JP2013137131A - In-field heat treatment device - Google Patents
In-field heat treatment device Download PDFInfo
- Publication number
- JP2013137131A JP2013137131A JP2011287424A JP2011287424A JP2013137131A JP 2013137131 A JP2013137131 A JP 2013137131A JP 2011287424 A JP2011287424 A JP 2011287424A JP 2011287424 A JP2011287424 A JP 2011287424A JP 2013137131 A JP2013137131 A JP 2013137131A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- heat treatment
- protrusion
- superconducting coil
- treatment apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 30
- 238000009413 insulation Methods 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims description 15
- 230000002093 peripheral Effects 0.000 claims description 6
- 239000002470 thermal conductor Substances 0.000 claims description 5
- 238000005057 refrigeration Methods 0.000 abstract 2
- 239000004020 conductor Substances 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000006011 modification reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B17/00—Furnaces of a kind not covered by any preceding group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
Abstract
Description
本発明は、被処理部材に磁場を印加しながら熱処理する磁場中熱処理装置に関する。 The present invention relates to a heat treatment apparatus in a magnetic field that performs heat treatment while applying a magnetic field to a member to be treated.
MRAM(Magnetic Random Access Memory)や磁気抵抗効果型ヘッド等に用いられる半導体素子を製造する際には、被処理部材に平行磁場を印加しながら熱処理を行う磁場中熱処理装置が用いられている。この磁場中熱処理装置には、被処理部材を収納する筒状の炉容器の周囲に超電導磁石を配置して、炉容器内に平行磁場を形成するとともに、炉容器内の被処理部材を加熱するヒータ等の加熱手段を設けたものが用いられている(例えば、特許文献1参照)。超電導磁石で磁場を形成する磁場中熱処理装置は、通常の電磁石を使用するものに較べて消費電力が少なく、かつ、磁界強度の強い磁場を形成できる利点がある。 When manufacturing a semiconductor element used for an MRAM (Magnetic Random Access Memory), a magnetoresistive head, or the like, a heat treatment apparatus in a magnetic field that performs heat treatment while applying a parallel magnetic field to a member to be processed is used. In this heat treatment apparatus in a magnetic field, a superconducting magnet is disposed around a cylindrical furnace vessel that accommodates a member to be treated, thereby forming a parallel magnetic field in the furnace vessel and heating the member to be treated in the furnace vessel. What provided heating means, such as a heater, is used (for example, refer to patent documents 1). A heat treatment apparatus in a magnetic field that forms a magnetic field with a superconducting magnet has an advantage that it can form a magnetic field with low power consumption and a strong magnetic field strength as compared with an apparatus using an ordinary electromagnet.
上述した半導体素子の製造に用いられる磁場中熱処理装置は、クリーンルーム内に設置されることが多い。超電導磁石には、真空断熱容器内で、超電導コイルを液体ヘリウム等の液体冷媒に浸漬して冷却する冷媒型のものと、超電導コイルを冷凍機の冷却端で冷却する無冷媒型のものとがあり、無冷媒型のものは、ヘリウムガス等の冷媒ガスを放出する恐れがないので、クリーンルーム内に設置する磁場中熱処理装置には好適である。 The above-described heat treatment apparatus in a magnetic field used for manufacturing the semiconductor element is often installed in a clean room. There are two types of superconducting magnets: a refrigerant type that cools the superconducting coil by immersing it in a liquid refrigerant such as liquid helium, and a non-refrigerant type that cools the superconducting coil at the cooling end of the refrigerator. The non-refrigerant type is suitable for a heat treatment apparatus in a magnetic field installed in a clean room because there is no risk of releasing a refrigerant gas such as helium gas.
特許文献1に記載された磁場中熱処理装置は、筒状の炉容器が鉛直向きに配置される貫通孔を設けた筒状の真空断熱容器に、炉容器内に平行磁場を形成する無冷媒型の超電導磁石を配置し、筒状鉛直向きの真空断熱容器の下面側に冷凍機を鉛直上向きに配置して、その冷却端を真空断熱容器内の超電導コイルに接続している。 The heat treatment apparatus in a magnetic field described in Patent Document 1 is a refrigerant-free type that forms a parallel magnetic field in a furnace container in a cylindrical vacuum heat insulating container provided with a through hole in which a cylindrical furnace container is arranged vertically. The superconducting magnet is disposed, the refrigerator is disposed vertically upward on the lower surface side of the cylindrical vertical vacuum heat insulating container, and the cooling end is connected to the superconducting coil in the vacuum heat insulating container.
特許文献1に記載された無冷媒型の超電導磁石を用いた磁場中熱処理装置は、筒状鉛直向きの真空断熱容器の下面側に冷凍機を鉛直上向きに配置して、真空断熱容器内の超電導コイルに接続しているので、炉容器への被処理部材の装填機構を含めた全体の高さ寸法が大きくなり、クリーンルーム内に設置する際の高さ寸法制約が厳しくなる問題がある。 A magnetic field heat treatment apparatus using a refrigerant-free superconducting magnet described in Patent Document 1 has a refrigerator placed vertically upward on the lower surface side of a cylindrical vertical vacuum insulation container, and the superconductivity in the vacuum insulation container Since it is connected to the coil, there is a problem that the entire height dimension including the mechanism for loading the member to be processed into the furnace vessel becomes large, and the height dimension restriction when installing in the clean room becomes severe.
そこで、本発明の課題は、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計できるようにすることである。 Therefore, an object of the present invention is to make it possible to design a height dimension of a heat treatment apparatus in a magnetic field using a refrigerant-free superconducting magnet in a compact manner.
上記の課題を解決するために、本発明は、被処理部材を収納した筒状の炉容器が鉛直向きに挿入される貫通孔を設けた筒状鉛直向きの真空断熱容器に、前記貫通孔に配置される炉容器内に平行磁場を形成する超電導コイルを配置して、前記炉容器内の被処理部材を加熱する加熱手段を設け、前記超電導コイルを冷凍機の冷却端で冷却する磁場中熱処理装置において、前記筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に前記超電導コイルに接続した熱良導体の熱伝導部材を延出させ、前記真空断熱容器の突出部の部位に前記冷凍機を配置して、その冷却端を前記突出部内に延出させた前記熱伝導部材に接続した構成を採用した。 In order to solve the above-described problems, the present invention provides a cylindrical vertical vacuum insulation container provided with a through-hole into which a cylindrical furnace container containing a member to be processed is inserted in the vertical direction. A superconducting coil for forming a parallel magnetic field is arranged in the arranged furnace vessel, a heating means for heating a member to be treated in the furnace vessel is provided, and a heat treatment in a magnetic field for cooling the superconducting coil at a cooling end of a refrigerator In the apparatus, a protruding portion is formed at a side portion of the cylindrical vertically insulated vacuum insulating container, and a heat conductive member of a good thermal conductor connected to the superconducting coil is extended into the protruding portion, and the protruding portion of the vacuum insulating container The structure which connected the said refrigerator to the heat conductive member which has arrange | positioned the said refrigerator in this site | part and extended the cooling end in the said protrusion part was employ | adopted.
すなわち、筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に超電導コイルに接続した熱良導体の熱伝導部材を延出させ、真空断熱容器の突出部の部位に冷凍機を配置して、その冷却端を突出部内に延出させた熱伝導部材に接続することにより、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計できるようにした。 That is, a protruding portion is formed on the side of the cylindrical vertical vacuum heat insulating container, and a heat conductive member of a good thermal conductor connected to the superconducting coil is extended into the protruding portion, and the protruding portion of the vacuum insulating container is frozen. By arranging the machine and connecting its cooling end to the heat conduction member extended into the protruding part, the height dimension of the magnetic field heat treatment apparatus using a refrigerant-free superconducting magnet can be designed compactly did.
前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも一対のコイルを、前記超電導コイル内側の磁場中心を含む磁場軸に垂直な面に対して対称に配置することにより、炉容器内に平行磁場をより良好に形成することができる。 The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least a pair of coils of the plurality of coils Is arranged symmetrically with respect to a plane perpendicular to the magnetic field axis including the magnetic field center inside the superconducting coil, a parallel magnetic field can be more favorably formed in the furnace vessel.
前記超電導コイルが、鉛直向きの同軸上に配置された複数の円筒形コイルの組み合わせからなり、前記炉容器内に鉛直向きの平行磁場を形成するものであり、前記複数のコイルの少なくとも1つを、前記超電導コイル内側における磁場と逆向きの磁場を発生させるように、順向きの磁場を発生させる他のコイルの外周側に配置することにより、逆向きの磁場を発生させる外周側のコイルによって、超電導コイルの外周側での漏洩磁場を小さくすることができる。 The superconducting coil is a combination of a plurality of cylindrical coils arranged coaxially in the vertical direction, and forms a vertical parallel magnetic field in the furnace vessel. At least one of the plurality of coils is The outer coil that generates the magnetic field in the opposite direction is disposed by the outer coil side of the other coil that generates the forward magnetic field so as to generate the magnetic field in the opposite direction to the magnetic field inside the superconducting coil. The leakage magnetic field on the outer peripheral side of the superconducting coil can be reduced.
前記冷凍機は2段式のパルスチューブ冷凍機とするのが好ましい。パルスチューブ冷凍機は、蓄冷材を往復運動させることなく固定するので、メンテナンスを楽にすることができる。 The refrigerator is preferably a two-stage pulse tube refrigerator. Since the pulse tube refrigerator fixes the regenerator material without reciprocating, maintenance can be facilitated.
本発明に係る磁場中熱処理装置は、筒状鉛直向きの真空断熱容器の側部に突出部を形成し、この突出部内に超電導コイルに接続した熱良導体の熱伝導部材を延出させ、真空断熱容器の突出部の部位に冷凍機を鉛直向きに配置して、その冷却端を突出部内に延出させた熱伝導部材に接続するようにしたので、無冷媒型の超電導磁石を用いた磁場中熱処理装置の高さ寸法をコンパクトに設計することができる。 The heat treatment apparatus in a magnetic field according to the present invention forms a protrusion on the side of a cylindrical vertical vacuum heat insulating container, and extends a heat conductive member of a good thermal conductor connected to the superconducting coil in the protrusion to Since the refrigerator is arranged vertically at the projecting part of the container and its cooling end is connected to the heat conducting member extended into the projecting part, it is in a magnetic field using a refrigerant-free superconducting magnet. The height dimension of the heat treatment apparatus can be designed compactly.
以下、図面に基づき、本発明の実施形態を説明する。この磁場中熱処理装置は、図1に示すように、鉛直向き円筒形で中心孔1aを有する輻射シールド1の中に鉛直向きソレノイド型の超電導コイル2が配置され、輻射シールド1が鉛直向きの貫通孔3aを有する筒状の真空断熱容器3に、中心孔1aに貫通孔3a部を通して収納されている。熱処理される被処理物Mを収納した筒状真空の炉容器21は、真空断熱容器3の貫通孔3aに鉛直向きに配置されており、超電導コイル2によって炉容器21内の筒軸方向に均一な平行磁場が形成される。炉容器21には被処理物Mを周囲から加熱するヒータ22が設けられ、図示は省略するが、外周側が水冷されるようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in this magnetic field heat treatment apparatus, a vertically-oriented solenoid type
前記輻射シールド1と真空断熱容器3の側部には、それぞれ突出部1b、3bが形成され、真空断熱容器3の突出部3bの上面に、2段式のパルスチューブ冷凍機4が鉛直下向きに取り付けられている。超電導コイル2の下端面には熱良導体の銅で形成された熱伝導部材5が接続されて、真空断熱容器3の突出部3bの中の輻射シールド1の突出部1b内に延出されており、冷凍機4の1段冷却端4aが輻射シールド1の突出部1bに接続され、2段冷却端4bが突出部1b内に延出された熱伝導部材5に接続されている。したがって、冷凍機4が高さ方向に大きく突出することがなく、装置全体の高さ寸法がコンパクトに設計されている。なお、冷凍機4の1段冷却端4aは輻射シールド1を約40Kに冷却し、2段冷却端4bは熱伝導部材5を介して超電導コイル2を約4Kに冷却する。
図2は、前記超電導コイル2を示す。この超電導コイル2は、その全長に亙って延びるメインコイル2aと、超電導コイル2の内側の磁場中心Oを含む磁場軸Sに垂直な面に対して対称に配置された一対のコレクションコイル2bとからなる。メインコイル2aは超電導コイル2の内側に、磁場中心Oで凸形状の磁場G1を発生させ、一対のコレクションコイル2bは磁場中心Oで凹形状の磁場G2を発生させる。したがって、炉容器21が配置される超電導コイル2の内側にはこれらの磁場G1、G2が合成された均一な平行磁場GTが形成される。
FIG. 2 shows the
なお、前記メインコイル2aを省略して、磁場中心Oに対して対称に配置した一対のコイルをメインコイルとすることもできる。この場合は、実施形態のものよりは磁場の平行度が低下するが、メインコイル2aのみを配置した場合よりは磁場の平行度を向上させることができる。
The
図3は、前記超電導コイル2の変形例を示す。この変形例では、前記メインコイル2aの外周側に、メインコイル2aが発生する磁場G1と逆向きの磁場G3を発生させる2つのシールドコイル2cが配置されている。この変形例では、超電導コイル2の外周側でのメインコイル2aの磁場G1をシールドコイル2cの逆向きの磁場G3が打ち消し、超電導コイル2の外周側での漏洩磁場を小さくする。超電導コイル2の内周側では、メインコイル2aの磁場G1の打ち消し量はシールドコイル2cが遠い外周側に配置されているので少なく、十分に大きい磁界GTが形成される。なお、シールドコイル2cの配置数は2つに限定されることはない。
FIG. 3 shows a modification of the
上述した実施形態では、冷凍機をパルスチューブ冷凍機とし、真空断熱容器の突出部に鉛直下向きに取り付けたが、冷凍機はギフォードマクマホン冷凍機等の他のタイプのものとすることもでき、鉛直上向きまたは水平向きに取り付けることもできる。 In the embodiment described above, the refrigerator is a pulse tube refrigerator, and is attached vertically downward to the protrusion of the vacuum heat insulating container, but the refrigerator can be of other types such as a Gifford McMahon refrigerator, It can also be mounted upwards or horizontally.
1 輻射シールド
1a 中心孔
1b 突出部
2 超電導コイル
2a メインコイル
2b コレクションコイル
2c シールドコイル
3 真空断熱容器
3a 貫通孔
3b 突出部
4 冷凍機
4a 1段冷却端
4b 2段冷却端
5 熱伝導部材
21 炉容器
22 ヒータ
DESCRIPTION OF SYMBOLS 1
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011287424A JP2013137131A (en) | 2011-12-28 | 2011-12-28 | In-field heat treatment device |
PCT/JP2012/082810 WO2013099702A1 (en) | 2011-12-28 | 2012-12-18 | In-field heat treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011287424A JP2013137131A (en) | 2011-12-28 | 2011-12-28 | In-field heat treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013137131A true JP2013137131A (en) | 2013-07-11 |
Family
ID=48697194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011287424A Pending JP2013137131A (en) | 2011-12-28 | 2011-12-28 | In-field heat treatment device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013137131A (en) |
WO (1) | WO2013099702A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9655291B2 (en) | 2015-06-26 | 2017-05-16 | Kobe Steel, Ltd. | Multilayer magnetic shield |
KR101969593B1 (en) * | 2018-12-10 | 2019-08-13 | 케이. 에이. 티. (주) | System |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0878737A (en) * | 1994-08-31 | 1996-03-22 | Mitsubishi Electric Corp | Superconductive magnet |
JP2001102211A (en) * | 1999-09-28 | 2001-04-13 | Sumitomo Heavy Ind Ltd | Heat treatment system in magnetic field |
JP2003151822A (en) * | 2001-11-19 | 2003-05-23 | Railway Technical Res Inst | Cooling device for superconductive coil |
JP2006261335A (en) * | 2005-03-16 | 2006-09-28 | Kobe Steel Ltd | Superconducting magnet apparatus |
JP2008177183A (en) * | 2007-01-16 | 2008-07-31 | Mitsubishi Electric Corp | Superconducting electromagnet device and mri equipment employing it |
-
2011
- 2011-12-28 JP JP2011287424A patent/JP2013137131A/en active Pending
-
2012
- 2012-12-18 WO PCT/JP2012/082810 patent/WO2013099702A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0878737A (en) * | 1994-08-31 | 1996-03-22 | Mitsubishi Electric Corp | Superconductive magnet |
JP2001102211A (en) * | 1999-09-28 | 2001-04-13 | Sumitomo Heavy Ind Ltd | Heat treatment system in magnetic field |
JP2003151822A (en) * | 2001-11-19 | 2003-05-23 | Railway Technical Res Inst | Cooling device for superconductive coil |
JP2006261335A (en) * | 2005-03-16 | 2006-09-28 | Kobe Steel Ltd | Superconducting magnet apparatus |
JP2008177183A (en) * | 2007-01-16 | 2008-07-31 | Mitsubishi Electric Corp | Superconducting electromagnet device and mri equipment employing it |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9655291B2 (en) | 2015-06-26 | 2017-05-16 | Kobe Steel, Ltd. | Multilayer magnetic shield |
KR101969593B1 (en) * | 2018-12-10 | 2019-08-13 | 케이. 에이. 티. (주) | System |
Also Published As
Publication number | Publication date |
---|---|
WO2013099702A1 (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8162037B2 (en) | Device for generating a pulsed magnetic field | |
US9508477B2 (en) | Superconducting magnet system | |
JP2004202245A (en) | Conduction cooled passive shield mri magnet | |
JP6393928B2 (en) | Cryogenic cooling device and system | |
EP2860781A1 (en) | Cooling container | |
WO2013099702A1 (en) | In-field heat treatment device | |
US20170052237A1 (en) | Superconducting Magnet Device or Magnetic Resonance Imaging Apparatus | |
JP6700479B2 (en) | Magnet system with heat radiation screen | |
KR100282562B1 (en) | Superconducting magnet device | |
JP5198358B2 (en) | Superconducting magnet device | |
CN103065759B (en) | Superconducting magnet supporting and positioning system | |
US11037713B2 (en) | Helical superconducting undulator for 3rd and 4th generation of synchrotron light source and FELs | |
WO2013099703A1 (en) | In-field heat treatment device | |
GB2545436A (en) | A Cylindrical superconducting magnet | |
JP2013138057A (en) | Superconducting magnet device | |
KR101356641B1 (en) | Superconductive electromagnet device | |
CN102985769A (en) | Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment | |
JP2007184383A (en) | Magnetic field forming device | |
JP5307628B2 (en) | Superconducting magnet system | |
JP6491828B2 (en) | Superconducting magnet system | |
JP5920924B2 (en) | Superconducting magnet device and magnetic resonance imaging device | |
JP6760511B2 (en) | Superconducting electromagnet device | |
US20220384074A1 (en) | Conduction Cooled Superconducting Undulator | |
JP2012182248A (en) | Cryogenic container | |
JP2017069358A (en) | Super conducting magnet device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141224 |