたPVAは、重合度が1,500〜1,800程度の、ケン化度が異なる4種類(1.和光純薬工業(株)製、試薬特級、ケン化度78〜82mol%、以下、PVA品種を「Wako」と略。2.日本酢ビ・ポバール(株)製、品種:JP−18S、ケン化度86〜90mol%。3.日本酢ビ・ポバール(株)製、品種:JM−17S、ケン化度95.5〜97.5mol%。4.日本酢ビ・ポバール(株)製、品種:JF−17S、ケン化度98〜99mol%。)である。他の実施例で用いたPVAとあわせて、これらPVAの特性を表1に示す。なお、JP−18S、JP−20S、JP−24S、JM−17S、JF−17S、V−S08は、粒径が150μm以下(#100パス品)の微粉末で、他よりも特に細かい。   The PVA used has four types with different degrees of saponification having a degree of polymerization of about 1,500 to 1,800 (1. Wako Pure Chemical Industries, Ltd., reagent special grade, degree of saponification 78 to 82 mol%, hereinafter, PVA varieties are abbreviated as “Wako.” 2. Made by Nippon Vinegar-Poval Co., Ltd., Variety: JP-18S, Saponification Degree 86-90 mol% 3. Made by Nippon Vinegar-Poval Inc., Variety: JM -17S, degree of saponification 95.5-97.5 mol%, 4. Japanese Vinegar Pival Co., Ltd., cultivar: JF-17S, degree of saponification 98-99 mol%). The properties of these PVA are shown in Table 1 together with the PVA used in other examples. JP-18S, JP-20S, JP-24S, JM-17S, JF-17S, and V-S08 are fine powders having a particle size of 150 μm or less (# 100 pass product) and are particularly finer than others.

次いで、得られた5種類の被覆種子について、「浸漬前剥離割合(30秒震盪)」、及び「耐水性(種子10粒/水10mL)」の評価を行った。得られた結果を図1及び表2に示す。   Next, the five kinds of coated seeds thus obtained were evaluated for “peeling ratio before immersion (shaking for 30 seconds)” and “water resistance (10 seeds / 10 mL of water)”. The obtained results are shown in FIG.

表2に示すように、浸漬前剥離割合は、PVAを混合しないと半分近くとなり、PVAを添加すると著しく低下した。また、完全ケン化型のJF−17S(ケン化度98〜99モル%)よりも他のPVAを用いる方が、漬前剥離割合がより一層低下した。   As shown in Table 2, the peeling ratio before immersion was nearly half when PVA was not mixed, and was significantly reduced when PVA was added. Further, the use of another PVA than the completely saponified JF-17S (degree of saponification 98 to 99 mol%) further reduced the peeling rate before dipping.

また、被覆種子の耐水性は、図1に示すように、PVAを添加しないと資材の剥離が大きく、水が濁った。他方で、ケン化度がより高いJF−17S(ケン化度98〜99モル%)、JM−17S(ケン化度95.5〜97.5モル%)を用いたときは、他のPVAを用いたときに比べてより一層水が濁らず、水中における資材の剥離がほとんど起きず、耐水性が極めて高かった(表2)。   Moreover, as shown in FIG. 1, the water resistance of the coated seeds was large when the PVA was not added, and the material peeled off and the water became cloudy. On the other hand, when JF-17S (saponification degree 98-99 mol%) and JM-17S (saponification degree 95.5-97.5 mol%) having a higher saponification degree were used, other PVA Compared to when used, the water was much less turbid, the material hardly peeled off in water, and the water resistance was extremely high (Table 2).

以上の結果から、水溶性が低く、予め加熱溶解して用いることが一般的な完全ケン化型(JF−17S)及び中間ケン化型(JM−17S)のPVAを含めて、PVAを予め水に溶解することなく、粒子状固体のまま酸化鉄及び/又は種子と混合し、水を使って被覆層を形成させても、酸化鉄の被覆強度が十分に高まることが確認された。すなわち、水溶性が低く、高温で加熱溶解して用いることが一般的な完全ケン化型及び中間ケン化型のPVAに関しても、作業がより容易な、粉体のままでの利用が可能であると判明した。   Based on the above results, PVA is preliminarily treated with water, including completely saponified (JF-17S) and intermediate saponified (JM-17S) PVA, which is low in water solubility and generally used by heating and dissolving in advance. It was confirmed that the coating strength of iron oxide was sufficiently increased even when it was mixed with iron oxide and / or seeds in the form of a particulate solid without being dissolved in, and water was used to form a coating layer. That is, it is possible to use the powder as it is, which is low in water solubility, and is easy to work for the completely saponified and intermediate saponified PVA, which is generally dissolved by heating at a high temperature. It turned out.

さらに、水田に播種する前の被覆種子同士の擦れに十分な耐性を付与する観点(浸漬前剥離割合を低減する観点)では、完全ケン化型よりもケン化度が低いPVAを用いることがより好ましいと考えられた。他方で、湛水した水田に播種したのちの機能性資材の剥離を防ぐ観点では、ケン化度がより高いPVAを用いることが望ましいと考えられた。すなわち、両条件に優れるPVAとして、中間ケン化型(JM−17S、ケン化度95.5〜97.5モル%)が特に好ましいと考えられた。   Furthermore, from the viewpoint of imparting sufficient resistance to rubbing between coated seeds before sowing in paddy fields (in view of reducing the peeling ratio before immersion), it is more preferable to use PVA having a saponification degree lower than that of a completely saponified type. It was considered preferable. On the other hand, it was considered desirable to use PVA with a higher degree of saponification from the viewpoint of preventing separation of functional materials after sowing in flooded paddy fields. That is, it was considered that the intermediate saponification type (JM-17S, saponification degree 95.5-97.5 mol%) was particularly preferable as PVA excellent in both conditions.

〔実施例2:PVAのケン化度及び重合度が、種子の被覆強度に及ぼす影響(1)〕
PVAを添加しない場合と、表1に示した日本酢ビ・ポバール(株)製の9種類のPVAを用いた場合について、実施例1と同様にして、粗粒酸化鉄及びモリブドリン酸カリウムの混合物とPVA(PVAを使用する場合)とを被覆した被覆種子を作成した。そして、実施例1と同様の方法に従い、浸漬前剥離割合及び耐水性を調べた。ただし、耐水性の試験は、各試験管に5粒の被覆種子と5mLの水とを入れ、水を添加した4日後に試験管の震盪を行った。
[Example 2: Effects of saponification degree and polymerization degree of PVA on seed coating strength (1)]
A mixture of coarse iron oxide and potassium molybdate in the same manner as in Example 1 when no PVA was added and when nine types of PVA made by Nihon Vinegar Poval Co., Ltd. shown in Table 1 were used. And PVA (in the case of using PVA) were produced. And according to the method similar to Example 1, the peeling ratio before immersion and water resistance were investigated. However, in the water resistance test, 5 coated seeds and 5 mL of water were put in each test tube, and the test tube was shaken 4 days after the addition of water.

表3に示すように、浸漬前剥離割合は、PVAの添加によって低下し、また、部分ケン化型(ケン化度90mol%未満)のPVA≦中間ケン化型(ケン化度90〜98mol%)のPVA<完全ケン化型(ケン化度98mol%以上)のPVAという傾向がみられた。PVAのケン化度が低いほど親水性がより高く、室温で水に溶解し易いために、粘性が得られやすいためと推定される。   As shown in Table 3, the peeling ratio before immersion is decreased by the addition of PVA, and PVA of the partially saponified type (saponification degree less than 90 mol%) ≦ intermediate saponification type (saponification degree 90 to 98 mol%). Of PVA <completely saponified type (saponification degree: 98 mol% or more). It is presumed that the lower the degree of saponification of PVA, the higher the hydrophilicity and the easier it is to dissolve in water at room temperature, making it easier to obtain viscosity.

さらに、粉末状のPVAは、顆粒状のPVAよりも、浸漬前剥離割合が低くなる傾向があった。これは、粉末状のPVAの方が酸化鉄等の機能性資材とより均一に混合し易く、しかも比表面積が大きいので表面が部分的に溶解し易いからと推定された。また、特に顆粒状のPVAを用いる場合には、重合度が所定の範囲内(1000以上で5000以下、好ましくは1500以上で3500以下、より好ましくは1500以上で2500以下、さらに好ましくは1700以上で2400以下)であるほうが浸漬前剥離割合が低くなる傾向があった。   Furthermore, the powdered PVA tended to have a lower peel rate before immersion than the granular PVA. It was estimated that this was because powdered PVA was more easily mixed with a functional material such as iron oxide more uniformly, and because the specific surface area was large, the surface was partially dissolved. In particular, when granular PVA is used, the degree of polymerization is within a predetermined range (1000 or more and 5000 or less, preferably 1500 or more and 3500 or less, more preferably 1500 or more and 2500 or less, more preferably 1700 or more. 2400 or less), the peeling ratio before immersion tended to be low.

また、耐水性の試験の結果は、表3に示すように、部分ケン化型(ケン化度90mol%未満)のPVAに比べて、完全ケン化型(ケン化度98mol%以上)及び中間ケン化型(ケン化度90〜98mol%)のPVAの方が、水がより濁りにくく、かつ水中における機能性資材の剥離がより生じにくいという傾向が見られた。また、PVAの重合度は大きいほど、耐水性がより高まる傾向がみられた。   In addition, as shown in Table 3, the results of the water resistance test show that the saponification type (saponification degree is 98 mol% or more) and intermediate saponification type compared to the partially saponified type (saponification degree less than 90 mol%) PVA. There was a tendency that the PVA having a saponification type (saponification degree: 90 to 98 mol%) was less turbid and water was less likely to peel off the functional material. Moreover, the tendency for water resistance to increase more was seen, so that the polymerization degree of PVA was large.

以上の結果から、浸漬前の機能性資材の剥離割合が低くかつ耐水性を兼ね備える観点では、中間ケン化型(ケン化度90〜98mol%)のPVAがより好ましく、中でもJM−17S(ケン化度95.5〜97.5モル%、重合度1,700)が特に好ましいと考えられた。   From the above results, intermediate saponification type (saponification degree: 90 to 98 mol%) PVA is more preferable from the viewpoint of having a low peeling ratio of the functional material before immersion and water resistance, and among them, JM-17S (saponification). A degree of polymerization of 95.5 to 97.5 mol% and a degree of polymerization of 1,700) was considered particularly preferred.

〔実施例3:PVAのケン化度及び重合度が、種子の被覆強度に及ぼす影響(2)〕
粗粒酸化鉄(平均粒径90μm前後)の代わりに、平均粒径0.2μm程度の酸化鉄(和光純薬工業(株)製、酸化鉄(III)(三酸化二鉄)、和光一級、以下「細粒酸化鉄」)を用いた点以外は、実施例2に記載の方法に従い、重合度及びケン化度が異なるPVAを用いて、細粒酸化鉄及びモリブドリン酸カリウムの混合物とPVA(PVAを用いる場合)とを被覆した被覆種子を作成し、浸漬前剥離割合と耐水性(種子5粒/水5mL、水を添加して4日後に試験管の震盪)とを調べた。なお、本実施例で用いた酸化鉄は通常は、顔料(ベンガラ)、又は工業用の資材として用いられるもので、農業用の資材として汎用されるものではない。
[Example 3: Effect of saponification degree and polymerization degree of PVA on seed coating strength (2)]
Instead of coarse iron oxide (average particle size around 90 μm), iron oxide with an average particle size of about 0.2 μm (manufactured by Wako Pure Chemical Industries, Ltd., iron oxide (III) (diiron trioxide), Wako first grade, Except for the point of using “fine-grained iron oxide”), a mixture of fine-grained iron oxide and potassium molybdate and PVA (with different polymerization degrees and saponification degrees) was used according to the method described in Example 2. Coated seeds coated with PVA) were prepared, and the peeling rate before immersion and water resistance (5 seeds / 5 mL of water, 4 days after adding water and shaking the test tube) were examined. The iron oxide used in this example is usually used as a pigment (bengala) or an industrial material, and is not widely used as an agricultural material.

粗粒酸化鉄を用いた場合に比べて、細粒酸化鉄を用いると、浸漬前剥離割合は著しく低下した(表4参照)。なお、部分ケン化型(ケン化度90mol%未満)のPVA及び中間ケン化型(ケン化度90〜98mol%)のPVAを用いた場合は、完全ケン化型(ケン化度98mol%以上)のPVAを用いた場合と比べて、浸漬前剥離割合はさらに低い結果が得られた。   Compared to the case of using coarse iron oxide, the use of fine iron oxide significantly reduced the peeling ratio before immersion (see Table 4). When partially saponified PVA (saponification degree less than 90 mol%) and intermediate saponification type (saponification degree 90 to 98 mol%) PVA are used, complete saponification type (saponification degree of 98 mol% or more) Compared with the case of using PVA, the peeling ratio before immersion was lower.

耐水性に関しては、細粒酸化鉄を用いるよりも粗粒酸化鉄を用いた場合(実施例2)の方が耐水性により優れる傾向が得られた(結果は図示せず)。また、表4に示すように、細粒酸化鉄を用いる場合、耐水性に特に優れるという観点では、中間ケン化型(JM−17S,JM−33,ケン化度90〜98mol%)及び完全ケン化型(JF−17S)のPVAが好ましく、中間ケン化型がより好ましいことが判った。   With respect to water resistance, a tendency to be superior to water resistance was obtained when coarse iron oxide was used (Example 2) rather than fine iron oxide (results not shown). Further, as shown in Table 4, when fine-grained iron oxide is used, from the viewpoint of being particularly excellent in water resistance, intermediate saponification type (JM-17S, JM-33, saponification degree 90 to 98 mol%) and complete saponification are used. PVA (JF-17S) is preferable, and intermediate saponification type is more preferable.

以上の結果から、細粒酸化鉄でも、PVAを予め溶解させず、粒子状固体のままで、機能性資材と直接混合することによって種子の被覆が可能であることが判る。また、細粒酸化鉄を機能性資材として用いる場合、PVAは、中間ケン化型(ケン化度90〜98mol%)が好ましく、中でもJM−17S(ケン化度95.5〜97.5モル%、重合度1,700)がより好ましいと考えられた。   From the above results, it can be seen that even with fine-grained iron oxide, PVA is not dissolved in advance and can be coated with seeds by directly mixing with functional materials while remaining in a particulate solid form. Moreover, when using fine-grain iron oxide as a functional material, PVA is preferably an intermediate saponification type (saponification degree: 90 to 98 mol%), and particularly JM-17S (saponification degree: 95.5 to 97.5 mol%). The degree of polymerization 1,700) was considered more preferable.

〔実施例4:PVAの混合比率が種子の被覆強度に及ぼす影響(1)〕
PVAとして後述する量のJM−17Sのみを粒子状固体のまま用いた点以外は、実施例2と同様にして、風乾水稲種子重の50%重の粗粒酸化鉄(機能性資材)及び0.2mmolMo/g風乾種子のモリブドリン酸カリウム(機能性資材)の混合物とPVA(PVAを用いる場合)とを被覆した被覆種子を作成した。ここで、PVA(JM−17S)の使用量は、機能性資材の混合物の総重量に対して0〜10%重(以下、「PVA比率」)とした。
次いで、得られた被覆種子について、実施例2と同様にして、浸漬前剥離割合と耐水性(種子5粒/水5mL)とを調べた。ただし、耐水性の試験は、各試験管に5粒の被覆種子と5mLの水とを入れ、水を添加した3日後に試験管の震盪を行った。あわせて、被覆種子を製造する「作業性」も評価し、表5に評価結果を記載した。
[Example 4: Effect of PVA mixing ratio on seed coating strength (1)]
Except that only the amount of JM-17S described later as PVA was used in the form of a particulate solid, in the same manner as in Example 2, coarse iron oxide (functional material) of 50% weight of air-dried rice seed weight and 0 A coated seed coated with a mixture of potassium molybdophosphate (functional material) of .2 mmol Mo / g air-dried seed and PVA (when PVA was used) was prepared. Here, the usage amount of PVA (JM-17S) was 0 to 10% weight (hereinafter referred to as “PVA ratio”) with respect to the total weight of the mixture of functional materials.
Next, the obtained coated seeds were examined in the same manner as in Example 2 for the peeling ratio before immersion and the water resistance (5 seeds / 5 mL water). However, in the water resistance test, 5 coated seeds and 5 mL of water were placed in each test tube, and the test tube was shaken 3 days after the addition of water. In addition, “workability” for producing coated seeds was also evaluated, and Table 5 shows the evaluation results.

耐水性の試験の結果は、表5に示すように、被覆種子を水に浸漬したとき、PVA比率が0.5%重でも、水が濁りにくく、耐水性を十分に示す傾向がみられた。   As shown in Table 5, the results of the water resistance test showed that when the coated seeds were immersed in water, even when the PVA ratio was 0.5% weight, the water was hardly turbid and there was a tendency to exhibit sufficient water resistance. .

また、PVA比率が高くなるほど、浸漬前剥離割合が低下する傾向が見られた。そして、PVA比率が3%重以上としたときに、浸漬前剥離割合が1%程度に低下したことから、水に浸漬する前の被覆種子の安定性という観点では、PVA比率は2%〜3%重以上が好ましいと考えられた。   Moreover, the tendency for the peeling ratio before immersion to fall was seen, so that the PVA ratio became high. And when the PVA ratio is 3% weight or more, since the peeling ratio before immersion is reduced to about 1%, the PVA ratio is 2% to 3 from the viewpoint of the stability of the coated seed before being immersed in water. % Weight or more was considered preferable.

他方で、PVA比率が低くなるほど、種子同士の結合が抑制されて、被覆作業の効率(作業性)がより向上するという傾向が見られた。また、PVA比率が低くなるほど、水が濁りにくくなる傾向も得られた。PVA比率が低くなるほど水が濁りにくくなり、耐水性が向上する傾向となったのは、PVA比率が低くなるほど作業性が向上して、種子をより均質に被覆しやすくなることを反映している可能性も考えられた。より具体的には、PVA比率が5%重未満では、種子同士が互いに強く付着し難く、被覆作業が比較的効率よく行い得た(表5参照)。   On the other hand, as the PVA ratio is lower, the binding between the seeds is suppressed, and the efficiency (workability) of the covering work is more improved. Moreover, the tendency for water to become difficult to become cloudy was also obtained, so that the PVA ratio became low. The tendency for water to become less turbid and the water resistance to improve as the PVA ratio becomes lower reflects that the workability improves as the PVA ratio becomes lower and it becomes easier to coat the seeds more uniformly. The possibility was also considered. More specifically, when the PVA ratio is less than 5% weight, the seeds hardly adhere to each other, and the covering operation can be performed relatively efficiently (see Table 5).

以上から、粗粒酸化鉄の被覆において、PVA比率の下限は2〜3%重程度が好ましく、PVA比率の上限は5%重程度が好ましいと考えられた。そして、PVA比率はより好ましくは2%重〜4%重の範囲内であり、特に好ましくは2%重〜3%重の範囲内と考えられた。   From the above, in the coating of coarse iron oxide, it was considered that the lower limit of the PVA ratio is preferably about 2-3% weight, and the upper limit of the PVA ratio is preferably about 5% weight. The PVA ratio is more preferably in the range of 2% weight to 4% weight, and particularly preferably in the range of 2% weight to 3% weight.

〔実施例5:PVAの混合比率が種子の被覆強度に及ぼす影響(2)〕
PVAとして後述する量のJM−17Sのみを粒子状固体のまま用いた点、及びモリブドリン酸カリウムを使用しなかった点以外は、実施例3と同様にして、風乾水稲種子重の50%重の細粒酸化鉄とPVA(PVAを用いる場合)とを被覆した被覆種子を作成した。ここで、PVA(JM−17S)の使用量は、実施例3の結果も参照して、機能性資材である酸化鉄の重量の0〜1%重(以下、「PVA比率」)とした。
[Example 5: Effect of PVA mixing ratio on seed coating strength (2)]
50% weight of air-dried rice seed weight in the same manner as in Example 3 except that only the amount of JM-17S described later as PVA was used as a particulate solid and potassium molybdophosphate was not used. Coated seeds coated with fine iron oxide and PVA (when PVA was used) were prepared. Here, the amount of PVA (JM-17S) used was also referred to the results of Example 3 and was 0 to 1% weight (hereinafter referred to as “PVA ratio”) of the weight of iron oxide as a functional material.

次いで、得られた被覆種子について、実施例3と同様にして、浸漬前剥離割合と耐水性(種子10粒/水10mL)とを調べた。ただし、耐水性の試験は、各試験管に10粒の被覆種子と10mLの水とを入れ、水を添加した10日後に試験管の震盪を行った。   Subsequently, the obtained coated seeds were examined in the same manner as in Example 3 for the peeling ratio before immersion and the water resistance (10 seeds / 10 mL of water). However, in the water resistance test, 10 coated seeds and 10 mL of water were put in each test tube, and the test tube was shaken 10 days after the addition of water.

表6に示すように、試験をしたPVA比率の範囲内では、PVA比率が高くなるほど浸漬前剥離割合がより低下した。また、浸漬前剥離割合が1%以下に低下するので、PVA比率は0.4%重以上が好ましいと考えられた。   As shown in Table 6, within the range of the tested PVA ratio, the peeling ratio before immersion decreased more as the PVA ratio increased. Moreover, since the peeling ratio before immersion falls to 1% or less, it was considered that the PVA ratio is preferably 0.4% weight or more.

また、耐水性の試験の結果は、表6に示すように、被覆種子を水に浸漬したとき、PVA比率が0.05%重でも水が濁りにくくなることが確認でき、さらにPVA比率が0.2%重以上で水の濁りがなくなり、より一層優れた耐水性が得られた。   In addition, as shown in Table 6, when the coated seeds were immersed in water, the results of the water resistance test confirmed that even when the PVA ratio was 0.05% weight, the water was not easily turbid, and the PVA ratio was 0. More than 2% weight, the turbidity of water disappeared and much better water resistance was obtained.

以上の結果から、粗粒酸化鉄に比べて細粒酸化鉄では、被覆に用いるPVA比率がより低くてよいこと、より具体的には、十分な被覆強度を備えるためには、PVA比率が0.4%重以上で1%重以下程度の範囲内で十分であることが示唆された。   From the above results, it can be seen that fine iron oxide may have a lower PVA ratio used for coating than coarse iron oxide, more specifically, in order to provide sufficient coating strength, the PVA ratio is 0. It was suggested that a range of about 4% weight or more and 1% weight or less is sufficient.

〔実施例6A−1:粒径の異なる機能性資材の混合物が種子の被覆強度に及ぼす影響(1)〕
JM−17Sの使用量としてPVA比率を1%重に固定し、細粒酸化鉄と粗粒酸化鉄とを適宜混合して機能性資材として用いた以外は、実施例5と同様にして被覆種子を作成し、被覆種子の浸漬前剥離割合(ただし30秒震盪ではなく60秒震盪)及び耐水性(種子10粒/水10mL)を調べた。あわせて、被覆種子を製造する「作業性」も評価した。細粒酸化鉄と粗粒酸化鉄との混合割合は、表7の細粒割合、粗粒割合に示す通りの重量比とし、その合計量は常に風乾水稲種子重の50%重とした。ただし、耐水性の試験は、各試験管に10粒の被覆種子と10mLの水とを入れ、水を添加した6日後に試験管の震盪を行った。
[Example 6A-1: Effect of mixture of functional materials having different particle diameters on seed coating strength (1)]
Coated seed in the same manner as in Example 5 except that the PVA ratio was fixed at 1% weight as the amount of JM-17S used, and fine-grained iron oxide and coarse-grained iron oxide were appropriately mixed and used as a functional material. Was prepared, and the peeling rate before immersion of the coated seeds (however, shaking for 60 seconds instead of shaking for 30 seconds) and water resistance (10 seeds / 10 mL of water) were examined. In addition, "workability" for producing coated seeds was also evaluated. The mixing ratio of the fine-grained iron oxide and the coarse-grained iron oxide was the weight ratio as shown in Table 7 for the fine-grained ratio and the coarse-grained ratio, and the total amount was always 50% weight of the air-dried rice seed weight. However, in the water resistance test, 10 coated seeds and 10 mL of water were put in each test tube, and the test tube was shaken 6 days after the addition of water.

表7に示す通り、浸漬前剥離割合は、細粒酸化鉄の混合割合が多くなるほど低下した。例えば、粗粒酸化鉄と細粒酸化鉄とを半分ずつ混合することにより、浸漬前剥離割合は1%程度まで低下した。   As shown in Table 7, the peeling ratio before immersion decreased as the mixing ratio of fine iron oxide increased. For example, when the coarse-grained iron oxide and the fine-grained iron oxide were mixed by half, the peeling ratio before immersion decreased to about 1%.

また、耐水性の試験の結果は、表7に示すように、いずれの条件でも耐水性は非常に高かった。また、細粒酸化鉄の割合が80%未満の場合は、種子同士の付着が非常に少なく、被覆作業の作業性に特に優れていた。   Further, as shown in Table 7, the results of the water resistance test showed that the water resistance was very high under any condition. Moreover, when the ratio of the fine-grain iron oxide was less than 80%, the adhesion between the seeds was very small, and the workability of the coating work was particularly excellent.

粗粒酸化鉄は細粒酸化鉄と比べて飛散が少ないという利点がある一方で、細粒酸化鉄と同等の浸漬前剥離割合を確保するためには、より高いPVA比率が求められる。しかし、本実施例の結果から、必要に応じて粗粒酸化鉄を細粒酸化鉄と混合して使用することで、比較的低いPVA比率で、十分な被覆強度を確保できることが示唆された。   Coarse-grained iron oxide has the advantage of less scattering compared to fine-grained iron oxide, while a higher PVA ratio is required to ensure a pre-immersion peeling ratio equivalent to fine-grained iron oxide. However, from the results of this example, it was suggested that sufficient coating strength can be secured with a relatively low PVA ratio by using coarse iron oxide mixed with fine iron oxide as necessary.

〔実施例6A−2:粒径の異なる機能性資材の混合物が種子の被覆強度に及ぼす影響(2)〕
JM−17Sの使用量としてPVA比率を2%重又は3%重に固定し、細粒酸化鉄と粗粒酸化鉄とを適宜混合して機能性資材として用いた以外は、実施例5と同様にして被覆種子を作成し、被覆種子の浸漬前剥離割合(ただし30秒震盪ではなく60秒振盪)及び耐水性(種子10粒/水10mL)を調べた。あわせて、被覆種子を製造する「作業性」も評価した。細粒酸化鉄と粗粒酸化鉄との混合割合は、表8の細粒割合、粗粒割合に示す通りの重量比とし、その合計量は常に風乾水稲種子重の50%重とした。ただし、耐水性の試験は、各試験管に10粒の被覆種子と10mLの水とを入れ、水を添加した6日後に試験管の震盪を行った。
[Example 6A-2: Effect of mixture of functional materials having different particle diameters on seed coating strength (2)]
Similar to Example 5 except that the PVA ratio was fixed at 2% weight or 3% weight as the amount of JM-17S used, and fine iron oxide and coarse iron oxide were mixed appropriately and used as a functional material. Then, coated seeds were prepared, and the peeling rate of the coated seeds before immersion (however, shaking for 60 seconds instead of shaking for 30 seconds) and water resistance (10 seeds / 10 mL of water) were examined. In addition, "workability" for producing coated seeds was also evaluated. The mixing ratio of the fine-grained iron oxide and the coarse-grained iron oxide was the weight ratio as shown in Table 8 for the fine-grained ratio and the coarse-grained ratio, and the total amount was always 50% weight of the air-dried rice seed weight. However, in the water resistance test, 10 coated seeds and 10 mL of water were put in each test tube, and the test tube was shaken 6 days after the addition of water.

表8に示す通り、PVA比率が1%重の場合(表7参照)と比べると、何れも浸漬前剥離割合が低下する傾向があった。ただし、PVA比率が2%重のほうが、当該比率が3%重の場合よりも、種子どうしが付着しがたく作業性がより一層優れていた。   As shown in Table 8, as compared with the case where the PVA ratio is 1% weight (see Table 7), the peeling ratio before immersion tends to decrease. However, when the PVA ratio was 2% weight, seeds were less likely to adhere to each other than when the ratio was 3% weight, and the workability was even better.

また、細粒酸化鉄を粗粒酸化鉄に混合すると、被覆のむらがより小さくなり、かつ被覆層の表面がより滑らかになることが目視で明確に確認できた(データを図示せず)。水に浸漬する前の機能性資材の剥離は、種子同士の擦れの寄与が高いと考えられる。したがって、細粒酸化鉄を粗粒酸化鉄に混合して被覆層の表面を円滑にすることは、被覆むらの発生を抑え、機能性資材の剥離を減らすための有効な手段となる。   Moreover, when fine-grained iron oxide was mixed with coarse-grained iron oxide, it was clearly confirmed by visual observation that the coating unevenness became smaller and the surface of the coating layer became smoother (data not shown). The exfoliation of the functional material before being immersed in water is considered to contribute greatly to the rubbing between the seeds. Therefore, mixing fine-grain iron oxide with coarse-grain iron oxide to smooth the surface of the coating layer is an effective means for suppressing the occurrence of coating unevenness and reducing exfoliation of functional materials.

実施例6A−1及び6A−2の結果から、植物種子を酸化鉄で被覆する場合、粗粒酸化鉄に細粒酸化鉄を加えることによって、被覆の作業性を良好な範囲で維持しつつ、被覆むらの発生を抑え、被覆層の表面を滑らかにして、被覆強度を確保できる。このとき、PVA比率の一例は、1%重以上で3%重以下の範囲内で用いることが特に好ましい。   From the results of Examples 6A-1 and 6A-2, when coating plant seeds with iron oxide, by adding fine iron oxide to coarse iron oxide, while maintaining the workability of the coating in a good range, The occurrence of coating unevenness can be suppressed, the surface of the coating layer can be smoothed, and the coating strength can be ensured. At this time, an example of the PVA ratio is particularly preferably used within the range of 1% weight or more and 3% weight or less.

〔実施例6B:PVAの添加が水稲種子の各種酸化鉄資材の被覆強度に及ぼす影響〕
機能性資材として酸化鉄の種類を変え、JM−17Sの使用量としてPVA比率を1〜5%重とした以外は、実施例5と同様にして、風乾水稲種子重の50%重の酸化鉄を被覆した被覆種子を作成し、被覆種子の浸漬前剥離割合(ただし30秒震盪)及び耐水性(種子10粒/水10mL、水を添加して13日後)を調べた。酸化鉄は、(1)実施例3で示した細粒酸化鉄[Fe(w)と略]、(2)酸化鉄(三酸化二鉄、JFEケミカル(株)製、JC−CPW、平均粒径約0.9μm)[Fe(js)と略]、(3)実施例1で示した粗粒酸化鉄[Fe(d)と略]、(4)粉鉱石微粉(三酸化二鉄、JFEスチール(株)製、75μm以下を篩で採取)[Fe(jl)と略]、(5)酸化第一鉄(分子式FeO、半井化学薬品(株)製)[Fe(n)と略]、(6)ミルスケール微粉(JFEスチール(株)製、酸化第一鉄を主体とする三酸化二鉄との混合物)[Fe(j)と略]、(7)四酸化三鉄(和光純薬工業(株)製、四三酸化鉄)[Fe(w)と略]、以上の7種類とした。
[Example 6B: Effect of PVA addition on coating strength of various iron oxide materials of rice seed]
Iron oxide with 50% weight of air-dried rice seed weight is the same as Example 5 except that the type of iron oxide is changed as a functional material and the PVA ratio is 1-5% weight as the amount of JM-17S used. Coated seeds coated with the above were prepared, and the peeling rate before immersion of the coated seeds (however, shaking for 30 seconds) and water resistance (10 seeds / 10 mL of water, 13 days after adding water) were examined. Iron oxide is (1) fine-grain iron oxide shown in Example 3 [abbreviated as Fe 2 O 3 (w)], (2) iron oxide (diiron trioxide, manufactured by JFE Chemical Co., Ltd., JC-CPW) Average particle diameter of about 0.9 μm) [abbreviated as Fe 2 O 3 (js)], (3) coarse-grained iron oxide shown in Example 1 [abbreviated as Fe 2 O 3 (d)], (4) powder Ore fine powder (ferric trioxide, manufactured by JFE Steel Co., Ltd., 75 μm or less collected with a sieve) [abbreviated as Fe 2 O 3 (jl)], (5) ferrous oxide (molecular formula FeO, Hanai Chemicals Co., Ltd. )) [Abbreviated as Fe 1 O 1 (n)], (6) Mill scale fine powder (manufactured by JFE Steel Corporation, mixture with ferric trioxide mainly composed of ferrous oxide) [Fe 1 O 1 (J) and abbreviation], (7) triiron tetroxide (manufactured by Wako Pure Chemical Industries, Ltd., abbreviated to iron trioxide) [abbreviated as Fe 3 O 4 (w)], and the above seven types.

表9に示したように、PVA比率が上昇するほど浸漬前剥離割合が低下した。また、PVAを用いない浸漬前剥離割合は酸化鉄の種類に依存し、粒径が小さい三酸化二鉄(Fe(w)とFe(js))及び四酸化三鉄(Fe(w))は、PVA比率1%程度で、浸漬前剥離割合が2%未満となった。一方、粒径が大きい三酸化二鉄(Fe(d)とFe(jl))及び酸化第一鉄(Fe(n))は、PVA比率5%程度で、浸漬前剥離割合が2%未満となった。酸化第一鉄と三酸化二鉄との混合物(Fe(j))の浸漬前剥離割合は、PVA比率2%程度で、浸漬前剥離割合が2%未満となった。いずれの資材も1%重のPVAを加えると十分な耐水性が得られた。 As shown in Table 9, the peeling ratio before immersion decreased as the PVA ratio increased. Moreover, the peeling ratio before immersion without using PVA depends on the type of iron oxide, and diiron trioxide (Fe 2 O 3 (w) and Fe 2 O 3 (js)) and triiron tetroxide ( Fe 3 O 4 (w)) had a PVA ratio of about 1% and a peel ratio before immersion of less than 2%. On the other hand, ferric trioxide (Fe 2 O 3 (d) and Fe 2 O 3 (jl)) and ferrous oxide (Fe 1 O 1 (n)) having a large particle size have a PVA ratio of about 5%, The peeling ratio before immersion was less than 2%. The peeling ratio before immersion of the mixture of ferrous oxide and ferric trioxide (Fe 1 O 1 (j)) was about 2% PVA, and the peeling ratio before immersion was less than 2%. All materials obtained sufficient water resistance when 1% PVA was added.

〔実施例6C:PVAの添加が水稲種子の還元鉄の被覆強度に及ぼす影響〕
機能性資材として還元鉄を用いた以外は、実施例6Bと同様にし、JM−17Sの使用量としてPVA比率を1〜5%重として、風乾水稲種子重の50%重の還元鉄を被覆した被覆種子を作成した(一般的な鉄被覆で添加される石膏は添加していない)。種子に還元鉄を被覆した場合、還元鉄が錆びる過程で被覆強度が上がる。しかし、PVAの役割の一つは錆の形成までの強度を維持することと考えて、錆の形成が十分に進んでいない条件で、被覆強度を調査した。すなわち、被覆種子作成後は、追加の加水をせず、すぐに通風乾燥して、錆色への変色が見られない状態で、被覆種子の浸漬前剥離割合(ただし30秒震盪)及び耐水性(種子10粒/水10mL、ただし水を添加して3日後)を調べた。還元鉄は、(1)還元鉄(和光純薬工業(株)製、和光一級、見た目と手触りから次に示すFe(j)より粒径が小さい)[Fe(w)と略]、(2)還元鉄(JFEスチール(株)製、鉄粉(J6)、平均粒径約65μm)[Fe(j)と略]、以上の2種類とした。
[Example 6C: Effect of PVA addition on reduced iron coating strength of rice seed]
Except for using reduced iron as a functional material, the same as in Example 6B, the amount of JM-17S used was 1 to 5% by weight of PVA, and 50% by weight of reduced dry iron seed weight was coated. Coated seeds were made (no gypsum added with a common iron coating). When the seed is coated with reduced iron, the coating strength increases in the process of reducing iron rusting. However, considering that one of the roles of PVA is to maintain the strength up to the formation of rust, the coating strength was investigated under conditions where the formation of rust was not sufficiently advanced. That is, after the coated seeds are made, without additional addition of water, immediately dried by ventilation, and without any discoloration to rust color, the peel rate before immersion of the coated seeds (but shaking for 30 seconds) and water resistance ( 10 seeds / 10 mL of water, but 3 days after adding water) were examined. Reduced iron is (1) reduced iron (manufactured by Wako Pure Chemical Industries, Ltd., Wako first grade, particle size smaller than Fe (j) shown below from appearance and touch) [Fe (w) is abbreviated], (2 ) Reduced iron (manufactured by JFE Steel Co., Ltd., iron powder (J6), average particle size of about 65 μm) [abbreviated as Fe (j)], and the above two types.

表10に示したように、PVA比率が上昇するほど浸漬前剥離割合が低下した。また、PVAを添加しない場合、浸種すると水の懸濁が見られたが、PVAを加えると懸濁が無くなり、高い耐水性が得られた。   As shown in Table 10, the peeling ratio before immersion decreased as the PVA ratio increased. In addition, when PVA was not added, water suspension was observed when seeded, but when PVA was added, suspension was lost and high water resistance was obtained.

〔実施例7−1:PVAの添加が種子の被覆強度に及ぼす影響〕
風乾水稲種子(品種:にこまる)に対し、0.2mmolMo/g風乾種子に相当する各種モリブデン資材(機能性資材)、及びPVA(JM−17S、PVA比率1%重、粒子状固体のまま使用)を用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面にモリブデン資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。また、参照用としてPVAを用いない以外は、上記と同様の条件に従い、参照用の被覆種子を製造した。
[Example 7-1: Effect of addition of PVA on seed coating strength]
For air-dried rice seeds (variety: Nikomaru), various molybdenum materials (functional materials) equivalent to 0.2 mmol Mo / g air-dried seeds and PVA (JM-17S, PVA ratio 1% weight, used as particulate solid) In the same manner as in Example 1, using molybdenum), molybdenum material and PVA were attached to the surface of the seed while adding water by spraying, and the seed was naturally dried at room temperature to produce a coated seed. Moreover, according to the same conditions as described above except that PVA was not used for reference, a coated seed for reference was produced.

なお、使用したモリブデン資材は、何れも微溶性の、三酸化モリブデン(日本無機化学工業(株)製、以下「MoO」と略)、モリブドリン酸アンモニウム(日本新金属(株)製、以下「MoPNH」と略)、又はモリブドリン酸カリウム(日本新金属(株)製、以下「MoPK」と略)である。   The molybdenum materials used were slightly soluble molybdenum trioxide (manufactured by Nippon Inorganic Chemical Industry Co., Ltd., hereinafter abbreviated as “MoO”), ammonium molybdate (manufactured by Nippon Shin Metals Co., Ltd., hereinafter “MoPNH”). Or potassium molybdophosphate (manufactured by Nippon Shin Metals Co., Ltd., hereinafter abbreviated as “MoPK”).

次いで、実施例1と同様にして、得られた被覆種子の浸漬前剥離割合(30秒振盪)と耐水性(10粒/10mL)とを調べた。なお、耐水性は、水を添加して4日後(播種後4日後と同義)に試験管の震盪を行い、震盪直後の状態で評価した。   Next, in the same manner as in Example 1, the peel rate before immersion (shaking for 30 seconds) and water resistance (10 grains / 10 mL) of the obtained coated seeds were examined. In addition, water resistance was evaluated in the state immediately after shaking by adding water and shaking the test tube 4 days later (synonymous with 4 days after sowing).

使用したモリブデン資材は何れも水の添加により硬化する性質があるため、PVAを使用しなくとも浸漬前剥離割合は比較的低かった。しかし、PVAの添加によって浸漬前剥離割合は何れも1%未満と極めて低くなった(表11参照)。また、図2及び表11に示すように、PVAを添加した被覆種子では、耐水性の試験において水の濁りが抑制され、参照用の被覆種子と比較して耐水性がより向上した。   Since all the molybdenum materials used have the property of being cured by the addition of water, the peeling ratio before immersion was relatively low without using PVA. However, with the addition of PVA, the peeling ratio before immersion was extremely low at less than 1% (see Table 11). Moreover, as shown in FIG. 2 and Table 11, in the seed coated with PVA, the turbidity of water was suppressed in the water resistance test, and the water resistance was further improved as compared with the coated seed for reference.

〔実施例7―2:PVAの添加が種子の被覆強度に及ぼす影響2〕
風乾水稲種子(品種:にこまる)に対し、風乾種子重の10%重に相当する各種タングステン資材(機能性資材)、及びPVA(JM−17S、PVA比率10%重、粒子状固体のまま使用)を用いて、実施例7−1と同様にして、霧吹きで水を添加しながら種子の表面にタングステン資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。また、参照用としてPVAを用いない以外は、上記と同様の条件に従い、参照用の被覆種子を製造した。
[Example 2-2: Effect 2 of PVA addition on seed coating strength 2]
For air-dried rice seeds (variety: Nikomaru), various tungsten materials (functional materials) equivalent to 10% weight of air-dried seed weight and PVA (JM-17S, PVA ratio 10% weight, used as particulate solid) In the same manner as in Example 7-1, a tungsten seed and PVA were attached to the surface of the seed while spraying water, and the seed was naturally dried at room temperature to produce a coated seed. Moreover, according to the same conditions as described above except that PVA was not used for reference, a coated seed for reference was produced.

なお、使用したタングステン資材は、何れも微溶性の三酸化タングステン(WO)、タングステン酸(WH)、及びタングストリン酸アンモニウム(WPNH)であり、これら資材は、和光純薬工業(株)製である。   The tungsten materials used are slightly soluble tungsten trioxide (WO), tungstic acid (WH), and ammonium tungstate phosphate (WPNH). These materials are manufactured by Wako Pure Chemical Industries, Ltd. is there.

次いで、実施例1と同様にして、得られた被覆種子の浸漬前剥離割合(30秒振盪)と耐水性(10粒/10mL)とを調べた。なお、耐水性は、水を添加して13日後(播種後13日後と同義)に試験管の震盪を行い、震盪直後の状態で評価した。   Next, in the same manner as in Example 1, the peel rate before immersion (shaking for 30 seconds) and water resistance (10 grains / 10 mL) of the obtained coated seeds were examined. The water resistance was evaluated in a state immediately after shaking by adding water and shaking the test tube 13 days later (synonymous with 13 days after sowing).

使用したタングステン資材は何れも水の添加により硬化する性質があるため、PVAを使用しなくとも浸漬前剥離割合は比較的低かった。しかし、PVAの添加によって浸漬前剥離割合は何れも2%以下と低くなった(表12参照)。また、PVAを添加した被覆種子では、耐水性の試験において水の濁りの発生が低下し、参照用の被覆種子と比較して耐水性がより向上した(表12参照)。   Since all the tungsten materials used have the property of being cured by the addition of water, the peeling ratio before immersion was relatively low without using PVA. However, the addition of PVA lowered the peeling ratio before immersion to 2% or less (see Table 12). Further, in the coated seeds to which PVA was added, the occurrence of water turbidity was reduced in the water resistance test, and the water resistance was further improved compared to the coated seeds for reference (see Table 12).

〔実施例8−1:PVAの混合比率が種子の被覆強度に及ぼす影響(3)〕
風乾水稲種子(品種:にこまる)に対し、風乾種子重の50%重の過酸化カルシウム資材(和光純薬工業(株)、25重量%の過酸化カルシウム含有製品:機能性資材)又は粘土(ネオライト興産株式会社、大平DLクレー:機能性資材)と、PVA(JM−17S、PVA比率0〜10%重の範囲内で変更、粒子状固体のまま使用)とを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 8-1: Effect of mixing ratio of PVA on seed coating strength (3)]
For air-dried rice seeds (variety: Nikomaru), 50% heavier calcium peroxide material (Wako Pure Chemical Industries, Ltd., 25% calcium peroxide-containing product: functional material) or clay ( Neolite Kosan Co., Ltd., Ohira DL clay: functional material) and PVA (JM-17S, PVA ratio changed within the range of 0 to 10% weight, used as a particulate solid) and Example 1 Similarly, a functional seed and PVA were adhered to the surface of the seed while adding water by spraying, and the seed was naturally dried at room temperature to produce a coated seed.

次いで、実施例1と同様にして、得られた被縮種子の浸漬前剥離割合(30秒振盪)と耐水性(10粒/10mL)とを調べた。なお、耐水性は、水を添加して1日後(播種後1日後と同義)に試験管の震盪を行い、震盪直後の状態で評価した。   Next, in the same manner as in Example 1, the peel ratio before immersion (shaking for 30 seconds) and water resistance (10 grains / 10 mL) of the obtained reduced seeds were examined. In addition, water resistance was evaluated in a state immediately after shaking after adding water and shaking the test tube 1 day after (synonymous with 1 day after sowing).

表13に示すように、過酸化カルシウム資材の被覆では、PVAを添加しないと浸漬前剥離割合は30%を超えたが、PVAをPVA比率1%重で添加すると浸漬前剥離割合は1%と著しく低くなった。また、過酸化カルシウム資材は、PVAを添加しなくても種子の被覆ができるが、亀裂が入り剥離が起きやすかった。しかし、PVAを添加すると、亀裂が入らず剥離しにくくなった。   As shown in Table 13, in the coating of calcium peroxide material, the peeling rate before immersion exceeded 30% when PVA was not added, but when PVA was added at a PVA ratio of 1% weight, the peeling rate before immersion was 1%. Remarkably low. In addition, the calcium peroxide material can be coated with seeds without adding PVA, but cracking occurred and peeling was likely to occur. However, when PVA was added, cracks did not occur and peeling was difficult.

また、耐水性の試験の結果、過酸化カルシウム資材は、PVAを添加しなくても水に浸漬時の崩壊が小さかったが、PVAを添加することで水に浸漬時の崩壊がより一層抑えられて、耐水性もより一層高まった(表13も参照)。   In addition, as a result of the water resistance test, the calcium peroxide material showed little collapse when immersed in water without adding PVA, but the addition of PVA further suppresses the collapse when immersed in water. Thus, the water resistance was further increased (see also Table 13).

一方、粘土による被覆では、PVAを添加しないと被覆強度が著しく弱く、PVA比率が高まるに従って、浸漬前剥離割合も浸漬時の濁りも低下し、被覆強度が高まる傾向がみられた(表13参照)。   On the other hand, in the case of coating with clay, the coating strength is remarkably weak unless PVA is added, and as the PVA ratio increases, the peeling ratio before immersion and the turbidity during immersion decrease and the coating strength tends to increase (see Table 13). ).

〔実施例8−2 部分ケン化PVAと完全ケン化PVAとの混合による水稲種子の被覆〕
風乾水稲種子(品種:にこまる)に対し、風乾種子重の50%重の粗粒酸化鉄(実施例1と同様のもの:機能性資材)及びモリブドリン酸カリウム(0.2mmolMo/g風乾種子:機能性資材)の混合物と、PVAとを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 8-2 Rice Seed Coating by Mixing Partially Saponified PVA and Completely Saponified PVA]
For air-dried rice seed (variety: Nikomaru), coarse iron oxide (similar to Example 1: functional material) and potassium molybdophosphate (0.2 mmol Mo / g air-dried seed: 50% weight of air-dried seed weight: By using a mixture of functional materials) and PVA, in the same manner as in Example 1, the functional materials and PVA are adhered to the surface of the seeds while adding water by spraying, and naturally dried at room temperature. Coated seeds were produced.

PVAとしては、PVA比率1%重で、JF−17S、JP−18S、又はJM−17Sを用いた場合に加えて、PVA比率1%重ずつのJF−17SとJP−18Sとの混合物を用いた場合について検討をした。   As PVA, in addition to the case where JF-17S, JP-18S, or JM-17S is used at a PVA ratio of 1% weight, a mixture of JF-17S and JP-18S with a PVA ratio of 1% weight is used. I examined the case.

そして、実施例1と同様の方法に従い、浸漬前剥離割合及び耐水性を調べた。ただし、耐水性の試験は、各試験管に10粒の被覆種子と10mLの水とを入れ、水を添加した8日後に試験管の震盪を行った。   And according to the method similar to Example 1, the peeling ratio before immersion and water resistance were investigated. However, in the water resistance test, 10 coated seeds and 10 mL of water were put in each test tube, and the test tube was shaken 8 days after the addition of water.

表14に示すように、浸漬前剥離割合は、JP−18S、JM−18S、又はJP−18SとJF−17Sの混合物を用いた場合に11%以下となり、JF−17Sのみを用いた場合(46%)よりも著しく低くなった。また、耐水性はJF−17S、又はJM−17Sを用いた場合に著しく高く、JP−18Sのみを用いた場合、水中での被覆資材の懸濁がやや見られた(図3)。以上から、中間ケン化PVAは単独で、水に浸漬前の剥離の防止、及び耐水性を兼ね備えることができる。しかし、部分ケン化PVAを用いることで水に浸漬前の剥離を防ぎ、完全ケン化PVAを用いることで耐水性が得られ、両者を併用すれば、水に浸漬前の剥離の防止、及び耐水性を兼ね備えることができる。   As shown in Table 14, the peeling ratio before immersion is 11% or less when JP-18S, JM-18S, or a mixture of JP-18S and JF-17S is used, and when JF-17S is used alone ( 46%). Moreover, water resistance was remarkably high when JF-17S or JM-17S was used, and when only JP-18S was used, the suspension of the coating material in water was slightly observed (FIG. 3). From the above, the intermediate saponified PVA can be used alone to prevent peeling before being immersed in water and to have water resistance. However, by using partially saponified PVA, peeling before immersion in water is prevented, and by using completely saponified PVA, water resistance is obtained, and when both are used in combination, prevention of peeling before immersion in water and water resistance are achieved. It can have sex.

〔実施例9:酸化鉄とモリブデン資材との混合物による被覆〕
風乾水稲種子(品種:にこまる)に対し、風乾種子重の50%重の細粒酸化鉄(機能性資材)と、各種モリブデン資材(機能性資材)と、PVA(JM−17S、PVA比率1%重、粒子状固体のまま使用)とを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 9: Coating with a mixture of iron oxide and molybdenum material]
For air-dried rice seeds (variety: Nikomaru), fine iron oxide (functional material) 50% heavier than air-dried seed weight, various molybdenum materials (functional materials), and PVA (JM-17S, PVA ratio 1) In the same manner as in Example 1, the functional material and PVA are adhered to the seed surface while adding water by spraying, and air-dried at room temperature. The coated seeds were produced by

なお、使用したモリブデン資材は、三酸化モリブデン(日本無機化学工業(株)製)、モリブドリン酸アンモニウム(日本新金属(株)製)、又はモリブドリン酸カリウム(日本新金属(株)製)である。また、各種モリブデン資材の使用量は、0、0.02、0.05、0.1、0.2、0.5、1、及び2mmolMo/g風乾種子に相当する量である。   The molybdenum material used was molybdenum trioxide (manufactured by Nippon Inorganic Chemical Co., Ltd.), ammonium molybdophosphate (manufactured by Nippon Shin Metal Co., Ltd.), or potassium molybdophosphate (manufactured by Nippon Shin Metal Co., Ltd.). . Moreover, the usage-amount of various molybdenum materials is an amount equivalent to 0, 0.02, 0.05, 0.1, 0.2, 0.5, 1 and 2 mmol Mo / g air-dried seeds.

いずれの被覆種子でも、機能性資材の剥離はみられず、水中に入れても崩壊しなかった。   In any of the coated seeds, the functional material was not peeled off and did not disintegrate even when placed in water.

〔実施例10:水稲種子におけるモリブデン資材又はタングステン資材での被覆〕
風乾水稲種子(品種:にこまる)に対し、各種モリブデン資材又はタングステン資材(機能性資材)と、PVA(JM−17S、PVA比率1%重、粒子状固体のまま使用)とを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 10: Coating of paddy rice seed with molybdenum material or tungsten material]
Implemented on air-dried rice seeds (variety: Nikomaru) using various molybdenum materials or tungsten materials (functional materials) and PVA (JM-17S, PVA ratio 1% weight, used as a particulate solid) In the same manner as in Example 1, a functional seed and PVA were adhered to the surface of the seed while adding water by spraying, and the seed was naturally dried at room temperature to produce a coated seed.

使用したモリブデン資材又はタングステン資材は、0.1,0.2,0.5,及び1mmolMoまたはW/g風乾種子に相当する量のモリブデン金属粉末(日本新金属(株)製、Mo−H)またはタングステン金属粉(日本新金属(株)製、W−H)である。   Molybdenum material or tungsten material used is 0.1, 0.2, 0.5, and 1 mmol Mo or molybdenum metal powder in an amount equivalent to W / g air-dried seeds (Mo-H manufactured by Nippon Shin Metal Co., Ltd.) Or it is a tungsten metal powder (Nippon Shin Metal Co., Ltd. product, WH).

いずれの被覆種子でも、機能性資材の剥離はみられず、水中に入れても崩壊しなかった。   In any of the coated seeds, the functional material was not peeled off and did not disintegrate even when placed in water.

〔実施例11:麦類及び蕎麦の種子におけるモリブデン資材又はタングステン資材での被覆〕
風乾小麦種子(品種:チクゴイズミ)、風乾大麦種子(品種:ニシノチカラ)、及び風乾蕎麦種子(品種:さちいずみ)に対し、各種モリブデン資材又はタングステン資材(機能性資材)と、PVA(JM−17S、PVA比率1%重、粒子状固体のまま使用)とを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 11: Coating of wheat and buckwheat seeds with molybdenum material or tungsten material]
Air-dried wheat seeds (variety: Chikugoizumi), air-dried barley seeds (variety: Nishino Chikara), and air-dried buckwheat seeds (variety: Sachiizumi), various molybdenum materials or tungsten materials (functional materials), PVA (JM-17S, In the same manner as in Example 1, the functional material and PVA were adhered to the surface of the seed while adding water by spraying, using the PVA ratio 1% weight, used as a particulate solid). Coated seeds were produced by drying.

使用したモリブデン資材又はタングステン資材は、0.1または0.2mmolMoまたはW/g風乾種子に相当する量の、三酸化モリブデン(日本無機化学工業(株)製)、モリブドリン酸アンモニウム(日本新金属(株)製)、モリブドリン酸カリウム(日本新金属(株)製)、及びタングストリン酸アンモニウム(和光純薬工業(株)製)である。   The molybdenum materials or tungsten materials used were molybdenum trioxide (manufactured by Nippon Inorganic Chemical Industry Co., Ltd.), ammonium molybdate (Nippon Shin-Metal Co., Ltd.) in an amount equivalent to 0.1 or 0.2 mmol Mo or W / g air-dried seeds. Co., Ltd.), potassium molybdophosphate (manufactured by Nippon Shin Metals Co., Ltd.), and ammonium tungstate phosphate (manufactured by Wako Pure Chemical Industries, Ltd.).

いずれの被覆種子でも、機能性資材の剥離はみられず、水中に入れても崩壊しなかった。   In any of the coated seeds, the functional material was not peeled off and did not disintegrate even when placed in water.

〔実施例12:大豆種子におけるモリブデン資材又はタングステン資材での被覆〕
風乾大豆種子(品種:フクユタカ)に対し、各種モリブデン資材又はタングステン資材(機能性資材)と、PVA(JM−17S、PVA比率2%重、粒子状固体のまま使用)とを用いて、実施例1と同様にして、霧吹きで水を添加しながら種子の表面に機能性資材とPVAとを付着させ、室温で自然乾燥させることにより被覆種子を製造した。
[Example 12: Coating of soybean seed with molybdenum material or tungsten material]
Example using various molybdenum materials or tungsten materials (functional materials) and PVA (JM-17S, PVA ratio 2% weight, used as a particulate solid) for air-dried soybean seeds (variety: Fukuyutaka) In the same manner as in No. 1, coated seeds were produced by adhering a functional material and PVA to the surface of the seeds while adding water by spraying and naturally drying at room temperature.

使用したモリブデン資材又はタングステン資材は、0.5mmolMo/g風乾種子に相当する量の、三酸化モリブデン、モリブデン酸、モリブドリン酸アンモニウム、モリブドリン酸カリウム、三酸化タングステン、タングステン酸、またはタングストリン酸アンモニウム、及びモリブドリン酸アンモニウムである。なお、これら資材は、モリブドリン酸カリウムのみ日本新金属(株)製で、他は和光純薬工業(株)製である。   The molybdenum or tungsten material used was molybdenum trioxide, molybdate, ammonium molybdate, potassium molybdate, tungsten trioxide, tungstic acid, or ammonium tungstophosphate in an amount equivalent to 0.5 mmol Mo / g air-dried seeds. And ammonium molybdophosphate. As for these materials, only potassium molybdate is manufactured by Nippon Shin Metal Co., Ltd., and others are manufactured by Wako Pure Chemical Industries, Ltd.

いずれの被覆種子でも、機能性資材の剥離はみられず、水中に入れても崩壊しなかった。   In any of the coated seeds, the functional material was not peeled off and did not disintegrate even when placed in water.

〔実施例13:多量の水稲種子に対する酸化鉄の被覆〕
風乾水稲種子(品種:にこまる)3kgを網袋に入れて室温で1日間、水に浸漬した。この水稲種子を、脱水機(クボタSW−11)で30秒間、脱水した。この風乾3kg分の浸漬脱水種子に対して、風乾種子重の10%、20%、30%、40%、または50%の酸化鉄粉末(森下弁柄工業(株)製、品名:No.1094、酸化鉄(III)(99重量%)、平均粒径 0.57μm)と、当該酸化鉄粉末の1%重に相当するPVA(JM−17S)とを充分に混合した混合粉末を準備した。種子コーティングマシン(啓文社製作所 KC−151)に、風乾3kg分の浸漬脱水種子を入れ、コーティングマシンのドラムを回転させながら、上記混合粉末を少しずつ添加した。混合粉末の添加量が多くなると、種子に付着しない混合粉末が生じる状態になるため、その際は、霧吹きで種子に水を添加して、混合粉末を種子に付着させた。さらに、混合粉末を少しずつ添加し、霧吹きで水を加えるという操作を繰り返して、全ての混合粉末を種子に付着できた。
[Example 13: Coating of iron oxide on a large amount of paddy rice seed]
3 kg of air-dried rice seed (variety: Nikomaru) was placed in a net bag and immersed in water at room temperature for 1 day. The paddy rice seeds were dehydrated with a dehydrator (Kubota SW-11) for 30 seconds. 10%, 20%, 30%, 40%, or 50% of iron-dried powder (Morishita Benzai Kogyo Co., Ltd., product name: No. 1094) with respect to 3 kg of air-dried seeds. , Iron (III) oxide (99% by weight), average particle size 0.57 μm) and PVA (JM-17S) corresponding to 1% weight of the iron oxide powder were sufficiently mixed. Into a seed coating machine (Kebunsha Seisakusho KC-151), 3 kg of air-dried dehydrated seeds were put, and the above mixed powder was added little by little while rotating the drum of the coating machine. When the amount of the mixed powder increases, a mixed powder that does not adhere to the seeds is produced. At that time, water was added to the seeds by spraying to adhere the mixed powder to the seeds. Furthermore, the operation of adding the mixed powder little by little and adding water by spraying was repeated, and all the mixed powder was able to adhere to the seeds.

また、水への浸漬日数を1日から3日に変更し(発芽している種子は見られなかった)、風乾種子重の20%または50%の上記酸化鉄粉末(森下弁柄工業(株)製、品名:No.1094)を当該酸化鉄粉末の1%重に相当する上記PVA(JM−17S)と混合して得た混合粉末を用いて、上記と同様に、被覆種子を作成した。また、同様に、風乾種子重の20%または50%の上記酸化鉄粉末(森下弁柄工業(株)製、品名:No.1094)に、0.05mmolMo/g風乾種子に相当する量のモリブドリン酸アンモニウムを加え、さらに酸化鉄粉末とモリブドリン酸アンモニウムの合計重量の1%重に相当する上記PVA(JM−17S)を加えた混合粉末でも、被覆種子を作成した。   Also, the number of days of immersion in water was changed from 1st to 3rd (no germinating seeds were seen) and 20% or 50% of the air-dried seed weight was the above iron oxide powder (Morishita Bengal Kogyo Co., Ltd. ), Product name: No. 1094) was mixed with the PVA (JM-17S) corresponding to 1% weight of the iron oxide powder, and a coated seed was prepared in the same manner as described above. . Similarly, 20% or 50% of the air-dried seed weight is added to the above iron oxide powder (manufactured by Morishita Bengar Kogyo Co., Ltd., product name: No. 1094) in an amount equivalent to 0.05 mmol Mo / g air-dried seed. Coated seeds were also made with a mixed powder to which ammonium acid was added and the above PVA (JM-17S) corresponding to 1% weight of the total weight of iron oxide powder and ammonium molybdophosphate was added.

被覆種子作成後は、3cm程度の厚さに広げて、一晩、室温で乾燥させた。いずれの条件でも、乾燥時の剥離も、水中での剥離もほとんど見られず、正常に発芽した。   After preparation of the coated seeds, they were spread to a thickness of about 3 cm and dried overnight at room temperature. Under either condition, peeling at the time of drying and peeling in water were hardly observed, and germination was normal.

〔参考例1:水稲の苗立ちに及ぼす石膏の影響〕
水稲の苗立ちに及ぼす石膏の影響について調べた。
[Reference Example 1: Effect of gypsum on rice seedling establishment]
The effect of gypsum on rice seedling establishment was investigated.

乾土100g相当量の水田湿潤土壌(福岡県筑後市の水田で採取、湿潤のまま冷蔵保管)を容器(直径約7cm円筒形)に採取した。これに、乾土の1.5倍重に相当する水溶液(土壌が分散しないように、乾土100kg/m換算で0.1molK/mとなるように塩化カリウムを溶解)を添加した。容器に蓋をして室温で1時間ほど振盪した後、4℃で2日間静置し、湛水土壌を作製した。作製した湛水土壌は、土層が約3.5cm、土壌表面上の水層が約1cmとなった。 A paddy wet soil (collected in a paddy field in Chikugo City, Fukuoka Prefecture, stored refrigerated while wet) in an amount equivalent to 100 g of dry soil was collected in a container (cylindrical shape having a diameter of about 7 cm). To this was added an aqueous solution corresponding to 1.5 times the weight of dry soil (dissolving potassium chloride to 0.1 molK / m 2 in terms of 100 kg / m 2 of dry soil so that the soil would not disperse). The container was covered and shaken at room temperature for about 1 hour, and then allowed to stand at 4 ° C. for 2 days to prepare a flooded soil. The produced flooded soil had a soil layer of about 3.5 cm and a water layer on the soil surface of about 1 cm.

70%エタノールと、次亜塩素酸ナトリウム溶液(和光純薬工業より購入)の5倍希釈液とに、水稲(品種:ヒノヒカリ)の風乾種子を10分間ずつ浸漬して消毒した後、10℃の水に5日間、30℃の水に1日間程度浸漬し、わずかに発芽させた。この催芽種子に、風乾種子重に対してそれぞれ0.00,0.02,0.05,0.1,0.2,0.5,1,2倍重(8条件)の焼石膏(化学用焼きセッコウ、和光純薬工業より購入)を、霧吹きで水を添加しながら少量ずつ混合し、催芽種子に石膏(石膏量8条件)を付着させた。また、催芽種子と同様の方法で、風乾種子にも石膏(石膏量8条件)を付着させた。   Disinfection of air-dried seeds of paddy rice (variety: Hinohikari) for 10 minutes each in 70% ethanol and 5-fold diluted solution of sodium hypochlorite solution (purchased from Wako Pure Chemical Industries) It was immersed in water for 5 days and in water at 30 ° C. for about 1 day and allowed to germinate slightly. To this sprouting seed, calcined gypsum (chemical condition) of 0.00, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 times the weight (8 conditions), respectively, with respect to the air-dried seed weight Baked gypsum, purchased from Wako Pure Chemical Industries, Ltd.) was mixed little by little while adding water by spraying, and gypsum (gypsum amount 8 conditions) was adhered to the germinated seeds. In addition, gypsum (gypsum amount 8 conditions) was also attached to air-dried seeds in the same manner as the germinated seeds.

上述した湛水土壌に、これらの処理種子(催芽の有無×石膏量8条件=16処理)を播種した。1つの容器には、同じ処理を施した8個の種子を深さ15mm、約2cm間隔で播種し、軽く揺らして播種穴を塞いだ。各処理には6容器を充てた。播種した容器は蓋をせずに、1日のうち半日だけ蛍光灯が点灯する30℃の恒温器内に静置した(以下、「30℃催芽種子」あるいは「30℃風乾種子」と表記する)。   These treated seeds (presence / absence of sprouting × gypsum amount 8 conditions = 16 treatments) were sown on the flooded soil described above. In one container, eight seeds subjected to the same treatment were sown at a depth of 15 mm and at an interval of about 2 cm, and lightly shaken to close the seeding hole. Six containers were used for each treatment. The seeded container was left in a 30 ° C. incubator with a fluorescent lamp lit for only half a day without covering (hereinafter referred to as “30 ° C. germinated seed” or “30 ° C. air-dried seed”). ).

さらに、風乾種子については、それぞれ0.00,0.005,0.01,0.02,0.05,0.1,0.2,0.5倍重(8条件)の焼石膏(化学用焼きセッコウ、和光純薬工業より購入)を付着させ、播種した容器を、上述した恒温器と同様であって20℃の恒温器内に静置した(以下、「20℃風乾種子」と表記する)。   Furthermore, for air-dried seeds, calcined gypsum (chemical conditions) of 0.00, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 times weight (8 conditions), respectively. Baked gypsum, purchased from Wako Pure Chemical Industries, Ltd.), and the seeded container was placed in a 20 ° C. incubator similar to the above-described incubator (hereinafter referred to as “20 ° C. air-dried seed”). To do).

その後、土壌表面の水が蒸発により減った際に蒸留水を補った。播種約3週間後(20℃風乾種子は5週間後)に、各容器の苗立ち割合(第3葉抽出個体数の割合)を調査し、処理別の苗立ち割合の平均と標準誤差とを求めた。   Then, when the water on the soil surface decreased due to evaporation, the distilled water was supplemented. About 3 weeks after sowing (5 weeks for air-dried seeds at 20 ° C), the seedling establishment ratio (the ratio of the number of 3rd leaf extract individuals) of each container was investigated, and the average and standard error of the seedling establishment ratio by treatment were calculated. Asked.

水稲の苗立ち割合は、催芽の有無及び処理温度にかかわらず、石膏を付着させない場合(焼石膏量が0倍重)が最も高く、石膏の付着量が多いほど低い傾向がみられた。20℃風乾種子では0.02倍重以上、30℃風乾種子では0.1倍重以上、また30℃催芽種子では1倍重以上の焼石膏を付着させた場合に、苗立ち割合が10%未満となった。   The rate of seedling establishment of paddy rice was highest when gypsum was not attached (the amount of calcined gypsum was 0 times the weight) regardless of the presence of sprouting and the treatment temperature, and the tendency was lower as the amount of gypsum attached was larger. The seedling establishment rate is 10% when 20% air-dried seeds are applied with a calcined gypsum more than 0.02 times the weight, 30 ° C air-dried seeds are more than 0.1 times the weight, and 30 ° C germinated seeds more than 1 time the weight. Less than.

別途、硝子容器の側面にこれらの処理種子を播種し、硝子越しに種子近傍を観察したところ、石膏の付着量が多いほど、種子近傍が黒くなった。この黒い物質は硫化鉄(FeS)と考えられ、有害な硫化物イオン(S2−)の生成を示唆する。この結果から、石膏(CaSO・nHO)に含まれる硫酸イオン(SO 2−)が湛水土壌中で還元されて硫化物イオン(S2−)となっていると考えられた。すなわち、石膏が、水稲の苗立ちを悪化させる原因の一つとなっていると考えられた。 Separately, these treated seeds were sown on the side surface of the glass container, and the vicinity of the seeds was observed through the glass. As the amount of gypsum attached increased, the vicinity of the seeds became darker. This black substance is considered to be iron sulfide (FeS) and suggests the generation of harmful sulfide ions (S 2− ). From this result, it was considered that sulfate ions (SO 4 2− ) contained in gypsum (CaSO 4 · nH 2 O) were reduced to sulfide ions (S 2− ) in flooded soil. In other words, gypsum was considered to be one of the causes that deteriorated the seedling establishment of paddy rice.

本発明は、作物を栽培する農業分野、特に稲作での広範な利用が可能である。   The present invention can be widely used in the agricultural field where crops are cultivated, particularly in rice cultivation.

Claims (15)

粒子状固体であってケン化度が78モル%以上のポリビニルアルコールを、実質的に溶解をさせずに機能性資材と混合し、液体を用いて、ポリビニルアルコール、機能性資材、及び、液体を含む被覆層を植物繁殖体の表面に形成する工程と、
上記被覆層を乾燥させる工程とを含む、繁殖体被覆物の製造方法。
A polyvinyl alcohol having a saponification degree of 78 mol% or more, which is a particulate solid, is mixed with a functional material without substantially dissolving it, and using the liquid, the polyvinyl alcohol, the functional material, and the liquid are mixed. Forming a covering layer including the surface of the plant propagation body;
And a step of drying the coating layer.
被覆層を植物繁殖体の表面に形成する上記工程は、
1)上記ポリビニルアルコール及び上記機能性資材を上記液体中に懸濁させた懸濁液を植物繁殖体と接触させる、又は、
2)上記ポリビニルアルコール及び上記機能性資材を乾燥状態で混合した後に、得られた混合物を上記液体を介して植物繁殖体の表面に付着させる、
ことにより行う、請求項1に記載の製造方法。
The above process of forming the coating layer on the surface of the plant propagation body is as follows:
1) A suspension obtained by suspending the polyvinyl alcohol and the functional material in the liquid is brought into contact with a plant propagation body, or
2) After mixing the polyvinyl alcohol and the functional material in a dry state, the obtained mixture is attached to the surface of the plant propagation body via the liquid.
The manufacturing method of Claim 1 performed by.
上記ポリビニルアルコールのケン化度が90モル%を越える範囲内である、請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the saponification degree of the polyvinyl alcohol is in a range exceeding 90 mol%. 上記ポリビニルアルコールのケン化度が90モル%を越え98モル%未満の範囲内である、請求項1から3の何れか1項に記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the saponification degree of the polyvinyl alcohol is in the range of more than 90 mol% and less than 98 mol%. 上記ポリビニルアルコールの重合度が1000以上で5000以下の範囲内である、請求項1から4の何れか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the degree of polymerization of the polyvinyl alcohol is in the range of 1000 or more and 5000 or less. 上記ポリビニルアルコールの重合度が1500以上で3500以下の範囲内である、請求項1から5の何れか1項に記載の製造方法。   The production method according to any one of claims 1 to 5, wherein the degree of polymerization of the polyvinyl alcohol is in the range of 1500 or more and 3500 or less. 上記ポリビニルアルコールの粒径が150μm以下である、請求項1から6の何れか1項に記載の製造方法。   The manufacturing method of any one of Claim 1 to 6 whose particle size of the said polyvinyl alcohol is 150 micrometers or less. 上記ポリビニルアルコールは、上記機能性資材の重量に対して、0.02%重以上で10%重以下の範囲内で使用される、請求項1から7の何れか1項に記載の製造方法。   The said polyvinyl alcohol is a manufacturing method of any one of Claim 1 to 7 used within the range of 0.02% weight or more and 10% weight or less with respect to the weight of the said functional material. 上記機能性資材が、モリブデン資材、タングステン資材、鉄資材、酸素発生剤、粘土からなる群より選択される少なくとも1つである、請求項1から8の何れか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 8, wherein the functional material is at least one selected from the group consisting of molybdenum material, tungsten material, iron material, oxygen generator, and clay. 上記モリブデン資材は、モリブデン金属、酸化モリブデン、モリブデン酸とその塩、モリブドリン酸とその塩、モリブドケイ酸とその塩からなる群より選択される少なくとも1つであり、
上記タングステン資材は、タングステン金属、タングストリン酸とその塩、タングストケイ酸とその塩、酸化タングステン、及びタングステン酸とその塩からなる群より選択される少なくとも1つであり、
上記鉄資材は酸化鉄及び還元鉄の少なくとも1方であり、
上記酸素発生剤は過酸化カルシウム(CaO)を機能成分とする資材である、
請求項9に記載の製造方法。
The molybdenum material is at least one selected from the group consisting of molybdenum metal, molybdenum oxide, molybdic acid and its salt, molybdophosphoric acid and its salt, molybdosilicic acid and its salt,
The tungsten material is at least one selected from the group consisting of tungsten metal, tungstophosphoric acid and its salt, tungstosilicic acid and its salt, tungsten oxide, and tungstic acid and its salt,
The iron material is at least one of iron oxide and reduced iron,
The oxygen generator is a material containing calcium peroxide (CaO 2 ) as a functional component.
The manufacturing method according to claim 9.
上記鉄資材は、粒径1μm以下の酸化鉄を5重量%以上で50重量%以下の割合で含んでいる、請求項9又は10に記載の製造方法。   The said iron material is a manufacturing method of Claim 9 or 10 which contains the iron oxide of a particle size of 1 micrometer or less in the ratio of 5 to 50 weight%. 上記植物繁殖体は種子である、請求項1から11の何れか1項に記載の製造方法。   The method according to any one of claims 1 to 11, wherein the plant propagation material is a seed. 請求項1〜12の何れか1項に記載の製造方法で製造される、繁殖体被覆物。   The propagation material covering manufactured with the manufacturing method of any one of Claims 1-12. 請求項13に記載の繁殖体被覆物を植え付ける植付工程を含む、植物の栽培方法。   The cultivation method of a plant including the planting process which plants the propagation body covering of Claim 13. 上記植付工程以降から苗立ち期の間に、植物体の少なくとも一部が湛水状態となる期間を有する、請求項14に記載の植物の栽培方法。   The cultivation method of the plant of Claim 14 which has a period when at least one part of a plant body is in a flooded state after the planting process and the seedling establishment period.
JP2012272781A 2011-12-20 2012-12-13 Breeding body covering, cultivation method, and method for producing breeding body covering Active JP6024972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272781A JP6024972B2 (en) 2011-12-20 2012-12-13 Breeding body covering, cultivation method, and method for producing breeding body covering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011278860 2011-12-20
JP2011278860 2011-12-20
JP2012272781A JP6024972B2 (en) 2011-12-20 2012-12-13 Breeding body covering, cultivation method, and method for producing breeding body covering

Publications (2)

Publication Number Publication Date
JP2013146266A true JP2013146266A (en) 2013-08-01
JP6024972B2 JP6024972B2 (en) 2016-11-16

Family

ID=49044488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272781A Active JP6024972B2 (en) 2011-12-20 2012-12-13 Breeding body covering, cultivation method, and method for producing breeding body covering

Country Status (1)

Country Link
JP (1) JP6024972B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146869A1 (en) * 2014-03-28 2015-10-01 住友化学株式会社 Coating material for rice seeds and coated rice seeds
JP2016202176A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
JP2016202177A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
JP2017035056A (en) * 2015-08-12 2017-02-16 公一 中川 Moving device for magnetic adduct
KR20170039188A (en) 2014-07-25 2017-04-10 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
KR20170039189A (en) 2014-07-25 2017-04-10 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
KR20170137863A (en) 2015-04-17 2017-12-13 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
KR20180050683A (en) 2015-09-07 2018-05-15 스미또모 가가꾸 가부시끼가이샤 Coated rice seeds and methods for their production
WO2018139480A1 (en) * 2017-01-30 2018-08-02 Jfeスチール株式会社 Seed-coating agent, coated seeds, and seed-coating method
KR20190097252A (en) * 2017-01-30 2019-08-20 제이에프이 스틸 가부시키가이샤 Seed coatings, cloth seeds and seed coating methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521705A (en) * 1978-07-12 1980-02-16 Sumitomo Chemical Co Preparation of coated seed
JPH10225206A (en) * 1997-02-13 1998-08-25 Takii Shubyo Kk Granulated and coated seed and manufacture therefor
JP2002519003A (en) * 1998-06-29 2002-07-02 ベントレ・プロダクツ・アー・ゲー Mixture of carriers and additives for use in a germination unit containing parts suitable for growing seeds or similar plants and a method for producing the mixture
JP2003226588A (en) * 2002-02-05 2003-08-12 Kawatetsu Techno Res Corp Iron material for paddy field
JP2004129591A (en) * 2002-10-11 2004-04-30 Japan Association For Advancement Of Phytoregulators Method for cultivating crop by which inhibition of germination and growth by chemical material is reduced and suppressed
JP2005192458A (en) * 2004-01-06 2005-07-21 National Agriculture & Bio-Oriented Research Organization Method for producing iron powder coated rice plant seed
JP2005192469A (en) * 2004-01-07 2005-07-21 Mitsui Chemicals Inc Brown rice assembly for seed
WO2011093341A1 (en) * 2010-01-26 2011-08-04 独立行政法人農業・食品産業技術総合研究機構 Agent for improving plant growth, seeds, and method for improving plant growth
JP2012183057A (en) * 2010-10-05 2012-09-27 Jfe Steel Corp Iron powder for auxiliary-material-containing seed coating, iron powder for auxiliary-material-adhered seed coating, alloy steel powder for seed coating, and seed coated with iron powder for auxiliary-material-containing seed coating, iron powder for auxiliary-material-adhered seed coating or alloy steel powder for seed coating

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521705A (en) * 1978-07-12 1980-02-16 Sumitomo Chemical Co Preparation of coated seed
JPH10225206A (en) * 1997-02-13 1998-08-25 Takii Shubyo Kk Granulated and coated seed and manufacture therefor
US5918413A (en) * 1997-02-13 1999-07-06 Dai-Ichi Kogyo Seiyaku Co., Ltd. Coated seed and process for producing the same
JP2002519003A (en) * 1998-06-29 2002-07-02 ベントレ・プロダクツ・アー・ゲー Mixture of carriers and additives for use in a germination unit containing parts suitable for growing seeds or similar plants and a method for producing the mixture
US7213366B1 (en) * 1998-06-29 2007-05-08 Bentle Products Ag Mixture of a carrier and additives for use in germinating units containing seeds or similar growth-suited parts of a plants as well as a method of producing the mixture
JP2003226588A (en) * 2002-02-05 2003-08-12 Kawatetsu Techno Res Corp Iron material for paddy field
JP2004129591A (en) * 2002-10-11 2004-04-30 Japan Association For Advancement Of Phytoregulators Method for cultivating crop by which inhibition of germination and growth by chemical material is reduced and suppressed
JP2005192458A (en) * 2004-01-06 2005-07-21 National Agriculture & Bio-Oriented Research Organization Method for producing iron powder coated rice plant seed
JP2005192469A (en) * 2004-01-07 2005-07-21 Mitsui Chemicals Inc Brown rice assembly for seed
WO2011093341A1 (en) * 2010-01-26 2011-08-04 独立行政法人農業・食品産業技術総合研究機構 Agent for improving plant growth, seeds, and method for improving plant growth
JP2012183057A (en) * 2010-10-05 2012-09-27 Jfe Steel Corp Iron powder for auxiliary-material-containing seed coating, iron powder for auxiliary-material-adhered seed coating, alloy steel powder for seed coating, and seed coated with iron powder for auxiliary-material-containing seed coating, iron powder for auxiliary-material-adhered seed coating or alloy steel powder for seed coating

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132188B (en) * 2014-03-28 2019-03-01 住友化学株式会社 Rice coating material and coated rice seed
CN106132188A (en) * 2014-03-28 2016-11-16 住友化学株式会社 Rice coating material and coated rice seed
KR20160140637A (en) 2014-03-28 2016-12-07 스미또모 가가꾸 가부시끼가이샤 Coating material for rice seeds and coated rice seeds
WO2015146869A1 (en) * 2014-03-28 2015-10-01 住友化学株式会社 Coating material for rice seeds and coated rice seeds
KR102329011B1 (en) * 2014-03-28 2021-11-18 스미또모 가가꾸 가부시끼가이샤 Coating material for rice seeds and coated rice seeds
KR102409814B1 (en) * 2014-07-25 2022-06-15 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
KR20170039188A (en) 2014-07-25 2017-04-10 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
KR20170039189A (en) 2014-07-25 2017-04-10 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
JP2016202177A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
KR20170137863A (en) 2015-04-17 2017-12-13 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
JP2016202176A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
JP2017035056A (en) * 2015-08-12 2017-02-16 公一 中川 Moving device for magnetic adduct
KR20180050683A (en) 2015-09-07 2018-05-15 스미또모 가가꾸 가부시끼가이샤 Coated rice seeds and methods for their production
WO2018139480A1 (en) * 2017-01-30 2018-08-02 Jfeスチール株式会社 Seed-coating agent, coated seeds, and seed-coating method
JP6372638B1 (en) * 2017-01-30 2018-08-15 Jfeスチール株式会社 Seed coating agent, coated seed and seed coating method
KR20190097252A (en) * 2017-01-30 2019-08-20 제이에프이 스틸 가부시키가이샤 Seed coatings, cloth seeds and seed coating methods
TWI692507B (en) * 2017-01-30 2020-05-01 日商杰富意鋼鐵股份有限公司 Seed coating agent, coated seed and seed coating method
KR102328767B1 (en) * 2017-01-30 2021-11-18 제이에프이 스틸 가부시키가이샤 Seed Coatings, Covered Seeds and Seed Coating Methods

Also Published As

Publication number Publication date
JP6024972B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6024972B2 (en) Breeding body covering, cultivation method, and method for producing breeding body covering
JP6142986B2 (en) Plant propagation body and cultivation method thereof
JP5739407B2 (en) Method for applying seed coating composition and soil surfactant to water repellent soil
CA2685097C (en) Use of acidifying agent for promoting micronutrient uptake
JP2012239459A (en) Production method of coated seed, coated seed
CA2394818C (en) Seed coating for improving the efficiency of plant nutrients and coated seed
JP2014090671A (en) Coated seed and use thereof
JP5477753B2 (en) Plant growth improver, seed, and method for improving plant growth
JP6553483B2 (en) Coated rice seed and method for producing coated rice seed
NZ529725A (en) Coated seed and process for coating a seed
US20200015410A1 (en) Encapsulated seed
EP1370505A1 (en) Agricultural and horticultural composition
WO2018123130A1 (en) Method for manufacturing coated wet-field rice seed paddy that can be subjected to seed-soaking treatment
JP6421299B1 (en) Coated seed for direct sowing and direct sowing cultivation method
JP2018117548A (en) Production method of coated seed, and dissemination method of coated seed
WO2024056596A1 (en) A plant seed with a coating and a method of covering a seed with a coating
AU2013203918B2 (en) Agricultural additives, compositions and methods
AU2002345120A1 (en) Coated seed and process for coating a seed
WO2004084628A2 (en) Microbiocidal compositions and fertilizing compositions
NZ606227B2 (en) Agricultural additives, compositions and methods
NZ606227A (en) Agricultural additives, compositions and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6024972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250