JP2000102112A - Superconducting magnet for magnetically levitated train - Google Patents

Superconducting magnet for magnetically levitated train

Info

Publication number
JP2000102112A
JP2000102112A JP10268328A JP26832898A JP2000102112A JP 2000102112 A JP2000102112 A JP 2000102112A JP 10268328 A JP10268328 A JP 10268328A JP 26832898 A JP26832898 A JP 26832898A JP 2000102112 A JP2000102112 A JP 2000102112A
Authority
JP
Japan
Prior art keywords
electric resistance
superconducting
superconducting coil
resistance material
low electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10268328A
Other languages
Japanese (ja)
Other versions
JP3732344B2 (en
Inventor
Yoko Furukawa
陽子 古川
Eiji Fukumoto
英士 福本
Masayuki Shibata
将之 柴田
Teruhiro Takizawa
照広 滝沢
Motoaki Terai
元昭 寺井
Satoru Inetama
哲 稲玉
Takashi Mizutani
隆 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Hitachi Ltd
Central Japan Railway Co
Original Assignee
Railway Technical Research Institute
Hitachi Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Hitachi Ltd, Central Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP26832898A priority Critical patent/JP3732344B2/en
Publication of JP2000102112A publication Critical patent/JP2000102112A/en
Application granted granted Critical
Publication of JP3732344B2 publication Critical patent/JP3732344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a superconducting magnet against quench prevention by reducing eddy current heat generation due to magnetic field change caused by vehicle oscillation during traveling. SOLUTION: The thickness of a low electrical resistance material layer 20 is partly changed, where the layer covers a surface or is plated on the surface of a superconducting coil accommodating vessel 2 which cools a superconducting coil 1 and fixes it to a specified position. In particular, the thickness of low electric resistance material layers 21, 22 of levitating direction upper side region where an eddy current is liable to be generated by magnetic field change of low frequency is increased, and the electric resistance value is reduced. A radiant heat shield and a vacuum thermal insulation vessel which surround the accommodating vessel 2 may be constituted of low electric resistance material in which the plate thickness in a region where an eddy current is liable to be generated in increased. The thickness of the low electric resistance material layer may not be increased but material having low resistivity may be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上軌道側に設置
された浮上コイル及び推進コイルと、車両に搭載された
超電導磁石からなる磁気浮上列車システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation train system including a levitation coil and a propulsion coil installed on a ground track side and a superconducting magnet mounted on a vehicle.

【0002】[0002]

【従来の技術】磁気浮上列車は、車両に超電導コイルを
利用した超電導磁石を搭載し、地上に並べた常電導コイ
ルとの間に吸引力及び反発力を作用させて浮上力及び推
進力を得るものである。図7により、側壁浮上方式の磁
気浮上列車の車載コイルと地上コイルの配置を説明す
る。図7(a)は車両、及び車両を両側から挟み込んで
案内するガイドウエイの模式的断面図、図7(b)はガ
イドウエイに固定されたコイルの模式図である。車両1
0には、その両側面に複数の超電導コイル11a,11
bが並べて固定されている。また、ガイドウエイ13に
は、常電導コイルからなる浮上コイル14a,15a,
14b,15b及び推進コイル16a,16bが車載超
電導コイル11a,11bと各々対向するようにして固
定配置されている。浮上コイル14a,15a,14
b,15bは短絡コイルであって電源には接続されてい
ない。一方、推進コイル16a,16bには、変電所か
ら極性が周期的に変わるような電流が流され、車載超電
導コイル11a,11bに吸引力及び反発力を交互に及
ぼして車両10に推進力を与える。
2. Description of the Related Art A magnetic levitation train has a superconducting magnet using a superconducting coil mounted on a vehicle, and obtains a levitation force and a propulsion force by applying an attractive force and a repulsive force to a normal conducting coil arranged on the ground. Things. Referring to FIG. 7, the arrangement of the vehicle-mounted coil and the ground coil of the side-surface levitation type magnetic levitation train will be described. FIG. 7A is a schematic sectional view of a vehicle and a guideway for guiding the vehicle by sandwiching the vehicle from both sides, and FIG. 7B is a schematic diagram of a coil fixed to the guideway. Vehicle 1
0, a plurality of superconducting coils 11a, 11
b are fixed side by side. The guideway 13 has floating coils 14a, 15a,
14b, 15b and the propulsion coils 16a, 16b are fixedly arranged so as to face the superconducting coils 11a, 11b, respectively. Floating coils 14a, 15a, 14
b and 15b are short-circuit coils and are not connected to the power supply. On the other hand, a current is applied to the propulsion coils 16a and 16b such that the polarity periodically changes from the substation. .

【0003】従来の磁気浮上列車用超電導磁石を図8に
示す。図8(a)は超電導磁石の一部破断正面図、図8
(b)はそのA−A’断面図である。超電導コイル1
は、超電導コイル収納容器(以下、単に収納容器とい
う)2内に配置され、収納容器2は輻射熱シールド3内
に配置され、輻射熱シールド3は更に真空断熱容器4内
に配置されている。収納容器2には支持部材5が固定さ
れ、収納容器2の表面には銅メッキ層6が形成されてい
る。収納容器2は超電導コイル1を保持し固定する必要
があるため、剛性及び強度の高いステンレス製であり、
内部に液体ヘリウムの流路を設けて超電導コイル1を冷
却している。
FIG. 8 shows a conventional superconducting magnet for a magnetically levitated train. FIG. 8A is a partially cutaway front view of the superconducting magnet, and FIG.
(B) is an AA 'cross-sectional view thereof. Superconducting coil 1
Are disposed in a superconducting coil storage container (hereinafter, simply referred to as a storage container) 2, the storage container 2 is disposed in a radiant heat shield 3, and the radiant heat shield 3 is further disposed in a vacuum heat insulating container 4. A support member 5 is fixed to the storage container 2, and a copper plating layer 6 is formed on a surface of the storage container 2. Since the storage container 2 needs to hold and fix the superconducting coil 1, it is made of stainless steel having high rigidity and strength.
The superconducting coil 1 is cooled by providing a liquid helium flow path therein.

【0004】磁気浮上列車を実用化する上での課題の一
つは、超電導磁石のクエンチ(超電導破壊)をいかに防
ぐかという点にある。クエンチの原因には、熱負荷、磁
場変動等が考えられるが、特に熱負荷は、液体ヘリウム
冷凍機の能力とも絡み、解決を最も急がれている課題で
ある。熱負荷としては、伝導、輻射等による外部からの
熱侵入の他、地上コイルの磁場変動を受けて生じる渦電
流発熱や、渦電流と磁場が作用して生じる電磁力が引き
起こす振動による摩擦発熱等が考えられ、従来もさまざ
まな対策がなされてきた。例えば、外部からの熱侵入に
対しては、輻射熱シールド3や真空断熱容器4を設ける
ことで、輻射熱や対流による熱侵入を防いでいる。渦電
流発熱に対しては、超電導コイル収納容器2の表面に高
純度の銅メッキ層6を形成したり、電気抵抗率の低いア
ルミニウムを被覆する等の対策が取られている。
[0004] One of the problems in putting a magnetic levitation train into practical use is how to prevent quench (superconductivity destruction) of the superconducting magnet. The cause of the quench is considered to be a heat load, a magnetic field fluctuation, and the like. In particular, the heat load is related to the capability of the liquid helium refrigerator and is the most urgent problem to be solved. Thermal loads include heat from the outside due to conduction, radiation, etc., eddy current heat generated due to fluctuations in the magnetic field of the ground coil, and frictional heat generated by the electromagnetic force generated by the action of the eddy current and magnetic field. Various measures have been taken in the past. For example, with respect to heat intrusion from the outside, the heat intrusion due to radiant heat or convection is prevented by providing the radiant heat shield 3 and the vacuum heat insulating container 4. With respect to the eddy current heat generation, measures such as forming a high-purity copper plating layer 6 on the surface of the superconducting coil storage container 2 and coating aluminum having a low electric resistivity are taken.

【0005】この低電気抵抗材料による収納容器のメッ
キあるいは被覆は、高速走行時の地上コイル磁場変動に
対する渦電流発熱の低減策として特に有効であると考え
られてきた。磁気浮上システムでは、列車の走行時には
浮上コイル14a,15a,14b,15bを通過する
のに伴う脈動磁場が常に超電導磁石に加わる。現在の設
計によると、時速500kmでの走行時にはこの磁場変
動の周波数は309Hzになる。この周波数では、磁場
変動によって超電導磁石各部に生じる渦電流の大きさ
は、電気抵抗によらずインダクタンスで決まるため、磁
石各部を構成する材料の電気抵抗値を変えても渦電流の
値は変化しない。従って、電気抵抗値を低くするほど渦
電流発熱を小さくできる。この知見をもとに液体ヘリウ
ム冷却系での渦電流発熱を抑えるために取られた対策
が、収納容器2に電気抵抗率の低い高純度の銅やアルミ
ニウムをメッキ、あるいは被覆するという方法である。
[0005] It has been considered that the plating or coating of the container with this low electric resistance material is particularly effective as a measure for reducing eddy current heat generation due to fluctuations in the ground coil magnetic field during high-speed running. In the magnetic levitation system, a pulsating magnetic field associated with passing through the levitation coils 14a, 15a, 14b, and 15b is constantly applied to the superconducting magnet when the train is running. According to the current design, the frequency of this magnetic field fluctuation is 309 Hz when traveling at 500 km / h. At this frequency, the magnitude of the eddy current generated in each part of the superconducting magnet due to the magnetic field fluctuation is determined by the inductance without depending on the electric resistance, so the value of the eddy current does not change even if the electric resistance value of the material forming the magnet parts is changed . Therefore, the lower the electric resistance value, the smaller the eddy current heat generation. Based on this knowledge, a measure taken to suppress eddy current heat generation in the liquid helium cooling system is to plate or coat the container 2 with high-purity copper or aluminum having a low electric resistivity. .

【0006】渦電流発熱低減策としては、このように低
電気抵抗材料6を収納容器2に被覆する方法のほか、電
磁力による振動に起因して2次的に生じる渦電流を低減
するため、支持構造を工夫して振動を抑制する方法が取
られている。
As a measure for reducing the eddy current heat generation, in addition to the method of coating the storage container 2 with the low electric resistance material 6 as described above, in order to reduce the eddy current secondaryly caused by the vibration due to the electromagnetic force, A method of suppressing vibration by devising a supporting structure has been adopted.

【0007】[0007]

【発明が解決しようとする課題】前述のように、これま
で考えられてきた渦電流発熱の原因は、走行周波数で生
じる磁場変動であった。しかし、超電導磁石に加わる磁
場変動は、走行周波数でのみ生じるとは限らない。例え
ば、空気抵抗や、左右推力のアンバランス、あるいは浮
上コイルの設置誤差などが原因で生じる車両動揺は、1
〜10Hzの低周波領域で生じ、この車両動揺に伴う非
常に周波数の低い磁場変動も超電導磁石に加わる。しか
し、従来はこのような低周波域での渦電流発熱の低減策
は検討されておらず、従来磁石では発熱が過大になると
いう問題があった。これを回避するため低抵抗材の電気
抵抗値を十分小さくすることが考えられるが、励磁時に
生じるリバース電流が大きくなるため超電導コイルを励
磁できなくなるという問題があった。
As described above, the cause of the eddy current heat generation that has been considered up to now has been the magnetic field fluctuation occurring at the running frequency. However, the magnetic field fluctuation applied to the superconducting magnet does not always occur only at the running frequency. For example, vehicle sway caused by air resistance, imbalance of left and right thrusts, or installation error of a levitation coil is caused by 1
Very low frequency magnetic field fluctuations that occur in the low frequency range of 10 Hz to 10 Hz due to vehicle sway also apply to the superconducting magnet. However, conventionally, no measures have been considered to reduce such eddy current heat generation in a low frequency range, and there has been a problem that heat generation is excessive in a conventional magnet. To avoid this, it is conceivable to reduce the electric resistance of the low-resistance material sufficiently. However, there is a problem that the reverse current generated at the time of excitation becomes large, so that the superconducting coil cannot be excited.

【0008】本発明は、走行周波数で生じる磁場変動に
よる渦電流発熱と共に車両動揺による低周波数域の磁場
変動が引き起こす超電導磁石の渦電流発熱を低減して、
クエンチの生じにくい信頼性の高い超電導磁石を提供す
ることを目的とする。
The present invention reduces the eddy current heat generated by the superconducting magnet caused by the eddy current heat generated by the magnetic field fluctuation generated at the running frequency and the magnetic field fluctuation in the low frequency range due to the vehicle shake.
It is an object of the present invention to provide a highly reliable superconducting magnet that does not easily cause quench.

【0009】[0009]

【課題を解決するための手段】上記目的は、超電導線を
巻回した超電導コイルと、超電導コイルを冷却し所定位
置に固定する超電導コイル収納容器と、収納容器表面に
被覆又はメッキされた低電気抵抗材料層とを含む磁気浮
上列車用超電導磁石において、低電気抵抗材料層の厚さ
を部分的に変えることによって達成することができる。
また、収納容器を取り囲む輻射熱シールドあるいは真空
断熱容器の一方もしくは両方を部分的に厚さの異なる低
電気抵抗材料で構成することによって達成することがで
きる。特に、超電導磁石の浮上方向上側の構成材料の厚
さを浮上方向下側の構成材料の厚さよりも厚くすること
により、発熱低減効果を高くすることができる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a superconducting coil having a superconducting wire wound thereon, a superconducting coil container for cooling the superconducting coil and fixing the coil at a predetermined position, and a low electric power coated or plated on the surface of the container. This can be achieved by partially changing the thickness of the low electric resistance material layer in the superconducting magnet for a magnetic levitation train including the resistance material layer.
In addition, the present invention can be achieved by partially configuring one or both of the radiant heat shield and the vacuum insulated container surrounding the storage container with low electric resistance materials having different thicknesses. In particular, by making the thickness of the constituent material on the upper side in the floating direction of the superconducting magnet larger than the thickness of the constituent material on the lower side in the floating direction, the heat generation reducing effect can be enhanced.

