JP5307628B2 - Superconducting magnet system - Google Patents

Superconducting magnet system Download PDF

Info

Publication number
JP5307628B2
JP5307628B2 JP2009121781A JP2009121781A JP5307628B2 JP 5307628 B2 JP5307628 B2 JP 5307628B2 JP 2009121781 A JP2009121781 A JP 2009121781A JP 2009121781 A JP2009121781 A JP 2009121781A JP 5307628 B2 JP5307628 B2 JP 5307628B2
Authority
JP
Japan
Prior art keywords
superconducting
diameter
electromagnet apparatus
refrigerator
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009121781A
Other languages
Japanese (ja)
Other versions
JP2010272617A (en
Inventor
修一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009121781A priority Critical patent/JP5307628B2/en
Publication of JP2010272617A publication Critical patent/JP2010272617A/en
Application granted granted Critical
Publication of JP5307628B2 publication Critical patent/JP5307628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

この発明は、極低温冷凍機を搭載した超電導電磁石装置に関するものである。   The present invention relates to a superconducting electromagnet apparatus equipped with a cryogenic refrigerator.

従来の超電導マグネットとして超電導コイルが、極低温冷媒槽としてのヘリウム槽内に満たされている液体ヘリウムに浸漬されて極低温に保持され、ヘリウム槽を包囲するように配置された真空槽とヘリウム槽間との間は真空に保持され、かつ輻射熱侵入を低減するための熱シールドが配置され、ヘリウム槽を冷却するGM(ギフォード、マクマホン)式4K冷凍機が真空槽の冷凍機取付口に取り付けられ、蒸発するヘリウムガスを再凝縮する構成の技術が開示されている(例えば、特許文献1)。   A superconducting coil as a conventional superconducting magnet is immersed in liquid helium filled in a helium tank as a cryogenic refrigerant tank and kept at a cryogenic temperature, and is arranged so as to surround the helium tank and a helium tank. A GM (Gifford, McMahon) 4K refrigerator that cools the helium tank is attached to the refrigerator attachment port of the vacuum tank, and a heat shield for reducing radiant heat penetration is arranged. A technique of recondensing evaporating helium gas is disclosed (for example, Patent Document 1).

特開平06−069029号公報(図11)JP 06-069029 A (FIG. 11)

上記のような構成の超電導マグネットの冷凍機をメンテナンスのため代替機と交換しようとして真空槽から取り外す際、ヘリウム槽内のヘリウムガスが噴出し、この噴出するヘリウムガスにより冷凍機取付口付近に凍結空気水分が付着する。この状態のままで代替冷凍機を取り付けようとすると、取付不具合の原因となり、また良好な熱接続の妨げとなる。従って、上記凍結空気水分を除去するためにホットヘリウムガスを吹き付けているが、このホットヘリウムガスにより超電導コイルに熱が伝わり、超電導コイルがクエンチ(超電導破壊)してしまう恐れがあり、従来より超電導コイルの発生する磁場を下げてメンテナンスを行っており、その為、メンテナンスに多くの時間が費やされ、メンテナンス費用の低減化の障害になるという問題点がある。   When a superconducting magnet refrigerator with the above configuration is removed from the vacuum chamber to replace it with an alternative machine for maintenance, helium gas in the helium chamber spouts out, and the helium gas that is ejected freezes in the vicinity of the refrigerator attachment port. Air moisture adheres. If an alternative refrigerator is installed in this state, it causes a mounting failure and prevents good heat connection. Therefore, hot helium gas is blown to remove the frozen air moisture, but heat is transferred to the superconducting coil by the hot helium gas, and the superconducting coil may be quenched (superconducting breakdown). Maintenance is performed by lowering the magnetic field generated by the coil. Therefore, a lot of time is spent on the maintenance, and there is a problem that the maintenance cost is reduced.

この発明は上記のような課題を解決するためになされたものであって、冷凍機の交換時に超電導コイルの磁場を下げる必要のない超電導電磁石装置を提供する。   The present invention has been made to solve the above-described problems, and provides a superconducting electromagnet apparatus that does not require lowering the magnetic field of a superconducting coil when replacing a refrigerator.

この発明に係る超電導電磁石装置は、中心軸を有して配置された超電導コイルと、前記超電導コイルを収納するとともに、前記超電導コイルを冷却する冷媒が貯液された冷媒槽と、前記冷媒槽を包囲する真空槽と、前記真空槽に設けられた冷凍機取付口に配置された冷凍機とが設けられた超伝導電磁石装置において、前記冷凍機取付口には前記冷媒槽の軸方向中心に突出して、ガスの導入口を有する取付口先端部とが設けられているとともに、前記取付口先端部は、その端面が前記冷媒中に達するように設けられていることによって、前記導入口を介してガスが前記冷媒槽に導入される際に、前記ガスが前記冷媒槽内で拡散して、前記超電導コイルに直接触れないように設けられているものである。 Superconducting magnet apparatus according to the present invention, the arranged superconducting coil has a central axis, as well as accommodating the superconducting coil, a coolant tank coolant for cooling the superconducting coil is reservoir, the coolant vessel a vacuum chamber enclosing at superconducting magnet apparatus and provided refrigeration installation opening on arranged refrigerator provided in the vacuum chamber, wherein the refrigerator mounting opening projecting axial center of said refrigerant tank And an attachment port front end portion having a gas introduction port, and the attachment port front end portion is provided through the introduction port so that an end surface thereof reaches the refrigerant. When the gas is introduced into the refrigerant tank, the gas diffuses in the refrigerant tank so as not to directly touch the superconducting coil.

上記のような構成の超電導電磁石装置であるので、冷凍機をメンテナンスの為、代替機と交換する際、冷凍機取付口付近に凍結する空気水分を除去するホットヘリウムガスを吹き付けても、超電導コイルにホットヘリウムガスの熱が直接伝わらない。
従って、超電導コイルが励磁状態である場合でも冷凍機の交換が可能となり、超電導コイルの磁場を下げるすなわち無励磁状態とする必要がなく、冷凍機交換のメンテナンス時間の短縮と、その費用の低減が可能となるという効果がある。
Since it is a superconducting electromagnet device configured as described above, when replacing the refrigerator with an alternative machine for maintenance, the superconducting coil can be used even when hot helium gas is removed near the refrigerator attachment port to remove the frozen air moisture. The heat of hot helium gas is not transmitted directly.
Therefore, it is possible to replace the refrigerator even when the superconducting coil is in an excited state, and it is not necessary to lower the magnetic field of the superconducting coil, that is, not to be in an unexcited state. There is an effect that it becomes possible.

実施の形態1の超電導電磁石装置を示す断面図である。1 is a cross-sectional view showing a superconducting electromagnet device according to Embodiment 1. FIG. 実施の形態2の超電導電磁石装置を示す断面図である。It is sectional drawing which shows the superconducting electromagnet apparatus of Embodiment 2. 実施の形態3の超電導電磁石装置を示す断面図である。6 is a cross-sectional view showing a superconducting electromagnet device according to Embodiment 3. FIG. 実施の形態4の超電導電磁石装置を示す断面図である。It is sectional drawing which shows the superconducting electromagnet apparatus of Embodiment 4.

実施の形態1.
以下、この発明の実施の形態1による超電導電磁石装置を図に基づいて説明する。
図1は、例えば横置きされたMRI用の超電導電磁石装置100を示す断面図である。図1において、複数のソレノイド状の超電導コイルすなわち、4個の小径超電導コイル1、2個の大径超電導コイル2が中心軸20上に、互いに相対して設けられている。この超電導コイル1,2は、極低温冷媒槽としてのヘリウム槽3内に満たされている極低温冷媒としての液体ヘリウム4に浸漬されて極低温に保持されている。真空槽5は前記ヘリウム槽3を包囲するように設けられ、この真空槽5とヘリウム槽3との間を真空排気して断熱している。熱シールド6は前記ヘリウム槽3と真空槽5との間にヘリウム槽3を包囲するように円筒同軸状に配設され、ヘリウム槽3への熱侵入を減少させている。
なお、図示省略した励磁電源の出力が同じく図示省略したパワーリードを介して前記超電導コイル1,2に供給されている。また、図1および後述する図2〜図4は、横置き型の超電導電磁石装置100の断面図であり、大径コイル2の径方向頂部分が冷媒である液体ヘリウム4に浸漬されてない状態を示しているが、これはヘリウム槽3の液体ヘリウム4が減少した状態であり、大径コイル2の全体の内、9/10程度は液体ヘリウム4に浸漬されていて超電導状態が保持されている。
Embodiment 1 FIG.
Hereinafter, a superconducting electromagnet apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing, for example, a superconducting electromagnet apparatus 100 for MRI placed horizontally. In FIG. 1, a plurality of solenoid-like superconducting coils, that is, four small-diameter superconducting coils 1 and two large-diameter superconducting coils 2 are provided on a central axis 20 so as to be opposed to each other. The superconducting coils 1 and 2 are immersed in liquid helium 4 as a cryogenic refrigerant filled in a helium tank 3 as a cryogenic refrigerant tank and kept at a cryogenic temperature. The vacuum tank 5 is provided so as to surround the helium tank 3, and the vacuum tank 5 and the helium tank 3 are evacuated to insulate them. The heat shield 6 is disposed between the helium tank 3 and the vacuum tank 5 so as to surround the helium tank 3 so as to surround the helium tank 3 and reduce heat intrusion into the helium tank 3.
Note that the output of an excitation power supply (not shown) is supplied to the superconducting coils 1 and 2 via a power lead (not shown). FIG. 1 and FIGS. 2 to 4 to be described later are cross-sectional views of the horizontal type superconducting electromagnet apparatus 100, in which the radial top portion of the large-diameter coil 2 is not immersed in the liquid helium 4 which is a refrigerant This is a state in which the liquid helium 4 in the helium tank 3 is reduced, and about 9/10 of the entire large-diameter coil 2 is immersed in the liquid helium 4 to maintain the superconducting state. Yes.

真空槽5に設けられた冷凍機取付口5aの先端には超電導電磁石装置100の中心軸20側に突出して取付口先端部5bが設けられている。この取付口先端部5bの端面5cが液体ヘリウム4の中に達するような構成を有している。なお、取付口先端部5bの真空槽5から端面5cに到る長さは、超電導電磁石装置100の運転中に液体ヘリウム4が蒸発して液面が低下しても、超電導コイル1、2のクエンチが発生しない液面に前記端面5cがヘリウム液中にあるような長さが設定されている。前記取付口先端部5bは、例えば円筒形状であり、この円筒内を後述するメンテナンス時のホットヘリウムガスが通って、液体ヘリウム4中で拡散する。このように冷凍機取付口5aに設けられた取付口先端部5bの端面5cが、常に液体ヘリウム4の中に存在する構成を採用しているので、以下の冷凍機7の交換時の作業効率が向上する。   At the tip of the refrigerator attachment port 5 a provided in the vacuum chamber 5, there is provided an attachment port tip 5 b that protrudes toward the central axis 20 side of the superconducting electromagnet apparatus 100. The end surface 5c of the mounting port tip 5b reaches the liquid helium 4. Note that the length from the vacuum chamber 5 to the end surface 5c of the attachment port front end portion 5b is such that even if the liquid helium 4 evaporates during operation of the superconducting electromagnet apparatus 100 and the liquid level decreases, the superconducting coils 1 and 2 A length is set such that the end face 5c is in the helium liquid at a liquid level where no quench occurs. The attachment port front end portion 5b has, for example, a cylindrical shape, and hot helium gas for maintenance, which will be described later, passes through the inside of the cylinder and diffuses in the liquid helium 4. Since the end face 5c of the attachment port tip 5b provided in the refrigerator attachment port 5a is always present in the liquid helium 4 as described above, the following work efficiency when replacing the refrigerator 7 is as follows. Will improve.

MRI用等の超電導電磁石装置100は、定期的にメンテナンスが実施され、とりわけ冷凍機7は、整備された代替機と定期的に交換される。従来技術で示された超電導マグネットの冷凍機の交換は、前述のように超電導マグネットの励磁を停止して行う必要があった。しかしながら、この実施の形態1による超電導電磁石装置100の超電導コイル1,2の励磁は、冷凍機7の交換時において、励磁を停止する必要がない。その理由を以下の冷凍機7の交換手順によって説明する。
まず、図1に示す冷凍機7を取り外す。この時、ヘリウム槽3内の液体ヘリウム4が噴出し、冷凍機取付口5a付近に凍結空気水分が付着する。以上は従来技術と同様である。上記凍結空気水分を除去するため、ホットヘリウムガスを冷凍機取付口5aの周囲に吹き付けるが、このホットヘリウムガスの一部は取付口先端部5bの内部を通り、その端面5cから液体ヘリウム4内に入り拡散する。従って、吹き付けによるホットヘリウムガスが大径コイル2のヘリウム液面から露出した部位に直接触れず、ホットヘリウムガスの熱が大径コイル2に伝わらない為、大径コイル2のクエンチ発生のリスクは少ない。その後、代替の冷凍機7を所定位置に設置することで作業が完了する。
The superconducting electromagnet apparatus 100 for MRI or the like is regularly maintained, and in particular, the refrigerator 7 is regularly replaced with a serviced substitute machine. The replacement of the superconducting magnet refrigerator shown in the prior art had to be performed after stopping the excitation of the superconducting magnet as described above. However, the excitation of the superconducting coils 1 and 2 of the superconducting electromagnet apparatus 100 according to the first embodiment does not need to be stopped when the refrigerator 7 is replaced. The reason will be explained by the following replacement procedure of the refrigerator 7.
First, the refrigerator 7 shown in FIG. 1 is removed. At this time, liquid helium 4 in the helium tank 3 is ejected, and frozen air moisture adheres to the vicinity of the refrigerator attachment port 5a. The above is the same as in the prior art. In order to remove the frozen air moisture, hot helium gas is blown around the refrigerator attachment port 5a. A part of this hot helium gas passes through the inside of the attachment port front end portion 5b, and from the end surface 5c into the liquid helium 4 Enter and diffuse. Accordingly, the hot helium gas generated by spraying does not directly touch the portion exposed from the helium liquid surface of the large-diameter coil 2, and the heat of the hot helium gas is not transmitted to the large-diameter coil 2, so the risk of quenching of the large-diameter coil 2 is Few. Thereafter, the work is completed by installing the alternative refrigerator 7 at a predetermined position.

このようにこの実施の形態1による超電導電磁石装置100は、冷凍機7のメンテナンス代替機との交換に際して、超電導コイル1,2が励磁中であっても、クエンチ発生の恐れが少なく、従って励磁を停止する必要がない。
従って、冷凍機交換の作業時間の短縮、コストの低減が可能となり、ひいては省エネ化が可能となる。また、磁場を下げる必要がないので超電導コイルに余分な繰り返し応力が印加されず、安全な運転が継続される。
As described above, the superconducting electromagnet apparatus 100 according to the first embodiment has a low possibility of quenching even when the superconducting coils 1 and 2 are being excited when the refrigerator 7 is replaced with a maintenance substitute machine. There is no need to stop.
Therefore, it is possible to shorten the work time for replacing the refrigerator and reduce the cost, and thus to save energy. In addition, since it is not necessary to lower the magnetic field, excessive repeated stress is not applied to the superconducting coil, and safe operation is continued.

なおこの実施の形態1では、ソレノイド状の超電導コイル1,2が複数個軸方向に相対して設置された例を示したが、これに限らず超電導コイルが1個の場合であってもよい。また、ソレノイド状の超電導コイルである必要もなく、レーストラック型や鞍型で軸方向に巻線形成された超電導コイルが、中心軸を有し、対象して複数個設けられた、例えば粒子線加速装置のビーム集束用4極電磁石等の超電導電磁石装置であってもよい。   In the first embodiment, an example is shown in which a plurality of solenoid-like superconducting coils 1 and 2 are installed opposite to each other in the axial direction. However, the present invention is not limited to this and may be a single superconducting coil. . In addition, it is not necessary to be a solenoidal superconducting coil, and a superconducting coil wound in the axial direction in a racetrack type or a saddle type has a central axis, and a plurality of target superconducting coils are provided. It may be a superconducting electromagnet device such as a beam focusing quadrupole electromagnet of an accelerator.

実施の形態2.
次に実施の形態2を図に基づいて説明する。
この実施の形態2による超電導電磁石装置100は、前述した実施の形態1の図1の取付口先端部5bに代替して、図2に示すように先端付近にホットヘリウムガス吹き出し穴5eが設けられた取付口先端部5dを有し、この取付口先端部5dの端面5cに逆キャップ状の遮風体8を付着して設けたものである。これ以外は前記実施の形態1と同様である。このような構成の超電導電磁石装置100の冷凍機7の交換は実施の形態1と同様な手順をとる。実施の形態1との差異は取付口先端部5d内を通るホットヘリウムガスは吹き出し穴5eから吹き出た後逆キャップ状の遮風体8によって拡散され、大径コイル2に直接触れることがない。従って超電導コイル1,2の磁場を下げることなく冷凍機の交換を行っても超電導コイル2のクエンチ発生のリスクが少ないので、メンテナンス時間の短縮とメンテナンス費用の低減が可能となる。
なお、この実施の形態2でも超電導コイルが複数個軸方向に相対して配置される例を示したが、1個でもよく、またソレノイド状に限定されるものではない。
Embodiment 2. FIG.
Next, the second embodiment will be described with reference to the drawings.
The superconducting electromagnet apparatus 100 according to the second embodiment is provided with a hot helium gas blowing hole 5e near the tip as shown in FIG. 2 in place of the mounting port tip 5b of FIG. 1 of the first embodiment described above. A mounting cap tip 5d is provided, and a reverse cap-shaped wind shield 8 is attached to an end surface 5c of the mounting port tip 5d. Other than this, the second embodiment is the same as the first embodiment. Replacement of the refrigerator 7 in the superconducting electromagnet apparatus 100 having such a configuration follows the same procedure as in the first embodiment. The difference from the first embodiment is that the hot helium gas passing through the inside of the attachment port front end portion 5d is diffused by the reverse cap-shaped wind shield 8 after being blown out from the blowing hole 5e, and does not directly touch the large-diameter coil 2. Therefore, even if the refrigerator is replaced without lowering the magnetic field of the superconducting coils 1 and 2, the risk of quenching of the superconducting coil 2 is small, so that maintenance time and maintenance costs can be reduced.
In the second embodiment, an example in which a plurality of superconducting coils are arranged in the axial direction is shown. However, the number of superconducting coils is not limited to a solenoid shape.

実施の形態3.
この実施の形態3の超電導電磁石装置100は、前述した実施の形態1の取付口先端部5bに代替して、図3に示すように内径側に突出する長さが短い取付口先端部5fが設けられているとともに、ヘリウム槽3の内径部位で相対して設けられた複数の小径ソレノイド状超電導コイル1の間の枠板3aから外径方向に突出し相対して、大径超電導コイル2をホットヘリウムガスから遮蔽するように設けられた遮蔽壁3bと、この遮蔽壁3b間をつなぐ遮風板3cが設けられている。前記取付口先端部5fの端面5cと遮風板3cとはホットヘリウムガスが吹き出す空間となる隙間Gを有する。なお、この実施の形態3の超電導コイル1,2はソレノイド状である。このような構成を備えた超電導電磁石装置100の冷凍機7の交換に際しても、吹き付けられたホットヘリウムガスが遮風板3cで熱交換されるとともに遮蔽壁3bによって大径コイル2に直接触れることがないので、超電導コイル1,2の磁場を下げる必要がなく、メンテナンス時間の短縮と費用の低減が可能となる。
Embodiment 3 FIG.
In the superconducting electromagnet apparatus 100 according to the third embodiment, instead of the mounting port front end portion 5b according to the first embodiment described above, a mounting port front end portion 5f that protrudes toward the inner diameter side as shown in FIG. The large-diameter superconducting coil 2 is hotly protruded from the frame plate 3a between a plurality of small-diameter solenoid-like superconducting coils 1 provided at the inner diameter portion of the helium tank 3 and opposed to each other. A shielding wall 3b provided to shield from helium gas and a wind shielding plate 3c connecting the shielding wall 3b are provided. The end face 5c of the attachment port front end portion 5f and the wind shielding plate 3c have a gap G serving as a space for blowing out hot helium gas. The superconducting coils 1 and 2 of the third embodiment are in the form of solenoids. When replacing the refrigerator 7 of the superconducting electromagnet apparatus 100 having such a configuration, the sprayed hot helium gas is heat-exchanged by the wind shielding plate 3c and directly touches the large-diameter coil 2 by the shielding wall 3b. Therefore, it is not necessary to lower the magnetic field of the superconducting coils 1 and 2, and the maintenance time and cost can be reduced.

実施の形態4.
この実施の形態4による超電導電磁石装置100は、図4に示すように、前述した実施の形態3と相異する点は遮風板3cに、外径方向に突出し相対して設けられた遮風板フィン3dと、ヘリウム槽3の外径部位から内径方向に突出し、相対して設けられた複数の外径部フィン3eを追加して設けるとともに、前記外径部フィン3eと遮風板フィン3dとが軸方向に交互に配置されていることにあり、それ以外は実施の形態3と同様である。このような構成の超電導電磁石装置100は、冷凍機7の交換時に吹き付けられたホットヘリウムガスは遮風板フィン3dと外径部フィン3eとの間を通り熱交換を行うので、ホットヘリウムガスが大径超電導コイル2に直接触れることがない。
従って、この実施の形態4でも前記実施の形態1〜3と同様に、冷凍機交換時の超電導コイル1,2の磁場を下げる必要がない。
Embodiment 4 FIG.
As shown in FIG. 4, the superconducting electromagnet apparatus 100 according to the fourth embodiment is different from the above-described third embodiment in that the windshield 3c projects from the windshield plate 3c and faces the windshield 3c. A plate fin 3d and a plurality of outer diameter fins 3e that protrude in the inner diameter direction from the outer diameter portion of the helium tank 3 and are provided in addition to each other are provided, and the outer diameter fins 3e and the wind shielding plate fins 3d are provided. Are alternately arranged in the axial direction, and the rest is the same as in the third embodiment. In the superconducting electromagnet apparatus 100 having such a configuration, the hot helium gas blown when the refrigerator 7 is exchanged passes between the wind shielding plate fins 3d and the outer diameter fins 3e and performs heat exchange. There is no direct contact with the large-diameter superconducting coil 2.
Therefore, in the fourth embodiment, similarly to the first to third embodiments, it is not necessary to lower the magnetic field of the superconducting coils 1 and 2 when replacing the refrigerator.

なお、上記実施の形態3,4で示した遮蔽壁3b、遮風板3c、遮風板フィン3d、外径部フィン3eの材質は、銅やアルミ等の熱良導体を使用している。   In addition, the heat shielding conductors, such as copper and aluminum, are used for the material of the shielding wall 3b, the wind shielding plate 3c, the wind shielding plate fin 3d, and the outer diameter fin 3e shown in the third and fourth embodiments.

この発明は、MRI用超電導電磁石装置や、磁気浮上および高エネルギ加速用等の超電導電磁石装置に利用可能である。   The present invention can be used for a superconducting electromagnet apparatus for MRI and a superconducting electromagnet apparatus for magnetic levitation and high energy acceleration.

1 小径超電導コイル、2 大径超電導コイル、3 ヘリウム槽、3a 枠板、
3b 遮蔽壁、3c 遮風板、3d 遮風板フィン、3e 外径部フィン、5 真空槽、
5a 冷凍機取付口、5b 取付口先端部、5c 端面、5d 取付口先端部、
5e 吹き出し穴、7 冷凍機、8 遮風体、20 中心軸、
100 超電導電磁石装置。
1 Small-diameter superconducting coil, 2 Large-diameter superconducting coil, 3 Helium tank, 3a Frame plate,
3b shielding wall, 3c wind shielding plate, 3d wind shielding plate fin, 3e outer diameter fin, 5 vacuum chamber,
5a Refrigerator mounting port, 5b Mounting port tip, 5c End surface, 5d Mounting port tip,
5e blowout hole, 7 refrigerator, 8 wind shield, 20 central axis,
100 Superconducting electromagnet device.

Claims (7)

中心軸を有して配置された超電導コイルと、前記超電導コイルを収納するとともに、前記超電導コイルを冷却する冷媒が貯液された冷媒槽と、前記冷媒槽を包囲する真空槽と、前記真空槽に設けられた冷凍機取付口に配置された冷凍機とが設けられた超電導電磁石装置において、前記冷凍機取付口には前記冷媒槽の軸方向中心に突出して、ガスの導入口を有する取付口先端部とが設けられているとともに、前記取付口先端部は、その端面が前記冷媒中に達するように設けられていることによって、前記導入口を介してガスが前記冷媒槽に導入される際に、前記ガスが前記冷媒槽内で拡散して、前記超電導コイルに直接触れないように設けられていることを特徴とする超電導電磁石装置。 The central axis superconducting coils arranged with a said with housing the superconducting coil, the refrigerant tank in which the refrigerant is liquid storage of the superconducting coil is cooled, the vacuum chamber surrounding said refrigerant tank, said vacuum tank a superconducting magnet apparatus and refrigerator attachment opening to arranged refrigerator provided is provided on the the refrigerator mounting opening and projects axially center of the refrigerant tank, the mounting hole having a inlet gas When the gas is introduced into the refrigerant tank through the introduction port , the tip end portion of the attachment port is provided so that the end surface thereof reaches the refrigerant. Further, the superconducting electromagnet apparatus is provided so that the gas diffuses in the refrigerant tank and does not directly touch the superconducting coil. 前記取付口先端部は、その先端付近にガス吹き出し穴が設けられているとともに、その端面に逆キャップ状の遮風体が設けられていることを特徴とする請求項1に記載の超電導電磁石装置。 2. The superconducting electromagnet apparatus according to claim 1, wherein a gas blowing hole is provided in the vicinity of the tip of the attachment port tip, and a reverse cap-shaped wind shield is provided on the end surface. 3. 前記超電導コイルが、ソレノイド状の超電導コイルであることを特徴とする請求項1に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to claim 1, wherein the superconducting coil is a solenoidal superconducting coil. 前記ソレノイド状の超電導コイルは、小径、大径の超電導コイルが複数個軸方向に相対して設けられているものであり、前記冷媒槽の内径部位の枠板から外径方向に突出し、相対して前記大径超電導コイルを互いに遮蔽するように設けられた遮蔽壁と、前記遮蔽壁間に取り付けられた遮風体とが設けられているとともに、前記取付口先端部は、その端面が前記遮風体と隙間を有して設けられていることを特徴とする請求項に記載の超電導電磁石装置。 The solenoid-shaped superconducting coil is provided with a plurality of small-diameter and large-diameter superconducting coils opposed in the axial direction, and protrudes from the frame plate of the inner diameter portion of the refrigerant tank in the outer diameter direction. a shielding wall provided so as to shield one another the large diameter superconducting coils Te, wherein with the Futei barrier attached to the shielding walls are provided, the attachment port tip shielding said its end face Futei The superconducting electromagnet apparatus according to claim 3 , wherein the superconducting magnet apparatus is provided with a gap. 前記ソレノイド状の超電導コイルは、小径、大径の超電導コイルが複数個軸方向に相対して設けられているものであり、前記冷媒槽の外径部位から内径方向に突出して設けられた複数の外径部フィンと、前記冷媒槽の内径部位の枠板から外径方向に突出し、相対して前記大径超電導コイルを互いに遮蔽するように設けられた遮蔽壁と、前記遮蔽壁間に取り付けられた遮風板には外径方向に突出して設けられた複数の遮風板フィンとが設けられ、かつ前記外径部フィンと前記遮風板フィンとが軸方向に交互に配置されているとともに、前記取付口先端部は、その端面が前記遮風板と隙間を有して設けられていることを特徴とする請求項に記載の超電導電磁石装置。 The solenoid-shaped superconducting coil is a plurality of small-diameter and large-diameter superconducting coils provided in a plurality of axial directions, and a plurality of superconducting coils protruding in the inner diameter direction from the outer diameter portion of the refrigerant tank. an outer diameter fin, and the projecting from the frame plate of the inner diameter portion of the refrigerant tank in the outer diameter direction, relative to shield wall the provided large diameter superconducting coils to shield one another, attached to the shield walls The wind shield plate is provided with a plurality of wind shield fins provided to protrude in the outer diameter direction, and the outer diameter fins and the wind shield fins are alternately arranged in the axial direction. The superconducting electromagnet apparatus according to claim 3 , wherein an end surface of the attachment port front end portion is provided with a gap from the wind shielding plate. 前記遮蔽壁と遮風体の材質が、銅またはアルミであることを特徴とする請求項に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to claim 4 , wherein a material of the shielding wall and the wind shield is copper or aluminum. 前記遮蔽壁と遮風体および外径部フィン、遮風体フィンの材質が、銅またはアルミであることを特徴とする請求項に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to claim 5 , wherein the shielding wall, the wind shield, the outer diameter fin, and the wind shield fin are made of copper or aluminum.
JP2009121781A 2009-05-20 2009-05-20 Superconducting magnet system Expired - Fee Related JP5307628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121781A JP5307628B2 (en) 2009-05-20 2009-05-20 Superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121781A JP5307628B2 (en) 2009-05-20 2009-05-20 Superconducting magnet system

Publications (2)

Publication Number Publication Date
JP2010272617A JP2010272617A (en) 2010-12-02
JP5307628B2 true JP5307628B2 (en) 2013-10-02

Family

ID=43420426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121781A Expired - Fee Related JP5307628B2 (en) 2009-05-20 2009-05-20 Superconducting magnet system

Country Status (1)

Country Link
JP (1) JP5307628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974373A (en) * 2019-03-28 2019-07-05 刘丽春 It is a kind of that dual convection current frost-free refrigerator is surround according to electrode law

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438590B2 (en) * 2010-05-12 2014-03-12 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
CN107864547A (en) * 2017-12-11 2018-03-30 合肥中科离子医学技术装备有限公司 The heat-insulating pipe lining device of superconducting magnet in a kind of superconducting cyclotron

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606059B2 (en) * 2004-05-07 2011-01-05 株式会社神戸製鋼所 Cryogenic equipment
JP4354410B2 (en) * 2005-01-18 2009-10-28 株式会社神戸製鋼所 Cryogenic operation method
JP4808465B2 (en) * 2005-11-01 2011-11-02 株式会社神戸製鋼所 Cryogenic equipment
JP2008218809A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Superconducting electromagnet and mri device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974373A (en) * 2019-03-28 2019-07-05 刘丽春 It is a kind of that dual convection current frost-free refrigerator is surround according to electrode law
CN109974373B (en) * 2019-03-28 2020-12-04 山东沃华远达环境科技股份有限公司 Surrounding double convection frost-free refrigerator according to electrode law

Also Published As

Publication number Publication date
JP2010272617A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US20130270451A1 (en) Magnetic Structure For Circular Ion Accelerator
JP5307628B2 (en) Superconducting magnet system
US8922308B2 (en) Systems and methods for alternatingly switching a persistent current switch between a first mode and a second mode
WO2009145149A1 (en) Superconducting magnet device for single crystal puller
CN107003373B (en) system and method for cooling a magnetic resonance imaging apparatus
US8989827B2 (en) Superconducting magnet
KR100282562B1 (en) Superconducting magnet device
JP2007173460A (en) Superconducting electromagnet device
JP6647918B2 (en) Superconducting electromagnet apparatus and magnetic resonance imaging apparatus
JP4039528B2 (en) Vacuum holding method and superconducting machine with vacuum holding
CN112136189B (en) Superconducting magnet
JP4799757B2 (en) Superconducting magnet
KR101478288B1 (en) Cryogenic probestation with re-condensing type of cryogen
JP2009516381A (en) Superconducting magnet system
JP2013137131A (en) In-field heat treatment device
JP6854988B1 (en) Superconducting electromagnet device
WO2013099703A1 (en) In-field heat treatment device
JP2015111010A (en) Cooling source of cycle cooling system and ion microscope using the same
JP4799770B2 (en) Superconducting magnet
WO2019073573A1 (en) Superconducting electromagnet device
JP2019220495A (en) Superconducting electromagnet device
JP4406417B2 (en) Superconducting magnet
KR200473549Y1 (en) Super conducting electric power generation system
JP2004356402A (en) Superconductive electromagnet and mri device using it
JP2001210499A (en) Input coupler for superconducting high-frequency cavity accelerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees