JP2013137131A - In-field heat treatment device - Google Patents

In-field heat treatment device Download PDF

Info

Publication number
JP2013137131A
JP2013137131A JP2011287424A JP2011287424A JP2013137131A JP 2013137131 A JP2013137131 A JP 2013137131A JP 2011287424 A JP2011287424 A JP 2011287424A JP 2011287424 A JP2011287424 A JP 2011287424A JP 2013137131 A JP2013137131 A JP 2013137131A
Authority
JP
Japan
Prior art keywords
magnetic field
heat treatment
protrusion
superconducting coil
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011287424A
Other languages
Japanese (ja)
Inventor
Ryoichi Hirose
量一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Superconductor Technology Inc
Original Assignee
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Superconductor Technology Inc filed Critical Japan Superconductor Technology Inc
Priority to JP2011287424A priority Critical patent/JP2013137131A/en
Priority to PCT/JP2012/082810 priority patent/WO2013099702A1/en
Publication of JP2013137131A publication Critical patent/JP2013137131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Abstract

PROBLEM TO BE SOLVED: To compactly design a height dimension of an in-field heat treatment device using a non-coolant-type superconductive magnet.SOLUTION: A height dimension of an in-field heat treatment device using a non-coolant-type superconductive magnet is compactly designed by: forming a protrusion 3b on a side section of a cylindrical, vertically-facing vacuum heat insulation container 3; causing a heat-conducting member 5 in a transcalent conductor connected to a superconductive coil 2 to extend inside a protrusion 1b in a radiation shield 1 inside the protrusion 3b; arranging, facing vertically downwards, a two-stage refrigeration machine 4 at the site of the protrusion 1b in the radiation shield 1; and by connecting the two-stage refrigeration end 4b thereof to the heat-conducting member 5 that has been extended inside the protrusion 1b.

Description

本発明は、被処理部材に磁場を印加しながら熱処理する磁場中熱処理装置に関する。   The present invention relates to a heat treatment apparatus in a magnetic field that performs heat treatment while applying a magnetic field to a member to be treated.

MRAM(Magnetic Random Access Memory)や磁気抵抗効果型ヘッド等に用いられる半導体素子を製造する際には、被処理部材に平行磁場を印加しながら熱処理を行う磁場中熱処理装置が用いられている。この磁場中熱処理装置には、被処理部材を収納する筒状の炉容器の周囲に超電導磁石を配置して、炉容器内に平行磁場を形成するとともに、炉容器内の被処理部材を加熱するヒータ等の加熱手段を設けたものが用いられている(例えば、特許文献1参照)。超電導磁石で磁場を形成する磁場中熱処理装置は、通常の電磁石を使用するものに較べて消費電力が少なく、かつ、磁界強度の強い磁場を形成できる利点がある。   When manufacturing a semiconductor element used for an MRAM (Magnetic Random Access Memory), a magnetoresistive head, or the like, a heat treatment apparatus in a magnetic field that performs heat treatment while applying a parallel magnetic field to a member to be processed is used. In this heat treatment apparatus in a magnetic field, a superconducting magnet is disposed around a cylindrical furnace vessel that accommodates a member to be treated, thereby forming a parallel magnetic field in the furnace vessel and heating the member to be treated in the furnace vessel. What provided heating means, such as a heater, is used (for example, refer to patent documents 1). A heat treatment apparatus in a magnetic field that forms a magnetic field with a superconducting magnet has an advantage that it can form a magnetic field with low power consumption and a strong magnetic field strength as compared with an apparatus using an ordinary electromagnet.

上述した半導体素子の製造に用いられる磁場中熱処理装置は、クリーンルーム内に設置されることが多い。超電導磁石には、真空断熱容器内で、超電導コイルを液体ヘリウム等の液体冷媒に浸漬して冷却する冷媒型のものと、超電導コイルを冷凍機の冷却端で冷却する無冷媒型のものとがあり、無冷媒型のものは、ヘリウムガス等の冷媒ガスを放出する恐れがないので、クリーンルーム内に設置する磁場中熱処理装置には好適である。   The above-described heat treatment apparatus in a magnetic field used for manufacturing the semiconductor element is often installed in a clean room. There are two types of superconducting magnets: a refrigerant type that cools the superconducting coil by immersing it in a liquid refrigerant such as liquid helium, and a non-refrigerant type that cools the superconducting coil at the cooling end of the refrigerator. The non-refrigerant type is suitable for a heat treatment apparatus in a magnetic field installed in a clean room because there is no risk of releasing a refrigerant gas such as helium gas.

特許文献1に記載された磁場中熱処理装置は、筒状の炉容器が鉛直向きに配置される貫通孔を設けた筒状の真空断熱容器に、炉容器内に平行磁場を形成する無冷媒型の超電導磁石を配置し、筒状鉛直向きの真空断熱容器の下面側に冷凍機を鉛直上向きに配置して、その冷却端を真空断熱容器内の超電導コイルに接続している。   The heat treatment apparatus in a magnetic field described in Patent Document 1 is a refrigerant-free type that forms a parallel magnetic field in a furnace container in a cylindrical vacuum heat insulating container provided with a through hole in which a cylindrical furnace container is arranged vertically. The superconducting magnet is disposed, the refrigerator is disposed vertically upward on the lower surface side of the cylindrical vertical vacuum heat insulating container, and the cooling end is connected to the superconducting coil in the vacuum heat insulating container.

特開2001−102211号公報JP 2001-102111 A

特許文献1に記載された無冷媒型の超電導磁石を用いた磁場中熱処理装置は、筒状鉛直向きの真空断熱容器の下面側に冷凍機を鉛直上向きに配置して、真空断熱容器内の超電導コイルに接続しているので、炉容器への被処理部材の装填機構を含めた全体の高さ寸法が大きくなり、クリーンルーム内に設置する際の高さ寸法制約が厳しくなる問題がある。   A magnetic field heat treatment apparatus using a refrigerant-free superconducting magnet described in Patent Document 1 has a refrigerator placed vertically upward on the lower surface side of a cylindrical vertical vacuum insulation container, and the superconductivity in the vacuum insulation container Since it is connected to the coil, there is a problem that the entire height dimension including the mechanism for loading the member to be processed into the furnace vessel becomes large, and the height dimension restriction when installing in the clean room becomes severe.

そこで、本発明の課題は、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計できるようにすることである。   Therefore, an object of the present invention is to make it possible to design a height dimension of a heat treatment apparatus in a magnetic field using a refrigerant-free superconducting magnet in a compact manner.

上記の課題を解決するために、本発明は、被処理部材を収納した筒状の炉容器が鉛直向きに挿入される貫通孔を設けた筒状鉛直向きの真空断熱容器に、前記貫通孔に配置される炉容器内に平行磁場を形成する超電導コイルを配置して、前記炉容器内の被処理部材を加熱する加熱手段を設け、前記超電導コイルを冷凍機の冷却端で冷却する磁場中熱処理装置において、前記筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に前記超電導コイルに接続した熱良導体の熱伝導部材を延出させ、前記真空断熱容器の突出部の部位に前記冷凍機を配置して、その冷却端を前記突出部内に延出させた前記熱伝導部材に接続した構成を採用した。   In order to solve the above-described problems, the present invention provides a cylindrical vertical vacuum insulation container provided with a through-hole into which a cylindrical furnace container containing a member to be processed is inserted in the vertical direction. A superconducting coil for forming a parallel magnetic field is arranged in the arranged furnace vessel, a heating means for heating a member to be treated in the furnace vessel is provided, and a heat treatment in a magnetic field for cooling the superconducting coil at a cooling end of a refrigerator In the apparatus, a protruding portion is formed at a side portion of the cylindrical vertically insulated vacuum insulating container, and a heat conductive member of a good thermal conductor connected to the superconducting coil is extended into the protruding portion, and the protruding portion of the vacuum insulating container The structure which connected the said refrigerator to the heat conductive member which has arrange | positioned the said refrigerator in this site | part and extended the cooling end in the said protrusion part was employ | adopted.

すなわち、筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に超電導コイルに接続した熱良導体の熱伝導部材を延出させ、真空断熱容器の突出部の部位に冷凍機を配置して、その冷却端を突出部内に延出させた熱伝導部材に接続することにより、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計できるようにした。   That is, a protruding portion is formed on the side of the cylindrical vertical vacuum heat insulating container, and a heat conductive member of a good thermal conductor connected to the superconducting coil is extended into the protruding portion, and the protruding portion of the vacuum insulating container is frozen. By arranging the machine and connecting its cooling end to the heat conduction member extended into the protruding part, the height dimension of the magnetic field heat treatment apparatus using a refrigerant-free superconducting magnet can be designed compactly did.

前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも一対のコイルを、前記超電導コイル内側の磁場中心を含む磁場軸に垂直な面に対して対称に配置することにより、炉容器内に平行磁場をより良好に形成することができる。   The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least a pair of coils of the plurality of coils Is arranged symmetrically with respect to a plane perpendicular to the magnetic field axis including the magnetic field center inside the superconducting coil, a parallel magnetic field can be more favorably formed in the furnace vessel.

前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも1つを、前記超電導コイル内側における磁場と逆向きの磁場を発生させるように、順向きの磁場を発生させる他のコイルの外周側に配置することにより、逆向きの磁場を発生させる外周側のコイルによって、超電導コイルの外周側での漏洩磁場を小さくすることができる。   The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least one of the plurality of coils is The outer coil that generates the magnetic field in the opposite direction is disposed by the outer coil side of the other coil that generates the forward magnetic field so as to generate the magnetic field in the opposite direction to the magnetic field inside the superconducting coil. The leakage magnetic field on the outer peripheral side of the superconducting coil can be reduced.

前記冷凍機は2段式のパルスチューブ冷凍機とするのが好ましい。パルスチューブ冷凍機は、蓄冷材を往復運動させることなく固定するので、メンテナンスを楽にすることができる。   The refrigerator is preferably a two-stage pulse tube refrigerator. Since the pulse tube refrigerator fixes the regenerator material without reciprocating, maintenance can be facilitated.

本発明に係る磁場中熱処理装置は、筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に超電導コイルに接続した熱良導体の熱伝導部材を延出させ、真空断熱容器の突出部の部位に冷凍機を鉛直向きに配置して、その冷却端を突出部内に延出させた熱伝導部材に接続するようにしたので、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計することができる。   The heat treatment apparatus in a magnetic field according to the present invention forms a protrusion on the side of a cylindrical vertical vacuum heat insulating container, and extends a heat conductive member of a good thermal conductor connected to the superconducting coil in the protrusion to Since the refrigerator is arranged vertically at the projecting part of the container and its cooling end is connected to the heat conducting member extended into the projecting part, it is in a magnetic field using a refrigerant-free superconducting magnet. The height dimension of the heat treatment apparatus can be designed compactly.

磁場中熱処理装置の実施形態を示す縦断面図Longitudinal sectional view showing an embodiment of a heat treatment apparatus in a magnetic field 図1の超電導コイルを示す切欠き斜視図Cutaway perspective view showing the superconducting coil of FIG. 図2の変形例を示す切欠き斜視図Notched perspective view showing a modification of FIG.

以下、図面に基づき、本発明の実施形態を説明する。この磁場中熱処理装置は、図1に示すように、鉛直向き円筒形で中心孔1aを有する輻射シールド1の中に鉛直向きソレノイド型の超電導コイル2が配置され、輻射シールド1が鉛直向きの貫通孔3aを有する筒状の真空断熱容器3に、中心孔1aに貫通孔3a部を通して収納されている。熱処理される被処理物Mを収納した筒状真空の炉容器21は、真空断熱容器3の貫通孔3aに鉛直向きに配置されており、超電導コイル2によって炉容器21内の筒軸方向に均一な平行磁場が形成される。炉容器21には被処理物Mを周囲から加熱するヒータ22が設けられ、図示は省略するが、外周側が水冷されるようになっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in this magnetic field heat treatment apparatus, a vertically-oriented solenoid type superconducting coil 2 is arranged in a radiation shield 1 having a vertically-oriented cylindrical shape and a central hole 1a, and the radiation shield 1 penetrates vertically. A cylindrical vacuum heat insulating container 3 having a hole 3a is accommodated in the center hole 1a through the through hole 3a. A cylindrical vacuum furnace vessel 21 containing a workpiece M to be heat-treated is arranged vertically in the through hole 3a of the vacuum heat insulating vessel 3 and is uniformly distributed in the cylinder axis direction in the furnace vessel 21 by the superconducting coil 2. A parallel magnetic field is formed. The furnace vessel 21 is provided with a heater 22 that heats the workpiece M from the surroundings. Although not shown, the outer peripheral side is water-cooled.

前記輻射シールド1と真空断熱容器3の側部には、それぞれ突出部1b、3bが形成され、真空断熱容器3の突出部3bの上面に、2段式のパルスチューブ冷凍機4が鉛直下向きに取り付けられている。超電導コイル2の下端面には熱良導体の銅で形成された熱伝導部材5が接続されて、真空断熱容器3の突出部3bの中の輻射シールド1の突出部1b内に延出されており、冷凍機4の1段冷却端4aが輻射シールド1の突出部1bに接続され、2段冷却端4bが突出部1b内に延出された熱伝導部材5に接続されている。したがって、冷凍機4が高さ方向に大きく突出することがなく、装置全体の高さ寸法がコンパクトに設計されている。なお、冷凍機4の1段冷却端4aは輻射シールド1を約40Kに冷却し、2段冷却端4bは熱伝導部材5を介して超電導コイル2を約4Kに冷却する。   Protrusions 1b and 3b are formed on the side portions of the radiation shield 1 and the vacuum heat insulating container 3, respectively, and a two-stage pulse tube refrigerator 4 is placed vertically downward on the upper surface of the protrusion 3b of the vacuum heat insulating container 3. It is attached. A heat conducting member 5 formed of copper as a good thermal conductor is connected to the lower end surface of the superconducting coil 2 and extends into the protruding portion 1b of the radiation shield 1 in the protruding portion 3b of the vacuum heat insulating container 3. The first stage cooling end 4a of the refrigerator 4 is connected to the protruding portion 1b of the radiation shield 1, and the second stage cooling end 4b is connected to the heat conducting member 5 extending into the protruding portion 1b. Therefore, the refrigerator 4 does not protrude greatly in the height direction, and the height of the entire apparatus is designed to be compact. The first stage cooling end 4 a of the refrigerator 4 cools the radiation shield 1 to about 40 K, and the second stage cooling end 4 b cools the superconducting coil 2 to about 4 K via the heat conducting member 5.

図2は、前記超電導コイル2を示す。この超電導コイル2は、その全長に亙って延びるメインコイル2aと、超電導コイル2の内側の磁場中心Oを含む磁場軸Sに垂直な面に対して対称に配置された一対のコレクションコイル2bとからなる。メインコイル2aは超電導コイル2の内側に、磁場中心Oで凸形状の磁場Gを発生させ、一対のコレクションコイル2bは磁場中心Oで凹形状の磁場Gを発生させる。したがって、炉容器21が配置される超電導コイル2の内側にはこれらの磁場G、Gが合成された均一な平行磁場Gが形成される。 FIG. 2 shows the superconducting coil 2. The superconducting coil 2 has a main coil 2a extending over its entire length, a pair of collection coils 2b arranged symmetrically with respect to a plane perpendicular to the magnetic field axis S including the magnetic field center O inside the superconducting coil 2. Consists of. The main coil 2 a generates a convex magnetic field G 1 at the magnetic field center O inside the superconducting coil 2, and the pair of collection coils 2 b generates a concave magnetic field G 2 at the magnetic field center O. Thus, the inside of the superconducting coil 2 the reactor vessel 21 is arranged these fields G 1, G 2 uniform parallel magnetic field G T synthesized is formed.

なお、前記メインコイル2aを省略して、磁場中心Oに対して対称に配置した一対のコイルをメインコイルとすることもできる。この場合は、実施形態のものよりは磁場の平行度が低下するが、メインコイル2aのみを配置した場合よりは磁場の平行度を向上させることができる。   The main coil 2a may be omitted, and a pair of coils arranged symmetrically with respect to the magnetic field center O may be used as the main coil. In this case, the parallelism of the magnetic field is lower than that of the embodiment, but the parallelism of the magnetic field can be improved as compared with the case where only the main coil 2a is arranged.

図3は、前記超電導コイル2の変形例を示す。この変形例では、前記メインコイル2aの外周側に、メインコイル2aが発生する磁場Gと逆向きの磁場Gを発生させる2つのシールドコイル2cが配置されている。この変形例では、超電導コイル2の外周側でのメインコイル2aの磁場Gをシールドコイル2cの逆向きの磁場Gが打ち消し、超電導コイル2の外周側での漏洩磁場を小さくする。超電導コイル2の内周側では、メインコイル2aの磁場Gの打ち消し量はシールドコイル2cが遠い外周側に配置されているので少なく、十分に大きい磁界Gが形成される。なお、シールドコイル2cの配置数は2つに限定されることはない。 FIG. 3 shows a modification of the superconducting coil 2. In this modification, the outer periphery of the main coil 2a, 2 single shield coil 2c generating a magnetic field G 1 and the magnetic field G 3 in the opposite direction to the main coils 2a occurs is located. In this modification, cancel the magnetic field G 1 of the main coil 2a at the outer peripheral side of the superconducting coil 2 is the magnetic field G 3 opposite the shield coil 2c, to reduce the leakage magnetic field at the outer peripheral side of the superconducting coil 2. The inner periphery of the superconducting coil 2, the amount cancellation of the magnetic field G 1 of the main coil 2a is small since the shield coil 2c is disposed farther outer peripheral side, a sufficiently large magnetic field G T is formed. The number of shield coils 2c arranged is not limited to two.

上述した実施形態では、冷凍機をパルスチューブ冷凍機とし、真空断熱容器の突出部に鉛直下向きに取り付けたが、冷凍機はギフォードマクマホン冷凍機等の他のタイプのものとすることもでき、鉛直上向きまたは水平向きに取り付けることもできる。   In the embodiment described above, the refrigerator is a pulse tube refrigerator, and is attached vertically downward to the protrusion of the vacuum heat insulating container, but the refrigerator can be of other types such as a Gifford McMahon refrigerator, It can also be mounted upwards or horizontally.

1 輻射シールド
1a 中心孔
1b 突出部
2 超電導コイル
2a メインコイル
2b コレクションコイル
2c シールドコイル
3 真空断熱容器
3a 貫通孔
3b 突出部
4 冷凍機
4a 1段冷却端
4b 2段冷却端
5 熱伝導部材
21 炉容器
22 ヒータ
DESCRIPTION OF SYMBOLS 1 Radiation shield 1a Center hole 1b Protrusion part 2 Superconducting coil 2a Main coil 2b Collection coil 2c Shield coil 3 Vacuum heat insulation container 3a Through-hole 3b Protrusion part 4 Refrigerator 4a First stage cooling end 4b Two stage cooling end 5 Heat conduction member 21 Furnace Container 22 heater

Claims (4)

被処理部材を収納した筒状の炉容器が鉛直向きに挿入される貫通孔を設けた筒状鉛直向きの真空断熱容器に、前記貫通孔に配置される炉容器内に平行磁場を形成する超電導コイルを配置して、前記炉容器内の被処理部材を加熱する加熱手段を設け、前記超電導コイルを冷凍機の冷却端で冷却する磁場中熱処理装置において、前記筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に前記超電導コイルに接続した熱良導体の熱伝導部材を延出させ、前記真空断熱容器の突出部の部位に前記冷凍機を配置して、その冷却端を前記突出部内に延出させた前記熱伝導部材に接続したことを特徴とする磁場中熱処理装置。   Superconductivity for forming a parallel magnetic field in a furnace vessel arranged in the through hole in a cylindrical vertical vacuum insulation vessel provided with a through hole into which a cylindrical furnace vessel containing a member to be processed is vertically inserted In the heat treatment apparatus in a magnetic field in which a coil is disposed to heat a member to be processed in the furnace vessel and the superconducting coil is cooled at a cooling end of a refrigerator, A protrusion is formed on the side, a heat conducting member of a good thermal conductor connected to the superconducting coil is extended into the protrusion, the refrigerator is disposed at the protrusion of the vacuum heat insulating container, and the cooling is performed. A heat treatment apparatus in a magnetic field, characterized in that an end is connected to the heat conducting member that extends into the protrusion. 前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも一対のコイルを、前記超電導コイル内側の磁場中心を含む磁場軸に垂直な面に対して対称に配置した請求項1に記載の磁場中熱処理装置。   The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least a pair of coils of the plurality of coils 2. The heat treatment apparatus in a magnetic field according to claim 1, wherein the heat treatment apparatus is arranged symmetrically with respect to a plane perpendicular to a magnetic field axis including a magnetic field center inside the superconducting coil. 前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも1つを、前記超電導コイル内側における磁場と逆向きの磁場を発生させるように、順向きの磁場を発生させる他のコイルの外周側に配置した請求項1または2に記載の磁場中熱処理装置。   The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least one of the plurality of coils is The heat treatment apparatus in a magnetic field according to claim 1 or 2, which is disposed on the outer peripheral side of another coil for generating a forward magnetic field so as to generate a magnetic field opposite to the magnetic field inside the superconducting coil. 前記冷凍機を2段式のパルスチューブ冷凍機とした請求項1乃至3のいずれかに記載の磁場中熱処理装置。   The heat treatment apparatus in a magnetic field according to any one of claims 1 to 3, wherein the refrigerator is a two-stage pulse tube refrigerator.
JP2011287424A 2011-12-28 2011-12-28 In-field heat treatment device Pending JP2013137131A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011287424A JP2013137131A (en) 2011-12-28 2011-12-28 In-field heat treatment device
PCT/JP2012/082810 WO2013099702A1 (en) 2011-12-28 2012-12-18 In-field heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287424A JP2013137131A (en) 2011-12-28 2011-12-28 In-field heat treatment device

Publications (1)

Publication Number Publication Date
JP2013137131A true JP2013137131A (en) 2013-07-11

Family

ID=48697194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287424A Pending JP2013137131A (en) 2011-12-28 2011-12-28 In-field heat treatment device

Country Status (2)

Country Link
JP (1) JP2013137131A (en)
WO (1) WO2013099702A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9655291B2 (en) 2015-06-26 2017-05-16 Kobe Steel, Ltd. Multilayer magnetic shield
KR101969593B1 (en) * 2018-12-10 2019-08-13 케이. 에이. 티. (주) System
WO2024014783A1 (en) * 2022-07-12 2024-01-18 한국재료연구원 Magnetic field heat treatment device for manufacturing anisotropic bulk permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878737A (en) * 1994-08-31 1996-03-22 Mitsubishi Electric Corp Superconductive magnet
JP2001102211A (en) * 1999-09-28 2001-04-13 Sumitomo Heavy Ind Ltd Heat treatment system in magnetic field
JP2003151822A (en) * 2001-11-19 2003-05-23 Railway Technical Res Inst Cooling device for superconductive coil
JP2006261335A (en) * 2005-03-16 2006-09-28 Kobe Steel Ltd Superconducting magnet apparatus
JP2008177183A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Superconducting electromagnet device and mri equipment employing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878737A (en) * 1994-08-31 1996-03-22 Mitsubishi Electric Corp Superconductive magnet
JP2001102211A (en) * 1999-09-28 2001-04-13 Sumitomo Heavy Ind Ltd Heat treatment system in magnetic field
JP2003151822A (en) * 2001-11-19 2003-05-23 Railway Technical Res Inst Cooling device for superconductive coil
JP2006261335A (en) * 2005-03-16 2006-09-28 Kobe Steel Ltd Superconducting magnet apparatus
JP2008177183A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Superconducting electromagnet device and mri equipment employing it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9655291B2 (en) 2015-06-26 2017-05-16 Kobe Steel, Ltd. Multilayer magnetic shield
KR101969593B1 (en) * 2018-12-10 2019-08-13 케이. 에이. 티. (주) System
WO2024014783A1 (en) * 2022-07-12 2024-01-18 한국재료연구원 Magnetic field heat treatment device for manufacturing anisotropic bulk permanent magnet

Also Published As

Publication number Publication date
WO2013099702A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US8162037B2 (en) Device for generating a pulsed magnetic field
US8914086B2 (en) Superconducting magnet system
JP2004202245A (en) Conduction cooled passive shield mri magnet
JP2016034509A (en) Tubular thermal switch for refrigerant-free magnet
JP6393928B2 (en) Cryogenic cooling device and system
US20170052237A1 (en) Superconducting Magnet Device or Magnetic Resonance Imaging Apparatus
WO2013099702A1 (en) In-field heat treatment device
CN103065759B (en) Superconducting magnet supporting and positioning system
EP2860781A1 (en) Cooling container
KR100282562B1 (en) Superconducting magnet device
JP5198358B2 (en) Superconducting magnet device
KR101356642B1 (en) Superconductive electromagnet device
US20160180996A1 (en) Superconducting magnet system
WO2013099703A1 (en) In-field heat treatment device
US11037713B2 (en) Helical superconducting undulator for 3rd and 4th generation of synchrotron light source and FELs
JP2010232432A (en) Magnetic field generator and method for using the same
JP2007184383A (en) Magnetic field forming device
JP6491828B2 (en) Superconducting magnet system
JP2013138057A (en) Superconducting magnet device
GB2545436A (en) A Cylindrical superconducting magnet
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
JP5307628B2 (en) Superconducting magnet system
JP5920924B2 (en) Superconducting magnet device and magnetic resonance imaging device
JP6760511B2 (en) Superconducting electromagnet device
US20220384074A1 (en) Conduction Cooled Superconducting Undulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224