JP2013140495A - プラント状態監視装置、プラント状態監視方法 - Google Patents

プラント状態監視装置、プラント状態監視方法 Download PDF

Info

Publication number
JP2013140495A
JP2013140495A JP2012000350A JP2012000350A JP2013140495A JP 2013140495 A JP2013140495 A JP 2013140495A JP 2012000350 A JP2012000350 A JP 2012000350A JP 2012000350 A JP2012000350 A JP 2012000350A JP 2013140495 A JP2013140495 A JP 2013140495A
Authority
JP
Japan
Prior art keywords
data
monitoring
plant
model
measurement signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000350A
Other languages
English (en)
Other versions
JP5647626B2 (ja
Inventor
Takao Sekiai
孝朗 関合
Toru Eguchi
徹 江口
Hisahiro Kusumi
尚弘 楠見
Masayuki Fukai
雅之 深井
Satoru Shimizu
悟 清水
Masahiro Murakami
正博 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012000350A priority Critical patent/JP5647626B2/ja
Publication of JP2013140495A publication Critical patent/JP2013140495A/ja
Application granted granted Critical
Publication of JP5647626B2 publication Critical patent/JP5647626B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】適用対象のプラントに対する事前知識が不要で、運転コストの低減に寄与する情報を自動的に取得できるプラント状態監視装置を提供する。
【解決手段】プラント100の運転状態を監視するプラント状態監視装置において、計測信号4から計算したプラント100の効率の時系列データと、環境負荷物質についての計測信号4の時系列データとのうち、少なくとも1つの時系列データについて、最大値をとる時刻の前後の一定期間または最小値をとる時刻の前後の一定期間をモデルデータの期間として決定し、モデルデータの期間における時系列データをモデルデータとして選定するモデルデータ選定手段400と、モデルデータを複数のカテゴリーに分類して監視モデル600A〜600Cを構築し、現在の計測信号6が監視モデル600A〜600Cのカテゴリーに属するか否かを判定し、判定結果を画像表示装置940に出力する状態監視手段500を備える。
【選択図】図1

Description

本発明は、プラントの監視結果を表示するプラント状態監視装置に関する。
ガスタービンプラント、ボイラプラント等のプラントを対象とした制御の分野では、制御性能に対する要求に加え、プラント効率の向上による燃料消費量の削減や、環境負荷物質の低減による排出ガスの処理コストの低減など、運転コストの低減に対するニーズがある。
これらのニーズに対応するため、特許文献1には、プラントワイド最適プロセス制御装置において、運転コストや複数の制御性能を評価できる評価関数の値を、プロセス最適化部で最適にする制御技術が公開されている。このプロセス最適化部は、代数方程式や微分方程式を用いて表されるプロセスシミュレーション部と、最適化計算を行う最適演算部を有する。
特開2005−316738号公報
特許文献1に記載されたプラントワイド最適プロセス制御装置を実装するには、対象となるプロセスをモデル化し、代数方程式や微分方程式で定式化する必要がある。しかし、プロセスのモデル化には、適用対象のプラントに対する事前知識が必要である。オペレータにも、適用対象のプラントに対する事前知識が、ある程度は必要となる。
また、プラントの計測信号を分析して運転コストの低減方法を検討すると、オペレータは長期間にわたる計測信号を処理する必要があるので、煩雑なデータ処理を伴う多くの工数が必要となる。
本発明の目的は、適用対象のプラントに対する事前知識が不要で、運転コストの低減に寄与する情報を自動的に取得できるプラント状態監視装置を提供することにある。
上記の課題を解決するため、本発明によるプラント状態監視装置は、以下の構成を備える。
プラントの状態量を計測した計測信号を用いて、予め設定した監視項目について前記プラントの運転状態を監視し、監視結果を画像表示装置に表示するプラント状態監視装置において、前記計測信号を基にして計算した時系列データと前記計測信号の時系列データとのうち少なくとも1つの時系列データから、前記プラントを監視する際に参照するモデルデータを選定するモデルデータ選定手段と、前記モデルデータを複数のカテゴリーに分類することによって監視モデルを構築する状態監視手段を備える。
前記モデルデータ選定手段は、前記計測信号を基にして計算した前記プラントの効率の時系列データと、環境負荷物質についての前記計測信号の時系列データとのうち、少なくとも1つの時系列データについて、最大値をとる時刻の前後の予め定めた一定期間または最小値をとる時刻の前後の予め定めた一定期間をモデルデータの期間として決定し、このモデルデータの期間における前記少なくとも1つの時系列データを前記モデルデータとして選定する。
前記状態監視手段は、現在の前記計測信号が前記監視モデルの前記カテゴリーのいずれかに属するか否かを判定し、判定結果を監視結果として前記画像表示装置に出力する。
本発明によるプラント状態監視装置では、適用対象のプラントに対する事前知識が不要であり、運転コストの低減に寄与する情報を自動的に取得できる。このため、オペレータは、長期間にわたる計測信号の処理などの煩雑なデータ処理をすることなく、運転コストの低減に有用な情報を得ることができ、運転コストを削減できる。
本発明の第1の実施例によるプラント状態監視装置を説明するブロック図である。 プラント状態監視装置の動作フローチャートである。 データ分類機能の構成を示す模式図である。 F0レイヤーの構成を示すブロック図である。 F1レイヤーの構成を示すブロック図である。 火力発電プラントを示すブロック図である。 プラントの計測信号を、カテゴリーに分類した結果を説明する図である。 プラントの計測信号を、カテゴリーに分類した結果の一例を示す図である。 計測信号データベースに保存されているデータを示す図である。 設計情報データベースに保存されているデータを示す図である。 モデル情報データベースに保存されているデータを示す図である。 計測信号の時系列データとプラント効率の時系列データを示す図である。 過去の時系列データを所定の期間に分割し、その期間毎にモデルデータを選定する方法を説明する図である。 本発明の第2の実施例によるプラント状態監視装置を説明するブロック図である。 改善情報決定手段700の動作を説明するフローチャートである。 図8Aのステップ1100の動作を説明する図である。 図8Aのステップ1110の動作による抽出結果を説明する図である。 図8Aのステップ1120の動作を説明する図である 本発明の第3の実施例によるプラント状態監視装置を説明するブロック図である。 本発明の第4の実施例によるプラント状態監視装置を説明するブロック図である。 モデルデータの期間を表示した画像表示装置の画面の例を示す図である。 監視結果を表示した画像表示装置の画面の例を示す図である。 第2、第4の実施例のプラント状態監視装置の画像表示装置が表示する画面の例を示す図である。
本発明の実施例によるプラント状態監視装置について、図面を参照して説明する。本実施例によるプラント状態監視装置は、以下に説明するように、計測信号から計算した時系列データや計測信号の時系列データからモデルデータを選定し、モデルデータを複数のカテゴリーに分類して監視モデルを構築する。モデルデータと監視モデルを用いることにより、オペレータは、適用対象のプラントに対する事前知識が不要で、運転コストの低減に寄与する情報を自動的に取得することができる。
図1は、本発明の第1の実施例によるプラント状態監視装置200を説明するブロック図である。図1に示したように、プラント状態監視装置200は、運転管理室900と接続され、プラント100の状態を監視する。
プラント状態監視装置200は、演算装置として、モデルデータ選定手段400及び状態監視手段500を備え、データベースとして、計測信号データベース310、設計情報データベース320、及びモデル情報データベース330を備える。尚、図1では、データベースを「DB」と略記している。計測信号データベース310、設計情報データベース320、及びモデル情報データベース330には、電子化された情報が記録されており、通常、電子ファイル(電子データ)と呼ばれる形態で情報が記録される。
さらに、プラント状態監視装置200は、外部とのインターフェイスとして、外部入力インターフェイス210及び外部出力インターフェイス220を備える。そして、外部入力インターフェイス210を介して、プラント100の運転状態である各種の状態量を計測した計測信号1と、運転管理室900で作成された外部入力信号2とが、プラント状態監視装置200に取り込まれる。また、外部出力インターフェイス220を介して、画像表示情報12を運転管理室900に出力する。
運転管理室900は、外部入力装置910と画像表示装置940とを備える。外部入力装置910は、例えばキーボード920及びマウス930のような入力装置から構成される。外部入力信号2は、外部入力装置910の操作により作成される。プラント状態監視装置200が出力した画像表示情報12は、画像表示装置940が受け取る。
図1に示した本実施例のプラント状態監視装置200において、プラント100の各種状態量を計測した計測信号1は、外部入力インターフェイス210を介して取り込まれ、計測信号3として、計測信号データベース310に保存される。
モデルデータ選定手段400は、計測信号データベース310に保存されている計測信号4、及び設計情報データベース320に保存されているプラント100の設計情報7を基にして時系列データを計算し、この時系列データのうち、ある一定期間のデータをモデルデータとして選定する。モデルデータは、詳細は後述するが、プラント100の運転状態を監視する際に比較対象として参照するデータである。
設計情報データベース320には、プラント状態監視装置200が行う計算に必要な設計情報が保存されている。モデルデータ選定手段400は、設計リクエスト信号8を設計情報データベース320に送信して、計算に必要な設計情報7を取得する。
モデルデータ選定手段400は、計測信号データベース310に保存された過去の計測信号を基にして計算したプラント効率の時系列データと、計測信号データベース310に保存された過去の計測信号に含まれる環境負荷物質の計測信号の時系列データとのうち、少なくとも1つの時系列データを用いて、この時系列データの最大値または最小値をとる時刻の前後の一定期間をモデルデータの期間として決定する。そして、モデルデータの期間におけるこの時系列データをモデルデータとして選定する。
また、モデルデータ選定手段400は、過去のデータをある時刻から所定の期間毎に分割し、その期間毎に、計測信号を基にして計算したプラント効率の時系列データと、環境負荷物質の計測信号の時系列データとのうち、少なくとも1つの時系列データを用いて、この時系列データの最大値または最小値をとる時刻の前後の一定期間をモデルデータの期間として決定し、この期間における時系列データをモデルデータとして選定するようにしてもよい。
尚、モデルデータとして選定する計測信号のデータ項目(計測信号の種類)は、任意に設定できる。
モデルデータ選定手段400が選定したモデルデータ5は、状態監視手段500に送信される。
モデルデータ選定手段400の詳細な動作については、図6を用いて後述する。
状態監視手段500は、モデルデータ選定手段400で選定したモデルデータ5を用いて、プラント100の監視に用いる監視モデル600を構築し、保存する。監視モデル600は、モデルデータ5(計測信号)を、互いの類似性に応じて複数のカテゴリーに分類することによって構築したモデルであり、監視している計測信号が過去の計測信号のどの状態に近いかを求めるためのモデルである。モデルデータ5の類似性は、予め定めたパラメータ(後述するパラメータρ)で規定することができる。図1では、監視モデル600A〜600Cの3種類を監視モデル600として図示しているが、状態監視手段500は、任意の数の監視モデル600を備えることができる。尚、以下の説明では、監視モデル600A〜600Cを監視モデル600と総称する。
監視モデル600についての情報であるモデル情報10は、モデル情報データベース330に保存される。また、モデル情報データベース330に保存されているモデル情報9は、状態監視手段500に送信され、必要に応じて監視モデル600にて使用される。
状態監視手段500は、監視モデル600と、計測信号データベース310に保存されている計測信号6とを比較する。計測信号6が、監視モデル600のいずれのカテゴリーにも属しない場合、プラント100の状態が変化したと判定する。この場合、状態監視手段500は、監視モデル600として監視している項目と、プラント100のこの項目についての現在の状態がモデルデータと異なることとを監視結果11として出力する。すなわち、状態監視手段500は、監視している項目のデータが過去のデータ(モデルデータ)と異なる傾向を示していることを、監視結果11として出力する。
監視結果11は、外部出力インターフェイス220にて画像表示情報12に変換され、運転管理室900の画像表示装置940に送信される。
このようにして、本実施例のプラント状態監視装置200では、計測信号6が監視モデル600の構築に用いたモデルデータ5と異なる傾向を示した場合(すなわち、計測信号6が、監視モデル600のいずれのカテゴリーにも属しない場合)、画像表示装置940を介してオペレータにこのことを通知する。
尚、本実施例では、モデルデータ選定手段400、状態監視手段500、計測信号データベース310、設計情報データベース320、及びモデル情報データベース330がプラント状態監視装置200の内部に備えられているが、これらの一部をプラント状態監視装置200の外部に配置し、これらの装置間でデータを通信するようにしてもよい。
また、本実施例のプラント状態監視装置200では、監視対象とするプラント100が1基である場合を示しているが、1台のプラント状態監視装置200で複数基のプラント100を監視することも可能である。
また、計測信号データベース310、設計情報データベース320、及びモデル情報データベース330に保存されている情報(プラント状態監視装置情報50)は、任意に運転管理室900の画像表示装置940に表示できるようになっている。また、プラント状態監視装置情報50は、運転管理室900の外部入力装置910を操作して生成する外部入力信号2で修正することができる。
次に、図2を用いて、本実施例のプラント状態監視装置の動作について説明する。図2は、プラント状態監視装置200の動作フローチャートである。図2のフローチャートに示すように、プラント状態監視装置200の基本動作は、ステップ1000〜ステップ1050を組み合わせて実行される。
まず、ステップ1000では、監視モデルを新規に作成する指示がオペレータからあるか否かを判定し、監視モデルを新規に作成する場合はステップ1010へ、監視モデルを新規に作成しない場合はステップ1030に進む。
ステップ1010では、モデルデータ選定手段400を動作させ、モデルデータを選定する。
ステップ1020では、状態監視手段500を動作させ、ステップ1010で選定したモデルデータ5を用いて監視モデル600を構築する。
ステップ1030では、状態監視手段500を動作させ、監視モデル600と、計測信号データベース310に保存されている計測信号6を比較する。計測信号6が監視モデル600の構築に用いたモデルデータ5と異なる傾向を示した場合は(すなわち、計測信号6が、監視モデル600のいずれのカテゴリーにも属しない場合は)、状態が変化したと判定する。この場合、状態監視手段500は、監視モデル600として監視している項目と、プラント100のこの項目についての現在の状態が監視モデルの範囲を逸脱していること(すなわち、現在の状態がモデルデータと異なること)とを監視結果11として出力する。
ステップ1040では、監視結果11を外部出力インターフェイス220にて画像表示情報12に変換し、画像表示装置940に監視結果を表示する。
ステップ1050では終了判定を実施する。終了すると判定した場合は、プラント状態監視装置200は動作を終了する。終了しないと判定した場合は、ステップ1030に戻る。ステップ1050における終了判定の方法には、ステップ1030〜1050の繰り返し回数が予め設定した回数を超えた場合に終了する、または外部入力装置910を用いてオペレータから動作停止の指示が入力された場合に終了するなど、様々な判断基準がある。
次に、図3A〜図3Cと図4A〜図4Cを用いて、本実施例のプラント状態監視装置200が備える状態監視手段500において、モデルデータ5または計測信号6を分類する機能を説明する。
以下の説明では、プラント状態監視装置200が有するデータ分類機能に、適応共鳴理論(Adaptive Resonance Theory:ART)を適用した場合について述べる。尚、データ分類機能として、ベクトル量子化等、他のクラスタリング手法を用いることもできる。ARTを始めとするデータ分類機能を利用することで、オペレータは、適用対象のプラントに対する事前知識を持たなくても、運転コストの低減に寄与する情報を取得することができ、オペレータの負担を軽減することができる。
図3Aは、データ分類機能の構成を示す模式図である。図3Aに示すように、データ分類機能は、データ前処理装置610とARTモジュール620を備える。データ前処理装置610は、プラントの運転データをARTモジュール620の入力データに変換する。
以下に、データ前処理装置610及びARTモジュール620が行う処理の手順について説明する。
まず、データ前処理装置610において、モデル情報データベース330に保存されている正規化条件の情報を用いて、計測項目毎にデータを正規化する。計測信号を正規化したデータNxi(n)及び正規化したデータの補数CNxi(n)(=1−Nxi(n))を含むデータを、入力データIi(n)とする。ここで、iはデータ項目を識別するための符号であり、nは時系列データの時刻を定義するためのサンプル番号である。この入力データIi(n)が、ARTモジュール620に入力される。
ARTモジュール620は、入力データであるモデルデータ5または計測信号6を複数のカテゴリーに分類する。
ARTモジュール620は、F0レイヤー621、F1レイヤー622、F2レイヤー623、メモリ624、及び選択サブシステム625を備え、これらは相互に結合している。F1レイヤー622及びF2レイヤー623は、重み係数を介して結合している。重み係数は、入力データが分類されるカテゴリーのプロトタイプ(原型)を表している。ここで、プロトタイプとは、カテゴリーの代表値を表すものである。
次に、ARTモジュール620のアルゴリズムについて説明する。ARTモジュール620に入力データが入力された場合のアルゴリズムの概要は、下記の処理1〜処理5のようになる。
処理1:F0レイヤー621により入力ベクトルを正規化し、ノイズを除去する。
処理2:F1レイヤー622に入力された入力データと重み係数との比較により、ふさわしいカテゴリーの候補を選択する。
処理3:選択サブシステム625で選択したカテゴリーの妥当性がパラメータρとの比により評価される。妥当と判断されれば、入力データはそのカテゴリーに分類され、処理4に進む。一方、妥当と判断されなければ、そのカテゴリーはリセットされ、他のカテゴリーからふさわしいカテゴリーの候補を選択する(処理2を繰り返す)。パラメータρの値を大きくするとカテゴリーの分類が細かくなり、ρの値を小さくすると分類が粗くなる。このパラメータρをビジランス(vigilance)パラメータと呼ぶ。パラメータρは、入力データの類似性を規定するパラメータである。パラメータρの値は、予め設定しておく。
処理4:処理2において全ての既存のカテゴリーがリセットされると、入力データが新規カテゴリーに属すると判断され、新規カテゴリーのプロトタイプを表す新しい重み係数を生成する。
処理5:入力データがカテゴリーJに分類されると、カテゴリーJに対応する重み係数WJ(new)は、過去の重み係数WJ(old)及び入力データp(または入力データから派生したデータ)を用いて、下記の式(1)により更新される。
WJ(new)=Kw・p+(1−Kw)・WJ(old) ・・・(1)
ここで、Kwは、学習率パラメータ(0<Kw<1)であり、入力データpを新しい重み係数WJ(new)に反映させる度合いを決定する値である。
尚、式(1)及び後述する式(2)〜式(12)を演算する機能は、ARTモジュール620に組み込まれている。また、演算に必要なパラメータも、ARTモジュール620に保存されている。
ARTモジュール620のデータ分類アルゴリズムの特徴は、上記の処理4にある。処理4では、学習した時のパターンと異なる入力データが入力された場合、記録されているパターンを変更せずに新しいパターンを記録することができる。このため、過去に学習したパターンを記録しながら、新たなパターンを記録することが可能となる。
このように、ARTモジュール620は、入力データが与えられるとパターンを学習する。従って、学習済みのARTモジュール620に新たな入力データが入力されると、上記アルゴリズムにより、過去に学習したどのパターンに近いかを判定することができる。また、過去に経験したことのないパターンであれば、新規カテゴリーに分類する。
図3Bは、F0レイヤー621の構成を示すブロック図である。F0レイヤー621では、入力データIを各時刻で再度正規化し、F1レイヤー622及び選択サブシステム625に入力する正規化入力ベクトルu を作成する。尚、図3Bでは、添え字iを省略している。
始めに、入力データIから、式(2)に従ってw を計算する。ここで、aは定数である。
Figure 2013140495
次に、w を正規化したx を、式(3)を用いて計算する。ここで、「|| ||」はノルムを表す記号である。
Figure 2013140495
そして、式(4)を用いて、x からノイズを除去したv を計算する。ただし、θは、ノイズを除去するための定数である。式(4)の計算により、微小な値は0となるため、入力データのノイズが除去される。
Figure 2013140495
最後に、式(5)を用いて正規化入力ベクトルu を求める。u はF1レイヤー622の入力となる。
Figure 2013140495
図3Cは、F1レイヤー622の構成を示すブロック図である。F1レイヤー622では、式(5)で求めたu を短期記憶として保持し、F2レイヤー623に入力するpを計算する。F2レイヤーの計算式をまとめて式(6)〜式(12)に示す。ただし、a、b、及びdは予め定めた定数、f()は式(4)で示した関数、TはF2レイヤー623で計算する適合度、Zjiは重み係数、Mはデータ項目の数、iはデータ項目を識別するための符号(1≦i≦M)である。
Figure 2013140495
Figure 2013140495
Figure 2013140495
Figure 2013140495
Figure 2013140495
Figure 2013140495
ただし、
Figure 2013140495
次に、図4A〜図4Cを用いて、本実施例のプラント状態監視装置200が備える状態監視手段500が有する、モデルデータ5または計測信号6を分類する機能を説明する。まず、図4Aを用いて、プラント100の実施例を説明する。次に、図4B及び図4Cを用いて、モデルデータ5または計測信号6をカテゴリーに分類する様子を述べる。
図4Aは、プラント100の実施例である火力発電プラントを示すブロック図である。図4Aにおいて、火力発電プラント100は、ガスタービン発電機110、制御装置120、及びデータ送信装置130を備える。ガスタービン発電機110は、発電機111、圧縮機112、燃焼器113、及びタービン114を備える。
発電に際しては、圧縮機112にて吸い込んだ空気を圧縮して圧縮空気とし、この圧縮空気を燃焼器113に送り、燃料と混合して燃焼する。燃焼により発生した高圧ガスを用いてタービン114を回転させ、発電機111により発電を行う。
制御装置120においては、電力需要に応じてガスタービン発電機110の出力を制御する。また、制御装置120は、ガスタービン発電機110に設置されたセンサ(図示せず)で計測した運転データ102を入力データとしている。運転データ102は、吸気温度、燃料投入量、タービン排ガス温度、タービン回転数、発電機発電量、及びタービン軸振動などの状態量であり、サンプリング周期毎に計測している。また、大気温度などの気象情報も計測している。これらの運転データ102の計測信号103は、データ送信装置130に送信される。
制御装置120においては、これらの運転データ102を用いて、ガスタービン発電機110を制御するための制御信号101を算出する。また、制御装置120では、運転データ102の値が予め設定した範囲を逸脱した時に警報を発生させる処理を実施している。警報信号は、運転データ102の値が予め設定した範囲を逸脱した時に「1」、範囲内の時は「0」のデジタル信号として処理する。警報信号が「1」の時は、音や画面表示などで、警報の内容をオペレータに通知する。
データ送信装置130は、計測信号1をプラント状態監視装置200に送信する。計測信号1には、制御装置120で計測した運転データ102、制御装置120で算出した制御信号101、計測信号103、及び警報信号を含む。
図4Bは、プラント100から取得した計測信号1を、カテゴリーに分類した結果を説明する図である。図4Bの上図は計測信号1を示し、下図は計測信号1を分類したカテゴリーを示し、上図と下図の横軸は時間、上図の縦軸は計測信号、下図の縦軸はカテゴリー番号である。図4Bにおいて、監視開始前の期間は、モデルデータを選定するための期間(モデルデータの期間)であり、モデルデータとなる計測信号と、この計測信号を分類したカテゴリーが表されている。監視開始後の期間には、監視データである計測信号とそのカテゴリーが表されている。尚、図4Bでは、一例として、計測信号のうちの2項目(項目Aと項目B)を表示している。
モデルデータの期間において、計測信号(すなわちモデルデータ)は、カテゴリー1〜3という3つのカテゴリーに分類されている。このようにモデルデータを複数のカテゴリーに分類したものが、監視モデル600である。
図4Cは、プラント100の計測信号1を、カテゴリーに分類した分類結果の一例を示す図である。図4Cは、図4Bと同様に一例として、計測信号のうちの2項目(項目Aと項目B)を表示しており、2次元のグラフで表記した。また、縦軸及び横軸は、それぞれの項目の計測信号を規格化して示した。監視モデルは、モデルデータを複数のカテゴリーに分類することによって構築したモデルであり、図4Cによっても表すことができる。
計測信号は、図3AのARTモジュール620によって複数のカテゴリー630に分割される。カテゴリー630は、図4Cでは、カテゴリー1〜4とそれぞれ記された4つの円で表され、1つの円が1つのカテゴリーに相当する。
本実施例では、計測信号は4つのカテゴリーに分類されている。カテゴリー1は、項目Aの値が大きく、項目Bの値が小さいグループであり、カテゴリー2は、項目Aと項目Bの値が共に小さいグループであり、カテゴリー3は項目Aの値が小さく、項目Bの値が大きいグループであり、カテゴリー4は項目Aと項目Bの値が共に大きいグループである。
図4Bに示すように、監視開始前の期間のデータ(モデルデータ)は、カテゴリー1〜3に分類された。すなわち、監視モデル600は、カテゴリー1〜3を有する。
監視開始後の計測信号のうち、前半のデータはカテゴリー2に分類されており、モデルデータと同じカテゴリーである。すなわち、監視開始後の計測信号の前半のデータは、監視モデル600のカテゴリー2に属している。この場合、計測信号がカテゴリー2に属している(監視データの傾向がモデルデータと同じである)ことから、プラントの状態は変化していないと判断する。
一方、監視開始後の計測信号のうち、後半のデータはカテゴリー4に分類されており、モデルデータと異なるカテゴリーに分類されている。すなわち、監視開始後の計測信号の後半のデータは、監視モデル600のいずれのカテゴリー(カテゴリー1〜3)にも属していない。この場合、計測信号がモデルデータのいずれのカテゴリーにも属していない(監視データの傾向がモデルデータと異なる)ことから、プラントの状態が変化したと判断する。そして、プラント状態監視装置200は、プラントのオペレータにプラントの状態が変化したことを画像表示装置940に表示し、オペレータに通知する。
尚、本実施例では2項目の計測信号をカテゴリーに分類する例を述べたが、3項目以上の計測信号について、多次元の座標を用いてカテゴリーに分類することもできる。
図5A〜図5Cは、プラント状態監視装置200のデータベースに保存されているデータの態様を説明する図である。
図5Aは、計測信号データベース310に保存されているデータを示す図である。計測信号データベース310には、プラント100に対して計測した運転データである計測信号1(図5Aでは、データ項目A、B、Cを記載)の値が、サンプリング周期(縦軸の時刻)毎に保存される。データの表示画面311において、縦横に移動可能なスクロールボックス312及び313を用いることにより、広範囲のデータをスクロールして表示することができる。
図5Bは、設計情報データベース320に保存されているデータを示す図である。設計情報データベース320には、プラント100の制御ロジック図やヒートバランス情報が保存される。尚、図5Bには図示していないが、プラント100を構成する機器(ガスタービン、発電機、及び圧縮機など)の設計図、設計値、及びプラント100を構成する機器の効率を計算するための式など、プラント100の性能を評価する指針となる計算式も設計情報データベース320に保存されている。制御ロジック図やヒートバランス情報など、設計情報データベース320に保存されているデータは、表示画面321に表示することができる。
図5Cは、モデル情報データベース330に保存されているデータを示す図である。モデル情報データベース330には、監視モデル毎に、カテゴリー番号と重み係数の関係が保存されている。ここで、重み係数とは、カテゴリーの中心座標(図4Cに示した円の中心座標)のことである。表示画面331には、一例として監視モデルAのデータ332aが表示されているが、表示を切り替えることにより、監視モデルBのデータ332bなど、他の監視モデルのデータを表示することもできる。
図6Aと図6Bは、モデルデータ選定手段400の実施例を説明する図である。
モデルデータ選定手段400では、計測信号データベース310に保存されている計測信号と、設計情報データベース320に保存されている式(13)を用いて、ガスタービンの効率ηを計算する。ここで、MWは発電出力(MWh)、Fは燃料流量(m/h)、Kは燃料比重(kg/m)、LHVは燃料発熱量(kJ/kg)である。
η=(MW×3600)/(F×K×LHV) ・・・(13)
図6Aは、計測信号の時系列データとプラント効率の時系列データを示す図である。上図には、計測信号の時系列データとして、発電出力MWと燃料流量Fの時系列データが表されており、下図には、プラント効率の時系列データとして、ガスタービンの効率ηの時系列データが表されている。
モデルデータ選定手段400では、式(13)で計算したガスタービンの効率ηの時系列データが最大値となる時刻の前後の一定期間(図6Aの例では、時刻T1からT2までの期間)をモデルデータの期間として決定し、この期間における効率ηの時系列データをモデルデータ5として選定する。モデルデータの期間を決定するための一定期間は、予め定めておき、任意の長さの期間を設定することができる。図6Aでは、ガスタービンの効率ηの時系列データについてだけモデルデータの期間が設定されているが、計測信号(発電出力MWと燃料流量F)の時系列データについても、モデルデータの期間を設定することができる。
尚、モデルデータ5として選定する計測信号のデータ項目は、発電出力MWや燃料流量Fなど、プラントの効率を評価するのに有効なデータ項目である。選定するデータ項目の数は、1つでも複数でもよい。
現在の計測信号6が、モデルデータ5を用いて構築した監視モデル600のカテゴリーに属すれば(すなわち、現在の計測信号6とモデルデータ5とが同じ傾向であれば)、高効率でプラント100を運転できていることを意味する。一方、現在の計測信号6が、監視モデル600のカテゴリーに属しておらず(すなわち、現在の計測信号6とモデルデータ5とが異なる傾向であり)、監視モデル600にて新規カテゴリーが発生すれば、プラント100の状態は、高効率で運転していた状態から変化したことを意味する。本実施例のプラント状態監視装置200を用いることで、プラント100の状態が高効率で運転していた状態から変化したことを、オペレータに通知できる。
また、モデルデータ選定手段400では、一酸化炭素や窒素酸化物などの環境負荷物質を計測したデータと、環境負荷物質の制御に関係する操作信号の時系列データとを抽出し、環境負荷物質の計測値が最小値となる時刻の前後の一定期間をモデルデータの期間として決定し、この期間における計測信号の時系列データをモデルデータ5として選定することもできる。この場合も、モデルデータの期間を決定するための一定期間は、予め定めておき、任意の長さの期間を設定することができる。
尚、モデルデータ5として選定する計測信号のデータ項目は、一酸化炭素濃度、窒素酸化物濃度、及び空気流量など、環境負荷物質を評価するのに有効なデータ項目である。選定するデータ項目の数は、1つでも複数でもよい。
このモデルデータ5を用いて構築した監視モデル600を用いることで、環境負荷物質が最小となっている状態から計測信号のデータ傾向が変化した場合(すなわち、計測信号が、監視モデル600のいずれのカテゴリーにも属しない場合)、オペレータに通知できる。
このように、モデルデータ選定手段400では、プラント効率の時系列データと、過去の計測信号に含まれる環境負荷物質の計測信号の時系列データとのうち、少なくとも1つの時系列データを用いて、この時系列データの最大値または最小値をとる時刻の前後の一定期間をモデルデータの期間として決定し、モデルデータの期間におけるこの時系列データをモデルデータ5として選定する。
また、モデルデータ選定手段400では、過去のデータを予め定めたある時刻から予め定めた所定の期間毎に分割し、その期間毎に、過去の計測信号を基にして計算したプラント効率の時系列データと、過去の計測信号に含まれる環境負荷物質の計測信号の時系列データとのうち、少なくとも1つの時系列データを用いて、この時系列データの最大値または最小値をとる時刻の前後の一定期間をモデルデータの期間として決定することもできる。そして、それぞれのモデルデータの期間において、この時系列データをモデルデータ5として選定することもできる。
このように、予め定めた一定期間で区切ったモデルデータを用いて監視モデル600を構築することで、季節の変化に伴う大気温度変化や経年劣化によるプラント特性の変化を考慮できる。すなわち、大気の温度が高くなると、ガスタービンの効率が低下する。大気温度などの環境条件の変化に伴い、最適な操作条件や最大効率も変化する。季節毎に監視モデル600を切り替えて運用することで、大気温度の変化を考慮した監視が可能となる。
図6Bは、過去の時系列データを予め定めた所定の期間に分割し、その期間毎にモデルデータを選定する方法を説明する図である。図6Bに示すように、過去の時系列データのうち、プラント100の定期検査が終了した時刻t0からのデータを所定の期間に分割し、この期間毎にモデルデータを選定することもできる。図6Bの例では、期間aでは時刻t1〜t2、期間bでは時刻t4〜t5、期間cでは時刻t7〜t8のデータを、それぞれモデルデータとして選定している。定期検査後の経過時間に合わせて監視モデル600を切り替えることで、プラントの経年変化を考慮した監視が可能となる。
本実施例によれば、プラント効率の高いモデルデータと現時刻の計測信号との比較、及び環境負荷物質の低いモデルデータと現時刻の計測信号との比較のうち、少なくとも1つの比較により、現時刻の計測信号のデータ傾向がモデルデータと異なる場合に、オペレータにプラントの状態が変化したことを通知できる。この通知によりプラントの運用を改善する対策を実施することで、プラントの効率を向上して燃料消費量を削減したり、環境負荷物質を低減して排出ガスの処理コストを削減したりして、運転コストを削減できる。また、オペレータは、長期間の計測信号を処理することなく、運転コスト削減に有用な情報を得ることができる。
以上に述べた実施例では、モデルデータ選定手段400にて、プラント効率が最大時または環境負荷物質が最小時の時刻からの期間をモデルデータの期間として選定した。プラント効率が最小時または環境負荷物質が最大時の時刻からの期間をモデルデータの期間として選定し、この期間で得られたモデルデータと現在の計測信号のデータ傾向が同じ場合に、プラントの運用状態が悪いことをオペレータに通知するような構成としてもよい。
図7は、本発明の第2の実施例によるプラント状態監視装置200を説明するブロック図である。図7において、第1の実施例(図1)と同一の符号は、第1の実施例と同一または共通する要素を示す。本実施例のプラント状態監視装置200は、状態監視手段500に改善情報決定手段700が備えられている点が、第1の実施例のプラント状態監視装置200と異なる。改善情報決定手段700は、プラントの運転状態を改善する操作方法を決定して出力する。この操作方法は、画像表示装置940に表示される。
改善情報決定手段700は、監視モデル600A〜600Cから、それぞれ出力情報501A〜501Cを受信する。尚、以下の説明では、出力情報501A〜501Cを出力情報501と総称する。出力情報501は、監視モデル600のカテゴリー番号など、監視モデル600に関する情報である。
以下、図8A〜図8Dを用いて、改善情報決定手段700の動作を説明する。
図8Aは、改善情報決定手段700の動作を説明するフローチャートである。尚、本フローチャートによる処理は、図2のステップ1030にて実施される。
本フローチャートによる処理は、図8Aのステップ1100〜ステップ1120を組み合わせて実行される。ステップ1100では、監視モデル600からの出力情報501を用いて、計測信号のデータ傾向が変化した原因となったデータ項目(主要因データ項目)を求める。ステップ1110では、ステップ1100で抽出した主要因データ項目に関連する制御ロジック図を抽出する。ステップ1120では、求めたり抽出したりしたこれらの情報を用いて、プラント運用の改善案を出力する。
以下、図8B〜図8Dを用いて、各ステップの動作を述べる。
図8Bは、ステップ1100の動作を説明する図である。まず、新規カテゴリーに属するデータXに対して、最も近い既存のカテゴリー(正常カテゴリーN)を求める。次に、データXの値と正常カテゴリーNの中心との距離を求め、この距離に対する寄与度(この距離の射影)が最大であるデータ項目を、主要因データ項目として求める。図8Bの例では、データ項目Aが主要因データ項目として求められる。
図8Cは、ステップ1110の動作による抽出結果を説明する図である。ステップ1110では、ステップ1100で求めた主要因データ項目(項目A)が含まれる制御ロジック図を抽出する。制御ロジック図は、設計情報データベース320に保存されている。状態監視手段500は、設計情報リクエスト信号14を設計情報データベース320へ送信して、設計情報13(制御ロジック図)を取得する。
図8Dは、ステップ1120の動作を説明する図である。ステップ1120では、ステップ1100で求めた主要因データ項目(項目A)について、監視モデル600を構築した時のデータ範囲と、項目Aのトレンドデータ(時系列データ)とを抽出して、データ傾向の変化を把握し、運用改善に寄与する操作方法を出力する。
ステップ1120では、まず、モデルデータ5から項目Aの最大値及び最小値を抽出する。次に、抽出した最大値より大きいトレンドデータのサンプル点数と、抽出した最小値より小さいトレンドデータのサンプル点数とを比較する。最大値より大きいトレンドデータのサンプル点数が、最小値より小さいトレンドデータのサンプル点数よりも多い場合は、項目Aの値を下げる操作が運用改善に有用であると決定する。最小値より小さいトレンドデータのサンプル点数が、最大値より大きいトレンドデータのサンプル点数よりも多い場合は、項目Aの値を上げる操作が運用改善に有用であると決定する。決定した操作は、プラント運用の改善案として出力する。
図8Dの例では、監視モデル構築時と比較してトレンドデータの値が大きくなって推移していることから、項目Aの値を下げる操作が運用改善に寄与すると決定する。
本実施例のプラント状態監視装置200を用いることで、オペレータは長期間の計測信号を処理することなく、自動的に運用改善の操作方法を得られる。
図9は、本発明の第3の実施例によるプラント状態監視装置200を説明するブロック図である。図9において、第1の実施例(図1)と同一の符号は、第1の実施例と同一または共通する要素を示す。本実施例のプラント状態監視装置200は、状態監視手段500に総合監視手段800が備えられている点が、第1の実施例のプラント状態監視装置200と異なる。総合監視手段800は、画像表示装置940に表示する監視結果の優先順位を決定する。
総合監視手段800は、監視モデル600A〜600Cから、それぞれ出力情報501A〜501Cを受信する。尚、以下の説明では、出力情報501A〜501Cを出力情報501と総称する。出力情報501は、監視モデル600のカテゴリー番号など、監視モデル600に関する情報である。
総合監視手段800は、監視モデル600のそれぞれに対して、式(14)に従って評価値Eiを求める。ここで、iは監視モデル番号、Eiは監視モデルiの評価値、Wiは監視モデルiに対する重み係数、V1iはモデルデータ中の最良値(効率の最大値、または環境負荷物質の最小値)、及びV2iは現在の計測信号の値に基づいて求めた監視項目の値(効率、または環境負荷物質の計測値)である。尚、重み係数Wiは、予め設定する値である。重要な監視項目に対しては、監視モデル600の重み係数Wiの値を大きく設定する。
Ei=Wi×|V1i−V2i| ・・・(14)
評価値Eiは、重み係数Wiと、モデルデータの最良値V1iと現在の監視項目の値V2iの偏差の積とで計算される。重要な監視項目や偏差が大きい監視項目ほど、評価値Eiが大きくなる。従って、評価値Eiが大きいほど、対応の優先順位が高い。そこで、評価値Eiが大きい監視モデルほど表示の優先順位が高いとし、評価値Eiの大きい順番に監視結果を画像表示装置940に表示することで、対応の優先順位も併せてオペレータに通知する。
本実施例のプラント状態監視装置200を用いることで、状態が変化した監視項目について対応の優先順位をつけてオペレータに通知できる。
図10は、本発明の第4の実施例によるプラント状態監視装置200を説明するブロック図である。図10において、第1の実施例(図1)と同一の符号は、第1の実施例と同一または共通する要素を示す。本実施例のプラント状態監視装置200は、状態監視手段500に改善情報決定手段700及び総合監視手段800が備えられている点が、第1の実施例のプラント状態監視装置200と異なる。
改善情報決定手段700及び総合監視手段800の動作は、それぞれ実施例2及び実施例3で説明した通りである。ただし、総合監視手段800は、対応を優先する項目についての出力情報502を改善情報決定手段700に出力する。画像表示装置940には、監視結果とプラントの運転状態を改善する操作方法が、優先順位に従って(すなわち、評価値Eiの大きい順番に)表示される。
本実施例のプラント状態監視装置200を用いることで、状態が変化した監視項目について対応の優先順位をつけてオペレータに通知でき、さらにオペレータは自動的に運用改善の操作方法を得られる。
図11A、図11B、及び図12は、本実施例の画像表示装置940に表示される画面を説明する図である。図11A及び図11Bは第1〜第4の実施例のプラント状態監視装置200を、図12は第2、第4の実施例のプラント状態監視装置200を、それぞれ用いた時に表示される画面の例である。
図11Aは、モデルデータ選定手段400で選定したモデルデータ5の期間を表示した画像表示装置940の画面の例を示す図である。図11Aでは、モデルデータ5の期間として期間A〜期間Cが表示されている。オペレータは、画面からモデルデータ5の期間を確認できる。また、マウス930やキーボード920などの外部入力装置910を用いて各期間の開始時刻と終了時刻を変更することで、モデルデータ5の期間を変更することもできる。例えば、図11Aの例では、期間Aの開始時刻の入力欄960や終了時刻の入力欄961に時刻を入力し、実行ボタン962をクリックすることで、期間Aの開始時刻や終了時刻を変更できる。キャンセルボタン963をクリックすると、期間の変更処理をキャンセルできる。
図11Bは、監視結果11を表示した画像表示装置940の画面の例を示す図である。この画面には、監視項目毎に、監視項目のデータ傾向がモデルデータと一致しているか、または変化しているかという監視結果を表示する。オペレータは、この画面により、プラントの運転状態を一覧で確認できる。図11Bでは、監視項目として、ガスタービンの効率、一酸化炭素の濃度、及び窒素酸化物の濃度を例示しており、一酸化炭素の濃度のデータ傾向が、モデルデータから変化していることを示している。これにより、オペレータは、一酸化炭素の濃度が正常な状態から変化したことがわかる。
図12は、第2、第4の実施例のプラント状態監視装置200を用いた時に、画像表示装置940が表示する画面の例を示す図である。この画面では、監視モデル毎に(図12では監視モデルA〜C)、改善情報決定手段700が抽出した制御ロジック図970と、運用改善に寄与する操作方法(推奨操作971)とを表示する。また、監視項目(図12では項目Aと項目B)のそれぞれについて、監視モデルを構築した時のデータ範囲とトレンドデータとをグラフに表示する。
以上に述べた実施例のプラント状態監視装置200では、推奨操作971を画面に表示するが、この推奨操作を直接プラント100の制御信号101に反映させて、推奨操作のようにプラント100を制御する構成としてもよい。
また、以上に述べた実施例では、モデルデータ選定手段400にて、プラント効率が最大時または環境負荷物質が最小時の時刻からの期間をモデルデータの期間として選定した。プラント効率が最小時または環境負荷物質が最大時の時刻からの期間をモデルデータの期間として選定し、この期間で得られたモデルデータと現在の計測信号のデータ傾向が同じ場合に、プラントの運用状態が悪いことをオペレータに通知するような構成としてもよい。
尚、本発明は、上記した実施例に限定されるものではなく、様々な変形例を含む。上記した実施例は、本発明をわかりやすく説明するために詳細に記載したものであり、本発明は、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、上記の各構成、機能、処理部、及び処理手段等は、これらの一部または全部を集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成や機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行するソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル、計測信号、及び算出情報等の情報は、メモリやハードディスク等の記憶装置、またはICカード、SDカード及びDVD等の記憶媒体に格納することができる。よって、各処理と各構成は、処理ユニットやプログラムモジュールとして実現可能である。
また、図面において、制御線や情報線は、説明上必要と考えられるものを示している。従って、必ずしも製品に必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成要素が相互に接続されていると考えてもよい。
本発明は、プラント状態監視装置及びプラント状態監視方法として、各種プラントに広く適用可能である。
1…計測信号、2…外部入力信号、3,4,6…計測信号、5…モデルデータ、7…設計情報、8…設計リクエスト信号、9,10…モデル情報、11…監視結果、12…画像表示情報、13…設計情報、14…設計情報リクエスト信号、50…プラント状態監視装置情報、100…プラント、200…プラント状態監視装置、210…外部入力インターフェイス、220…外部出力インターフェイス、310…計測信号データベース、320…設計情報データベース、330…モデル情報データベース、400…モデルデータ選定手段、500…状態監視手段、600,600A〜600C…監視モデル、630…カテゴリー、700…改善情報決定手段、800…総合監視手段、900…運転管理室、910…外部入力装置、920…キーボード、930…マウス、940…画像表示装置。

Claims (12)

  1. プラントの状態量を計測した計測信号を用いて、予め設定した監視項目について前記プラントの運転状態を監視し、監視結果を画像表示装置に表示するプラント状態監視装置において、
    前記計測信号を基にして計算した時系列データと前記計測信号の時系列データとのうち少なくとも1つの時系列データから、前記プラントを監視する際に参照するモデルデータを選定するモデルデータ選定手段と、
    前記モデルデータを複数のカテゴリーに分類することによって監視モデルを構築する状態監視手段を備え、
    前記モデルデータ選定手段は、前記計測信号を基にして計算した前記プラントの効率の時系列データと、環境負荷物質についての前記計測信号の時系列データとのうち、少なくとも1つの時系列データについて、最大値をとる時刻の前後の予め定めた一定期間または最小値をとる時刻の前後の予め定めた一定期間をモデルデータの期間として決定し、このモデルデータの期間における前記少なくとも1つの時系列データを前記モデルデータとして選定し、
    前記状態監視手段は、現在の前記計測信号が前記監視モデルの前記カテゴリーのいずれかに属するか否かを判定し、判定結果を監視結果として前記画像表示装置に出力する、
    ことを特徴とするプラント状態監視装置。
  2. 請求項1に記載のプラント状態監視装置において、
    前記状態監視手段は、
    前記プラントの運転状態を改善する操作方法を、前記計測信号と前記監視モデルを構築した時に用いた前記モデルデータとから決定する改善情報決定手段をさらに備え、
    前記判定結果と、前記改善情報決定手段が決定した前記操作方法とを、前記画像表示装置に出力するプラント状態監視装置。
  3. 請求項1に記載のプラント状態監視装置において、
    前記状態監視手段は、
    前記監視項目毎に予め設定された重み係数に基づいて、前記画像表示装置に表示する監視結果の優先順位を決定する総合監視手段をさらに備え、
    前記判定結果を、前記優先順位に従って前記画像表示装置に出力するプラント状態監視装置。
  4. 請求項1に記載のプラント状態監視装置において、
    前記状態監視手段は、
    前記プラントの運転状態を改善する操作方法を、前記計測信号と前記監視モデルを構築した時に用いた前記モデルデータとから決定する改善情報決定手段と、
    前記監視項目毎に予め設定された重み係数に基づいて、前記画像表示装置に表示する監視結果の優先順位を決定する総合監視手段を、さらに備え、
    前記判定結果と、前記改善情報決定手段が決定した前記操作方法とを、前記優先順位に従って前記画像表示装置に出力するプラント状態監視装置。
  5. 請求項1〜4のいずれか1項に記載のプラント状態監視装置において、
    前記モデルデータ選定手段は、前記計測信号を基にして計算した前記プラントの効率の時系列データと、環境負荷物質についての前記計測信号の時系列データとのうち、少なくとも1つの時系列データを、予め定めた過去のある時刻から予め定めた所定の期間毎に分割し、分割された期間毎に前記モデルデータの期間を決定し、決定されたモデルデータの期間のそれぞれにおいて前記モデルデータを選定するプラント状態監視装置。
  6. 請求項2または4に記載のプラント状態監視装置において、
    前記プラントの制御ロジック図を保存する設計情報データベースを備え、
    前記改善情報決定手段は、前記状態監視手段が、現在の前記計測信号が前記監視モデルの前記カテゴリーのいずれにも属さないと判定した場合に、
    属さない原因となった前記計測信号のデータ項目を求め、前記データ項目に関連する制御ロジック図を前記設計情報データベースから抽出し、
    前記モデルデータの最大値と、前記モデルデータの最小値と、前記データ項目のトレンドデータとを比較し、
    前記最大値より大きい前記トレンドデータのサンプル点数が、前記最小値より小さい前記トレンドデータのサンプル点数よりも多い場合は、前記データ項目の値を下げる操作が前記操作方法であると決定し、
    前記最小値より小さい前記トレンドデータのサンプル点数が、前記最大値より大きい前記トレンドデータのサンプル点数よりも多い場合は、前記データ項目の値を上げる操作が前記操作方法であると決定し、
    前記データ項目、前記制御ロジック図、及び前記操作方法をさらに前記画像表示装置に出力するプラント状態監視装置。
  7. プラントの状態量を計測した計測信号を用いて、予め設定した監視項目について前記プラントの運転状態を監視する監視工程と、監視結果を画像表示装置に表示する表示工程とを有するプラント状態監視方法において、
    前記監視工程は、
    前記計測信号を基にして計算した時系列データと前記計測信号の時系列データとのうち少なくとも1つの時系列データから、前記プラントを監視する際に参照するモデルデータを選定するモデルデータ選定工程と、
    前記モデルデータを複数のカテゴリーに分類することによって監視モデルを構築する状態監視工程を有し、
    前記モデルデータ選定工程では、前記計測信号を基にして計算した前記プラントの効率の時系列データと、環境負荷物質についての前記計測信号の時系列データとのうち、少なくとも1つの時系列データについて、最大値をとる時刻の前後の予め定めた一定期間または最小値をとる時刻の前後の予め定めた一定期間をモデルデータの期間として決定し、このモデルデータの期間における前記少なくとも1つの時系列データを前記モデルデータとして選定し、
    前記状態監視工程では、現在の前記計測信号が前記監視モデルの前記カテゴリーのいずれかに属するか否かを判定し、
    前記表示工程では、前記状態監視工程での判定結果を、監視結果として前記画像表示装置に出力する、
    ことを特徴とするプラント状態監視方法。
  8. 請求項7に記載のプラント状態監視方法において、
    前記状態監視工程は、前記プラントの運転状態を改善する操作方法を、前記計測信号と前記監視モデルを構築した時に用いた前記モデルデータとから決定する改善情報決定工程をさらに有し、
    前記表示工程では、前記判定結果と、前記改善情報決定工程で決定した前記操作方法とを、前記画像表示装置に出力するプラント状態監視方法。
  9. 請求項7に記載のプラント状態監視方法において、
    前記状態監視工程は、前記監視項目毎に予め設定された重み係数に基づいて、前記画像表示装置に表示する監視結果の優先順位を決定する総合監視工程をさらに有し、
    前記表示工程では、前記判定結果を、前記優先順位に従って前記画像表示装置に出力するプラント状態監視方法。
  10. 請求項7に記載のプラント状態監視方法において、
    前記状態監視工程は、
    前記プラントの運転状態を改善する操作方法を、前記計測信号と前記監視モデルを構築した時に用いた前記モデルデータとから決定する改善情報決定工程と、
    前記監視項目毎に予め設定された重み係数に基づいて、前記画像表示装置に表示する監視結果の優先順位を決定する総合監視工程を、さらに有し、
    前記表示工程では、前記判定結果と、前記改善情報決定工程で決定した前記操作方法とを、前記優先順位に従って前記画像表示装置に出力するプラント状態監視方法。
  11. 請求項7〜10のいずれか1項に記載のプラント状態監視方法において、
    前記モデルデータ選定工程では、
    前記計測信号を基にして計算した前記プラントの効率の時系列データと、環境負荷物質についての前記計測信号の時系列データとのうち、少なくとも1つの時系列データを、予め定めた過去のある時刻から予め定めた所定の期間毎に分割し、
    分割された期間毎に前記モデルデータの期間を決定し、
    決定されたモデルデータの期間のそれぞれにおいて前記モデルデータを選定するプラント状態監視方法。
  12. 請求項8または10に記載のプラント状態監視方法において、
    前記改善情報決定工程では、前記状態監視工程で現在の前記計測信号が前記監視モデルの前記カテゴリーのいずれにも属さないと判定された場合に、
    属さない原因となった前記計測信号のデータ項目を求め、前記プラントの制御ロジック図が保存されている設計情報データベースから、前記データ項目に関連する制御ロジック図を抽出し、
    前記モデルデータの最大値と、前記モデルデータの最小値と、前記データ項目のトレンドデータとを比較し、
    前記最大値より大きい前記トレンドデータのサンプル点数が、前記最小値より小さい前記トレンドデータのサンプル点数よりも多い場合は、前記データ項目の値を下げる操作が前記操作方法であると決定し、
    前記最小値より小さい前記トレンドデータのサンプル点数が、前記最大値より大きい前記トレンドデータのサンプル点数よりも多い場合は、前記データ項目の値を上げる操作が前記操作方法であると決定し、
    前記表示工程では、前記データ項目、前記制御ロジック図、及び前記操作方法をさらに前記画像表示装置に出力するプラント状態監視方法。
JP2012000350A 2012-01-05 2012-01-05 プラント状態監視装置、プラント状態監視方法 Active JP5647626B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000350A JP5647626B2 (ja) 2012-01-05 2012-01-05 プラント状態監視装置、プラント状態監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000350A JP5647626B2 (ja) 2012-01-05 2012-01-05 プラント状態監視装置、プラント状態監視方法

Publications (2)

Publication Number Publication Date
JP2013140495A true JP2013140495A (ja) 2013-07-18
JP5647626B2 JP5647626B2 (ja) 2015-01-07

Family

ID=49037873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000350A Active JP5647626B2 (ja) 2012-01-05 2012-01-05 プラント状態監視装置、プラント状態監視方法

Country Status (1)

Country Link
JP (1) JP5647626B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092406A (ja) * 2016-12-05 2018-06-14 株式会社日立製作所 機器診断装置、機器診断システム及び機器診断方法
JP2019153018A (ja) * 2018-03-01 2019-09-12 株式会社日立製作所 診断装置および診断方法
CN116500426A (zh) * 2023-06-28 2023-07-28 东莞市兆恒机械有限公司 一种半导体检测设备高温测试标定的方法
JP7347953B2 (ja) 2019-04-08 2023-09-20 日立Geニュークリア・エナジー株式会社 機器予兆監視装置、および、機器予兆監視方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316738A (ja) * 2004-04-28 2005-11-10 Toshiba Corp プラントワイド最適プロセス制御装置
WO2011061793A1 (ja) * 2009-11-18 2011-05-26 株式会社日立製作所 プロセス信号の抽出システムおよび方法
WO2011148431A1 (ja) * 2010-05-28 2011-12-01 株式会社日立製作所 プラント診断装置及びこれを用いた診断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316738A (ja) * 2004-04-28 2005-11-10 Toshiba Corp プラントワイド最適プロセス制御装置
WO2011061793A1 (ja) * 2009-11-18 2011-05-26 株式会社日立製作所 プロセス信号の抽出システムおよび方法
WO2011148431A1 (ja) * 2010-05-28 2011-12-01 株式会社日立製作所 プラント診断装置及びこれを用いた診断方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092406A (ja) * 2016-12-05 2018-06-14 株式会社日立製作所 機器診断装置、機器診断システム及び機器診断方法
JP2019153018A (ja) * 2018-03-01 2019-09-12 株式会社日立製作所 診断装置および診断方法
JP7180985B2 (ja) 2018-03-01 2022-11-30 株式会社日立製作所 診断装置および診断方法
JP7347953B2 (ja) 2019-04-08 2023-09-20 日立Geニュークリア・エナジー株式会社 機器予兆監視装置、および、機器予兆監視方法
CN116500426A (zh) * 2023-06-28 2023-07-28 东莞市兆恒机械有限公司 一种半导体检测设备高温测试标定的方法
CN116500426B (zh) * 2023-06-28 2023-09-05 东莞市兆恒机械有限公司 一种半导体检测设备高温测试标定的方法

Also Published As

Publication number Publication date
JP5647626B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5484591B2 (ja) プラントの診断装置及びプラントの診断方法
JP5292477B2 (ja) 診断装置及び診断方法
JP5260343B2 (ja) プラント運転状態監視方法
JP4995134B2 (ja) 風車の監視装置及び方法並びにプログラム
TW541448B (en) Rotating equipment diagnostic system and adaptive controller
CN102982488A (zh) 用于实现发电厂操作的统计比较的自动化系统和方法
JP2013061695A (ja) 発電プラントの診断装置、及び発電プラントの診断方法
JPWO2011125130A1 (ja) プラントの診断装置、診断方法、及び診断プログラム
CN107710089B (zh) 工厂设备诊断装置以及工厂设备诊断方法
JP5150590B2 (ja) 異常診断装置及び異常診断方法
JP5647626B2 (ja) プラント状態監視装置、プラント状態監視方法
JP7180985B2 (ja) 診断装置および診断方法
WO2022038804A1 (ja) 診断装置及びパラメータ調整方法
JP4430384B2 (ja) 設備の診断装置及び診断方法
JP2018081350A (ja) 運転支援装置及びプログラム
KR102054500B1 (ko) 설계 도면 제공 방법
JP6830414B2 (ja) 診断装置及び診断方法
JP5490277B2 (ja) プラント運転状態監視方法
JP6685124B2 (ja) 診断装置及び診断方法
JP2021174352A (ja) プラント制御支援装置、プログラムおよびプラント制御支援方法
JP6880864B2 (ja) エネルギー管理システムおよびエネルギー管理方法
CN115707913A (zh) 异常检测系统、异常检测系统的异常检测方法及异常检测系统的记录介质
JP2015230576A (ja) プラント診断用データ作成システム
JP2020107025A (ja) データ選別装置及び方法、ならびに監視診断装置
US20200293555A1 (en) Selection apparatus, selection method and selection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5647626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150