【0010】上記目的は、また、超電導線を巻回した超
電導コイルと、超電導コイルを冷却し所定位置に固定す
る収納容器とを含む磁気浮上列車用超電導磁石におい
て、収納容器の表面に部分的に電気抵抗率の異なる低電
気抵抗材料を設置することによって達成することができ
る。また、収納容器を取り囲む輻射熱シールドあるいは
真空断熱容器の一方もしくは両方を部分的に電気抵抗率
の異なる低電気抵抗材料で構成することによって達成す
ることができる。特に、超電導磁石の浮上方向上側の構
成材料の電気抵抗率を浮上方向下側の構成材料の電気抵
抗率よりも低く設定することによって高い効果をあげる
ことができる。
It is another object of the present invention to provide a superconducting magnet for a magnetic levitation train including a superconducting coil wound with a superconducting wire and a housing for cooling the superconducting coil and fixing the superconducting coil in a predetermined position. This can be achieved by installing low electric resistance materials having different electric resistivity. In addition, the present invention can be achieved by partially configuring one or both of the radiant heat shield and the vacuum heat insulating container surrounding the storage container with low electric resistance materials having different electric resistivity. In particular, a high effect can be obtained by setting the electrical resistivity of the constituent material on the upper side in the floating direction of the superconducting magnet lower than the electrical resistivity of the constituent material on the lower side in the floating direction.

【0011】低周波数域で収納容器に生じる渦電流発熱
が問題となる背景には、周波数が低いため真空断熱容器
や輻射熱シールドに磁場遮蔽に十分な渦電流が生じにく
く、外部の磁場が筒抜けに収納容器に加わるという現象
がある。一方、超電導コイル収納容器表面の低電気抵抗
層では、低抵抗化しているため、渦電流はインダクタン
スで制限される最大値で流れる。そのため、真空断熱容
器、輻射熱シールドによる遮蔽効果が効かないような低
周波数域の車両動揺による磁場変動によって引き起こさ
れる低電気抵抗層の発熱は無視できない。
In the background of the problem of eddy current heat generated in the storage container in the low frequency range, sufficient eddy current is not easily generated in the vacuum heat insulating container or the radiant heat shield due to the low frequency, so that the external magnetic field may be dislodged. There is a phenomenon of adding to the storage container. On the other hand, in the low electric resistance layer on the surface of the superconducting coil storage container, since the resistance is reduced, the eddy current flows at the maximum value limited by the inductance. Therefore, the heat generation of the low electric resistance layer caused by the magnetic field fluctuation due to the vibration of the vehicle in the low frequency range where the shielding effect by the vacuum heat insulating container and the radiation heat shield is not effective cannot be ignored.

【0012】図2は、外部磁場変動によって収納容器に
生じる渦電流発熱と収納容器の電気抵抗との関係を、外
部磁場変動の周波数をパラメータとして図示したもので
ある。曲線18は外部磁場変動の周波数が309Hzの
場合の関係を示し、曲線19は2Hzの場合の関係を示
す。図示されているように、ある周波数の磁場変動に対
しては、渦電流発熱は特定の電気抵抗値の時に最大にな
り、電気抵抗値がそれより大きくても小さくても減少す
る山形の曲線を描く。また、外部磁場変動の周波数が高
くなるに従って、この山形の曲線は図に矢印で示すよう
に全体として高抵抗側に移動する。
FIG. 2 illustrates the relationship between the eddy current heat generated in the storage container due to the external magnetic field fluctuation and the electric resistance of the storage container, using the frequency of the external magnetic field fluctuation as a parameter. Curve 18 shows the relationship when the frequency of the external magnetic field fluctuation is 309 Hz, and curve 19 shows the relationship when the frequency is 2 Hz. As shown in the figure, for a magnetic field fluctuation at a certain frequency, the eddy current heating is maximized at a specific electric resistance value, and decreases with a larger or smaller electric resistance value. Draw. Further, as the frequency of the external magnetic field fluctuation increases, the chevron curve moves toward the high resistance side as a whole as shown by the arrow in the figure.

【0013】この渦電流発熱を低減する方法としては、
(1)車両動揺による外部磁場変動を低減すること、
(2)低電気抵抗層の抵抗値を高くし、車両動揺の周波
数域では電気抵抗に制限されて渦電流が流れず、走行周
波数域でもある程度発熱の小さくなるような最適な電気
抵抗値を探すこと、すなわち低電気抵抗層の抵抗値を図
2のR2 以上にすること、あるいは(3)従来以上に低
電気抵抗層の抵抗値を下げること、すなわち低電気抵抗
層の抵抗値を図2のR1 以下にすることが考えられる。
As a method of reducing the eddy current heat generation,
(1) reducing external magnetic field fluctuation due to vehicle shaking;
(2) The resistance value of the low electric resistance layer is increased, and the electric resistance is limited to the electric resistance in the frequency range of the vehicle sway, so that the eddy current does not flow, and the optimal electric resistance value that reduces the heat generation to some extent even in the traveling frequency range is searched. it, i.e. the resistance of the low resistance layer of R 2 or FIG. 2, or (3) lowering the resistance value of the conventional or a low electric resistance layer, i.e., FIG. 2 the resistance value of the low resistance layer it is conceivable to the R 1 or less.

【0014】車両動揺による磁場変動の原因は地上軌道
側の浮上コイル電流の変化である。浮上コイルは、車両
動揺をダンピングするような電磁力を働かせるため、ヌ
ル・フラックス線と呼ばれる導線により、対面する8の
字コイルどうしが結ばれ、電流は向かいあった浮上コイ
ルを行き来する。この電流変化がもたらす磁場変動に起
因する渦電流が超電導磁石の側に生じる。従って、前記
(1)に関しては、動揺のダンピングが必要な限り磁場
変動は許容するしかない。(2)に関しては、ある許容
発熱量を見込む必要があり冷凍機容量を増大させる可能
性が大きい。また、低周波でも高周波でも、現在の液体
ヘリウム冷凍機の能力の許容範囲におさまるような発熱
に押さえられる電気抵抗率の選択は極めて困難である。
(3)に関しては、電気抵抗を下げると、励消磁時のリ
バース電流による発熱が増大するという問題が新たに生
じる。また、電気抵抗を下げるため低電気抵抗層の厚み
を厚くする場合、重量やサイズなど構造上厳しい制限を
受ける。
The cause of the magnetic field fluctuation due to vehicle shaking is a change in the levitation coil current on the ground track side. Since the levitation coil exerts an electromagnetic force to dampen the vehicle sway, the facing figure-eight coil is connected by a conducting wire called a null flux line, and current flows back and forth between the levitation coils. An eddy current is generated on the side of the superconducting magnet due to the magnetic field fluctuation caused by this current change. Therefore, with respect to the above (1), magnetic field fluctuations have to be allowed as long as damping of fluctuation is required. Regarding (2), it is necessary to anticipate a certain allowable calorific value, and there is a great possibility that the capacity of the refrigerator is increased. Further, it is extremely difficult to select an electrical resistivity that suppresses heat generation at a low frequency or a high frequency so as to fall within the allowable range of the current capacity of the liquid helium refrigerator.
Regarding (3), when the electric resistance is lowered, a new problem arises in that heat generation due to the reverse current at the time of demagnetization increases. In addition, when the thickness of the low electric resistance layer is increased in order to reduce the electric resistance, there are severe structural restrictions such as weight and size.

【0015】また、液体ヘリウム系の熱負荷を低減する
方法としては、超電導コイル収納容器の渦電流発熱その
ものを低減する方法以外に、真空断熱容器、輻射熱シー
ルドによる外部磁場の遮蔽効果を上げ、収納容器の低電
気抵抗層で受ける磁場変動を小さくするという方法もあ
る。磁場遮蔽効果を高めるためには、それぞれの構成材
の電気抵抗を下げ、低周波数でも電流が流れやすくすれ
ばよい。しかし、電気抵抗を下げるためには、材料の電
気抵抗率を下げるか、板厚を増すしか方法はない。電気
抵抗率は、構成材料が求められる剛性や強度で決まるこ
とがほとんどであり、選択の余地は少ない。また、板厚
に関しては、厚さを増すことは重量を増すことに直結す
るため、なるべく避けたい選択である。これらの問題
は、低電気抵抗層の発熱を低減するために低電気抵抗層
の電気抵抗をさらに下げようと考える場合にも直面する
問題である。
As a method of reducing the heat load of the liquid helium system, in addition to a method of reducing the eddy current heat itself of the superconducting coil storage container, a vacuum heat insulating container and a radiant heat shield are used to increase the shielding effect of the external magnetic field and store the heat. There is also a method of reducing the magnetic field fluctuation received by the low electric resistance layer of the container. In order to enhance the magnetic field shielding effect, the electric resistance of each component should be reduced so that the current can easily flow even at a low frequency. However, the only way to lower the electrical resistance is to lower the electrical resistivity of the material or increase the thickness. In most cases, the electrical resistivity is determined by the rigidity and strength required of the constituent materials, and there is little room for selection. Regarding the plate thickness, increasing the thickness is directly related to increasing the weight, and is therefore a choice that should be avoided as much as possible. These problems are also encountered when it is desired to further reduce the electric resistance of the low electric resistance layer in order to reduce the heat generation of the low electric resistance layer.

【0016】しかし、渦電流分布さえわかれば、構成材
全体の電気抵抗率や板厚を変える必要はなく、渦電流が
流れる部分の電気抵抗のみを下げればよい。図3は、こ
うした観点から車両動揺による真空断熱容器上の渦電流
分布をシミュレーションしたものであり、図において閉
曲線として描かれている渦電流流線の混み合っていると
ころほど渦電流密度が高い。
However, as long as the eddy current distribution is known, there is no need to change the electric resistivity or the plate thickness of the entire constituent material, and only the electric resistance of the portion where the eddy current flows can be reduced. FIG. 3 simulates the eddy current distribution on the vacuum insulated container due to the vehicle sway from this point of view, and the eddy current density becomes higher as the eddy current streamlines drawn as closed curves in the figure become more crowded.

【0017】図3から、電流密度の高い部分は、真空断
熱容器の地上コイルに面する側の上半分に存在すること
がわかる。これは、浮上コイル電流の起電力が、浮上力
起因と案内力起因の2種類あるためである。浮上力起因
の電流は浮上コイルの上下で逆向きに流れようとするの
に対し、案内力起因の電流は上下で同じ向きに流れよう
とする。このため浮上コイルの電流は2つの起電力の向
きの一致する上側で大きくなり、2つの起電力が逆向き
になる下側で小さくなる。上下の差分の電流はヌル・フ
ラックス線をわたって対面するコイルに流れ込む。上下
の浮上コイル電流の差は、対面する真空断熱容器に及ぼ
す磁場変動量の差となり、渦電流分布が上下で異なる原
因となる。
FIG. 3 shows that the high current density portion exists in the upper half of the vacuum insulated container facing the ground coil. This is because there are two types of electromotive force of the levitation coil current, which are caused by the levitation force and the guide force. The current due to the levitation force tends to flow in the opposite direction above and below the levitation coil, whereas the current due to the guide force tends to flow in the same direction above and below. Therefore, the current of the levitation coil increases on the upper side where the directions of the two electromotive forces coincide, and decreases on the lower side where the two electromotive forces are in opposite directions. The upper and lower differential currents flow across the null flux line into the facing coil. The difference between the upper and lower floating coil currents is the difference in the amount of magnetic field fluctuation exerted on the facing vacuum insulated container, which causes the eddy current distribution to be different between the upper and lower parts.

【0018】このような渦電流の分布についての知見
は、車両動揺に関する3次元の渦電流解析を行って初め
て得られたものである。渦電流発熱を低減するには、図
3で渦電流流路に相当し、電流密度の高い部分の電気抵
抗を下げてやればよい。同様に輻射熱シールドや収納容
器上の、渦電流流路に相当する部分の電気抵抗率を下げ
る、又は厚さを増すことによって、渦電流流路の電気抵
抗は下がり、従って電流は流れやすくなり、その結果低
電気抵抗層あるいは収納容器への磁場侵入が抑制され、
低電気抵抗層で発生する渦電流が減少するため発熱が低
減し、クエンチを生じにくい超電導磁石が得られる。
Such knowledge of the distribution of the eddy current is obtained only by performing a three-dimensional eddy current analysis on the vehicle sway. In order to reduce the eddy current heat generation, the electric resistance of a portion having a high current density corresponding to the eddy current flow path in FIG. 3 may be reduced. Similarly, by reducing the electrical resistivity or increasing the thickness of the portion corresponding to the eddy current flow path on the radiant heat shield or the storage container, the electrical resistance of the eddy current flow path decreases, and thus the current becomes easier to flow, As a result, the magnetic field intrusion into the low electric resistance layer or the storage container is suppressed,
Since the eddy current generated in the low electric resistance layer is reduced, the heat generation is reduced, and a superconducting magnet that does not easily cause quench can be obtained.

【0019】低電気抵抗層に関しても、例えば上半分の
電気抵抗率を1/2にし、かつ厚さを2倍にすると、発
熱を従来の約1/4まで低減することが可能である。ま
た、この場合の低電気抵抗層の重量の増加は従来の1.
5倍程度で、励消磁時のリバース電流による発熱も従来
の2倍程度と考えられ、十分許容できる。特にリバース
電流による発熱に関しては、励消磁速度の調節で低減で
きる可能性もある。これらの発熱低減策により、従来よ
りも低発熱で、クエンチしにくい、高信頼性の超電導磁
石が得られる。
Regarding the low electric resistance layer, for example, when the electric resistance of the upper half is reduced to 1/2 and the thickness is doubled, the heat generation can be reduced to about 1/4 of the conventional one. In this case, the weight of the low electric resistance layer is increased by 1.
The heat generation due to the reverse current at the time of excitation and demagnetization is considered to be about twice that of the conventional case, and is sufficiently acceptable. In particular, heat generated by the reverse current may be reduced by adjusting the excitation / demagnetization speed. By these measures for reducing heat generation, a highly reliable superconducting magnet with lower heat generation and less quenching than before can be obtained.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施の形態により
詳細に説明する。図1は本発明の一実施の形態を示す図
であり、(a)は正面図、(b)はそのA−A’断面図
である。超電導コイル1は、収納容器2内に保持されて
いる。収納容器2は、超電導コイル1を保持し固定する
必要があるため剛性及び強度の高いステンレス製であ
り、内部に液体ヘリウムの流路を設けて超電導コイル1
を冷却している。収納容器2の表面には全面に厚さ約
0.3mmの銅メッキ20が施されているが、コイルの
腹の一部分でメッキを厚くしている。このメッキを厚く
した部分21は、地上コイルに面する側の上部に位置
し、車両動揺による渦電流が最も多量に流れる部分であ
る(図3参照)。メッキを1.0mm程度に厚くするこ
とによって、その部分の電気抵抗を図2に示すR1
下、例えば1×10-6Ωに低下させている。メッキを厚
くした部分21の中でも特に渦電流の流れやすい部分2
2は更にリング状にメッキを厚く形成して電気抵抗を十
分に低下させてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. 1A and 1B are diagrams showing an embodiment of the present invention, in which FIG. 1A is a front view, and FIG. 1B is a sectional view taken along the line AA ′. Superconducting coil 1 is held in storage container 2. The storage container 2 is made of stainless steel having high rigidity and strength because it is necessary to hold and fix the superconducting coil 1.
Has cooled. A copper plating 20 having a thickness of about 0.3 mm is applied to the entire surface of the storage container 2, and the plating is thickened at a part of the antinode of the coil. The thickened portion 21 is located at the upper portion on the side facing the ground coil, and is the portion where the largest amount of eddy current flows due to vehicle shaking (see FIG. 3). By thickening the plating of about 1.0 mm, and the electric resistance of the portion below R 1 shown in FIG. 2, for example reduce the 1 × 10 -6 Ω. A portion 2 where eddy currents are particularly likely to flow among the thickened portions 21
In No. 2, a thicker plating is formed in a ring shape to sufficiently lower the electric resistance.

【0021】本実施の形態によると、渦電流流路の電気
抵抗が低いため、渦電流による発熱が低減し、クエンチ
しにくく信頼性の高い超電導磁石を得ることができる。
図4は本発明の他の実施の形態を示す図であり、(a)
は正面図、(b)はそのA−A’断面図である。超電導
コイル収納容器2は、超電導コイル1を保持し固定する
必要があるため、剛性及び強度の高いステンレス製であ
り、内部に液体ヘリウムの流路を設けて超電導コイル1
を冷却している。収納容器2の表面全体には電気抵抗率
の低いアルミニウム(電気抵抗率約2×10-7Ωm)2
3が被覆されているが、車両動揺に起因する低周波の磁
場変動によって渦電流が流れやすい地上コイル側に面し
た上部側面には、他の部分に被覆されているアルミニウ
ム材料よりも純度を上げて電気抵抗率を1×10-7Ωm
程度に低くしたアルミニウム材料24が被覆されてい
る。従って、電気抵抗率を低くした分、この部分での発
熱は低減され、クエンチしにくく、信頼性の高い超電導
磁石が得られる。
According to the present embodiment, since the electric resistance of the eddy current flow path is low, heat generation due to the eddy current is reduced, and a highly reliable superconducting magnet which is hardly quenched can be obtained.
FIG. 4 is a diagram showing another embodiment of the present invention, in which (a)
Is a front view, and (b) is an AA ′ cross-sectional view thereof. The superconducting coil storage container 2 is made of stainless steel having high rigidity and strength because it is necessary to hold and fix the superconducting coil 1. The superconducting coil 1 is provided with a liquid helium flow path therein.
Has cooled. Aluminum having a low electrical resistivity (electrical resistivity of about 2 × 10 −7 Ωm) 2 is provided on the entire surface of the storage container 2.
3 is coated, but the upper side facing the ground coil side where eddy currents are likely to flow due to low frequency magnetic field fluctuations caused by vehicle shaking has higher purity than aluminum material coated on other parts. To make the electrical resistivity 1 × 10 -7 Ωm
A slightly reduced aluminum material 24 is coated. Therefore, the heat generation in this portion is reduced by the lower electric resistivity, and it is difficult to quench, and a highly reliable superconducting magnet can be obtained.

【0022】図5は本発明の他の実施の形態を示し、
(a)は正面図、(b)はそのA−A’断面図である。
輻射熱シールド25は支持部材5が取り付けられた収納
容器2を取り囲んでおり、表面に銅メッキ6が施された
収納容器2は内部に超電導コイル1を収納している。本
実施の形態の輻射熱シールド25は、液体窒素温度に冷
却して用いるため厚さ約3mmの熱伝導率の高いアルミ
ニウムで作られており、一部に板厚が約5mmと厚くな
っている部分26を有する。この板厚が厚い部分26
は、地上コイルに面する側で浮上方向上側部分に位置
し、車両動揺による渦電流が輻射熱シールドで最も多量
に流れる部分である。
FIG. 5 shows another embodiment of the present invention.
(A) is a front view, (b) is the AA 'sectional drawing.
The radiant heat shield 25 surrounds the storage container 2 to which the support member 5 is attached, and the storage container 2 having a surface plated with copper 6 stores the superconducting coil 1 therein. The radiant heat shield 25 of the present embodiment is made of aluminum having a high thermal conductivity of about 3 mm in thickness to be used after cooling to the temperature of liquid nitrogen, and a portion having a plate thickness of about 5 mm is partially formed. 26. This thick part 26
Is a portion that faces the ground coil and is located at an upper portion in the flying direction, and is a portion where the eddy current due to vehicle shaking flows through the radiant heat shield in the largest amount.

【0023】本実施の形態では、図1に示した実施の形
態のように、完全に渦電流分布に沿って板厚を厚くする
のではなく、渦電流密度の高い部分に帯状に板厚の厚い
部分を設けている。図1のように渦電流分布に沿って板
厚を変えると、発熱をできる限り抑制し、同時に重量も
できる限り軽量にするといった最適設計ができる。しか
し製作の容易さの点からすると、本実施の形態のような
単純な形状の方が加工しやすく、加工のコストも小さ
い。
In the present embodiment, the plate thickness is not completely increased along the eddy current distribution as in the embodiment shown in FIG. Thick parts are provided. By changing the plate thickness along the eddy current distribution as shown in FIG. 1, it is possible to achieve an optimal design in which heat generation is suppressed as much as possible and at the same time the weight is reduced as much as possible. However, from the viewpoint of ease of manufacture, a simple shape as in this embodiment is easier to process and the processing cost is smaller.

【0024】このように、渦電流の流路に相当する部分
の板厚を厚くして電気抵抗を下げ、電流を多量に流すこ
とにより、内部の低電気抵抗層へ到達する磁場変動を遮
蔽する効果を上げることができる。従って、超電導コイ
ル収納容器2の銅メッキ層6で生じる渦電流は低減し、
その結果発熱は減少するので、クエンチしにくく信頼性
の高い超電導磁石を得ることができる。
As described above, the electric resistance is reduced by increasing the thickness of the portion corresponding to the flow path of the eddy current, and a large amount of electric current is supplied to shield the fluctuation of the magnetic field reaching the internal low electric resistance layer. The effect can be improved. Therefore, the eddy current generated in the copper plating layer 6 of the superconducting coil storage container 2 is reduced,
As a result, heat generation is reduced, so that a highly reliable superconducting magnet that is hardly quenched can be obtained.

【0025】図6は本発明の他の実施の形態を示し、
(a)は正面図、(b)はそのA−A’断面図である。
超電導コイル1は、支持部材5が取り付けられ、表面に
銅メッキ層6が形成された収納容器2内に配置されてい
る。収納容器2は輻射熱シールド3内に配置され、輻射
熱シールド3は更に真空断熱容器27中に配置されてい
る。真空断熱容器27は約6×10-8Ωmの電気抵抗率
を有するアルミニウム材料で作られており、その一部分
28は約3×10-8Ωmと他の部分よりも電気抵抗率の
低い純アルミニウム材料で構成されている。電気抵抗率
の低い材料で構成された部分28は、地上コイルに面す
る側の上部に位置し、車両動揺による渦電流密度が高い
部分である。従って、本実施の形態によると、渦電流流
路の電気抵抗を下げて電流を多量に流すことにより、内
部の低電気抵抗層へ到達する磁場変動を遮蔽する効果を
上げることができる。
FIG. 6 shows another embodiment of the present invention.
(A) is a front view, (b) is the AA 'sectional drawing.
The superconducting coil 1 has a support member 5 attached thereto and is disposed in a storage container 2 having a copper plating layer 6 formed on the surface. The storage container 2 is disposed in the radiant heat shield 3, and the radiant heat shield 3 is further disposed in the vacuum heat insulating container 27. The vacuum insulated container 27 is made of an aluminum material having an electric resistivity of about 6 × 10 −8 Ωm, and a portion 28 thereof is made of pure aluminum having an electric resistivity of about 3 × 10 −8 Ωm, which is lower than other parts. It is made of material. The portion 28 made of a material having a low electric resistivity is located at an upper portion on the side facing the ground coil, and is a portion where the eddy current density due to the vehicle sway is high. Therefore, according to the present embodiment, by reducing the electric resistance of the eddy current flow path and allowing a large amount of current to flow, it is possible to enhance the effect of shielding magnetic field fluctuations reaching the internal low electric resistance layer.

【0026】従来、真空断熱容器は、軽量で強度、剛性
を有するアルミニウム合金で構成されており、電気抵抗
を下げるために全体を電気抵抗の低い純アルミニウムで
構成することは、強度上問題があったが、本実施の形態
のように、部分的に純アルミニウムを用いれば、強度も
確保できる上に発熱低減効果も大きい。また、本実施の
形態では、図4で示した実施の形態と異なって、完全に
渦電流分布に沿って低電気抵抗材を配置するのではな
く、渦電流が分布する領域を覆う部分に、長方形の低電
気抵抗材を配している。真空断熱容器の低電気抵抗部分
28と他の部分27とは、それぞれの形状に切削された
のち、溶接などの方法によって接合するが、切削も溶接
も複雑な曲線状であるよりは直線であるほうが加工が容
易であるため、製作コストを下げることができる。
Conventionally, a vacuum insulated container is made of a lightweight aluminum alloy having strength and rigidity. To reduce the electric resistance, it is difficult to form the whole from pure aluminum having a low electric resistance. However, if pure aluminum is partially used as in this embodiment, the strength can be secured and the heat generation reducing effect is large. Further, in the present embodiment, unlike the embodiment shown in FIG. 4, the low electric resistance material is not completely arranged along the eddy current distribution, but the portion covering the area where the eddy current is distributed, A rectangular low electric resistance material is arranged. The low electric resistance portion 28 and the other portion 27 of the vacuum insulated container are cut into their respective shapes and then joined by a method such as welding. However, both cutting and welding are straight lines rather than complicated curved shapes. Since the processing is easier, the manufacturing cost can be reduced.

【0027】なお以上の実施の形態では、電気抵抗値を
部分的に低減する方法として構成材の厚さを厚くする方
法及び電気抵抗率の小さな材料を使用する方法を説明し
たが、この2つの方法を併用して、電気抵抗率の小さな
材料を板厚を厚くして用いると更に高い電気抵抗値低減
効果が得られるのはもちろんである。
In the above embodiment, the method of increasing the thickness of the constituent material and the method of using a material having a small electric resistivity have been described as a method of partially reducing the electric resistance value. If a material having a small electric resistivity is used with a large plate thickness in combination with the above method, a higher electric resistance value reduction effect can be obtained.

【0028】[0028]

【発明の効果】本発明によると、構成材の厚さや電気抵
抗率を部分的に変えることにより、渦電流が生じる部分
の電気抵抗値を選択的に下げることができるので、強度
や剛性を損なわず、しかも重量を極端に増加することな
しに、液体ヘリウム系にある低電気抵抗材における渦電
流発熱を低減できる。また、輻射熱シールド、真空断熱
容器においては、渦電流の流れる部分の電気抵抗値を低
減することにより、低電気抵抗層への磁場侵入の遮蔽効
果を上げることができ、その結果低電気抵抗層の渦電流
発熱を低減できる。従って、クエンチの原因となる発熱
が抑制できるので、信頼性の高い超電導磁石を得ること
ができる。
According to the present invention, by partially changing the thickness and the electric resistivity of the constituent material, the electric resistance of the portion where the eddy current is generated can be selectively reduced, so that the strength and rigidity are impaired. In addition, it is possible to reduce the eddy current heat generation in the liquid helium-based low electric resistance material without increasing the weight extremely. Moreover, in the radiation heat shield and the vacuum heat insulation container, by reducing the electric resistance value of the portion where the eddy current flows, the shielding effect of the magnetic field penetration into the low electric resistance layer can be increased, and as a result, the low electric resistance layer Eddy current heat generation can be reduced. Therefore, since heat generation causing quench can be suppressed, a highly reliable superconducting magnet can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】部分的に低電気抵抗層の厚さを変えることで発
熱低減を図る実施の形態の説明図。
FIG. 1 is an explanatory diagram of an embodiment in which heat generation is reduced by partially changing the thickness of a low electric resistance layer.

【図2】抵抗と発熱量の関係を説明する図。FIG. 2 is a diagram illustrating the relationship between resistance and heat generation.

【図3】車両動揺による真空断熱容器上の渦電流分布を
示す解析図。
FIG. 3 is an analysis diagram showing an eddy current distribution on a vacuum insulated container due to vehicle shaking.

【図4】部分的に低電気抵抗層の構成材の電気抵抗率を
変えた実施の形態の説明図。
FIG. 4 is an explanatory diagram of an embodiment in which the electric resistivity of the constituent material of the low electric resistance layer is partially changed.

【図5】部分的に輻射熱シールドの厚さを変えた実施の
形態の説明図。
FIG. 5 is an explanatory view of an embodiment in which the thickness of the radiation heat shield is partially changed.

【図6】部分的に真空断熱容器の構成材の電気抵抗率を
変えた実施の形態の説明図。
FIG. 6 is an explanatory view of an embodiment in which the electrical resistivity of the constituent materials of the vacuum insulated container is partially changed.

【図7】磁気浮上列車の車載超電導コイルと地上コイル
の説明図。
FIG. 7 is an explanatory diagram of a vehicle-mounted superconducting coil and a ground coil of a magnetic levitation train.

【図8】従来の超電導磁石の説明図。FIG. 8 is an explanatory view of a conventional superconducting magnet.

【符号の説明】[Explanation of symbols]

1…超電導コイル、2…超電導コイル収納容器、3…輻
射熱シールド、4…真空断熱容器、5…支持部材、6…
銅メッキ層、10…車両、11a,11b…車載超電導
コイル、13…ガイドウェイ、14a,15a…浮上コ
イル、14b,15b…浮上コイル、16a,16b…
推進コイル、20…銅メッキ層、21,22…厚い銅メ
ッキ層、23,24…アルミニウム被覆、25…輻射熱
シールド、27…真空断熱容器
DESCRIPTION OF SYMBOLS 1 ... Superconducting coil, 2 ... Superconducting coil storage container, 3 ... Radiant heat shield, 4 ... Vacuum heat insulation container, 5 ... Support member, 6 ...
Copper plating layer, 10: vehicle, 11a, 11b: on-board superconducting coil, 13: guide way, 14a, 15a: floating coil, 14b, 15b: floating coil, 16a, 16b ...
Propulsion coil, 20: copper plating layer, 21, 22: thick copper plating layer, 23, 24: aluminum coating, 25: radiant heat shield, 27: vacuum insulation container

フロントページの続き (72)発明者 古川 陽子 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 福本 英士 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 柴田 将之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 滝沢 照広 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 寺井 元昭 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 稲玉 哲 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 水谷 隆 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 Fターム(参考) 4M114 AA15 AA22 AA40 BB01 CC03 CC16 DA02 DA12 DA52 5H113 AA07 BB03 CC04 CC08 CD02 CD13 CD16 CD18 DB03 DB09 DB14 DB19 JJ05 JJ10 KK02 KK10 Continued on the front page (72) Inventor Yoko Furukawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Eiji Fukumoto 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Masayuki Shibata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Teruhiro Takizawa Tachizawa, Hitachi 1-1 1-1, Hitachi, Ltd.Hitachi Plant, Hitachi, Ltd. (72) Inventor Motoaki Terai 1-4-1, Meieki Station, Nakamura-ku, Nagoya-shi, Aichi Tokai Passenger Railway Co., Ltd. (72) Inventor Tetsu Inadama Aichi 1-4-1 Meieki Station, Nakamura-ku, Nagoya-shi, Japan Inside Tokai Passenger Railway Co., Ltd. (72) Takashi Mizutani 2-8-8 Hikaricho, Kokubunji-shi, Tokyo F-term F-Term (in reference) 4M114 AA15 AA22 AA40 BB01 CC03 CC16 DA02 DA12 DA52 5H113 AA07 BB03 CC04 CC08 CD02 CD13 CD16 CD18 DB03 DB09 DB14 DB19 JJ05 JJ10 KK02 KK10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超電導線を巻回した超電導コイルと、該
超電導コイルを冷却し所定位置に固定する超電導コイル
収納容器と、該超電導コイル収納容器表面に被覆又はメ
ッキされた低電気抵抗材料層とを含む磁気浮上列車用超
電導磁石において、前記低電気抵抗材料層の厚さを部分
的に変えたことを特徴とする磁気浮上列車用超電導磁
石。
1. A superconducting coil wound with a superconducting wire, a superconducting coil housing for cooling the superconducting coil and fixing it in a predetermined position, and a low electric resistance material layer coated or plated on the surface of the superconducting coil housing. A superconducting magnet for a magnetic levitation train, wherein the thickness of the low electric resistance material layer is partially changed.
【請求項2】 真空断熱容器と、該真空断熱容器内に配
置された輻射熱シールドと、該輻射熱シールド内に配置
された超電導コイル収納容器と、該超電導コイル収納容
器内に配置された超電導コイルとを含む磁気浮上列車用
超電導磁石において、前記輻射熱シールドと前記真空断
熱容器の一方もしくは両方を部分的に厚さの異なる低電
気抵抗材料で構成したことを特徴とする磁気浮上列車用
超電導磁石。
2. A vacuum insulation container, a radiant heat shield disposed in the vacuum insulation container, a superconducting coil storage container disposed in the radiant heat shield, and a superconducting coil disposed in the superconducting coil storage container. A superconducting magnet for a magnetically levitated train, wherein one or both of the radiant heat shield and the vacuum insulated container are partially made of low electric resistance materials having different thicknesses.
【請求項3】 前記低電気抵抗材料の厚さを浮上方向上
下で非対称にしたことを特徴とする請求項1又は2記載
の磁気浮上列車用超電導磁石。
3. The superconducting magnet for a magnetically levitated train according to claim 1, wherein the thickness of the low electrical resistance material is asymmetrical in the vertical direction in the floating direction.
【請求項4】 浮上方向上部の少なくとも一部分の低電
気抵抗材料の厚さを浮上方向下部の低電気抵抗材料の厚
さより厚くしたことを特徴とする請求項1又は2記載の
磁気浮上列車用超電導磁石。
4. The superconductivity for a magnetically levitated train according to claim 1, wherein the thickness of at least a part of the low electric resistance material in the upper part in the levitation direction is thicker than the thickness of the low electric resistance material in the lower part in the levitation direction. magnet.
【請求項5】 超電導線を巻回した超電導コイルと、該
超電導コイルを冷却し所定位置に固定する超電導コイル
収納容器とを含む磁気浮上列車用超電導磁石において、
前記超電導コイル収納容器の表面に部分的に電気抵抗率
の異なる低電気抵抗材料を設置したことを特徴とする磁
気浮上列車用超電導磁石。
5. A superconducting magnet for a magnetic levitation train, comprising: a superconducting coil wound with a superconducting wire; and a superconducting coil storage container for cooling the superconducting coil and fixing the coil at a predetermined position.
A superconducting magnet for a magnetic levitation train, wherein a low electric resistance material having a different electric resistivity is partially provided on a surface of the superconducting coil storage container.
【請求項6】 真空断熱容器と、該真空断熱容器内に配
置された輻射熱シールドと、該輻射熱シールド内に配置
された超電導コイル収納容器と、該超電導コイル収納容
器内に配置された超電導コイルとを含む磁気浮上列車用
超電導磁石において、前記輻射シールドと真空断熱容器
の一方もしくは両方を部分的に電気抵抗率の異なる低電
気抵抗材料で構成したことを特徴とする磁気浮上列車用
超電導磁石。
6. A vacuum insulated container, a radiant heat shield disposed in the vacuum insulated container, a superconducting coil container disposed in the radiant heat shield, and a superconducting coil disposed in the superconducting coil container. A superconducting magnet for a magnetically levitated train, wherein one or both of the radiation shield and the vacuum insulated container are partially made of a low electric resistance material having a different electric resistivity.
【請求項7】 前記低電気抵抗材料の電気抵抗率を浮上
方向上下で非対称にしたことを特徴とする請求項5又は
6記載の磁気浮上列車用超電導磁石。
7. The superconducting magnet for a magnetically levitated train according to claim 5, wherein the electric resistivity of the low electric resistance material is asymmetrical in the vertical direction in the levitation direction.
【請求項8】 浮上方向上部の少なくとも一部分の低電
気抵抗材料の電気抵抗率を浮上方向下部の低電気抵抗材
料の電気抵抗率よりも低くしたことを特徴とする請求項
5又は6記載の磁気浮上列車用超電導磁石。
8. The magnetic device according to claim 5, wherein the electric resistivity of the low electric resistance material in at least a part of the upper part in the flying direction is lower than the electric resistivity of the low electric resistance material in the lower part of the flying direction. Superconducting magnet for levitation train.
JP26832898A 1998-09-22 1998-09-22 Superconducting magnet for magnetic levitation train Expired - Fee Related JP3732344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26832898A JP3732344B2 (en) 1998-09-22 1998-09-22 Superconducting magnet for magnetic levitation train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26832898A JP3732344B2 (en) 1998-09-22 1998-09-22 Superconducting magnet for magnetic levitation train

Publications (2)

Publication Number Publication Date
JP2000102112A true JP2000102112A (en) 2000-04-07
JP3732344B2 JP3732344B2 (en) 2006-01-05

Family

ID=17457025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26832898A Expired - Fee Related JP3732344B2 (en) 1998-09-22 1998-09-22 Superconducting magnet for magnetic levitation train

Country Status (1)

Country Link
JP (1) JP3732344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069093A (en) * 2001-08-29 2003-03-07 Central Japan Railway Co Perpetual current switch and superconducting magnet using it
JP2006339394A (en) * 2005-06-02 2006-12-14 Railway Technical Res Inst Method and apparatus for suppressing frictional heat generation of superconducting coil
JP2008218809A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Superconducting electromagnet and mri device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069093A (en) * 2001-08-29 2003-03-07 Central Japan Railway Co Perpetual current switch and superconducting magnet using it
JP2006339394A (en) * 2005-06-02 2006-12-14 Railway Technical Res Inst Method and apparatus for suppressing frictional heat generation of superconducting coil
JP4657814B2 (en) * 2005-06-02 2011-03-23 財団法人鉄道総合技術研究所 Method and apparatus for suppressing frictional heat generation of superconducting coil
JP2008218809A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Superconducting electromagnet and mri device using the same

Also Published As

Publication number Publication date
JP3732344B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US5628252A (en) Method and apparatus for combined levitation and guidance along guideway curvature in electrodynamic magnetically levitated high speed vehicle
US6250230B1 (en) Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system
US3841227A (en) Suspension system for a magnetic suspension railroad
EP3611046B1 (en) Hybrid electrodynamic levitation system
JP3815870B2 (en) Magnetic levitation railway propulsion / levitation / guide ground coil, magnetic levitation railway propulsion / levitation / guide ground coil connection method, magnetic levitation railway support / guide structure, magnetic levitation railway support / Guiding structure construction method, magnetic levitation railway propulsion / levitation / guide device, magnetic levitation railway propulsion / levitation / guide method, magnetic levitation railway system, magnetic levitation railway current collection system, and magnetic levitation Current collection method
US3927735A (en) Magnet system for use in the contactless guidance of a moving vehicle
US3780667A (en) Electro-magnetic system for the guided suspension of a moving vehicle
JP2000102112A (en) Superconducting magnet for magnetically levitated train
Kalsi et al. Iron-core superconducting magnet design and test results for maglev application
US5085149A (en) Ground vehicle suspension and guidance and electromagnetic system thereof with multiple surface arcuate reaction rails
JPH11215615A (en) Superconducting magnetically levitated running car
JP3493274B2 (en) Maglev train
JP2560561B2 (en) Superconducting coil device
JP2000152424A (en) Noncontact induction current collector
JP3151512B2 (en) Superconducting magnet for maglev train
JPH06163244A (en) Superconducting magnet device
JPH04354307A (en) Superconductive magnet
JP2971660B2 (en) Superconducting magnet device
JPH05121235A (en) Superconductive coil device
JPH06244027A (en) Superconductive magnet device
JP2642612B2 (en) Superconducting coil device for magnetic levitation train
JPH05217740A (en) Superconducting magnet structure for magnetic levitation train
JPH08222427A (en) Superconducting magnet device
JPH0563246A (en) Superconducting magnet for magnetic leviation railway
CN115132445A (en) Cooling framework for dynamic superconducting magnet coil and dynamic superconducting magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees