JP2008218809A - Superconducting electromagnet and mri device using the same - Google Patents

Superconducting electromagnet and mri device using the same Download PDF

Info

Publication number
JP2008218809A
JP2008218809A JP2007055788A JP2007055788A JP2008218809A JP 2008218809 A JP2008218809 A JP 2008218809A JP 2007055788 A JP2007055788 A JP 2007055788A JP 2007055788 A JP2007055788 A JP 2007055788A JP 2008218809 A JP2008218809 A JP 2008218809A
Authority
JP
Japan
Prior art keywords
radiant heat
inner peripheral
heat shield
cylindrical portion
peripheral cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055788A
Other languages
Japanese (ja)
Inventor
Shuichi Nakagawa
修一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007055788A priority Critical patent/JP2008218809A/en
Publication of JP2008218809A publication Critical patent/JP2008218809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting electromagnet capable of securing the strength and the necessary heat conduction, using a simple constitution. <P>SOLUTION: The superconducting electromagnet comprises a low-temperature container 1, which contains a cylindrical superconducting coil 9 and is filled with liquid helium 5, a cylindrical radiation heat shield 6 disposed covering the low-temperature container 1 for reducing the radiation heat of the low-temperature container 1, and a vacuum heat-insulating container 2 which houses the radiation heat shield 6 and insulates heat inside under a vacuum, where the radiation heat shield 6 comprises an outer peripheral cylinder portion 61, an inner peripheral cylinder portion 62, and a flange portion 63 blocking the outer peripheral cylinder portion 61 and inner peripheral cylinder portion 62 from each other; and while the outer peripheral cylinder portion 61 and inner peripheral cylinder portion 62 are formed by using aluminum A1100 or A1050, the flange portion 63 is formed using aluminum A5083. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、強度に優れた超電導電磁石およびこれを用いたMRI装置に関するものである。   The present invention relates to a superconducting electromagnet excellent in strength and an MRI apparatus using the same.

従来の超電導電磁石は、例えば医療用の断層撮像装置である磁気共鳴イメージング装置(MRI装置)の静磁場発生源として使用される超電導電磁石は水平型の円筒状のソレノイド型がある。また、患者の開放感と検査技師の患者へのアクセス性のため、水平型の円筒状のソレノイド型のMRI装置の短尺化が進んでいる。低温容器が収納された真空断熱容器(真空断熱容器フランジ部および真空断熱容器外周筒部)があり、低温容器内には主磁場を発生させる超電導メインコイルおよび外部への漏洩磁場を低減させるメインとは逆性の超電導シールドコイルが配置されており、液体ヘリウムが封入されている。   A conventional superconducting magnet is, for example, a horizontal cylindrical solenoid type superconducting magnet used as a static magnetic field generation source of a magnetic resonance imaging apparatus (MRI apparatus) which is a medical tomographic imaging apparatus. In addition, due to the patient's feeling of openness and the accessibility of the laboratory technician to the patient, the horizontal cylindrical solenoid type MRI apparatus is being shortened. There are vacuum insulation containers (vacuum insulation container flange part and vacuum insulation container outer peripheral cylinder part) in which the cryogenic container is housed, and a superconducting main coil that generates the main magnetic field in the cryocontainer and a main that reduces the leakage magnetic field to the outside. Is provided with a reverse superconducting shield coil and filled with liquid helium.

真空断熱容器フランジ部および真空断熱容器外筒と低温容器との間には1つまたは複数の輻射熱シールドが配置されている。低温容器は支持材によって真空断熱容器外周筒部から支持されている。真空断熱容器の内側空間がMRI装置として患者が入るための空間である。低温冷凍機は輻射熱シールドまたは低温容器を冷却して、液体ヘリウムの蒸発量を低減している(例えば、特許文献1参照)。   One or a plurality of radiant heat shields are disposed between the vacuum insulation container flange and the vacuum insulation container outer cylinder and the cryogenic container. The cryogenic container is supported from the outer peripheral cylindrical portion of the vacuum heat insulating container by a support material. The space inside the vacuum insulation container is a space for a patient to enter as an MRI apparatus. The low-temperature refrigerator cools the radiation heat shield or the low-temperature container to reduce the evaporation amount of liquid helium (see, for example, Patent Document 1).

特開平8−215171号公報JP-A-8-215171

従来の超電導電磁石は、輻射熱シールドは低温容器への輻射熱侵入を小さくするため、熱伝導が良く加工性に優れた材料としてアルミが使用される。また、アルミはA1050またはA1100などの熱伝導率が高い純アルミ材料を使用して、極低温冷凍機が輻射熱シールドを冷却する場合に輻射熱シールド全体の温度差がつかないようにしている。しかし、超電導メインコイル、超電導シールドコイルがクエンチ(超電導破壊)した場合には急な磁束の変化により、輻射熱シールドのフランジ部分に発生する渦電流による電磁力に耐えるため、輻射熱シールドのフランジは相応の強度をもたせるため、熱伝導として必要な厚み以上に厚みを増やすか、または補強が必要であるという問題点があった。   In conventional superconducting electromagnets, aluminum is used as a material having good heat conduction and excellent workability because the radiant heat shield reduces the penetration of radiant heat into a cryogenic container. Further, pure aluminum material having high thermal conductivity such as A1050 or A1100 is used for aluminum so that when the cryogenic refrigerator cools the radiant heat shield, the temperature difference of the entire radiant heat shield is not applied. However, when the superconducting main coil and superconducting shield coil are quenched (superconducting breakdown), sudden changes in magnetic flux can withstand electromagnetic force due to eddy current generated in the flange part of the radiant heat shield. In order to provide strength, there is a problem that the thickness is increased beyond the thickness necessary for heat conduction or reinforcement is required.

この発明は上記のような課題を解決するためになされたものであり、簡便な構成にて強度および必要な熱伝導を確保することができる超電導電磁石およびこれを用いたMRI装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a superconducting electromagnet capable of ensuring strength and necessary heat conduction with a simple configuration, and an MRI apparatus using the same. Objective.

この発明は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、外周筒部および内周筒部はアルミA1100またはA1050にて構成され、フランジ部はアルミA5083にて構成されるものである。   The present invention includes a cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container, and radiant heat In a superconducting electromagnet equipped with a vacuum insulation container that houses a shield and vacuum-insulates the inside, the radiant heat shield is composed of an outer peripheral cylindrical part, an inner peripheral cylindrical part, and a flange part that closes the outer peripheral cylindrical part and the inner peripheral cylindrical part. The outer peripheral cylindrical portion and the inner peripheral cylindrical portion are made of aluminum A1100 or A1050, and the flange portion is made of aluminum A5083.

また、この発明は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、フランジ部の外周筒部側の板厚を内周筒部側の板厚より厚く形成したものである。   The present invention also includes a cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, and a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container, In the superconducting electromagnet having a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield includes an outer peripheral cylinder part, an inner peripheral cylinder part, an outer peripheral cylinder part, and a flange part that closes the inner peripheral cylinder part. The plate thickness on the outer peripheral cylinder portion side of the flange portion is formed thicker than the plate thickness on the inner peripheral cylinder portion side.

また、この発明は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドの外周の所望な箇所に、輻射熱シールドの熱伝導特性より熱伝導特性に優れた熱良導体を配設したものである。   The present invention also includes a cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, and a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container, In a superconducting electromagnet equipped with a vacuum heat insulation container that houses the radiant heat shield and insulates the inside of the evacuated heat, a good thermal conductor with better heat conductivity than that of the radiant heat shield is placed at a desired location on the outer periphery of the radiant heat shield. It is set.

また、この発明は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、内周筒部の板厚は、フランジ部と接する箇所の板厚を内周筒部の中央部の板厚より厚く形成したものである。   The present invention also includes a cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, and a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container, In the superconducting electromagnet having a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield includes an outer peripheral cylinder part, an inner peripheral cylinder part, an outer peripheral cylinder part, and a flange part that closes the inner peripheral cylinder part. The plate thickness of the inner peripheral cylinder portion is formed by making the plate thickness of the portion in contact with the flange portion thicker than the plate thickness of the central portion of the inner peripheral cylinder portion.

また、この発明は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、内周筒部を構成する材質は、フランジ部側の材質の強度が内周筒部の中央部の材質の強度より強い材質にて形成したものである。   The present invention also includes a cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, and a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container, In the superconducting electromagnet having a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield includes an outer peripheral cylinder part, an inner peripheral cylinder part, an outer peripheral cylinder part, and a flange part that closes the inner peripheral cylinder part. The material constituting the inner peripheral cylindrical portion is formed of a material whose strength on the flange portion side is stronger than that of the central portion of the inner peripheral cylindrical portion.

この発明の超電導電磁石は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、外周筒部および内周筒部はアルミA1100またはA1050にて構成され、フランジ部はアルミA5083にて構成されているので、熱伝導に優れた特性を有しながら、クエンチ時に発生する電磁力を低減することができる。   The superconducting electromagnet of the present invention includes a cylindrical superconducting coil and a cryogenic container filled with liquid helium, and a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container. And a superconducting electromagnet including a radiant heat shield and a vacuum heat insulating container that thermally insulates the inside of the radiant heat shield, the radiant heat shield includes a flange portion that closes between the outer peripheral cylindrical portion and the inner peripheral cylindrical portion and the outer peripheral cylindrical portion and the inner peripheral cylindrical portion. The outer and inner cylinder parts are made of aluminum A1100 or A1050, and the flange part is made of aluminum A5083. The generated electromagnetic force can be reduced.

また、この発明の超電導電磁は、石円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、フランジ部の内周筒部側の板厚を外周筒部側の板厚より薄く形成したので、熱伝導の低減を防止するとともに、強度を保つことができる。   In addition, the superconducting magnet of the present invention includes a cryogenic container containing a stone cylindrical superconducting coil and filled with liquid helium, and a cylindrical shape disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container. In a superconducting electromagnet equipped with a radiant heat shield and a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield closes between the outer cylinder part and the inner cylinder part and between the outer cylinder part and the inner cylinder part. Since the plate thickness on the inner peripheral cylinder portion side of the flange portion is formed thinner than the plate thickness on the outer peripheral cylinder portion side, it is possible to prevent a reduction in heat conduction and to maintain strength.

また、この発明の超電導電磁は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドの外周の所望な箇所に、輻射熱シールドの熱伝導特性より熱伝導特性に優れた熱良導体を配設したので、熱伝導を改善することができる。   Also, the superconducting magnet of the present invention includes a cylindrical superconducting coil, a cryogenic container filled with liquid helium, and a cylindrical container disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container. In a superconducting electromagnet equipped with a radiant heat shield and a vacuum heat insulating container that houses the radiant heat shield and insulates the inside with a vacuum, heat at a desired location on the outer periphery of the radiant heat shield is superior to the heat conduction characteristics of the radiant heat shield. Since the good conductor is disposed, the heat conduction can be improved.

また、この発明の超電導電磁は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、内周筒部の板厚は、フランジ部と接する箇所の板厚を内周筒部の中央部の板厚より厚く形成したので、熱伝導の低減を防止するとともに、強度を保つことができる。   Also, the superconducting magnet of the present invention includes a cylindrical superconducting coil, a cryogenic container filled with liquid helium, and a cylindrical container disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container. In a superconducting electromagnet including a radiant heat shield and a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield closes between the outer peripheral cylindrical part and the inner peripheral cylindrical part and the outer peripheral cylindrical part and the inner peripheral cylindrical part. Since the plate thickness of the inner peripheral cylinder part is made thicker than the thickness of the central part of the inner cylinder part, the reduction of heat conduction is prevented. , Can keep the strength.

また、この発明の超電導電磁は、円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、低温容器の輻射熱を緩和するために低温容器を覆うように配設された円筒状の輻射熱シールドと、輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、輻射熱シールドは外周筒部および内周筒部と外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、内周筒部を構成する材質は、フランジ部側の材質の強度が内周筒部の中央部の材質の強度より強い材質にて形成したので、熱伝導の低減を防止するとともに、強度を保つことができる。   Also, the superconducting magnet of the present invention includes a cylindrical superconducting coil, a cryogenic container filled with liquid helium, and a cylindrical container disposed so as to cover the cryogenic container in order to reduce the radiant heat of the cryogenic container. In a superconducting electromagnet including a radiant heat shield and a vacuum heat insulating container that houses the radiant heat shield and vacuum-insulates the inside, the radiant heat shield closes between the outer peripheral cylindrical part and the inner peripheral cylindrical part and the outer peripheral cylindrical part and the inner peripheral cylindrical part. The material of the inner cylinder part is composed of a flange part, and the strength of the material on the flange part side is made of a material stronger than that of the material of the center part of the inner cylinder part. In addition, the strength can be maintained.

実施の形態1.
以下、本願発明の実施の形態について説明する。図1は、この発明の実施の形態1における超電導電磁石の構成を示した断面図である。図において、本願発明の超電導電磁石は、円筒状の低温容器1が収納された円筒状の真空断熱容器2にて構成され、低温容器1内には超電導コイル9としての、主磁場を発生させる超電導メインコイル3、および、外部への漏洩磁場を低減させる超電導メインコイル3とは逆性の超電導シールドコイル4とが配置されている。さらに、低温容器1内には液体ヘリウム5が封入されている。そして、低温容器1と真空断熱容器2との間には、低温容器1への輻射熱を緩和するため低温容器1を覆うように輻射熱シールド6が配設されている。そして低温容器1は支持材7によって真空断熱容器2にて支持されている。真空断熱容器2の内側空間部8は超電導電磁石を例えばMRI装置として用いる場合に、患者が入るための空間部分に相当する。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. 1 is a cross-sectional view showing a configuration of a superconducting electromagnet according to Embodiment 1 of the present invention. In the figure, the superconducting electromagnet of the present invention is composed of a cylindrical vacuum heat insulating container 2 in which a cylindrical cryogenic container 1 is housed, and a superconducting coil for generating a main magnetic field as a superconducting coil 9 in the cryogenic container 1. A main coil 3 and a superconducting shield coil 4 opposite to the superconducting main coil 3 for reducing the leakage magnetic field to the outside are arranged. Further, liquid helium 5 is enclosed in the cryogenic container 1. A radiant heat shield 6 is disposed between the low temperature container 1 and the vacuum heat insulating container 2 so as to cover the low temperature container 1 in order to reduce radiant heat to the low temperature container 1. The low temperature container 1 is supported by the vacuum heat insulating container 2 by the support material 7. The inner space 8 of the vacuum heat insulating container 2 corresponds to a space for a patient to enter when using a superconducting electromagnet as an MRI apparatus, for example.

低温冷凍機10は輻射熱シールド6または低温容器1を冷却して、液体ヘリウム5の蒸発量を低減している。ポート11は低温容器1と外部をつなぐ管にて構成され、蒸発した液体ヘリウム5がこのポート11を通ってから超電導電磁石の外部に排出させる。輻射熱シールド6は外周筒部61および内周筒部62と、外周筒部61および内周筒部62間を閉塞するフランジ部63とにて構成されている。そして、外周筒部61および内周筒部62はアルミA1100またはA1050にて構成され、フランジ部63はアルミA5083にて構成される。これら材質の実際に使用される温度での電気抵抗は、以下のとおりである。   The low-temperature refrigerator 10 cools the radiant heat shield 6 or the low-temperature container 1 to reduce the evaporation amount of the liquid helium 5. The port 11 is constituted by a pipe connecting the cryogenic vessel 1 and the outside, and the evaporated liquid helium 5 is discharged to the outside of the superconducting electromagnet after passing through the port 11. The radiant heat shield 6 includes an outer peripheral cylindrical portion 61 and an inner peripheral cylindrical portion 62, and a flange portion 63 that closes between the outer peripheral cylindrical portion 61 and the inner peripheral cylindrical portion 62. And the outer peripheral cylinder part 61 and the inner peripheral cylinder part 62 are comprised with aluminum A1100 or A1050, and the flange part 63 is comprised with aluminum A5083. The electrical resistance at the temperatures at which these materials are actually used is as follows.

Figure 2008218809
Figure 2008218809

上記のように構成された実施の形態1の超電導電磁石によれば、「表1」に示したように、アルミA5083はアルミA1100またはA1050と比べて(温度20Kの時で14.4倍、温度80Kの時で6.7倍)電気抵抗が大きくなり、クエンチ時に発生する過電流が流れにくい。よって、過電流により発生する電磁力が小さくなるので、輻射熱シールドのフランジ部の構造を簡便なものにて形成することが可能となり、板厚を最適な薄さに形成することが可能となる。   According to the superconducting electromagnet of Embodiment 1 configured as described above, as shown in “Table 1,” aluminum A5083 is 14.4 times higher than aluminum A1100 or A1050 (at a temperature of 20K, The electrical resistance increases and the overcurrent generated during quenching does not flow easily. Therefore, since the electromagnetic force generated by the overcurrent is reduced, the structure of the flange portion of the radiant heat shield can be formed with a simple structure, and the plate thickness can be formed to an optimum thickness.

実施の形態2.
図2はこの発明の実施の形態2における超電導電磁石の構成を示した部分断面図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。尚、図2は超電導電磁石の構成の一部の本実施の形態2における特徴的な部分のみを示したものである。図において、輻射熱シールド6のフランジ部63の板厚において、外周筒部側部631の板厚を内周筒部側部632の板厚より厚く形成したものである。例えば、内周筒部側部632の板厚を外周筒部側部631の板厚の1/2〜1/3程度にすることが考えられる。これは図2中における超電導コイル9に対抗する位置に電磁力が発生し、その外側部分には同じ距離にコイルが存在しないため、ほとんど電磁力は発生しない。よって、従来の場合より、電磁力を1/2以下〜1/3以下程度とする必要性のため、電気抵抗を1/2〜1/3程度とすることが求められ、板厚を上記に示したように設定したものである。
Embodiment 2. FIG.
FIG. 2 is a partial cross-sectional view showing the configuration of the superconducting electromagnet according to Embodiment 2 of the present invention. In the figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 2 shows only a characteristic part of the configuration of the superconducting electromagnet in the second embodiment. In the figure, the plate thickness of the flange portion 63 of the radiant heat shield 6 is such that the plate thickness of the outer peripheral cylinder portion side portion 631 is thicker than the plate thickness of the inner peripheral cylinder portion side portion 632. For example, it is conceivable to set the plate thickness of the inner peripheral cylinder side portion 632 to about 1/2 to 1/3 of the plate thickness of the outer peripheral cylinder portion side portion 631. This is because an electromagnetic force is generated at a position opposed to the superconducting coil 9 in FIG. 2, and the coil is not present at the same distance in the outer portion thereof, so that almost no electromagnetic force is generated. Therefore, it is necessary to make the electromagnetic force about 1/2 to 1/3 or less than the conventional case, so that the electrical resistance is required to be about 1/2 to 1/3. It is set as shown.

上記のように構成された実施の形態2の超電導電磁石によれば、クエンチが発生した場合に、輻射熱シールドのフランジ部に発生する電磁力は、主磁場を発生させる超電導メインコイルの近傍に大きく発生するため、フランジ部内周側部にはフランジ部外周側部より大きな電磁力が発生する。ここでは、超電導メインコイル近傍の輻射熱シールドのフランジ部を渦電流が多く発生する部分のみの板厚を薄く、すなわちフランジ部内周側部の板厚をフランジ部外周側部の板厚より薄く形成することにより、電気抵抗を増やし、渦電流発生に伴う電磁力を低減している。また、輻射熱シールドのフランジ部を全体に板厚を薄くした場合に伴う熱伝導が悪くなるのを抑えることが可能となり、強度と熱伝導とに基づいて最適な設計を行うことが可能となる。   According to the superconducting electromagnet of Embodiment 2 configured as described above, when quenching occurs, the electromagnetic force generated in the flange portion of the radiant heat shield is largely generated in the vicinity of the superconducting main coil that generates the main magnetic field. Therefore, a larger electromagnetic force is generated on the inner peripheral side portion of the flange portion than on the outer peripheral side portion of the flange portion. Here, the thickness of the flange portion of the radiant heat shield in the vicinity of the superconducting main coil is made thin only at the portion where eddy current is generated, that is, the thickness of the flange inner peripheral side is made thinner than the thickness of the flange outer peripheral side. As a result, the electric resistance is increased and the electromagnetic force accompanying the generation of eddy current is reduced. In addition, it is possible to suppress the deterioration of heat conduction when the thickness of the flange portion of the radiant heat shield is reduced as a whole, and it is possible to perform an optimal design based on strength and heat conduction.

実施の形態3.
図3はこの発明の実施の形態3における超電導電磁石の構成を示した部分断面図および部分側面図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。尚、図3は超電導電磁石の構成の一部の本実施の形態3における特徴的な部分のみを示したものである。図において、輻射熱シールド6の外周の所望な箇所に、輻射熱シールド6の熱伝導特性より熱伝導特性に優れた例えば銅にてなる熱良導体31を配設したものである。尚、この熱良導体31は当該部分に円周状に渦電流が流れないように、図3(b)に示すようにフランジ部63に短冊状に配置する。また、熱良導体31は内周側と外周側とで切れ目なく接続されていればよく、幅方向は限定されるものではなく、電磁石の熱侵入による対応が可能な程度であればよく、全面に設置することも可能である。しかしながら、構造的、コスト的に制限があることは言うまでない。また、熱良導体31のさらに具体的な例としては、電気銅(C1100)の利用が考えられ、アルミの熱伝導率積分値が温度300K→76Kの時で508W/cmであるのに対し、電気銅の熱伝導率積分値が温度300K→76Kの時で934W/cmであり、電気銅の方がアルミより1.8倍程度熱伝導に優れている。
Embodiment 3 FIG.
3 is a partial cross-sectional view and a partial side view showing the configuration of a superconducting electromagnet according to Embodiment 3 of the present invention. In the figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 3 shows only a characteristic part of the configuration of the superconducting electromagnet in the third embodiment. In the figure, a heat good conductor 31 made of, for example, copper, which is superior in heat conduction characteristics to the heat conduction characteristics of the radiant heat shield 6, is disposed at a desired location on the outer periphery of the radiant heat shield 6. The good thermal conductor 31 is arranged in a strip shape on the flange portion 63 as shown in FIG. 3B so that an eddy current does not flow circumferentially in the portion. Moreover, the heat good conductor 31 should just be connected on the inner peripheral side and the outer peripheral side without a cut | interruption, the width direction is not limited, and should just be the extent which can respond by the heat | fever penetration | invasion of an electromagnet. It is also possible to install. However, it goes without saying that there are structural and cost limitations. Further, as a more specific example of the good thermal conductor 31, the use of electric copper (C1100) is conceivable, and the integrated value of thermal conductivity of aluminum is 508 W / cm when the temperature is 300K → 76K, whereas The integrated value of the thermal conductivity of copper is 934 W / cm when the temperature is 300K → 76K, and the electrical copper is superior in heat conduction by about 1.8 times than aluminum.

上記のように構成された実施の形態3の超電導電磁石によれば、熱伝導が設計許容値に足らない場合に熱良導体を輻射熱シールドのフランジ部に併設することにより、熱伝導を改善でき、輻射熱シールドのフランジ部の熱抵抗を小さくできる。それにより、輻射熱シールド全体の温度勾配を小さくできるので低温容器に入る輻射熱が少なくなり、液体ヘリウムの蒸発が少ない経済的な超電導電磁石を実現することが可能となる。   According to the superconducting electromagnet of Embodiment 3 configured as described above, heat conduction can be improved by providing a good heat conductor in the flange portion of the radiant heat shield when the heat conduction is less than the design allowable value. The thermal resistance of the shield flange can be reduced. Thereby, since the temperature gradient of the entire radiant heat shield can be reduced, the radiant heat entering the low-temperature container is reduced, and an economical superconducting electromagnet with less evaporation of liquid helium can be realized.

実施の形態4.
図4はこの発明の実施の形態4における超電導電磁石の構成を示した部分断面図および部分側面図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。尚、図4は超電導電磁石の構成の一部の本実施の形態3における特徴的な部分のみを示したものである。図において、内周筒部62の板厚は、フランジ部63と接する箇所、内周筒部つなぎ目部621の板厚を内周筒部中央部622の板厚より厚く形成したものである。具体的には、内周筒部中央部622の板厚の必要板厚をt2とすると、
t2=内周筒部つなぎ目部621の板厚×(許容電磁力÷全体がt2の時に発生する電磁力)
の上記式が成り立つような値に設定する。すると、従来の場合より、電磁力を最低1/2以下〜1/3以下程度にすることが可能となる。
Embodiment 4 FIG.
4 is a partial cross-sectional view and a partial side view showing the configuration of a superconducting electromagnet according to Embodiment 4 of the present invention. In the figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 4 shows only a characteristic part of the configuration of the superconducting electromagnet in the third embodiment. In the figure, the plate thickness of the inner peripheral cylinder portion 62 is such that the plate thickness of the portion contacting the flange portion 63 and the inner peripheral cylinder portion joint portion 621 is thicker than the plate thickness of the inner peripheral cylinder portion central portion 622. Specifically, when the necessary plate thickness of the inner peripheral cylinder portion central portion 622 is t2,
t2 = plate thickness of inner peripheral cylinder part joint part 621 × (allowable electromagnetic force ÷ electromagnetic force generated when the whole is t2)
Is set to a value that satisfies the above equation. Then, it is possible to make the electromagnetic force at least about ½ or less to 1 / or less than the conventional case.

上記のように構成された実施の形態4の超電導電磁石によれば、クエンチした場合に輻射熱シールドのフランジ部に発生する渦電流による電磁力が働いた場合には、フランジ部と内周筒部とのつなぎ目部分に応力集中するため相応の強度となる板厚が必要である。また、輻射熱シールド内筒の板厚を厚くした場合はヘリウム槽や真空槽との間隔が狭くなり、熱接触のリスクが増加する。そこで、内周筒部の板厚を、フランジ部と接する箇所、内周筒部つなぎ目部の板厚を内周筒部中央部の板厚より厚く形成すれば、熱接触のリスクを増加させることなく、輻射熱シールドの内周筒部とフランジ部とのつなぎ目部分の応力が緩和可能となる。   According to the superconducting electromagnet of Embodiment 4 configured as described above, when an electromagnetic force due to an eddy current generated in the flange portion of the radiant heat shield is activated when quenched, the flange portion, the inner peripheral cylinder portion, In order to concentrate the stress at the joint portion of the joint, a plate thickness having a suitable strength is required. Moreover, when the plate | board thickness of a radiation heat shield inner cylinder is thickened, the space | interval with a helium tank or a vacuum tank becomes narrow, and the risk of a thermal contact increases. Therefore, the risk of thermal contact is increased if the plate thickness of the inner peripheral cylinder part is formed to be greater than the plate thickness of the inner peripheral cylinder part at the location where the flange part is in contact with the inner peripheral cylinder part joint. Therefore, the stress at the joint portion between the inner peripheral cylindrical portion and the flange portion of the radiant heat shield can be relaxed.

実施の形態5.
図5はこの発明の実施の形態5における超電導電磁石の構成を示した部分断面図および部分側面図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。尚、図5は超電導電磁石の構成の一部の本実施の形態3における特徴的な部分のみを示したものである。図において、内周筒部62を構成する材質は、フランジ部63側の内周筒部端部623の材質の強度が、内周筒部中央部624の材質の強度より強い材質にて形成したものである。例えば、内周筒部端部623の材質はアルミA5083にて強度のある材質で、内周筒部中央部624の材質はアルミA1100またはA1050と、アルミA5083より強度は劣るものの、熱伝導の点で優れた材質にて形成する。具体的には、アルミA5083の耐力は14.3kgf/mmと、内周筒部中央部624の材質はアルミA1100またはA1050の耐力、7kgf/mmに対して2倍程度の耐力を有している。
Embodiment 5. FIG.
FIG. 5 is a partial cross-sectional view and a partial side view showing the configuration of a superconducting electromagnet according to Embodiment 5 of the present invention. In the figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 5 shows only a characteristic part of the configuration of the superconducting electromagnet in the third embodiment. In the figure, the material constituting the inner peripheral cylindrical portion 62 is formed of a material whose strength of the inner peripheral cylindrical portion end 623 on the flange portion 63 side is stronger than that of the inner peripheral cylindrical portion central portion 624. Is. For example, the material of the inner peripheral cylinder part end 623 is a material strong in aluminum A5083, and the material of the inner peripheral cylinder part central part 624 is aluminum A1100 or A1050, although the strength is inferior to that of aluminum A5083, the point of heat conduction It is made of an excellent material. Specifically, the proof stress of aluminum A5083 is 14.3 kgf / mm 2, and the material of the inner peripheral cylinder portion 624 is proof strength of aluminum A1100 or A1050, which is about twice that of 7 kgf / mm 2 . ing.

上記のように構成された実施の形態5の超電導電磁石によれば、輻射熱シールド全体として、熱伝導と強度との考慮に入れた最適な設計が可能となる。   According to the superconducting electromagnet of Embodiment 5 configured as described above, the entire radiation heat shield can be optimally designed in consideration of heat conduction and strength.

尚、ここでは輻射熱シールド6が1つの円筒状にて形成する例を示したが、これに限られることはなく、低温容器1と真空断熱容器2との間に多層にて輻射熱シールド6が形成される場合も考えられ、その場合、その複数の輻射熱シールドに上記各実施の形態と同様に行うことが可能であり、同様の効果を奏することが可能であることは言うまでもない。
また、上記各実施の形態はそれぞれ適宜組み合わせて実施することが可能であることは言うまでもなく、それぞれの効果を相乗的に得ることが可能となる。
Here, the example in which the radiant heat shield 6 is formed in one cylindrical shape is shown, but the present invention is not limited to this, and the radiant heat shield 6 is formed in multiple layers between the low temperature container 1 and the vacuum heat insulating container 2. In this case, it is possible to carry out the plurality of radiant heat shields in the same manner as in the above embodiments, and it is needless to say that the same effects can be obtained.
Further, it goes without saying that the above embodiments can be implemented in appropriate combinations, and it is possible to synergistically obtain the respective effects.

この発明の実施の形態1を示す超電導電磁石の構成を示す図である。It is a figure which shows the structure of the superconducting electromagnet which shows Embodiment 1 of this invention. この発明の実施の形態2を示す超電導電磁石の構成を示す図である。It is a figure which shows the structure of the superconducting electromagnet which shows Embodiment 2 of this invention. この発明の実施の形態3を示す超電導電磁石の構成を示す図である。It is a figure which shows the structure of the superconducting electromagnet which shows Embodiment 3 of this invention. この発明の実施の形態4を示す超電導電磁石の構成を示す図である。It is a figure which shows the structure of the superconducting electromagnet which shows Embodiment 4 of this invention. この発明の実施の形態5を示す超電導電磁石の構成を示す図である。It is a figure which shows the structure of the superconducting electromagnet which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 低温容器、2 真空断熱容器、5 液体ヘリウム、6 輻射熱シールド、
9 超電導コイル、31 熱良導体、61 外周筒部、62 内周筒部、
63 フランジ部、631 フランジ部内周側部、632 フランジ部外周側部、
621 内周筒部つなぎ目部、622,624 内周筒部中央部、
623 内周筒部端部。
1 cold container, 2 vacuum insulation container, 5 liquid helium, 6 radiant heat shield,
9 Superconducting coil, 31 Thermal conductor, 61 Outer cylinder, 62 Inner cylinder,
63 flange part, 631 flange part inner peripheral side part, 632 flange part outer peripheral side part,
621 Inner peripheral cylinder part joint part, 622,624 Inner peripheral cylinder part center part,
623 Inner peripheral cylinder end.

Claims (6)

円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、上記低温容器の輻射熱を緩和するために上記低温容器を覆うように配設された円筒状の輻射熱シールドと、上記輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、上記輻射熱シールドは外周筒部および内周筒部と上記外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、上記外周筒部および内周筒部はアルミA1100またはA1050にて構成され、上記フランジ部はアルミA5083にて構成されることを特徴と超電導電磁石。 A cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce radiant heat of the cryogenic container, and the radiant heat shield In the superconducting electromagnet having a vacuum heat insulating container for vacuum-insulating the inside, the radiant heat shield is formed on the outer peripheral cylindrical portion and the inner peripheral cylindrical portion, and on the flange portion closing the outer peripheral cylindrical portion and the inner peripheral cylindrical portion. A superconducting electromagnet characterized in that the outer peripheral cylindrical portion and the inner peripheral cylindrical portion are made of aluminum A1100 or A1050, and the flange portion is made of aluminum A5083. 円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、上記低温容器の輻射熱を緩和するために上記低温容器を覆うように配設された円筒状の輻射熱シールドと、上記輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、上記輻射熱シールドは外周筒部および内周筒部と上記外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、上記フランジ部の上記内周筒部側の板厚を上記外周筒部側の板厚より薄く形成したことを特徴とする超電導電磁石。 A cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce radiant heat of the cryogenic container, and the radiant heat shield In the superconducting electromagnet having a vacuum heat insulating container for vacuum-insulating the inside, the radiant heat shield is formed on the outer peripheral cylindrical portion and the inner peripheral cylindrical portion, and on the flange portion closing the outer peripheral cylindrical portion and the inner peripheral cylindrical portion. A superconducting electromagnet characterized in that the plate thickness of the flange portion on the inner peripheral cylinder portion side is formed thinner than the plate thickness on the outer peripheral cylinder portion side. 円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、上記低温容器の輻射熱を緩和するために上記低温容器を覆うように配設された円筒状の輻射熱シールドと、上記輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、上記輻射熱シールドの外周の所望な箇所に、上記輻射熱シールドの熱伝導特性より熱伝導特性に優れた熱良導体を配設したことを特徴とする超電導電磁石。 A cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce radiant heat of the cryogenic container, and the radiant heat shield In a superconducting electromagnet equipped with a vacuum heat insulating container for vacuum-insulating the inside, a good heat conductor having better heat conduction characteristics than the heat radiation characteristics of the radiation heat shield is disposed at a desired location on the outer periphery of the radiation heat shield. A superconducting electromagnet characterized by that. 円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、上記低温容器の輻射熱を緩和するために上記低温容器を覆うように配設された円筒状の輻射熱シールドと、上記輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、上記輻射熱シールドは外周筒部および内周筒部と上記外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、上記内周筒部の板厚は、上記フランジ部と接する箇所の板厚を上記内周筒部の中央部の板厚より厚く形成したことを特徴とする超電導電磁石。 A cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce radiant heat of the cryogenic container, and the radiant heat shield In the superconducting electromagnet having a vacuum heat insulating container for vacuum-insulating the inside, the radiant heat shield is formed on the outer peripheral cylindrical portion and the inner peripheral cylindrical portion, and on the flange portion closing the outer peripheral cylindrical portion and the inner peripheral cylindrical portion. The superconducting electromagnet is configured such that the thickness of the inner peripheral cylindrical portion is greater than the thickness of the central portion of the inner peripheral cylindrical portion. 円筒状の超電導コイルを収納するとともに液体ヘリウムが充填された低温容器と、上記低温容器の輻射熱を緩和するために上記低温容器を覆うように配設された円筒状の輻射熱シールドと、上記輻射熱シールドを収納するとともに内部を真空断熱する真空断熱容器とを備えた超電導電磁石において、上記輻射熱シールドは外周筒部および内周筒部と上記外周筒部および内周筒部間を閉塞するフランジ部とにて構成され、上記内周筒部を構成する材質は、上記フランジ部側の材質の強度が上記内周筒部の中央部の材質の強度より強い材質にて形成したことを特徴とする超電導電磁石。 A cryogenic container containing a cylindrical superconducting coil and filled with liquid helium, a cylindrical radiant heat shield disposed so as to cover the cryogenic container in order to reduce radiant heat of the cryogenic container, and the radiant heat shield In the superconducting electromagnet having a vacuum heat insulating container for vacuum-insulating the inside, the radiant heat shield is formed on the outer peripheral cylindrical portion and the inner peripheral cylindrical portion, and on the flange portion closing the outer peripheral cylindrical portion and the inner peripheral cylindrical portion. The superconducting electromagnet is characterized in that the material constituting the inner peripheral cylindrical portion is made of a material whose strength on the flange portion side is stronger than that of the central portion of the inner peripheral cylindrical portion. . 上記請求項1ないし請求項5の超電導電磁石を用いたことを特徴とするMRI装置。 An MRI apparatus using the superconducting electromagnet according to any one of claims 1 to 5.
JP2007055788A 2007-03-06 2007-03-06 Superconducting electromagnet and mri device using the same Pending JP2008218809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055788A JP2008218809A (en) 2007-03-06 2007-03-06 Superconducting electromagnet and mri device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055788A JP2008218809A (en) 2007-03-06 2007-03-06 Superconducting electromagnet and mri device using the same

Publications (1)

Publication Number Publication Date
JP2008218809A true JP2008218809A (en) 2008-09-18

Family

ID=39838478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055788A Pending JP2008218809A (en) 2007-03-06 2007-03-06 Superconducting electromagnet and mri device using the same

Country Status (1)

Country Link
JP (1) JP2008218809A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272617A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Superconducting electromagnet device
JP2011200348A (en) * 2010-03-25 2011-10-13 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging apparatus
KR101211630B1 (en) 2011-11-03 2012-12-12 한국전기연구원 A flange structure of superconducting coil for testing device
WO2013150951A1 (en) * 2012-04-06 2013-10-10 株式会社 日立メディコ Superconductor electromagnet and magnetic resonance imaging device
WO2018147189A1 (en) * 2017-02-10 2018-08-16 東京貿易エンジニアリング株式会社 Emergency release mechanism for fluid loading devices
CN109067010A (en) * 2018-08-07 2018-12-21 华中科技大学 A kind of shielding electromagnetism Meta Materials of nearly zero magnetic conductivity of double frequency and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102112A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Superconducting magnet for magnetically levitated train
JP2004047713A (en) * 2002-07-11 2004-02-12 Sumitomo Heavy Ind Ltd Superconducting magnet device
JP2006326294A (en) * 2005-05-25 2006-12-07 General Electric Co <Ge> Apparatus for thermal shielding of superconducting magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102112A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Superconducting magnet for magnetically levitated train
JP2004047713A (en) * 2002-07-11 2004-02-12 Sumitomo Heavy Ind Ltd Superconducting magnet device
JP2006326294A (en) * 2005-05-25 2006-12-07 General Electric Co <Ge> Apparatus for thermal shielding of superconducting magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272617A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Superconducting electromagnet device
JP2011200348A (en) * 2010-03-25 2011-10-13 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging apparatus
KR101211630B1 (en) 2011-11-03 2012-12-12 한국전기연구원 A flange structure of superconducting coil for testing device
WO2013150951A1 (en) * 2012-04-06 2013-10-10 株式会社 日立メディコ Superconductor electromagnet and magnetic resonance imaging device
WO2018147189A1 (en) * 2017-02-10 2018-08-16 東京貿易エンジニアリング株式会社 Emergency release mechanism for fluid loading devices
JP2018128120A (en) * 2017-02-10 2018-08-16 東京貿易エンジニアリング株式会社 Emergency separation mechanism for fluid handling device
US11079051B2 (en) 2017-02-10 2021-08-03 TB Global Technologies Ltd. Emergency detachment mechanism for fluid handling device
CN109067010A (en) * 2018-08-07 2018-12-21 华中科技大学 A kind of shielding electromagnetism Meta Materials of nearly zero magnetic conductivity of double frequency and its application
CN109067010B (en) * 2018-08-07 2020-05-19 华中科技大学 Double-frequency near-zero magnetic permeability shielding electromagnetic metamaterial and application thereof

Similar Documents

Publication Publication Date Title
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
JP2008218809A (en) Superconducting electromagnet and mri device using the same
JP3663266B2 (en) Open magnetic resonance imaging magnet
US8033121B2 (en) Low eddy current cryogen circuit for superconducting magnets
US8162037B2 (en) Device for generating a pulsed magnetic field
JP2010283186A (en) Refrigerator-cooled superconducting magnet
JP4468388B2 (en) Magnetic field generator
US8525023B2 (en) Cooled current leads for cooled equipment
JP2007027715A (en) Low magnetic field loss cold mass structure for superconducting magnet
JP5942699B2 (en) Magnetic resonance signal detection module
JP2007007111A5 (en)
JP2004229853A (en) Superconducting magnet
JP2007136202A (en) Magnetic resonance imaging system which requires low necessity for cooling
JP5942700B2 (en) Magnetic resonance signal detection probe
JPS60243544A (en) Plug for horizontal type cryostat penetrating hole
US6323749B1 (en) MRI with superconducting coil
US20070169487A1 (en) Liquified gas cryostat
JP2008306060A (en) Extremely low temperature containment cooling system and its operating method
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP2016018902A (en) Superconducting electromagnet device
JP2009297060A (en) Superconductive electromagnetic apparatus
JP6158700B2 (en) Superconducting magnet device and superconducting device
JP4443127B2 (en) Biomagnetic field measurement device
WO2013150951A1 (en) Superconductor electromagnet and magnetic resonance imaging device
JP2014056872A (en) Superconducting magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712