JP2017035056A - Moving device for magnetic adduct - Google Patents
Moving device for magnetic adduct Download PDFInfo
- Publication number
- JP2017035056A JP2017035056A JP2015159671A JP2015159671A JP2017035056A JP 2017035056 A JP2017035056 A JP 2017035056A JP 2015159671 A JP2015159671 A JP 2015159671A JP 2015159671 A JP2015159671 A JP 2015159671A JP 2017035056 A JP2017035056 A JP 2017035056A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- adduct
- moving
- adducts
- electromagnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Fertilizing (AREA)
- Sowing (AREA)
Abstract
Description
本発明は肥料または植物種子または農薬の表面または内部に磁性を有する四三酸化鉄(マグネタイト Fe3O4)を付着または混合し、これらの磁性付加体に電磁力を作用させて水田や畑等の圃場に供給・散布する方法に関する。 The present invention attaches or mixes magnetic ferric trioxide (magnetite Fe 3 O 4 ) to the surface or inside of fertilizer, plant seeds or pesticides, and applies electromagnetic force to these magnetic adducts to make paddy fields, fields, etc. It is related with the method of supplying and spreading to the field.
一般に肥料または植物種子または農薬を圃場に散布する場合は、人の手または機械で行われる。手の場合は、均一に散布できるが大面積では仕事量の面で困難であり作業効率が悪いために通常は機械を利用して作業が行われている。 In general, when fertilizers, plant seeds or pesticides are sprayed on a field, it is carried out by hand or machine. In the case of a hand, it can be sprayed uniformly, but in a large area, it is difficult in terms of work volume, and work efficiency is low, so work is usually performed using a machine.
播種の方法としては圃場に直接播種をするか、育苗箱に播種をするかがあり、又作物の種類により播種機の種類、作業方法等が異なる。さらに種子の形状、サイズ、質量等により播種機の変更が要求され、農家にとって経済的な負担が少なくない。電磁石の磁力を利用して磁性の異なる物質を分離、選別する方法は主として鉱物中の有用成分の分離、選別に利用されているが、本来それ自身内部に磁性を有しない肥料や植物・農薬への適用例は少ない。電磁石または永久磁石を利用した野菜育苗用播種機の提案がある(三重農業技術センター研究報告 1979)。当報告は電磁石と酸化第二鉄を主成分とした粉体のみを粉衣利用したものであり、一方磁力が一定の永久磁石と酸化第二鉄の粉体のみを粉衣利用した播種機の提案もある(三重農業センター研究報告 1985). As a sowing method, there are direct sowing in a field or sowing in a seedling box, and the type of seeding machine, the working method, etc. differ depending on the type of crop. Furthermore, it is necessary to change the seeder depending on the shape, size, mass, etc. of the seeds, and there are many economic burdens for farmers. The method of separating and sorting substances with different magnetism using the magnetic force of electromagnets is mainly used for separating and sorting useful components in minerals, but it is originally used for fertilizers, plants and pesticides that do not have magnetism inside themselves. There are few application examples. There is a proposal of a seedling machine for vegetable seedling using electromagnets or permanent magnets (Mie Agricultural Technology Center research report 1979). This report is based on the use of a dressing machine that uses only an electromagnet and ferric oxide powder as the main component, while using only a permanent magnet with a constant magnetic force and ferric oxide powder. There is also a proposal (Mie Agricultural Center Research Report 1985).
上記報告は単に電磁石または永久磁石からなる吸着板に酸化第二鉄(Fe2O3)を主成分とする紛体 粒径0.5μ前後)を容積比で種子と1:1で振とう混和して粉衣し、過剰の鉄粉を分離した種子を磁力で吸着させ、その吸着板の直下に育苗箱を設置し、次に消磁することにより種子が育苗箱に落下しポット等に着床する方法である。当該方法は育苗箱専用の小規模用播種機であり、装置が固定式のために本発明が目的とする大規模な水田や畑に移動式で播種することには不向きである。さらに磁性紛体として酸化第二鉄が主成分と記載するのみで試験では四種類にのみ分類して表記している。また磁性体の粉衣だけでは単なる付着であり使用途中で脱離するため、互いに密着させるバインダー(結合材)の開発が必要とされる。 In the above report, powder particles mainly composed of ferric oxide (Fe 2 O 3 ) with a particle size of around 0.5μ) are mixed with the seeds at a volume ratio of 1: 1 on an adsorption plate consisting of an electromagnet or permanent magnet. A method in which seeds that have been dressed and separated from excess iron powder are adsorbed magnetically, a seedling box is installed directly under the adsorption plate, and then the magnets are demagnetized so that the seeds fall into the seedling box and are placed in a pot or the like. It is. This method is a small-sized seeding machine dedicated to a seedling box and is not suitable for mobile seeding in a large-scale paddy field or field targeted by the present invention because the apparatus is fixed. Furthermore, only ferric oxide is described as the main component as a magnetic powder, and in the test, only four types are described. Further, since the magnetic powder is only attached and is detached during use, it is necessary to develop a binder (binding material) that adheres to each other.
本発明は磁性材として四三酸化鉄(マグネタイト)を利用し、電磁石を移動または電磁石の磁界を変更することにより、磁性付加体を任意の位置に移動することができ、かつ大規模な水田や畑に適用できる大量散布が可能となる磁性付加体及び播種機を開発したものである。 The present invention uses iron tetroxide (magnetite) as a magnetic material, and can move the magnetic adduct to any position by moving the electromagnet or changing the magnetic field of the electromagnet. We have developed a magnetic adduct and a seeder that can be applied to the field in large quantities.
第1の発明は、非磁性体の物質に磁性を有する磁性材が付与された粒状の磁性付加体と、投入口及び投出口を有し、この投入口と投出口との間に前記磁性付加体を移動させる移動経路を備えたケースと前記磁性付加体を吸着し、磁界を動かすことにより前記磁性付加体を前記移動経路に沿って移動させる電磁石とを具備することを特徴とする磁性付加体の移動装置である。
第2の発明は、第1の発明において、容器の内壁または外壁の面に沿って移動可能な電磁石を一個以上設置したことを特徴とする磁性付加体の移動装置である。
第3の発明は、第1の発明において、磁界変更可能の固定電磁石を複数設置したことを特徴とする磁性付加体の移動装置である。
第4の発明は、第1〜第3のいずれかの発明において、非磁性体の物質は肥料、農薬または植物種子であることを特徴とする磁性付加体の移動装置である。
である。
第5の発明は、第1〜第4のいずれかの発明において、磁性材は四三酸化鉄(マグネタイト、Fe3O4)であることを特徴とする磁性付加体の移動装置である。
The first invention has a granular magnetic adduct in which a magnetic material having magnetism is applied to a non-magnetic substance, an inlet and a outlet, and the magnetic addition is provided between the inlet and the outlet. A magnetic adduct comprising: a case having a movement path for moving a body; and an electromagnet that adsorbs the magnetic adduct and moves the magnetic adduct along the movement path by moving a magnetic field. Mobile device.
According to a second aspect of the present invention, in the first aspect of the present invention, there is provided a moving device for a magnetic adjunct, wherein one or more electromagnets movable along the inner wall or outer wall surface of the container are installed.
According to a third aspect of the present invention, in the first aspect of the present invention, there is provided a magnetic addition body moving device in which a plurality of fixed electromagnets capable of changing a magnetic field are provided.
According to a fourth invention, in any one of the first to third inventions, the non-magnetic substance is a fertilizer, an agricultural chemical, or a plant seed.
It is.
According to a fifth invention, in any one of the first to fourth, is a mobile device of a magnetic adduct, wherein the magnetic material is tri-iron tetroxide (magnetite, Fe 3 O 4).
本発明を使用することにより、機械的な駆動部を排除でき、耐用性の向上だけではなくゴミ等の混入による装置の故障が防げ、磁力の変更により散布量や散布速度の調整が可能となる。非磁性体に磁性を与えることにより従来使用できなかった肥料、農薬または植物種子にも応用可能となり、今後の農業生産の合理化に寄与するものである。 By using the present invention, it is possible to eliminate the mechanical drive unit, not only improve the durability, but also prevent the failure of the device due to the inclusion of dust, etc., and it is possible to adjust the spraying amount and spraying speed by changing the magnetic force . By applying magnetism to a non-magnetic material, it can be applied to fertilizers, agricultural chemicals or plant seeds that could not be used conventionally, and contributes to the rationalization of future agricultural production.
上記の発明における磁性付加体の移動効果を強めるためには、本発明の目的に適合した磁性付与材が必要とされる。一般的に磁性を有する磁性付与材として還元鉄の紛体が考えられるが、鉄はイオン化傾向が高いため特に単位質量あたりの表面積が大きい微粉末の場合、水分の存在下で酸素と反応し発熱反応をおこしアルファタイプの酸化第二鉄となり磁力を失う。 In order to enhance the movement effect of the magnetic adduct in the above invention, a magnetism imparting material suitable for the object of the present invention is required. Generally, reduced iron powder can be considered as a magnetizing material having magnetism. However, since iron has a high ionization tendency, it reacts with oxygen in the presence of moisture, particularly in the case of fine powder with a large surface area per unit mass. It becomes alpha type ferric oxide and loses magnetic force.
その際の発熱反応の発熱量が大きい即ち高温となるため本発明の対象の一つである生物系への磁性付与材としての適用は困難となる。フェライトと称するスピネルフェライトも本発明の目的には適するが、Mn,Co,Ni,Cu,Zn等を含むフェライトは重金属を含有し、土壌中のバクテリア等で分解される恐れがあり、これらのイオンが植物の生育に危害を与える可能性が大きい。よってフェライトで使用可能なのは鉄のみを含むマグネタイトのみとなる。即ち本発明で磁性付与材として請求した四三酸化鉄(マグネタイト)は上記の理由から帰結したものである。 At that time, the exothermic amount of the exothermic reaction is large, that is, the temperature becomes high, so that it is difficult to apply it as a magnetism imparting material to a biological system which is one of the objects of the present invention. Spinel ferrite called ferrite is also suitable for the purpose of the present invention, but ferrite containing Mn, Co, Ni, Cu, Zn, etc. contains heavy metals and may be decomposed by bacteria in the soil. Is likely to harm plant growth. Therefore, only magnetite containing only iron can be used for ferrite. That is, the iron trioxide (magnetite) claimed as the magnetism imparting material in the present invention is a result of the above reasons.
発明が解決しようとする課題の項で述べた如く磁性付与材単体で肥料・農薬・植物種子への適用は相互の付着力に問題があり、密着性と結合力とを強めるために何らかのバインダー(結合材)が必要とされる。またバインダーで四三酸化鉄を非磁性体に固着したものは水中で徐々に溶解または解離しなければならない。さらに前記移動装置の内外での機械的作用による磁性付与体の物理的破壊は少ない方が良い。 As described in the section of the problem to be solved by the invention, application to fertilizers, pesticides, and plant seeds with a magnetic material alone has a problem in mutual adhesion, and some binder ( Binding material) is required. In addition, a binder in which iron trioxide is fixed to a nonmagnetic material must be gradually dissolved or dissociated in water. Furthermore, it is better that physical destruction of the magnetism imparting body due to mechanical action inside and outside the moving device is less.
破壊の試験方法としてはポリエチレンの袋に磁性付与体を適量入れ、口で空気を入れてふくらまし、次に手のひらで袋の底を15回パンパンと内部の磁性付加体が跳ね上がる程度に叩いた後、袋の内面に粉末が薄く付くレベルで強度的に使用可と設定した。以上の条件で本発明で使用出来るバインダーは無機化合物として消石灰及び焼き石膏、有機化合物として澱粉及びPVA樹脂、いずれか一つまたは複数混合することで結合効果が発揮出来ることが判明した。更に磁性付加体の総体積を所定のサイズに合わせるためにピートモス、バーミキュライト、パーライト、木材の粉末等を適量附加使用することで、さまざまな形状、大きさの磁性付加体を製造できる。次に具体的に四三酸化鉄とバインダーとの組み合わせた実施例を示す。 As a test method of destruction, put an appropriate amount of magnetism imparted body into a polyethylene bag, put air in the mouth and inflate, then tap the bottom of the bag 15 times with a palm to the extent that the pan and the magnetic adduct inside jump up, It was set to be usable in terms of strength at a level where the powder adhered to the inner surface of the bag. It has been found that the binder that can be used in the present invention under the above conditions can exhibit a binding effect by mixing one or more of slaked lime and calcined gypsum as inorganic compounds and starch and PVA resin as organic compounds. Furthermore, magnetic adducts of various shapes and sizes can be produced by adding and using appropriate amounts of peat moss, vermiculite, perlite, wood powder, etc. in order to adjust the total volume of the magnetic adduct to a predetermined size. Next, specific examples in which triiron tetroxide and a binder are combined will be shown.
乾燥籾に対して四三酸化鉄を被覆させた場合
四三酸化鉄として(株)華玉の黒色顔料、HY-330(Fe3O4として95%以上、粒径100μ以下)およびHY-335(Fe3O4として85%以上、粒径100μ以下)を使用し、結合材として片柳石灰工業(株)製70肥料消石灰および家庭化学工業(株)製焼き石膏を乾燥籾に対し質量比で表1に示すような比率で作成した。
表1
乾燥籾 10 10 10 10 10 10 10 10 10 10
HY-330 0.5 1 2 0 0 1 2 0 0 5
HY-335 0 0 0 1 2 0 0 1 2 0
消石灰 5 5 5 5 5 0 0 0 0 0
焼石膏 0 0 0 0 0 5 5 5 5 0.5
When dried iron powder is coated with triiron tetroxide As quaternary iron oxide, Huatama black pigment, HY-330 (95% or more as Fe 3 O 4 , particle size of 100μ or less) and HY-335 (Fe 3 O 4 as 85% or more, particle size of 100μ or less), and as a binder, 70 fertilizer slaked lime manufactured by Katayanagi Lime Industry Co., Ltd. The ratio was as shown in Table 1.
table 1
Dry rice cake 10 10 10 10 10 10 10 10 10 10
HY-330 0.5 1 2 0 0 1 2 0 0 5
HY-335 0 0 0 1 2 0 0 1 2 0
Slaked lime 5 5 5 5 5 0 0 0 0 0
Calcined gypsum 0 0 0 0 0 5 5 5 5 0.5
具体的な作成方法は、例えばHY-330 1gと消石灰5gの紛体をまず混合し、それと乾燥籾10gといっしょに混合する。紛体が籾の表面に付着するのを見て、混合しながら水を少量ずつ散布し、籾がそれぞれ単独の粒となり、表面が黒光りする所で水の添加をやめ、その後、乾燥させる。好ましくは、数日広げて放置するのが良い。 For example, a powder of 1 g of HY-330 and 5 g of slaked lime is first mixed and mixed with 10 g of dried soot. When the powder adheres to the surface of the cocoon, spray water a little at a time while mixing. Stop the addition of water where the cocoon becomes a single grain and the surface becomes black, and then dry. Preferably, it should be left for several days.
この過程において、結合材の消石灰が空気中の炭酸ガスと反応して炭酸カルシウムとなり、かなり固い黒色に被覆された籾が得られる。消石灰の代わりに焼き石膏を使用しても同様な黒色の籾が得られる。焼き石膏は水を添加すると水和反応をおこし固い二水石膏となる。約15分位で終結するが過剰の水分を蒸発させるために一日位放置する必要がある。HY-335も同様にして作成した。磁性付与材としての四三酸化鉄の添加比率は上記の比率以外でおおむね乾燥籾に対し質量比で0.05−5である。 In this process, the slaked lime of the binder reacts with carbon dioxide in the air to become calcium carbonate, and a soot coated with a fairly hard black color is obtained. Similar black cocoons can be obtained by using baked gypsum instead of slaked lime. Baked gypsum is hydrated when water is added to form hard dihydrate gypsum. Although it ends in about 15 minutes, it is necessary to leave it for about a day to evaporate excess water. HY-335 was created in the same way. The addition ratio of triiron tetroxide as a magnetism imparting material is generally 0.05-5 in terms of mass ratio with respect to dry soot, except for the above ratio.
また結合材の添加比率は磁性材に対し質量比で0.1―10である。これらの黒色籾に電磁石を近づけたところ容易に吸着した。また電磁石の電流を切ると分離することが判明した。 The addition ratio of the binder is 0.1-10 by mass with respect to the magnetic material. When an electromagnet was brought close to these black cocoons, they were easily adsorbed. It was also found that the electromagnet separated when the current of the electromagnet was turned off.
木質泥炭や天然ゼオライト等の有機質で直径が10ミリ位の小球を作り、その表面に微小な植物種子を付着させ播種を容易にする材料がある((株)アタリヤ農園製)。四三酸化鉄HY-330またはHY-335の粉末と澱粉のり(ニシキ糊工業(株)製)を質量比で0.1:1でまぜ、小球の表面に0.3g塗り付け乾燥した後電磁石を近づけたところHY-330またはHY-335を含有する両被覆小球とも容易に吸着し、磁界を切ると分離した。小球の表面が粗いため、水を霧吹きして少し湿らせ、四三酸化鉄HY-330の粉末の上を転がせて粉衣した後、電磁石でテストした。結果は同様であった。 There are materials that make small globules with a diameter of about 10 mm with organic matter such as woody peat and natural zeolite, and attach minute plant seeds to the surface to make seeding easy (manufactured by Atalia Farm). Mix iron trioxide HY-330 or HY-335 powder and starch paste (Nishiki Glue Industry Co., Ltd.) at a mass ratio of 0.1: 1, apply 0.3g on the surface of the small sphere and dry it, then bring the electromagnet closer As a result, both coated globules containing HY-330 or HY-335 were easily adsorbed and separated when the magnetic field was turned off. Since the surface of the globules was rough, water was sprayed to moisten a little, and after rolling on the iron trioxide HY-330 powder, it was tested with an electromagnet. The result was similar.
化成肥料14-14-14(市販品)粒体に前記と同様に四三酸化鉄HY-330粉末と前記澱粉のりを質量比で0.3:1で混合し、粒状肥料の質量に対し当混合物を肥料の全表面または一部分に付着させ、電磁石でテストしたが同様の結果が得られた。肥料の造粒中または造粒後に水または有機溶剤に四三酸化鉄の紛体を分散し,肥料粒子の表面に付着させても磁性付加肥料が得られる。 Chemical fertilizer 14-14-14 (commercially available) In the same way as above, iron trioxide HY-330 powder and starch paste are mixed at a mass ratio of 0.3: 1, and this mixture is added to the mass of granular fertilizer. Similar results were obtained when applied to all or part of the fertilizer and tested with an electromagnet. Magnetic additive fertilizer can also be obtained by dispersing iron trioxide powder in water or organic solvent during or after fertilizer granulation and adhering it to the surface of fertilizer particles.
肥料、農薬、植物種子の非磁性体に外部より磁性を有する四三酸化鉄(マグネタイト)と結合材で混合、被覆することにより、非磁性体が磁性体のように挙動することが判明した。この磁性付加体をいかに実用的に移動させるかが本発明の請求項目である。以下図面にて電磁石を使用して磁性付加体を移動させる方法の概念図を示す。
本発明はこれらの概念図に制限は受けない。
It was found that non-magnetic materials behave like magnetic materials by mixing and coating fertilizers, pesticides, and non-magnetic materials of plant seeds from outside with magnetic iron trioxide (magnetite) and a binder. It is a claim of the present invention how to practically move the magnetic adduct. A conceptual diagram of a method for moving a magnetic adduct using an electromagnet is shown below in the drawings.
The present invention is not limited to these conceptual diagrams.
図1-1は円筒の内面に沿って回転するように4個の電磁石(M)が等間隔に中心軸と接続している断面図であり、図1-2はこれを複数並列に並べた見取り図である。投入口(I)から磁性付加体(M.M)を投入し底部に堆積させる。電磁石を回転して(M)-(A)の位置で通電すると磁化し、磁性付加体(M.M)を円筒の壁面を通して吸着し上部へ移動する。(M)-(A)から180°回転した(M)-(B)の位置で通電を切ると磁界は消滅し、磁性付加体(M.M)は加速度がついたまま放出口(O)に落下する。以後これを繰り返す。電磁石の数、電流の大きさ、電磁石の回転数等を変える事により、排出量を制御できる。 Fig. 1-1 is a cross-sectional view of four electromagnets (M) connected to the central axis at equal intervals so as to rotate along the inner surface of the cylinder. It is a sketch. The magnetic adduct (M.M) is introduced from the inlet (I) and deposited on the bottom. When the electromagnet is rotated and energized at the position (M)-(A), it is magnetized, and the magnetic adduct (M.M) is attracted through the cylindrical wall and moves upward. When the current is turned off at the position (M)-(B) rotated 180 ° from (M)-(A), the magnetic field disappears and the magnetic adduct (MM) falls to the discharge port (O) with acceleration. To do. This is repeated thereafter. The amount of discharge can be controlled by changing the number of electromagnets, the magnitude of the current, the number of rotations of the electromagnet, and the like.
図2-1は、円筒の外側に電磁石を保持するリングを持ち、リング上に等間隔に4個の電磁石(M)を持つ装置の断面図である。このリングは円筒の外部を回転する。図2-2はこれを複数平行に並べた場合の見取り図である。白い丸印4個は回転によるリングの変形を防ぐためのものである。投入口(I)から磁性付加体(M.M)を投入し円筒内部に堆積させる。電磁石に通電しリングを回転させると(M)-(A)の位置で磁性付加体(M.M)は内壁を通して吸着し移動をはじめ、位置(M)-(B)で通電を切ると、磁性を失い下方投出口(O)に自由落下する。位置(M)-(B)に邪魔板をつけ放出口の位置をリングとリングの中間に設置すればリングの回転には支障はない。 FIG. 2-1 is a cross-sectional view of an apparatus having a ring for holding an electromagnet on the outside of a cylinder and four electromagnets (M) at equal intervals on the ring. This ring rotates outside the cylinder. Fig. 2-2 is a sketch of a plurality of these arranged in parallel. Four white circles are for preventing deformation of the ring due to rotation. The magnetic adduct (M.M) is introduced from the inlet (I) and deposited inside the cylinder. When the electromagnet is energized and the ring is rotated, the magnetic adduct (MM) starts to attract and move through the inner wall at the position (M)-(A), and when the current is turned off at the position (M)-(B), the magnetism is Lost and falls freely to the lower outlet (O). If a baffle plate is installed at positions (M)-(B) and the position of the discharge port is installed between the ring and the ring, there will be no hindrance to the rotation of the ring.
図3は電磁石を容器外部表面に多数独立に固定配列した可動部を持たない装置の断面図である。容器内部に磁性付加体を堆積させ、底部第一番目の電磁石に通電すると磁性付加体が吸着する、すぐに通電を切り隣の電磁石に電流を流すことにより磁性付加体は隣の電磁石に移動する。これを繰り返すことにより磁性付加体は移動する。磁性付加体の移動量や速度は磁力の強さと磁界の変化度に比例する。この電磁石の配列を平行に多数設置することにより、磁性付加体の排出量が増大する。 FIG. 3 is a cross-sectional view of an apparatus having no movable part in which a large number of electromagnets are fixedly arranged independently on the outer surface of the container. When a magnetic adduct is deposited inside the container and the first electromagnet at the bottom is energized, the magnetic adduct is adsorbed. Immediately after turning off the current, current flows through the adjacent electromagnet, and the magnetic adduct moves to the adjacent electromagnet. . By repeating this, the magnetic adduct moves. The moving amount and speed of the magnetic adduct are proportional to the strength of the magnetic force and the degree of change of the magnetic field. By installing many electromagnet arrays in parallel, the discharge amount of the magnetic adduct is increased.
図4-1は図3と同じく多数の固定電磁石を直線状に配置した装置の断面図である。それぞれの電磁石の磁界を変化させることにより、磁性付加体を連続に移動させることが特徴である。必要以上の数の付加磁性体を一度に移動対象としないように、邪魔板(B)を何段階か持つ。投入口(I)より底部で付加磁性体(M.・M)を堆積させ底面の裏面に電磁石(M)を多数配列して通電の開閉を速やかに行い、磁界の変化に伴い付加磁性体が浮上して移動し投出口(O)にいたる。最初浮上した多数個の付加磁性体は途中の邪魔板(B)で振り落とされ、進行するにつれ通路幅が狭くなり最後は数個に限定される。投出口は付加磁性体を浮上して移動させるためにほとんど制限はない。機械的な動作がないために騒音が防げる。図4-2はこの装置を複数並列に配置した場合の上から見た見取り図である。 FIG. 4-1 is a cross-sectional view of an apparatus in which a number of fixed electromagnets are arranged in a straight line as in FIG. It is characterized in that the magnetic adduct is moved continuously by changing the magnetic field of each electromagnet. It has several stages of baffle plates (B) so as not to move more than necessary additional magnetic materials at a time. The additional magnetic material (M.M) is deposited at the bottom from the inlet (I), and a number of electromagnets (M) are arranged on the back of the bottom surface to quickly open and close the current. Ascend and move to the exit (O). The large number of additional magnetic bodies that have been levitated at the beginning are shaken off by the baffle plate (B) on the way, and the width of the passage becomes narrower as it progresses, and the number is finally limited to several. There are almost no restrictions on the outlet to lift and move the additional magnetic material. Noise can be prevented because there is no mechanical movement. Fig. 4-2 is a sketch from the top when multiple devices are arranged in parallel.
.磁性付加体の動線を一定に保つために磁性付加体の平均半径以下の溝を容器の内壁または外壁の磁性付加体の動線に沿って設置し、溝の底部に凸凹をつけて必要量以外の磁性付加体を振動で脱着・分離し易くする。また溝の両側に邪魔板を設置し、溝を通過する磁性付加体の個数を制御する。外部からの衝撃により容器や装置全体が衝撃を受ける場合衝撃力の軽減策としてショックアブソーバーを設置するのもよい。移動及び磁力変更可能な電磁石群は一列のみならず、多数列並べることにより、更に各列の電流量を変更したり、通電時間を同時または時間差を設定することにより、任意の磁性付加体の量を計量および搬送可能になる。容器の材質は磁性を有しない18−8ステンレス、ガラス、陶磁器または帯電防止の機能を有する材料が良い。
In order to keep the flow line of the magnetic adduct constant, a groove that is less than the average radius of the magnetic adduct is installed along the flow line of the magnetic adduct on the inner wall or outer wall of the container, and the bottom of the groove is uneven. Makes it easy to remove and separate magnetic adducts other than the amount by vibration. In addition, baffle plates are installed on both sides of the groove to control the number of magnetic adducts passing through the groove. A shock absorber may be installed as a measure to reduce the impact force when the container or the entire apparatus is impacted by an external impact. The number of magnetic adducts can be changed by arranging not only one row but also multiple rows of electromagnet groups that can move and change the magnetic force, and further changing the amount of current in each row, or setting the energization time simultaneously or with a time difference. Can be weighed and transported. The material of the container is preferably 18-8 stainless steel, glass, ceramic, or a material having an antistatic function that does not have magnetism.
Claims (5)
Magnetic material tri-iron tetroxide (magnetite, Fe 3 O 4) magnetic adduct moving device according to any one of claims 1 to 4, characterized in that a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015159671A JP6713617B2 (en) | 2015-08-12 | 2015-08-12 | Moving device for magnetic adduct |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015159671A JP6713617B2 (en) | 2015-08-12 | 2015-08-12 | Moving device for magnetic adduct |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017035056A true JP2017035056A (en) | 2017-02-16 |
JP6713617B2 JP6713617B2 (en) | 2020-06-24 |
Family
ID=58048229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015159671A Active JP6713617B2 (en) | 2015-08-12 | 2015-08-12 | Moving device for magnetic adduct |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6713617B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019122269A (en) * | 2018-01-12 | 2019-07-25 | 公一 中川 | Method for manufacturing coated plant seed and coated plant seed |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5466210A (en) * | 1977-11-05 | 1979-05-28 | Kubota Ltd | Seeding machine |
JPH01181713A (en) * | 1988-01-14 | 1989-07-19 | Yanmar Agricult Equip Co Ltd | Method for electromagnetic type seeding |
JPH03236703A (en) * | 1990-02-13 | 1991-10-22 | Masaru Oshima | Pellet-like seed and seed block for direct sowing utilizing thereof |
JPH08290990A (en) * | 1995-04-19 | 1996-11-05 | Hitachi Metals Ltd | Magnetized fertilizer |
JP2011147355A (en) * | 2010-01-19 | 2011-08-04 | Iseki & Co Ltd | Delivery device of seeding machine |
WO2012006755A1 (en) * | 2010-07-14 | 2012-01-19 | Claudio Esteban Moraga Tabaro | Magnetic system for precisely sowing seeds of all sizes |
JP2013146266A (en) * | 2011-12-20 | 2013-08-01 | National Agriculture & Food Research Organization | Propagated body coating, cultivation method, and method of manufacturing the propagated body coating |
-
2015
- 2015-08-12 JP JP2015159671A patent/JP6713617B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5466210A (en) * | 1977-11-05 | 1979-05-28 | Kubota Ltd | Seeding machine |
JPH01181713A (en) * | 1988-01-14 | 1989-07-19 | Yanmar Agricult Equip Co Ltd | Method for electromagnetic type seeding |
JPH03236703A (en) * | 1990-02-13 | 1991-10-22 | Masaru Oshima | Pellet-like seed and seed block for direct sowing utilizing thereof |
JPH08290990A (en) * | 1995-04-19 | 1996-11-05 | Hitachi Metals Ltd | Magnetized fertilizer |
JP2011147355A (en) * | 2010-01-19 | 2011-08-04 | Iseki & Co Ltd | Delivery device of seeding machine |
WO2012006755A1 (en) * | 2010-07-14 | 2012-01-19 | Claudio Esteban Moraga Tabaro | Magnetic system for precisely sowing seeds of all sizes |
JP2013146266A (en) * | 2011-12-20 | 2013-08-01 | National Agriculture & Food Research Organization | Propagated body coating, cultivation method, and method of manufacturing the propagated body coating |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019122269A (en) * | 2018-01-12 | 2019-07-25 | 公一 中川 | Method for manufacturing coated plant seed and coated plant seed |
Also Published As
Publication number | Publication date |
---|---|
JP6713617B2 (en) | 2020-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahanty et al. | Biofertilizers: a potential approach for sustainable agriculture development | |
Preetha et al. | A review of nano fertilizers and their use and functions in soil | |
Hasan et al. | Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus | |
Solanki et al. | Nano-fertilizers and their smart delivery system | |
CN105658603B (en) | System and method for adding beneficial agricultural, biological and/or dedusting additives to granular fertilizers | |
Gao et al. | Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass | |
Sun et al. | Impacts of metallic nanoparticles and transformed products on soil health | |
AU2015219518A1 (en) | Fertilizer compositions comprising a cellulose nutrient component and methods for using same | |
Li et al. | Alleviation of cadmium phytotoxicity to wheat is associated with Cd re-distribution in soil aggregates as affected by amendments | |
EP2881380B1 (en) | Biostimulating and eliciting composition for use in agriculture | |
Li et al. | Nanotechnology promotes the R&D of new-generation micronutrient foliar fertilizers | |
CN1759648A (en) | Magnetic powder coating seeds, magnetic powder coating agent and magnetization processing method | |
Yadav | Nanotechnology for agro-environmental sustainability | |
JP6713617B2 (en) | Moving device for magnetic adduct | |
Yasmeen et al. | Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant | |
Hasan et al. | Nanomaterials and soil health for agricultural crop production: current status and future prospects | |
Peng et al. | As and Cd sorption on selected Si-rich substances | |
CN103483087A (en) | Composite bio-fertilizer and preparation method thereof | |
CA2978116C (en) | Electrostatic adhesion of dry powders to macro fertilizers | |
Sarabia-Castillo et al. | TiO2, ZnO, and Fe2O3 nanoparticles effect on Rhizobium leguminosarum-Pisum sativum L. symbiosis. | |
JPH08290990A (en) | Magnetized fertilizer | |
CN107141101B (en) | The fertilizers of repairing heavy metal in soil | |
Zhao et al. | Preparation of magnetic hydroxyapatite whisker and its adsorption capacity to cadmium ion | |
CN107573947A (en) | A kind of preparation method and applications of sodium base silicon soil conditioner | |
Ghosh et al. | Smart Fertilizers: The Prospect of Slow Release Nanofertilizers in Modern Agricultural Practices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190319 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6713617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |