JP2013139602A - Low-yield-ratio high-strength steel sheet excellent in ductile fracture resistance performance - Google Patents

Low-yield-ratio high-strength steel sheet excellent in ductile fracture resistance performance Download PDF

Info

Publication number
JP2013139602A
JP2013139602A JP2012000117A JP2012000117A JP2013139602A JP 2013139602 A JP2013139602 A JP 2013139602A JP 2012000117 A JP2012000117 A JP 2012000117A JP 2012000117 A JP2012000117 A JP 2012000117A JP 2013139602 A JP2013139602 A JP 2013139602A
Authority
JP
Japan
Prior art keywords
less
steel
steel sheet
ductile fracture
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000117A
Other languages
Japanese (ja)
Other versions
JP6064320B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Akihiko Tanizawa
谷澤彰彦
Hitoshi Sueyoshi
仁 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012000117A priority Critical patent/JP6064320B2/en
Publication of JP2013139602A publication Critical patent/JP2013139602A/en
Application granted granted Critical
Publication of JP6064320B2 publication Critical patent/JP6064320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet excellent in ductile fracture resistance performance in a biaxial stress state.SOLUTION: The steel sheet has a composition comprising, by mass%, 0.03-0.08% C, 0.01-0.5% Si, 1.2-2.2% Mn, 0.002 or less S, 0.01-0.5% Mo, 0.08% or less Al, 0.005-0.025% Ti, and 0.005-0.07% Nb, with the balance comprising Fe and unavoidable impurities and has a metallographic structure in which the area fraction of bainite is 30-90%, the area fraction of island-like martensite is 2-10%, and the island-like martensite has a circle equivalent diameter of 3 μm or less and an average aspect ratio of 3 or less.

Description

本発明は、建築物や海洋構造物、造船、橋梁、ラインパイプなどに用いて好適な構造用鋼板に関し、特に地震多発地帯などで用いられる鋼板に要求される引張強さが、550MPa以上の低降伏比高強度鋼板に関するものであり、特に多軸応力状態での耐延性破壊特性に優れた低降伏比高強度鋼板に関する。   The present invention relates to a structural steel plate suitable for use in buildings, offshore structures, shipbuilding, bridges, line pipes, and the like, and particularly has a low tensile strength of 550 MPa or more required for steel plates used in earthquake-prone areas. The present invention relates to a high yield strength steel sheet, and particularly to a low yield ratio high strength steel sheet having excellent ductile fracture resistance in a multiaxial stress state.

近年、建築物や海洋構造物、造船、橋梁、ラインパイプなどの分野で用いられている鋼材は、安全性の向上や、操業効率の向上(例えば、パイプラインでの輸送ガスの高圧化)、使用鋼材の削減によるトータルコストの低減等を目的として、高強度化が進められている。   In recent years, steel materials used in the fields of buildings, offshore structures, shipbuilding, bridges, line pipes, etc. have improved safety and operational efficiency (for example, increased transport gas pressure in pipelines), Higher strength is being promoted for the purpose of reducing the total cost by reducing the amount of steel used.

また、上記鋼材が使用される地域は、自然環境の過酷な地域へと拡大しているため、例えば、地震多発地帯などで使用される構造物用鋼材などには、従来の要求性能とは異なる優れた塑性変形能や耐延性破壊特性が求められるようになってきている。   Moreover, since the area where the above steel materials are used has expanded to the harsh areas of the natural environment, for example, structural steel materials used in earthquake-prone areas are different from the conventional required performance. Excellent plastic deformability and ductile fracture resistance have been demanded.

このような状況から、特許文献1〜3には、降伏応力と引張強さの比である降伏比を低下させることにより塑性変形能を向上させた鋼材が、また、特許文献4、5には、同じく降伏比を低下させることにより優れた耐座屈特性を有する高変形能鋼材が提案されている。   From such a situation, in Patent Documents 1 to 3, steel materials having improved plastic deformability by reducing the yield ratio, which is the ratio of yield stress to tensile strength, are disclosed in Patent Documents 4 and 5. Similarly, high deformability steel materials having excellent buckling resistance properties by reducing the yield ratio have been proposed.

しかし、たとえ、低降伏比で変形能に優れた鋼材であっても、欠陥部などの応力集中部から延性き裂が発生し、これが進展する場合には、その塑性変形能力が発揮される前に、き裂が伝播し不安定延性破壊を生じてしまう恐れがある。   However, even if the steel material is excellent in deformability at a low yield ratio, if a ductile crack is generated from a stress-concentrated part such as a defect, and this progresses, before the plastic deformability is exerted In addition, cracks may propagate and cause unstable ductile fracture.

そこで、不安定延性破壊を防止することを目的として、高強度高変形能鋼材の開発が行われている。例えば、特許文献6には、金属組織を細粒フェライト主体の組織とすることにより、吸収エネルギーを高めた高張力鋼の製造方法が、また、特許文献7には、金属組織をフェライトとマルテンサイトの2相混合組織とすることにより、不安定延性破壊の停止性能を高めた高強度鋼管が提案されている。   Therefore, development of high-strength and high-deformability steel materials has been carried out for the purpose of preventing unstable ductile fracture. For example, Patent Document 6 discloses a method for producing high-tensile steel in which absorbed energy is increased by making the metal structure a fine-grain ferrite-based structure, and Patent Document 7 describes that the metal structure is composed of ferrite and martensite. A high-strength steel pipe with improved stopping performance of unstable ductile fracture has been proposed.

上記特許文献6および7に記載された技術は、不安定延性破壊における耐延性き裂伝播特性を向上させた鋼材に関するものである。しかし、例えば、高圧で操業されるガスパイプラインでは、一旦、き裂が発生すると、き裂の伝播停止が困難になる場合があり、その結果、局所的な破壊でも重大な被害をもたらすことが懸念されている。そのため、ガスパイプラインに用いられる鋼材は、延性き裂の伝播が抑制されるだけでなく、たとえ損傷が生じてもき裂発生に至らない、もしくはき裂が発生しても、ガスのリークを最小限に止められるものであることが望ましい。   The technologies described in Patent Documents 6 and 7 relate to a steel material with improved ductile crack propagation characteristics in unstable ductile fracture. However, for example, in a gas pipeline operated at high pressure, once a crack has occurred, it may be difficult to stop the propagation of the crack, and as a result, there is a concern that even local destruction may cause serious damage. Has been. For this reason, steel materials used in gas pipelines not only suppress the propagation of ductile cracks, but even if damage occurs, they do not lead to crack generation, or even if cracks occur, gas leakage is minimized. It is desirable that it can be stopped to the limit.

上記要求に応えるためには、鋼材自体に内在する欠陥や外的要因によって受ける損傷あるいは、腐食による減肉部等からのき裂の発生を確実に防止し得ることが必要である。さらに、地震荷重を受ける建築構造物の形状不連続部や内圧を受けるラインパイプの曲げ変形等、鋼構造物では単純な引張荷重ではなく二軸方向の荷重を受ける場合があり、そのような部位に使用される鋼材には、二軸状態での耐破壊性能が必要とされる。   In order to meet the above requirements, it is necessary to reliably prevent the damage caused by defects inherent in the steel material itself or external factors, or the occurrence of cracks from the reduced thickness portion due to corrosion. Further, steel structures may receive biaxial loads instead of simple tensile loads, such as shape discontinuities in building structures subject to seismic loads and bending deformation of line pipes subject to internal pressure. The steel materials used in the above are required to have fracture resistance in a biaxial state.

しかし、上記特性を満たすような、二軸状態での耐破壊性能に優れる高強度鋼板は、今のところ存在していないのが実情である。   However, there is currently no high-strength steel sheet that satisfies the above characteristics and has excellent fracture resistance in a biaxial state.

特開昭55−119152号公報JP-A-55-119152 特開昭63−223123号公報JP 63-223123 A 特開平03−115524号公報Japanese Patent Laid-Open No. 03-115524 特開平10−330885号公報Japanese Patent Laid-Open No. 10-330885 特開2000−178689号公報Japanese Unexamined Patent Publication No. 2000-178689 特開2002−105534号公報JP 2002-105534 A 特開2004−197191号公報JP 2004-197191 A

本発明は上記事情に鑑みなされたものであり、地震多発地帯などの過酷な環境で使用される鋼材に要求される、耐延性破壊特性に優れた低降伏比高強度鋼板であり、特に二軸応力状態での耐延性破壊性能に優れた鋼板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a low-yield ratio high-strength steel sheet excellent in ductile fracture resistance, which is required for steel materials used in severe environments such as earthquake-prone areas, particularly biaxial. It aims at providing the steel plate excellent in the ductile fracture performance in a stress state.

発明者らは、上記課題の解決に向けて、低降伏比高強度鋼板の二軸応力状態での延性破壊挙動に関して鋭意研究を重ねた。その結果、ベイナイト組織に島状マルテンサイト(以下MAとも呼ぶ)を分散させることで低降伏比と高強度を両立させるとともに、延性き裂の発生する鋼板表層部の組織については、延性破壊の前駆段階で形成されるボイドの発生起点となる硬質第二層や介在物の量と形状を特定範囲に制限することにより、二軸応力状態でも延性き裂の発生を抑制できることを見い出した。   In order to solve the above-mentioned problems, the inventors have made extensive studies on the ductile fracture behavior of a low yield ratio high strength steel sheet in a biaxial stress state. As a result, by dispersing island-like martensite (hereinafter also referred to as MA) in the bainite structure, a low yield ratio and a high strength are achieved at the same time, and the structure of the steel sheet surface layer where ductile cracks occur is a precursor of ductile fracture. It has been found that the occurrence of ductile cracks can be suppressed even in a biaxial stress state by restricting the amount and shape of the hard second layer and inclusions, which are the starting points of voids formed in stages, to a specific range.

本発明は上記知見に基づき、更に検討を加えてなされたもので、本発明の要旨は、以下の通りである。   The present invention has been made based on the above findings and further studies, and the gist of the present invention is as follows.

[1]成分組成が、質量%で、C:0.03〜0.08%、Si:0.01〜0.5%、Mn:1.2〜2.2%、S:0.002以下、Mo:0.01〜0.5、Al:0.08%以下、Ti:0.005〜0.025%、Nb:0.005〜0.07%を含有し、残部がFe及び不可避不純物からなり、金属組織が、ベイナイトの面積分率が30〜90%、島状マルテンサイトの面積分率が2〜10%であり、島状マルテンサイトの円相当径が3μm以下、平均アスペクト比が3以下であることを特徴とする、耐延性破壊特性に優れた低降伏比高強度鋼板。   [1] Component composition is mass%, C: 0.03-0.08%, Si: 0.01-0.5%, Mn: 1.2-2.2%, S: 0.002 or less , Mo: 0.01 to 0.5, Al: 0.08% or less, Ti: 0.005 to 0.025%, Nb: 0.005 to 0.07%, the balance being Fe and inevitable impurities The metal structure has an area fraction of bainite of 30 to 90%, an area fraction of island martensite of 2 to 10%, an equivalent circle diameter of island martensite of 3 μm or less, and an average aspect ratio of A low-yield-ratio high-strength steel sheet excellent in ductile fracture resistance, characterized by being 3 or less.

[2]更に、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、V:0.1%以下、Ca:0.001〜0.003%、の中から選ばれる1種または2種以上を含有することを特徴とする、上記[1]に記載の耐延性破壊特性に優れた低降伏比高強度鋼板。   [2] Further, by mass%, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, V: 0.1% or less, Ca: 0.001 to 0.003%, The low yield ratio high-strength steel sheet excellent in ductile fracture resistance according to the above [1], characterized by containing one or more selected from among the above.

[3]シャルピー吸収エネルギーが180J以上で降伏比が80%以下であることを特徴とする、上記[1]または[2]に記載の耐延性破壊特性に優れた低降伏比高強度鋼板。   [3] The low yield ratio high-strength steel sheet excellent in ductile fracture resistance according to the above [1] or [2], wherein the Charpy absorbed energy is 180 J or more and the yield ratio is 80% or less.

本発明によれば、地震などで大きな塑性変形を受けた場合においても、延性き裂を発生することのない低降伏比高強度鋼板を提供することができる。したがって、本発明の鋼板は、安全性への要求が高い建築物や海洋構造物、造船、橋梁、ラインパイプなどに用いて好適である。   ADVANTAGE OF THE INVENTION According to this invention, even when it receives big plastic deformation by an earthquake etc., the low yield ratio high strength steel plate which does not generate | occur | produce a ductile crack can be provided. Therefore, the steel plate of the present invention is suitable for use in buildings, offshore structures, shipbuilding, bridges, line pipes, and the like that have high safety requirements.

2軸応力下での耐延性破壊性能を評価するための十字型引張試験片の形状を示す図である。It is a figure which shows the shape of the cross-shaped tension test piece for evaluating the ductile fracture performance under biaxial stress. 十字型引張試験片の主軸垂直方向に応力を負荷した状態で、主軸方向に引張試験を行う方法を説明する図である。It is a figure explaining the method of performing a tensile test in a principal axis direction in the state where stress was applied to the principal axis perpendicular direction of a cross type tensile test piece. 二軸応力下での耐延性破壊性能の評価に供した鋼板のミクロ組織を説明する図である。It is a figure explaining the microstructure of the steel plate with which it used for evaluation of the ductile fracture performance under biaxial stress. 図3のA鋼及びB鋼の二軸引張試験結果で、き裂発生開口変位と主軸垂直方向歪の関係を説明する図である。It is a figure explaining the relation between crack generation opening displacement and principal axis perpendicular direction strain by the biaxial tension test result of A steel and B steel of FIG. 二軸引張試験片の平行部中央部と表面切欠の形状を説明する図である。It is a figure explaining the shape of the parallel part center part and surface notch of a biaxial tensile test piece.

本発明者らは、二軸応力状態を再現するために図1に示すような試験片を用いた二軸引張試験により二軸状態での耐破壊性能に優れた鋼板の探索を行った。   In order to reproduce the biaxial stress state, the present inventors searched for a steel sheet having excellent fracture resistance in the biaxial state by a biaxial tensile test using a test piece as shown in FIG.

図2は二軸状態を再現した引張試験方法を示した図である。図1の試験片において主軸垂直方向に応力を与えるために図2のように治具を介してボルト締めによる応力負荷を行い、その状態で試験片の主軸方向にアムスラー試験機により変形を与えた。このとき、主軸垂直方向の負荷が一定になるように主軸垂直方向の締結力を油圧ジャッキにより調整した。延性破壊性能の評価は、図1の試験片の中央部に表面切欠を導入し、二軸状態において表面切欠の切欠底から延性破壊が発生する主軸方向の引張歪を測定する事によって行った。   FIG. 2 is a diagram showing a tensile test method reproducing a biaxial state. In order to apply stress in the direction perpendicular to the main axis in the test piece of FIG. 1, stress was applied by bolting through a jig as shown in FIG. 2, and in that state, the test piece was deformed in the main axis direction by an Amsler tester. . At this time, the fastening force in the vertical direction of the main shaft was adjusted with a hydraulic jack so that the load in the vertical direction of the main shaft became constant. The ductile fracture performance was evaluated by introducing a surface notch into the central part of the test piece of FIG. 1 and measuring the tensile strain in the principal axis direction where ductile fracture occurs from the bottom of the surface notch in the biaxial state.

図3は質量%で、0.05%C−1.7%Mn−0.15%Mo−0.03%Nbを含有する鋼を用いて、異なる鋼板製造条件にて製造した高強度鋼板のミクロ組織を示す。図3(A)は熱間圧延の後に加速冷却を適用して製造した鋼(以下A鋼と呼ぶ)で、降伏比は93%であり、金属組織はベイナイトを主体とした組織であり、伸長した硬質相(MA)が多く見られる。   FIG. 3 shows mass% of a high-strength steel plate manufactured under different steel plate manufacturing conditions using steel containing 0.05% C-1.7% Mn-0.15% Mo-0.03% Nb. The microstructure is shown. FIG. 3 (A) is a steel manufactured by applying accelerated cooling after hot rolling (hereinafter referred to as “A steel”), the yield ratio is 93%, and the metal structure is a structure mainly composed of bainite. Many hard phases (MA) are observed.

図3(B)はA鋼と同様の成分の鋼を熱間圧延―加速冷却の後にオンラインで再加熱を行うことで未変態オーステナイト中への炭素の濃化を利用して塊状のMAを生成させた鋼(以下B鋼と呼ぶ)で、降伏比は70%と低くなっている。   Fig. 3 (B) shows the production of massive MA by using carbon enrichment in untransformed austenite by hot-rolling steel with the same composition as steel A and reheating it online after accelerated cooling. The yield ratio is as low as 70% in the steel (hereinafter referred to as B steel).

これらの鋼を用いて、図2に示すような二軸引張試験を行った。試験片の幅を20mm、試験片中央部の厚さを6mmとし、試験片中央部(図2中のF)に長さ16mm、深さ2mm、幅0.2mmの表面切欠を導入し試験に供した。そして、切欠底からのき裂の発生挙動をマイクロスコープによって観察した。   A biaxial tensile test as shown in FIG. 2 was performed using these steels. The test piece width is 20 mm, the thickness of the test piece central portion is 6 mm, and a surface notch of 16 mm length, 2 mm depth, 0.2 mm width is introduced into the test piece central portion (F in FIG. 2) for the test. Provided. The crack initiation behavior from the notch bottom was observed with a microscope.

図4は主軸垂直方向に一定の歪を付与した状態で主軸方向に引張負荷を加えた場合の、切欠底からき裂が発生する時の、表面切欠の開口変位を測定した結果である。歪を付与しない条件(一軸条件)において、A鋼はB鋼よりもき裂発生開口変位が小さくなっている。   FIG. 4 shows the result of measuring the opening displacement of the surface notch when a crack is generated from the bottom of the notch when a tensile load is applied in the direction of the main axis with a constant strain applied in the direction perpendicular to the main axis. In a condition (uniaxial condition) in which no strain is applied, the crack opening opening displacement of Steel A is smaller than that of Steel B.

これはA鋼の方が高降伏比であり、切欠底部での歪集中が抑制されるために、き裂発生までの開口変位が小さくなったと考えられる。また、主軸垂直方向に歪を付与した状態、すなわち二軸応力条件では主軸垂直方向の歪が大きくなると、A鋼ではき裂発生開口変位がさらに小さくなるのに対して、B鋼では反対に大きくなっている。このことは、伸長したMAが存在するA鋼では、二軸応力状態で、延性破壊の前駆段階となる微小ボイドの発生が促進されるからである。   It is considered that this is because the steel A has a higher yield ratio and the strain concentration at the bottom of the notch is suppressed, so that the opening displacement until crack initiation is reduced. In addition, when the strain in the direction perpendicular to the main axis is applied, that is, in the biaxial stress condition, when the strain in the direction perpendicular to the main axis increases, the crack opening opening displacement is further reduced in steel A, whereas in steel B, the strain is greatly increased. It has become. This is because in Steel A in which elongated MA exists, the generation of microvoids that are precursor stages of ductile fracture is promoted in a biaxial stress state.

一方、粒状のMAが分散したB鋼では、微小ボイドの発生が少ないため、二軸応力状態で延性き裂発生が抑制されるからである。   On the other hand, in Steel B in which granular MA is dispersed, the generation of ductile cracks is suppressed in a biaxial stress state because the generation of microvoids is small.

発明者らは、上記結果にさらに、検討を加えた結果、成分組成、製造条件を適正に制御した上で、さらにMAの相分率と平均アスペクト比を適正な範囲に制御することにより、耐延性き裂発生特性に優れた低降伏比高強度鋼板が得られることを見出し、本発明を完成させたものである。   The inventors have further studied the above results, and as a result of appropriately controlling the component composition and production conditions, and further controlling the MA phase fraction and average aspect ratio within an appropriate range, The present inventors have found that a low-yield-ratio high-strength steel sheet having excellent ductile crack initiation characteristics can be obtained, and the present invention has been completed.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼板の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel plate of this invention is demonstrated. In addition, all component% means the mass%.

C:0.03〜0.08%
Cは、MAの生成を促進し、鋼板の強度を高めるために必要な元素である。0.03%未満の添加では、MAの相分率が低くて所望とする強度が得られず、一方、0.08%を超えて添加すると、溶接性が低下するため、C量は0.03〜0.08%の範囲とする。好ましくは0.05〜0.08%の範囲である。
C: 0.03-0.08%
C is an element necessary for promoting the production of MA and increasing the strength of the steel sheet. If less than 0.03% is added, the desired phase strength cannot be obtained because the MA phase fraction is low. On the other hand, if over 0.08% is added, the weldability decreases, so the C content is less than 0.3%. The range is 03 to 0.08%. Preferably it is 0.05 to 0.08% of range.

Si:0.01〜0.5%
Siは、脱酸剤として、また、鋼の強度を高めるために添加する元素であるが、0.01%未満では、脱酸効果が十分でなく、0.5%を超えて添加すると、靭性や溶接性を低下させるため、Si量は0.01〜0.5%の範囲とする。好ましくは0.05〜0.45%の範囲である。
Si: 0.01 to 0.5%
Si is an element added as a deoxidizer and to increase the strength of steel. However, if it is less than 0.01%, the deoxidation effect is not sufficient, and if added over 0.5%, toughness In order to reduce weldability, the Si content is set to a range of 0.01 to 0.5%. Preferably it is 0.05 to 0.45% of range.

Mn:1.2〜2.2%
Mnは、鋼の強度と靭性を高めるために、また、焼入れ性を高めてMAの生成を促進するために添加するが、1.2%未満の添加では、その効果が十分ではなく、2.2%を超える添加は、溶接性を低下させることから、Mn量は1.2〜2.2%の範囲とする。好ましくは1.4〜2.1%の範囲である。より好ましくは1.4〜1.7%の範囲である。
Mn: 1.2-2.2%
Mn is added to increase the strength and toughness of the steel, and to enhance the hardenability and promote the formation of MA. However, the addition of less than 1.2% is not effective. Since addition exceeding 2% lowers weldability, the amount of Mn is made 1.2 to 2.2%. Preferably it is 1.4 to 2.1% of range. More preferably, it is 1.4 to 1.7% of range.

S:0.002%以下
Sは、不可避的に不純物として混入する元素であり、一般には、鋼中に硫化物系介在物として存在し、変形時におけるボイド発生の起点となる。したがって、延性き裂の発生を防止するには、Sの含有量は厳しく規制する必要がある。しかし、0.002%以下であれば、上記悪影響は小さい。よって、S量は、0.002%以下とする。好ましくは0.001%以下である。
S: 0.002% or less S is an element which is inevitably mixed as an impurity, and generally exists as sulfide inclusions in steel and serves as a starting point for void generation during deformation. Therefore, in order to prevent the occurrence of ductile cracks, the S content must be strictly regulated. However, if it is 0.002% or less, the above adverse effect is small. Therefore, the S amount is set to 0.002% or less. Preferably it is 0.001% or less.

Mo:0.01〜0.5%
Moは、鋼の強度と靭性を高めるために、また、焼入れ性を高めてMAの生成を促進するために添加するが、0.01%未満の添加では、その効果が十分ではなく、0.5%を超える添加は、溶接性を低下し、またMAの量が増加するため、Mo量は0.01〜0.5%の範囲とする。好ましくは0.01〜0.3%の範囲である。
Mo: 0.01 to 0.5%
Mo is added to increase the strength and toughness of the steel, and to enhance the hardenability and promote the formation of MA. However, the addition of less than 0.01% is not sufficient in its effect. Addition exceeding 5% decreases weldability and increases the amount of MA, so the Mo amount is in the range of 0.01 to 0.5%. Preferably it is 0.01 to 0.3% of range.

Al:0.08%以下
Alは脱酸剤として添加されるが、0.08%を超えると清浄度の低下により延性を劣化させるので、Al量は0.08%以下とする。好ましくは、0.06%以下である。
Al: 0.08% or less Al is added as a deoxidizer, but if it exceeds 0.08%, ductility is deteriorated due to a decrease in cleanliness, so the Al amount is 0.08% or less. Preferably, it is 0.06% or less.

Ti:0.005〜0.025%
Tiは、TiNを形成してスラブ加熱時の粒成長を抑制するだけでなく、溶接熱影響部の粒成長を抑制し、母材及び溶接熱影響部の微細粒化により靭性を向上させる。しかし、Ti量が0.005%未満ではその効果がなく、0.025%を越えると靭性を劣化させるため、Ti量は0.005〜0.025%の範囲とする。好ましくは0.007〜0.020%の範囲である。より好ましくは0.008〜0.015%の範囲である。
Ti: 0.005-0.025%
Ti not only suppresses grain growth during slab heating by forming TiN, but also suppresses grain growth in the weld heat affected zone and improves toughness by making the base material and the weld heat affected zone finer. However, when the Ti content is less than 0.005%, the effect is not obtained. When the Ti content exceeds 0.025%, the toughness is deteriorated, so the Ti content is in the range of 0.005 to 0.025%. Preferably it is 0.007 to 0.020% of range. More preferably, it is 0.008 to 0.015% of range.

Nb:0.005〜0.07%
Nbは、圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。また、焼入れ性を向上しMAの生成を促進する元素であり、0.005%未満の添加ではその効果がなく、0.07%を超えると溶接熱影響部の靱性低下を招くので、Nb量は0.005〜0.07%の範囲とする。好ましくは0.005〜0.04%の範囲である。
Nb: 0.005 to 0.07%
Nb suppresses grain growth during rolling, and improves toughness by making fine grains. Further, it is an element that improves the hardenability and promotes the formation of MA, and if it is added less than 0.005%, there is no effect. Is in the range of 0.005 to 0.07%. Preferably it is 0.005 to 0.04% of range.

以上が本発明の基本化学成分であるが、さらに、鋼の強度および靭性を高める目的でCu、Ni、Cr、V、Caの中から選ばれる1種または2種以上を選択元素として添加しても良い。   The above is the basic chemical component of the present invention, and for the purpose of further increasing the strength and toughness of the steel, one or more selected from Cu, Ni, Cr, V, and Ca are added as selective elements. Also good.

Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、V:0.1%以下
Cu、Ni、CrおよびMoは、鋼の強度および靭性を高め、さらに焼入れ性を向上してMAの生成を促進する元素であり、要求される強度に応じて添加することができるが、
Cuは0.5%を越えて、Niは1%を越えて、Crは0.5%を越えて、Vは0.1%を越えて添加すると溶接性の低下を招くので、Cu量は0.5%以下、Ni量は1%以下、Cr量は0.5%以下、V量は0.1%以下とすることが好ましい。
Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, V: 0.1% or less Cu, Ni, Cr and Mo increase the strength and toughness of the steel and further improve the hardenability. It is an element that improves and promotes the production of MA and can be added according to the required strength,
If Cu exceeds 0.5%, Ni exceeds 1%, Cr exceeds 0.5%, and V exceeds 0.1%, the weldability is deteriorated. It is preferable that 0.5% or less, Ni content is 1% or less, Cr content is 0.5% or less, and V content is 0.1% or less.

Ca:0.001〜0.003%
Caは、硫化物系介在物の形態を制御し、延性を改善する有効な元素であるが、0.001%未満の添加では、その効果が得られず、0.003%を超えて添加しても、上記効果が飽和し、清浄度の低下や靭性の低下を招く。よって、Caを添加する場合は、Ca量は0.001〜0.003%の範囲とするのが好ましい。
Ca: 0.001 to 0.003%
Ca is an effective element for controlling the form of sulfide inclusions and improving ductility. However, if added less than 0.001%, the effect cannot be obtained, and more than 0.003% is added. However, the above effect is saturated, resulting in a decrease in cleanliness and a decrease in toughness. Therefore, when adding Ca, the amount of Ca is preferably in the range of 0.001 to 0.003%.

本発明の鋼板は、上記成分以外の残部は、Feおよび不可避的不純物からなる。ただし、上記以外の成分が、不可避的不純物として通常認められる量以上添加されていても、本発明の作用効果を害しない限り、許容される。   In the steel sheet of the present invention, the balance other than the above components consists of Fe and inevitable impurities. However, even if components other than those described above are added in an amount that is normally recognized as an inevitable impurity, it is allowed as long as the effects of the present invention are not impaired.

2.金属組織について
ベイナイトの面積分率:30〜90%
ベイナイトは強度の高い金属組織であり、面積分率が30%未満では必要な強度が得られず、90%を超えると降伏比が高くなりすぎるため、ベイナイトの面積分率は30〜90%の範囲とする。
2. About metal structure Area fraction of bainite: 30 to 90%
Bainite is a high-strength metal structure, and if the area fraction is less than 30%, the required strength cannot be obtained, and if it exceeds 90%, the yield ratio becomes too high, so the area fraction of bainite is 30 to 90%. Range.

島状マルテンサイトの面積分率:2〜10%
島状マルテンサイト(MA)は、低降伏比かつ耐延性き裂発生特性に優れた鋼板を得るために必要である。島状マルテンサイトの面積分率が2%未満では降伏比が高く、10%を超えると、延性き裂が容易に発生するようになる。そのため、島状マルテンサイトの面積分率は2〜10%の範囲とする。
Island-like martensite area fraction: 2-10%
Island-like martensite (MA) is necessary to obtain a steel sheet having a low yield ratio and excellent ductile crack initiation characteristics. When the area fraction of island martensite is less than 2%, the yield ratio is high, and when it exceeds 10%, a ductile crack is easily generated. Therefore, the area fraction of island martensite is set to a range of 2 to 10%.

なおベイナイトおよび島状マルテンサイト(MA)以外の残部の組織は大部分フェライトであるが、フェライト以外にパーライト、マルテンサイト、残留オーステナイトを含んでいてもよい。これらの、ベイナイト、島状マルテンサイト(MA)およびフェライト以外の相は、面積率で5%以下であれば本発明の効果をそこなうことはないため、5%以下とすることが好ましい。   The remaining structure other than bainite and island martensite (MA) is mostly ferrite, but may contain pearlite, martensite, and retained austenite in addition to ferrite. These phases other than bainite, island-like martensite (MA) and ferrite are preferably 5% or less because the effects of the present invention are not impaired if the area ratio is 5% or less.

島状マルテンサイトの平均アスペクト比:3以下
島状マルテンサイトの平均アスペクト比は3以下とする。島状マルテンサイトの平均アスペクト比が3を超えると、変形時に伸長した島状マルテンサイトの先端近傍のフェライト相やベイナイト相との界面に歪が集中し、延性き裂の起点となって、耐延性き裂発生特性が劣化するからである。ここで、島状マルテンサイトのアスペクト比とは、伸長した島状マルテンサイトの長径と短径の比(長径/短径)と定義する。また、平均アスペクト比は、SEM観察により得られた100個程度以上の島状マルテンサイトで測定したアスペクト比の平均値である。
Average aspect ratio of island martensite: 3 or less The average aspect ratio of island martensite is 3 or less. If the average aspect ratio of the island martensite exceeds 3, the strain concentrates at the interface with the ferrite phase and bainite phase near the tip of the island martensite elongated during deformation, and becomes the starting point of ductile cracks. This is because the ductile crack initiation characteristics deteriorate. Here, the aspect ratio of the island-shaped martensite is defined as the ratio of the major axis to the minor axis (major axis / minor axis) of the elongated island martensite. The average aspect ratio is an average value of aspect ratios measured with about 100 or more island-shaped martensites obtained by SEM observation.

島状マルテンサイトの円相当径:3μm以下
島状マルテンサイトのサイズが大きく疎らに分散している状態では、島状マルテンサイトの周囲の応力集中が促進されるため、二軸応力状態で延性き裂が発生しやすくなる。しかし、島状マルテンサイトが小さく分散している状態では、局所的な応力集中も分散されるため、微小ボイドの生成を抑制できる。よって、島状マルテンサイトのサイズは円相当径で3μm以下とする。なお、MAの円相当径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値としてもとめた。
Equivalent circle diameter of island martensite: 3 μm or less In the state where the size of island martensite is large and sparsely distributed, stress concentration around the island martensite is promoted, so it is ductile in a biaxial stress state. Cracks are likely to occur. However, when the island martensite is small and dispersed, local stress concentration is also dispersed, so that generation of microvoids can be suppressed. Therefore, the size of the island martensite is 3 μm or less in terms of the equivalent circle diameter. Note that the equivalent circle diameter of the MA was obtained by image-processing the microstructure obtained by SEM observation, obtaining the diameter of a circle having the same area as each MA, and obtaining the average value of the diameters.

3.機械的特性について
シャルピー吸収エネルギー:180J以上
シャルピー吸収エネルギーは破壊に対する抵抗力を表す特性であり、本発明のような微細で粒状の島状マルテンサイトが分散した金属組織は、延性破壊が発生しにくく高いシャルピーエネルギーが得られる。シャルピーエネルギーが180J未満では、二軸応力下での破壊に対して、延性き裂が発生しやすくなるため、シャルピー吸収エネルギーを180J以上とする。なお、シャルピー衝撃試験は鋼板が使用される温度、または設計温度で行う。
3. Mechanical properties Charpy absorbed energy: 180J or more Charpy absorbed energy is a property representing resistance to fracture, and a metal structure in which fine and granular island martensite is dispersed as in the present invention is less prone to ductile fracture. High Charpy energy can be obtained. If the Charpy energy is less than 180 J, ductile cracks are likely to occur with respect to fracture under biaxial stress, so the Charpy absorbed energy is 180 J or more. The Charpy impact test is performed at the temperature at which the steel plate is used or at the design temperature.

降伏比:80%以下
切欠や形状不連続部がある場合、鋼板の降伏比(降伏強度/引張強度)が高いと、マクロな応力集中により、切欠部や形状不連続部で破壊を生じやすくなる。そのため、降伏比は80%以下に規定する。
Yield ratio: 80% or less If there are notches and discontinuities in shape, if the yield ratio of the steel sheet (yield strength / tensile strength) is high, macro stress concentration can easily cause breakage in the notches and discontinuities in shape. . Therefore, the yield ratio is specified to be 80% or less.

表1に示す化学成分の鋼(鋼種A〜G)を連続鋳造法により鋳片とした後、鋼片を加熱し、熱間圧延、加速冷却、及び再加熱により板厚14mmまたは20mmの厚鋼板を製造した。表2に鋼板の製造条件を示す。   Steel having the chemical composition shown in Table 1 (steel types A to G) is made into a slab by a continuous casting method, then the steel slab is heated, and a steel plate having a thickness of 14 mm or 20 mm is obtained by hot rolling, accelerated cooling, and reheating. Manufactured. Table 2 shows the manufacturing conditions of the steel sheet.

そして、上記鋼板の金属組織、引張特性、シャルピー衝撃特性を調査した。 And the metal structure of the said steel plate, the tensile characteristic, and the Charpy impact characteristic were investigated.

金属組織は、鋼板の板厚方向1/4位置について走査電子顕微鏡(SEM)による観察を行い、約5視野のミクロ組織写真から画像解析によりフェライト、ベイナイト及び島状マルテンサイト(MA)の面積分率を求めた。また、MAのアスペクト比も同様に求めた。   The microstructure of the steel sheet is observed with a scanning electron microscope (SEM) at 1/4 position in the thickness direction of the steel sheet, and the area of ferrite, bainite and island martensite (MA) is analyzed by image analysis from a microstructural photograph of about 5 fields of view. The rate was determined. The aspect ratio of MA was also obtained in the same manner.

引張試験は、板厚中心部より採取した丸棒引張試験片により引張強度及び降伏比を測定した。また、シャルピー試験は、通常のVノッチシャルピー試験を−20℃で実施し、3本の平均として吸収エネルギーを求めた。   In the tensile test, the tensile strength and the yield ratio were measured using a round bar tensile specimen taken from the center of the plate thickness. Moreover, the Charpy test performed the normal V notch Charpy test at -20 degreeC, and calculated | required the absorbed energy as an average of three.

二軸応力下での破壊実験は、同じ鋼板から図1に示した十字型の二軸引張試験片を採取した。このとき、二軸引張試験片の形状は、主軸方向及び主軸垂直方向のアーム部の幅20mm、厚さ10mm、中央の平行部の厚さ6mmとし、図5に示すように主軸垂直方向の平行部に幅1mm、長さ15mmのスリットを両側に3本づつ導入した。また、中央の平行部には主軸垂直方向に長さ15mm、幅0.2mm、深さ2mmの表面切欠を導入した。   In the fracture experiment under biaxial stress, a cross-shaped biaxial tensile test piece shown in FIG. 1 was taken from the same steel plate. At this time, the shape of the biaxial tensile test piece is set such that the width of the arm portion in the main axis direction and the vertical direction of the main shaft is 20 mm, the thickness is 10 mm, and the thickness of the central parallel portion is 6 mm, as shown in FIG. Three slits each having a width of 1 mm and a length of 15 mm were introduced into each part. Further, a surface notch having a length of 15 mm, a width of 0.2 mm, and a depth of 2 mm was introduced into the central parallel portion in the direction perpendicular to the main axis.

そして、図2の治具を介して主軸垂直方向に裁荷し、平行部裏面側に貼付した歪ゲージによる歪測定で0.5%の主軸垂直方向の歪を加えた状態で、主軸方向をアムスラー型引張試験機で引張荷重を加えた。このとき、主軸垂直方向の歪が一定になるように調整しながら引張試験を実施した。耐延性破壊性能は、表面切欠の切欠底から延性き裂が発生するときの切欠の開口変位によって評価した。なお、切欠底からの延性き裂の発生は直流電位差法による電位差変化によって同定し、また、切欠の開口変位はクリップゲージにより測定した。   2 in the state perpendicular to the main axis through the jig shown in FIG. 2 and with a strain of 0.5% in the vertical direction of the main axis added by the strain gauge attached to the back side of the parallel part. A tensile load was applied with an Amsler type tensile tester. At this time, a tensile test was performed while adjusting the strain in the direction perpendicular to the main axis to be constant. The ductile fracture resistance was evaluated by the opening displacement of the notch when a ductile crack occurred from the bottom of the surface notch. The occurrence of a ductile crack from the notch bottom was identified by a potential difference change by a direct current potential difference method, and the opening displacement of the notch was measured by a clip gauge.

供試鋼の金属組織、機械的特性及び二軸引張試験でのき裂発生開口変位を表2に合わせて示した。No.1〜4は供試鋼の化学成分及び金属組織が本発明の範囲内であり、引張強度が650MPa以上の高強度でかつ80%以下の低降伏比、そして200J以上の高い吸収エネルギーを有しており、二軸引張でのき裂発生開口変位が高く、耐延性破壊性能が優れている。   Table 2 shows the microstructure of the test steel, the mechanical properties, and the crack opening displacement in the biaxial tensile test. No. 1-4 have the chemical composition and metallographic structure of the test steel within the scope of the present invention, the tensile strength is high strength of 650 MPa or more, the low yield ratio of 80% or less, and the high absorbed energy of 200 J or more. It has high crack displacement at biaxial tension and excellent ductile fracture resistance.

一方、No.5は化学成分は本願発明範囲であるが、金属組織が本発明の範囲から外れており、二軸応力下での耐延性破壊性能が低い。また、No.6、7は化学成分が本発明の範囲外であるためシャルピー吸収エネルギーが低いか、または、金属組織が本発明の範囲から外れているため、二軸応力下での耐延性破壊性能が低い。   On the other hand, no. The chemical component 5 is within the scope of the present invention, but the metal structure is out of the scope of the present invention, and the ductile fracture resistance under biaxial stress is low. No. Nos. 6 and 7 have low Charpy absorbed energy because the chemical components are outside the scope of the present invention or low ductile fracture performance under biaxial stress because the metal structure is outside the scope of the present invention.

A 平行部
B 主軸方向アーム部
C 主軸垂直方向アーム部
D スリット
E ネジ部
F 十字型引張試験片の平行部中央に導入した表面切欠
G ナットによる締結力を保持するためのホルダー
H 2つの部分からなるホルダーを締結するためのボルト
K ナット
A parallel part B main axis direction arm part C main axis vertical direction arm part D slit E thread part F surface notch introduced at the center of the parallel part of the cross-shaped tensile test piece G holder for holding fastening force by nut H from two parts Bolts and nuts for fastening the holder

Claims (3)

成分組成が、質量%で、C:0.03〜0.08%、Si:0.01〜0.5%、Mn:1.2〜2.2%、S:0.002以下、Mo:0.01〜0.5、Al:0.08%以下、Ti:0.005〜0.025%、Nb:0.005〜0.07%を含有し、残部がFe及び不可避不純物からなり、金属組織が、ベイナイトの面積分率が30〜90%、島状マルテンサイトの面積分率が2〜10%であり、島状マルテンサイトの円相当径が3μm以下、平均アスペクト比が3以下であることを特徴とする、耐延性破壊特性に優れた低降伏比高強度鋼板。   Component composition is mass%, C: 0.03-0.08%, Si: 0.01-0.5%, Mn: 1.2-2.2%, S: 0.002 or less, Mo: 0.01 to 0.5, Al: 0.08% or less, Ti: 0.005 to 0.025%, Nb: 0.005 to 0.07%, the balance is made of Fe and inevitable impurities, The metal structure has an area fraction of bainite of 30 to 90%, an area fraction of island martensite of 2 to 10%, an equivalent circle diameter of island martensite of 3 μm or less, and an average aspect ratio of 3 or less. A low yield ratio high strength steel plate with excellent ductile fracture resistance. 更に、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、V:0.1%以下、Ca:0.001〜0.003%、の中から選ばれる1種または2種以上を含有することを特徴とする、請求項1に記載の耐延性破壊特性に優れた低降伏比高強度鋼板。   Furthermore, from mass%, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, V: 0.1% or less, Ca: 0.001 to 0.003% The low yield ratio high-strength steel sheet excellent in ductile fracture resistance according to claim 1, comprising one or more selected. シャルピー吸収エネルギーが180J以上で降伏比が80%以下であることを特徴とする、請求項1または2に記載の耐延性破壊特性に優れた低降伏比高強度鋼板。   The low yield ratio high-strength steel sheet having excellent ductile fracture resistance according to claim 1 or 2, wherein Charpy absorbed energy is 180J or more and the yield ratio is 80% or less.
JP2012000117A 2012-01-04 2012-01-04 Low yield ratio high strength steel plate with excellent ductile fracture resistance Active JP6064320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000117A JP6064320B2 (en) 2012-01-04 2012-01-04 Low yield ratio high strength steel plate with excellent ductile fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000117A JP6064320B2 (en) 2012-01-04 2012-01-04 Low yield ratio high strength steel plate with excellent ductile fracture resistance

Publications (2)

Publication Number Publication Date
JP2013139602A true JP2013139602A (en) 2013-07-18
JP6064320B2 JP6064320B2 (en) 2017-01-25

Family

ID=49037332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000117A Active JP6064320B2 (en) 2012-01-04 2012-01-04 Low yield ratio high strength steel plate with excellent ductile fracture resistance

Country Status (1)

Country Link
JP (1) JP6064320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988398A (en) * 2015-07-17 2015-10-21 武汉钢铁(集团)公司 610MPa-grade automobile frame steel and preparation method thereof
JP2015189984A (en) * 2014-03-27 2015-11-02 Jfeスチール株式会社 Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP2019199649A (en) * 2018-05-15 2019-11-21 Jfeスチール株式会社 Non-tempered low yield ratio high tensile thick steel sheet and its production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060825A (en) * 2003-06-12 2005-03-10 Jfe Steel Kk Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP2007177266A (en) * 2005-12-27 2007-07-12 Jfe Steel Kk Low-yield-ratio high-strength thick steel plate and manufacturing method
JP2008248328A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP2008308736A (en) * 2007-06-15 2008-12-25 Jfe Steel Kk Low-yield-ratio and high-strength thick steel plate superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP2009197282A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Low-yield-ratio and high-strength steel sheet superior in ductility crack generation resistance and manufacturing method therefor
JP2009235524A (en) * 2008-03-27 2009-10-15 Jfe Steel Corp High strength steel member for steel pipe with sheet thickness of >=25 mm having excellent toughness and deformability, and method for producing the same
JP2011094231A (en) * 2009-09-30 2011-05-12 Jfe Steel Corp Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060825A (en) * 2003-06-12 2005-03-10 Jfe Steel Kk Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP2007177266A (en) * 2005-12-27 2007-07-12 Jfe Steel Kk Low-yield-ratio high-strength thick steel plate and manufacturing method
JP2008248328A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP2008308736A (en) * 2007-06-15 2008-12-25 Jfe Steel Kk Low-yield-ratio and high-strength thick steel plate superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP2009197282A (en) * 2008-02-22 2009-09-03 Jfe Steel Corp Low-yield-ratio and high-strength steel sheet superior in ductility crack generation resistance and manufacturing method therefor
JP2009235524A (en) * 2008-03-27 2009-10-15 Jfe Steel Corp High strength steel member for steel pipe with sheet thickness of >=25 mm having excellent toughness and deformability, and method for producing the same
JP2011094231A (en) * 2009-09-30 2011-05-12 Jfe Steel Corp Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189984A (en) * 2014-03-27 2015-11-02 Jfeスチール株式会社 Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
CN104988398A (en) * 2015-07-17 2015-10-21 武汉钢铁(集团)公司 610MPa-grade automobile frame steel and preparation method thereof
JP2019199649A (en) * 2018-05-15 2019-11-21 Jfeスチール株式会社 Non-tempered low yield ratio high tensile thick steel sheet and its production method

Also Published As

Publication number Publication date
JP6064320B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5783229B2 (en) Hot-rolled steel sheet and manufacturing method thereof
RU2637202C2 (en) Sheet steel for a thick-strengthen high-strengthening pipe threading with excellent resistance to acid environment, resistance to smoke and low-temperature viscosity and also a main pipe
RU2493286C2 (en) High-strength steel pipe for use at low temperatures with excellent strength upon buckle and impact strength of heat-affected zone upon welding
RU2518830C1 (en) Hot-rolled steel sheet and method of its production
EP2505683B1 (en) Process for producing a welded steel pipe for linepipe with superior compressive strength and excellent sour resistance
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
KR101681626B1 (en) Welded steel pipe for linepipe with high compressive strength
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JPWO2013190750A1 (en) Thick and high strength sour line pipe and method for manufacturing the same
WO2017130885A1 (en) Steel sheet for high-strength/high-toughness steel tubes, and method for producing same
JP5472071B2 (en) Steel for line pipe
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
WO2014010150A1 (en) Thick-walled high-strength sour-resistant line pipe and method for producing same
JPWO2015151468A1 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5640899B2 (en) Steel for line pipe
JP6064320B2 (en) Low yield ratio high strength steel plate with excellent ductile fracture resistance
JP3849244B2 (en) Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
JP5076959B2 (en) Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method
JP4325503B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP5618044B2 (en) Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP3846246B2 (en) Steel pipe manufacturing method
JP2009228099A (en) Uoe steel pipe for line pipe, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250