JP2007184383A - Magnetic field forming device - Google Patents

Magnetic field forming device Download PDF

Info

Publication number
JP2007184383A
JP2007184383A JP2006000986A JP2006000986A JP2007184383A JP 2007184383 A JP2007184383 A JP 2007184383A JP 2006000986 A JP2006000986 A JP 2006000986A JP 2006000986 A JP2006000986 A JP 2006000986A JP 2007184383 A JP2007184383 A JP 2007184383A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
superconducting coils
utilization space
coil arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000986A
Other languages
Japanese (ja)
Inventor
Osamu Ozaki
修 尾崎
Takayuki Miyatake
孝之 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006000986A priority Critical patent/JP2007184383A/en
Publication of JP2007184383A publication Critical patent/JP2007184383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce the height of a magnetic field forming device, using solenoidal superconducting coils, while securing sufficient magnetic field strength and stable coil installation conditions. <P>SOLUTION: A plurality of solenoidal superconducting coils 10 are arranged on one of sides across a magnetic field utilization space S, both in the horizontal and the vertical directions which are approximately perpendicular to the radial direction of the space S. A plurality of solenoidal superconducting coils 10 are arranged on the other side so as to sandwich, facing the coils 10 arranged on the former side across the space S. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリコン単結晶の引き上げや、水平強磁場下での物性実験等に使用される磁場形成装置に関するものである。   The present invention relates to a magnetic field forming apparatus used for pulling up a silicon single crystal, a physical property experiment under a horizontal strong magnetic field, and the like.

一般に、るつぼ内のシリコン融液から大口径シリコン単結晶を引き上げて成長させる工程においては、前記るつぼ内のシリコン融液の対流を抑制するために強磁場を印加する手法がよく用いられる。また、その磁場方向としては、前記シリコン単結晶の引上げ軸に対して直交する方向(水平方向)がよく用いられる。   In general, in the process of pulling and growing a large-diameter silicon single crystal from a silicon melt in a crucible, a method of applying a strong magnetic field is often used to suppress convection of the silicon melt in the crucible. As the magnetic field direction, a direction (horizontal direction) orthogonal to the pulling axis of the silicon single crystal is often used.

従来、強い水平磁場を形成する装置としては、その磁場利用空間を挟んで互いに対向する位置にそれぞれソレノイド型超電導コイルを配設したものが知られている。しかしながら、このような装置において十分な強さの磁場を形成するためには、超電導コイルの巻径を相当大きくしなければならず、このような超電導コイルの大径化は、装置全体の大型化、磁場発生効率の低下、漏れ磁場の増大といった不都合を招くことになる。   Conventionally, as a device for forming a strong horizontal magnetic field, devices in which solenoid type superconducting coils are respectively disposed at positions facing each other across the magnetic field utilization space are known. However, in order to form a sufficiently strong magnetic field in such an apparatus, the winding diameter of the superconducting coil must be considerably increased. The increase in the diameter of such a superconducting coil results in an increase in the size of the entire apparatus. This causes inconveniences such as reduction in magnetic field generation efficiency and increase in leakage magnetic field.

そこで、このような不都合を解消する手段として、特許文献1には、図10(a)(b)に示すような装置が開示されている。この装置は、軸方向が鉛直方向を向く円筒状の磁場利用空間Sを中央に有するクライオスタット1において、その磁場利用空間Sを挟んで一方の側(同図(b)では左側)に3個のソレノイド型超電導コイルC1,C2,C3を周方向に並べて配列し、他方の側(同図(b)では右側)に、前記磁場利用空間Sを挟んで前記各ソレノイド型超電導コイルC1,C2,C3にそれぞれ対向するように3個のソレノイド型超電導コイルC1’,C2’,C3’を配列したものである。   Therefore, as means for solving such inconvenience, Patent Document 1 discloses an apparatus as shown in FIGS. 10 (a) and 10 (b). In this apparatus, a cryostat 1 having a cylindrical magnetic field utilization space S with its axial direction oriented in the vertical direction in the center has three pieces on one side (left side in FIG. 5B) across the magnetic field utilization space S. Solenoid superconducting coils C1, C2, C3 are arranged side by side in the circumferential direction, and the solenoid type superconducting coils C1, C2, C3 are arranged on the other side (the right side in FIG. 5B) with the magnetic field utilization space S in between. The three solenoid type superconducting coils C1 ′, C2 ′, C3 ′ are arranged so as to face each other.

この装置によれば、磁場利用空間Sの両側にそれぞれ複数個の超電導コイルを配列しているため、相対向する超電導コイルを一対のみ配置するものに比べ、各コイルに要求される巻径を小さくすることができ、その分は磁場形成装置全体を小型化できる。
特開2001−203106号公報
According to this apparatus, since a plurality of superconducting coils are arranged on both sides of the magnetic field utilization space S, the winding diameter required for each coil is smaller than that in which only a pair of opposing superconducting coils are arranged. Accordingly, the entire magnetic field forming apparatus can be reduced in size.
JP 2001-203106 A

前記の磁場形成装置では、その高さ寸法の削減が大きな課題となっている。特に、この磁場形成装置を前記のようなシリコン融液からの単結晶の引上げに利用する場合、当該装置の高さ寸法の削減は結晶製造効率の向上に大きく寄与することとなる。すなわち、当該シリコン融液の結晶化は磁場中心近傍の高さ位置で行われるため、当該位置を低く抑えるとその上方のシリコン引上げ空間をより広くとることが可能となり、その分製品結晶の長さを大きくとることが可能になるのである。   In the magnetic field forming apparatus, reduction of the height dimension has become a big issue. In particular, when this magnetic field forming apparatus is used for pulling a single crystal from the silicon melt as described above, the reduction in the height dimension of the apparatus greatly contributes to the improvement of crystal production efficiency. In other words, since the crystallization of the silicon melt is performed at a height position near the center of the magnetic field, if the position is kept low, the silicon pulling space above it can be made wider, and the length of the product crystal is increased accordingly. It becomes possible to take a large.

この点において、前記図10(a)(b)に示される従来装置では、磁場利用空間Sの両側にそれぞれ複数個の超電導コイルを配列している分、一対の超電導コイルのみを対向配置するものよりも磁場発生効率は向上するものの、その向上度合いには限りがあり、十分な磁場強さを維持しながら装置の高さ寸法を削減するには限度がある。   In this respect, in the conventional apparatus shown in FIGS. 10A and 10B, only a pair of superconducting coils are arranged opposite to each other because a plurality of superconducting coils are arranged on both sides of the magnetic field utilization space S. However, the degree of improvement is limited, and there is a limit to reducing the height dimension of the apparatus while maintaining a sufficient magnetic field strength.

このような磁場強さの確保と必要高さ寸法の削減を両立する手段として、図11に示すような一対の鞍型コイルCsを対向配置することが考えられるが、当該鞍型コイルCsを超伝導コイルとして用いた場合、これに大電流を流して強磁場を発生させたときに安定した設置状態を保つことが難しいという欠点がある。すなわち、前記各鞍型コイルCsは、直線状をなす左右の垂直部と、円弧状をなす上下の鞍部とを合成した形状となっているので、当該鞍型コイルCsを超電導コイルに適用した場合、その強磁場発生に伴って作用する大きな電磁力に抗して超電導線材を静止状態に保つように固定するのが難しいという事情がある。もし、前記静止状態が崩れて線材が動くと、その摩擦熱等によってクエンチを招くおそれがある。   As a means for ensuring both the magnetic field strength and reducing the required height, it is conceivable to arrange a pair of saddle coils Cs as shown in FIG. When used as a conduction coil, there is a drawback that it is difficult to maintain a stable installation state when a strong magnetic field is generated by passing a large current through the coil. That is, each saddle-shaped coil Cs has a shape in which left and right vertical portions that form a straight line and upper and lower flanges that form an arc shape are combined. Therefore, when the saddle-shaped coil Cs is applied to a superconducting coil. There is a situation that it is difficult to fix the superconducting wire in a stationary state against a large electromagnetic force acting with the generation of the strong magnetic field. If the stationary state collapses and the wire moves, there is a risk of quenching due to frictional heat or the like.

本発明は、このような事情に鑑み、ソレノイド型超電導コイルを用いながら、十分な磁場強さを確保しつつ装置の高さ寸法を有効に削減することを目的とする。   In view of such circumstances, an object of the present invention is to effectively reduce the height dimension of an apparatus while ensuring a sufficient magnetic field strength while using a solenoid type superconducting coil.

本発明者等は、前記課題を解決すべく検討を重ねた結果、ソレノイド型超電導コイルを水平方向だけでなく鉛直方向すなわち磁場利用空間の軸方向と平行な方向にも複数個配列することにより、従来の装置よりも却って、十分な磁場強さを保ちながら超電導コイル配置のための必要高さ寸法を削減できることを見出した。   As a result of repeated studies to solve the above problems, the present inventors have arranged a plurality of solenoid-type superconducting coils not only in the horizontal direction but also in the vertical direction, that is, in the direction parallel to the axial direction of the magnetic field utilization space, It has been found that the required height dimension for superconducting coil arrangement can be reduced while maintaining a sufficient magnetic field strength, as compared with conventional devices.

本発明は、このような観点からなされたものであり、中心軸が鉛直方向を向く磁場利用空間の周囲に複数個のソレノイド型超電導コイルが、その中心軸が略水平方向を向く姿勢で配列され、これらの超電導コイルの通電により前記磁場利用空間にその軸方向と直交する磁場が形成される磁場形成装置において、前記磁場利用空間を挟んで一方の側に複数個のソレノイド型超電導コイルが前記磁場利用空間の半径方向に対して略直交する水平方向及び鉛直方向の双方に並ぶように複数個配列され、他方の側に前記一方の側に配列された各超電導コイルと前記磁場利用空間を挟んで対向するように複数個の超電導コイルが配列されているものである。   The present invention has been made from such a viewpoint, and a plurality of solenoid-type superconducting coils are arranged in a posture in which the central axis is oriented in a substantially horizontal direction around a magnetic field utilization space in which the central axis is oriented in the vertical direction. In the magnetic field forming apparatus in which a magnetic field orthogonal to the axial direction is formed in the magnetic field utilization space by energization of these superconducting coils, a plurality of solenoid type superconducting coils are disposed on one side of the magnetic field utilization space. A plurality of arrays are arranged so as to be aligned in both the horizontal direction and the vertical direction substantially orthogonal to the radial direction of the use space, and the superconducting coils arranged on the one side are sandwiched between the superconducting coil and the magnetic field use space. A plurality of superconducting coils are arranged so as to face each other.

この構成によれば、安定した設置を容易に行うことができるソレノイド型超電導コイルを用いながら、当該ソレノイド型超電導コイルを前記磁場利用空間の半径方向に対して略直交する水平方向だけでなく鉛直方向にも複数個配列することにより、従来装置と同様の磁場強度を確保しながら装置の高さ寸法を削減することができる。   According to this configuration, while using the solenoid-type superconducting coil that can be easily installed stably, the solenoid-type superconducting coil is not only in the horizontal direction substantially perpendicular to the radial direction of the magnetic field utilization space but also in the vertical direction. Further, by arranging a plurality of devices, it is possible to reduce the height of the device while ensuring the same magnetic field strength as that of the conventional device.

その具体的なコイル配置としては、例えば、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の半径方向と直交する平面状のコイル配列領域が軸方向及び半径方向の双方に直交する周方向に並ぶ複数箇所に設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列されているものが好適である。この構成によれば、各コイル配設領域において複数個の超電導コイルを平面状に配列することによりその設置を容易にしながら、十分な磁場強度の確保及び装置高さ寸法の削減を図ることができる。   As a specific coil arrangement, for example, on both sides of the magnetic field utilization space, a planar coil arrangement region perpendicular to the radial direction of the magnetic field utilization space has a circumference perpendicular to both the axial direction and the radial direction. A plurality of solenoid superconducting coils that are set in a plurality of locations arranged in the direction and are arranged in both the horizontal direction and the vertical direction on each coil arrangement region is preferable. According to this configuration, by arranging a plurality of superconducting coils in a planar shape in each coil arrangement region, it is possible to secure sufficient magnetic field strength and reduce the height of the apparatus while facilitating the installation. .

具体的に、前記各コイル配設領域に当該コイル配設領域と平行なコイル支持部材が配設され、各コイル支持部材に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列された状態で固定される構成とすれば、各コイルを適所に容易に配置することができるとともに、その位置に安定した状態で保持することができる。   Specifically, a coil support member parallel to the coil placement region is provided in each coil placement region, and a plurality of solenoid type superconducting coils are arranged in both the horizontal direction and the vertical direction on each coil support member. If it is configured to be fixed in a state where the coils are arranged, each coil can be easily disposed at an appropriate position, and can be held in a stable state at that position.

その配列例としては、前記磁場利用空間を挟んでその両側に互いに対向する3つのコイル配列領域が設定され、各コイル配列領域上に6個のソレノイド型超電導コイルが水平方向に3個、鉛直方向に2個並ぶように配列されているものが、好適である。   As an example of the arrangement, three coil arrangement areas facing each other on both sides of the magnetic field utilization space are set, and six solenoid-type superconducting coils in the horizontal direction and three in the vertical direction on each coil arrangement area. It is preferable that the two are arranged in parallel.

また、別のコイル配置態様として、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の中心軸と同軸の円筒面状のコイル配列領域が設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶように配列されているものでもよい。この構成によれば、前記磁場利用空間の中心軸からの各コイルの距離(半径方向の距離)を統一することにより、コイルの配置スペースの直径を縮減することができる。   As another coil arrangement mode, a cylindrical coil arrangement area coaxial with the central axis of the magnetic field utilization space is set on both sides of the magnetic field utilization space, and a plurality of coil arrangement areas are provided on each coil arrangement area. The solenoid-type superconducting coils may be arranged so as to be aligned in both the circumferential direction and the vertical direction of the coil arrangement region. According to this configuration, the diameter of the coil arrangement space can be reduced by unifying the distance of each coil from the central axis of the magnetic field utilization space (distance in the radial direction).

以上のように、本発明によれば、ソレノイド型超電導コイルを前記磁場利用空間の半径方向に対して略直交する水平方向だけでなく鉛直方向にも複数個配列することにより、従来装置と同様の磁場強度を確保しながら装置の高さ寸法を削減することができる効果がある。   As described above, according to the present invention, a plurality of solenoid-type superconducting coils are arranged not only in the horizontal direction substantially perpendicular to the radial direction of the magnetic field utilization space but also in the vertical direction, thereby providing the same as in the conventional apparatus. There is an effect that the height dimension of the apparatus can be reduced while ensuring the magnetic field strength.

本発明の好ましい実施の形態を図1〜図3に基づいて説明する。   A preferred embodiment of the present invention will be described with reference to FIGS.

この実施の形態に係る装置は、前記図10(a)(b)に示した装置と同様、図1に示すように、軸方向が鉛直方向を向く円筒状の磁場利用空間Sを中央に有するクライオスタット1に設けられる。   Similar to the apparatus shown in FIGS. 10A and 10B, the apparatus according to this embodiment has a cylindrical magnetic field utilization space S in which the axial direction is the vertical direction, as shown in FIG. It is provided in the cryostat 1.

このクライオスタット1は、ドーナツ板状の天板2及び底板3と、その径方向内側及び外側にそれぞれ配される内筒4及び外筒5とを有し、これら両筒4,5の上下端が前記天板2,3に気密状態で接合され、前記内筒4の内側空間が前記磁場利用空間Sとされている。この磁場利用空間Sは、鉛直方向の両側に開放されたものであってもよいし、その上下いずれかの端縁が前記天板2または底板3で塞がれているものであってもよい。また、この磁場利用空間Sの軸方向は正確に鉛直方向と合致していなくてもよく、その用途によっては若干傾いていてもよい。   The cryostat 1 has a donut plate-like top plate 2 and a bottom plate 3, and an inner cylinder 4 and an outer cylinder 5 respectively arranged on the inner side and the outer side in the radial direction. It is joined to the top plates 2 and 3 in an airtight state, and the inner space of the inner cylinder 4 is the magnetic field utilization space S. This magnetic field utilization space S may be open on both sides in the vertical direction, or may be one in which the upper or lower edge thereof is closed by the top plate 2 or the bottom plate 3. . Further, the axial direction of the magnetic field utilization space S may not exactly coincide with the vertical direction, and may be slightly inclined depending on the application.

このクライオスタット1において、前記両筒4,5に挟まれる空間が冷却空間とされており、この冷却空間内に本発明に係る磁場形成装置が導入される。この磁場形成装置は、公知の冷却手段、例えば液体ヘリウム等の冷媒中の浸漬、あるいは、小型GM冷凍機やパルスチューブによって超電導状態になるまで冷却される。   In the cryostat 1, a space between the cylinders 4 and 5 is a cooling space, and the magnetic field forming apparatus according to the present invention is introduced into the cooling space. This magnetic field forming apparatus is cooled until it becomes a superconducting state by a known cooling means, for example, immersion in a refrigerant such as liquid helium, or a small GM refrigerator or a pulse tube.

前記磁場形成装置は複数のソレノイド型超電導コイル(以下、単に「超電導コイル」と称する。)10が配列されることにより構成される。具体的には、前記磁場利用空間Sを挟んで一方の側に中央及びその左右の3つのコイル配設領域R1,R2,R3が設定され、これらのコイル配設領域R1,R2,R3にそれぞれ対向する(周方向に180°離間する)ように他方の側に3つのコイル配設領域R1′,R2′,R3′が設定されており、これらのコイル配設領域にそれぞれ前記超電導コイル10が複数個配列されている。   The magnetic field forming apparatus is configured by arranging a plurality of solenoid type superconducting coils (hereinafter simply referred to as “superconducting coils”) 10. Specifically, the center and three right and left coil arrangement regions R1, R2, and R3 are set on one side across the magnetic field utilization space S, and the coil arrangement regions R1, R2, and R3 are respectively set. Three coil arrangement regions R1 ′, R2 ′, R3 ′ are set on the other side so as to face each other (separate by 180 ° in the circumferential direction), and the superconducting coils 10 are respectively arranged in these coil arrangement regions. A plurality are arranged.

前記各超伝導コイル10は、例えばステンレス鋼からなる巻枠に適当な超電導線材(例えばNbSn線材)を巻き付けることにより構成されている。 Each of the superconducting coils 10 is configured by winding a suitable superconducting wire (for example, Nb 3 Sn wire) around a winding frame made of, for example, stainless steel.

前記各コイル配設領域は、それぞれ、前記磁場利用空間Sの半径方向(図2に示す中心軸X1,X2,X3の方向)と直交する平面状をなし、中央のコイル配設領域R1,R1′の中心軸(法線軸)X1に対して、その左側のコイル配設領域R2,R2′の中心軸X2及び右側のコイル配設領域R3,R3′の中心軸X3が前記磁場利用空間Sの周方向にそれぞれ所定の配置角度α(≦60°)で振り分けられている。   Each of the coil arrangement regions has a planar shape perpendicular to the radial direction of the magnetic field utilization space S (the directions of the central axes X1, X2, and X3 shown in FIG. 2), and the central coil arrangement regions R1, R1. The central axis X2 of the coil arrangement regions R2 and R2 'on the left side and the central axis X3 of the coil arrangement regions R3 and R3' on the right side of the magnetic field utilization space S with respect to the central axis (normal axis) X1 of ' They are distributed in the circumferential direction at a predetermined arrangement angle α (≦ 60 °).

前記各コイル配設領域においては、その平面上で図3に示すように計6個の超電導コイル10が水平方向(図3の左右方向)に3個、鉛直方向(図3の上下方向)に2個並ぶように配列されている。図3に示すように、各超電導コイル10は外径D、内径dをもつ円環体状(ドーナツ状)をなし、その中心軸が略水平方向を向く姿勢で配列されており、これら超電導コイル10同士の間には電気的に絶縁された状態で水平方向及び鉛直方向にそれぞれ所定の隙間δ1,δ2(図3)が確保されている。各コイル配設領域における超電導コイル10の巻線の向きは統一されており、これらの超電導コイル10を同時に通電することによって各コイル軸に平行な磁界が形成されるようになっている。   In each of the coil arrangement regions, a total of six superconducting coils 10 in the horizontal direction (left and right direction in FIG. 3) and three in the vertical direction (up and down direction in FIG. 3) are shown in FIG. Two are arranged side by side. As shown in FIG. 3, each superconducting coil 10 has an annular shape (doughnut shape) having an outer diameter D and an inner diameter d, and is arranged in such a manner that its central axis is oriented substantially in the horizontal direction. Predetermined gaps δ1 and δ2 (FIG. 3) are secured in the horizontal and vertical directions while being electrically insulated from each other. The direction of the winding of the superconducting coil 10 in each coil arrangement region is unified, and a magnetic field parallel to each coil axis is formed by energizing these superconducting coils 10 simultaneously.

なお、前記各超電導コイル10は共通の電源に対して相互直列に接続されていてもよいし、並列に接続されていてもよい。あるいは各領域ごとに専用の電源を与えるようにしてもよい。   Each of the superconducting coils 10 may be connected in series to a common power source or may be connected in parallel. Alternatively, a dedicated power source may be provided for each area.

このような磁場発生装置によれば、鉛直方向に複数の超電導コイル10を配列しているものの、十分な磁場を形成するために必要とされる各超電導コイル10のコイル径を縮減できる結果として、鉛直方向について単一の超電導コイルのみを配する従来装置(例えば前記図10(a)(b)に示す装置)に比べ、これと同じ強さの磁場を形成するために必要な装置高さ寸法を削減することが可能となる。すなわち、従来のように鉛直方向について単一の大径コイルを設置する場合、その磁界はコイル形状に従うが、コイル設置隙間が大きく、これにより磁場発生効率が低下し、装置高さは大きくなる。これに対し、図3に示すように複数の小径コイルを縦横に配列した場合、コイル間の隙間を小さくできるため、磁場発生効率が高くなり、装置高さを縮減することができる。   According to such a magnetic field generator, although a plurality of superconducting coils 10 are arranged in the vertical direction, the coil diameter of each superconducting coil 10 required to form a sufficient magnetic field can be reduced. Compared with a conventional apparatus (for example, the apparatus shown in FIGS. 10A and 10B) in which only a single superconducting coil is arranged in the vertical direction, the apparatus height dimension required to form a magnetic field having the same strength as this. Can be reduced. That is, when a single large-diameter coil is installed in the vertical direction as in the prior art, the magnetic field follows the coil shape, but the coil installation gap is large, thereby reducing the magnetic field generation efficiency and increasing the device height. On the other hand, when a plurality of small-diameter coils are arranged vertically and horizontally as shown in FIG. 3, the gap between the coils can be reduced, so that the magnetic field generation efficiency is increased and the height of the apparatus can be reduced.

なお、本発明において、各超電導コイル10の具体的な個数や配置、形状は図示のものに限られず、適宜設定可能である。   In the present invention, the specific number, arrangement, and shape of each superconducting coil 10 are not limited to those illustrated, and can be set as appropriate.

例えば、図4(a)(b)に示すように、磁場利用空間Sを挟んでその両側(同図(b)では上側及び下側)に、当該磁場利用空間Sの中心軸と同軸の円筒面状のコイル配列領域Rs,Rs′を設定し、各コイル配列領域Rs,Rs′上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶ(図例では周方向に9個、鉛直方向に2個並ぶ)ように配列してもよい。   For example, as shown in FIGS. 4 (a) and 4 (b), cylinders coaxial with the central axis of the magnetic field utilization space S are provided on both sides of the magnetic field utilization space S (upper and lower sides in FIG. 4 (b)). A planar coil arrangement region Rs, Rs ′ is set, and a plurality of solenoid type superconducting coils are arranged in both the circumferential direction and the vertical direction of the coil arrangement region on each coil arrangement region Rs, Rs ′ (example in the figure). 9 may be arranged in the circumferential direction and two in the vertical direction.

また、要求される磁場が強い場合には、前記超電導コイル10を鉛直方向に3個以上配列するようにしてもよいし、水平方向の配列個数も適宜設定可能である。また、コイル配設領域の総数も適宜増減可能である。   When the required magnetic field is strong, three or more superconducting coils 10 may be arranged in the vertical direction, and the number of arrangement in the horizontal direction can be set as appropriate. Moreover, the total number of coil arrangement | positioning area | regions can also be increased / decreased suitably.

各超電導コイル10の形状は図示のような円環体状(ドーナツ状)が一般的であるが、その中心軸と平行な方向から見た形状を縦長または横長の楕円形あるいはその他の閉曲線形状としてもよい。いずれの場合も、コイルの全周にわたって巻線張力が作用することにより、ワイヤムーブメント(超電導線材の微小な動き)が有効に抑制されることになる。電磁力が大きくて巻線張力のみではワイヤムーブメントを抑えられない場合には、周知の手段、例えばコイルの外周に別のバインド線を巻いたり、エポキシ樹脂やワックスからなる含浸材を含浸させたりする手段を用いてワイヤムーブメントを規制すればよい。   The shape of each superconducting coil 10 is generally a toroidal shape (donut shape) as shown in the figure, but the shape viewed from the direction parallel to the central axis is a vertically long or horizontally long ellipse or other closed curve shape. Also good. In either case, the wire movement (the minute movement of the superconducting wire) is effectively suppressed by the winding tension acting over the entire circumference of the coil. When the electromagnetic force is large and the wire movement cannot be suppressed only by the winding tension, a well-known means such as winding another bind wire around the outer periphery of the coil or impregnating with an impregnation material made of epoxy resin or wax What is necessary is just to regulate a wire movement using a means.

各超電導コイル10を所定位置に保持するための具体的な手段については、種々設定が可能である。例として、前記図2に示す配列でコイル配設領域の配置角度αが60°に設定された場合に好適なコイル支持構造を図5(a)(b)に示す。   Various settings can be made for specific means for holding each superconducting coil 10 at a predetermined position. As an example, FIGS. 5A and 5B show a coil support structure suitable when the arrangement angle α of the coil arrangement region is set to 60 ° in the arrangement shown in FIG.

同図(a)に示すコイル支持枠14は、計6個の平板部11,12,13,11′,12′,13′が平面視正六角形状となるように相互接合された六角筒状をなし、前記各平板部11,12,13,11′,12′,13′の外側面上に計6個(水平方向3個、垂直方向2個)の超電導コイル10が配列され、同図(b)に示すボルト16により前記各平板部に固定されている。つまり、前記各平板部11,12,13,11′,12′,13′は、それぞれ、前記図2(a)(b)に示したコイル配設領域R1,R2,R3,R1′,R2′,R3′と平行なコイル支持部材を構成している。   The coil support frame 14 shown in FIG. 6A is a hexagonal cylinder shape in which a total of six flat plate portions 11, 12, 13, 11 ', 12', 13 'are joined to each other so as to have a regular hexagonal shape in plan view. A total of six superconducting coils 10 (three in the horizontal direction and two in the vertical direction) are arranged on the outer surface of each of the flat plate portions 11, 12, 13, 11 ', 12', 13 '. It is being fixed to the said each flat plate part with the volt | bolt 16 shown to (b). That is, the flat plate portions 11, 12, 13, 11 ', 12', 13 'are respectively arranged in the coil arrangement regions R1, R2, R3, R1', R2 shown in FIGS. A coil supporting member parallel to ', R3' is formed.

なお、前記コイル支持枠14や前記ボルト16の材質としては、SUS316等のステンレス鋼、純アルミニウム、アルミニウム合金等を用いることが可能である。また、ボルト16以外の固定手段としては、例えば溶接が好適であり、また接着剤による固定も可能である。   As the material for the coil support frame 14 and the bolt 16, stainless steel such as SUS316, pure aluminum, aluminum alloy, or the like can be used. Moreover, as fixing means other than the bolt 16, for example, welding is suitable, and fixing with an adhesive is also possible.

図6は、前記図5に示すコイル支持枠14に保持されて液体ヘリウム温度で運転される各超電導コイル10を冷媒式のクライオスタット1内に導入した例を示したものである。   FIG. 6 shows an example in which each superconducting coil 10 held by the coil support frame 14 shown in FIG. 5 and operated at the liquid helium temperature is introduced into the refrigerant cryostat 1.

同図に示すクライオスタット1は、中空ドーナツ状の真空槽30を有し、この真空槽30の内部に液体窒素槽32、輻射シールド板33、及び液体ヘリウム槽34が収容されている。前記液体窒素槽32は、中空ドーナツ状をなし、その内部に液体窒素が収容されている。前記液体ヘリウム槽34は前記液体窒素槽32の径方向内側に配置され、この液体ヘリウム槽34を上側及び下側並びに径方向内側から覆うように前記輻射シールド板33が配置されている。   The cryostat 1 shown in the figure has a hollow donut-shaped vacuum chamber 30 in which a liquid nitrogen tank 32, a radiation shield plate 33, and a liquid helium tank 34 are accommodated. The liquid nitrogen tank 32 has a hollow donut shape, and liquid nitrogen is accommodated therein. The liquid helium tank 34 is disposed on the radially inner side of the liquid nitrogen tank 32, and the radiation shield plate 33 is disposed so as to cover the liquid helium tank 34 from the upper side, the lower side, and the radially inner side.

前記液体ヘリウム槽34には、冷媒として液体ヘリウム36が収容され、この液体ヘリウム36内に前記コイル支持枠14及びこのコイル支持枠14に保持された多数の超電導コイル10が浸漬されている。前記コイル支持枠14は、その各平板部11,12,13,11′,12′,13′が立直する姿勢で、クライオスタット1により囲まれる磁場利用空間Sの中心軸と同軸となる位置に配置され、その下端部が前記液体ヘリウム槽34の底壁に固定されている。これにより、前記各超電導コイル10は、前記各平板部11,12,13,11′,12′,13′にそれぞれ平行なコイル配列領域上に水平方向及び鉛直方向の双方に並ぶように配列され、かつ保持された状態となっている。そして、これらの超電導コイル10が通電されることにより、前記磁場利用空間Sに図6に示すような水平方向の磁束線38をもつ強磁場が形成されることになる。   The liquid helium tank 34 contains liquid helium 36 as a coolant, and the coil support frame 14 and a number of superconducting coils 10 held by the coil support frame 14 are immersed in the liquid helium 36. The coil support frame 14 is arranged at a position coaxial with the central axis of the magnetic field utilization space S surrounded by the cryostat 1 in such a posture that the flat plate portions 11, 12, 13, 11 ', 12', 13 'are upright. The lower end thereof is fixed to the bottom wall of the liquid helium tank 34. Thus, the superconducting coils 10 are arranged so as to be arranged in both the horizontal direction and the vertical direction on the coil arrangement regions parallel to the flat plate portions 11, 12, 13, 11 ', 12', 13 ', respectively. And it is in a held state. When these superconducting coils 10 are energized, a strong magnetic field having horizontal magnetic flux lines 38 as shown in FIG. 6 is formed in the magnetic field utilization space S.

なお、図例では全平板部11,12,13,11′,12′,13′が相互つながって単一のコイル支持枠14を構成するものとなっているが、これらの平板部は相互独立して個別に配置されるものであってもよい。   In the illustrated example, all flat plate portions 11, 12, 13, 11 ', 12', 13 'are connected to each other to form a single coil support frame 14, but these flat plate portions are independent of each other. And may be arranged individually.

図7に示すような比較例装置(鉛直方向について超電導コイルのコイルが単数である装置)と、前記図1〜図3に示すような本発明装置の双方において、磁場中心で0.4Tの磁束密度を発生させるためのコイル設計及びその配置設計を行った。その諸元を下記の表1(比較例)と表2(本実施例1)に示す。   In both the comparative example apparatus as shown in FIG. 7 (an apparatus having a single superconducting coil in the vertical direction) and the present invention apparatus as shown in FIGS. The coil design and the layout design for generating the density were performed. The specifications are shown in Table 1 (Comparative Example) and Table 2 (Example 1) below.

Figure 2007184383
Figure 2007184383

Figure 2007184383
Figure 2007184383

なお、前記比較例装置は、図7に示すように、磁場利用空間Sを挟んで一方の側(同図左側)に中央及びその左右の3つの超電導コイル20,22,24が配置され、他方の側に前記超電導コイル20,22,24とそれぞれ対向するように3つの超電導コイル20′,22′,24′が配置されたものであり、これらの超電導コイル20,22,24,20′,22′,24のレイアウトは、図1〜図3に示される本発明装置での各コイル配設領域R1,R2,R3,R1′,R2′,R3′のレイアウトに近似するものである。   In the comparative example device, as shown in FIG. 7, the center and three superconducting coils 20, 22, and 24 on the left and right sides thereof are arranged on one side (left side of the figure) across the magnetic field utilization space S, while the other The three superconducting coils 20 ′, 22 ′, 24 ′ are arranged on the side of the superconducting coils 20, 22, 24 so as to face each other, and these superconducting coils 20, 22, 24, 20 ′, The layout of 22 'and 24 approximates to the layout of each coil arrangement region R1, R2, R3, R1', R2 ', R3' in the device of the present invention shown in FIGS.

また、前記比較例装置及び本発明装置における各超電導コイルは、ステンレス鋼製の巻枠にNbSn製の超電導線材を巻付けることにより構成されている。 Each of the superconducting coils in the comparative example device and the device of the present invention is configured by winding a superconducting wire made of Nb 3 Sn around a stainless steel winding frame.

前記表1と表2とを対照すると、本実施例1の効果はきわめて明らかである。すなわち、前記比較例装置での超電導コイルの巻線外径Dは694mmであり、少なくともこれと同等の装置高さ寸法が要求されるのに対し、本実施例1の装置での各超電導コイル10の巻線外径Dは268mmであり、かつ、鉛直方向のコイル間距離(隙間)δ2は1mmであるため、必要な高さ寸法は268mm×2+1mm=537mmに収まる。従って、本実施例では前記比較例に比して高さ寸法を694mm−537mm=110mmも削減することが期待できる。   When Table 1 and Table 2 are compared, the effect of Example 1 is very clear. That is, the winding outer diameter D of the superconducting coil in the comparative example device is 694 mm, and at least the device height dimension equivalent to this is required, whereas each superconducting coil 10 in the device of the first embodiment is required. Since the winding outer diameter D is 268 mm and the distance (gap) δ2 between the coils in the vertical direction is 1 mm, the required height dimension is within 268 mm × 2 + 1 mm = 537 mm. Therefore, in this embodiment, it can be expected that the height dimension is reduced by 694 mm−537 mm = 110 mm as compared with the comparative example.

また、図8は、前記比較例装置(同図上段)及び本実施例装置(同図下段)における磁場分布をシミュレーション解析したヒストグラムを示しているが、両図を比較して明らかなように、本発明の適用により装置の高さ寸法を抑えながらも磁場の均一度は前記比較例以上のレベルに保つことができる。   Further, FIG. 8 shows a histogram obtained by analyzing the magnetic field distribution in the comparative apparatus (upper part of the figure) and the apparatus of the present example (lower part of the figure). By applying the present invention, the uniformity of the magnetic field can be maintained at a level higher than that of the comparative example while suppressing the height of the apparatus.

前記実施例1と同様に、前記図4に示すような本発明装置において、磁場中心で0.4Tの磁束密度を発生させるためのコイル設計及びその配置設計を行った。その諸元を下記表3(本実施例2)に示す。   Similar to the first embodiment, in the device of the present invention as shown in FIG. 4, a coil design and a layout design for generating a magnetic flux density of 0.4 T at the center of the magnetic field were performed. The specifications are shown in Table 3 below (Example 2).

Figure 2007184383
Figure 2007184383

この表3と前記表1とを対照しても、本実施例2の効果はきわめて明らかである。すなわち、前記比較例装置での超電導コイルの巻線外径Dは694mmであり、少なくともこれと同等の装置高さ寸法が要求されるのに対し、本実施例2の装置では前記実施例1と同様に各超電導コイル10の巻線外径Dは268mmであり、かつ、鉛直方向のコイル間距離(隙間)δ2は1mmであるため、必要な高さ寸法は268mm×2+1mm=537mmに収まる。従って、前記実施例1と同様に前記比較例に比して高さ寸法を694mm−537mm=110mmも削減することが期待できる。   Even when Table 3 is compared with Table 1 above, the effect of Example 2 is very clear. That is, the winding outer diameter D of the superconducting coil in the comparative example apparatus is 694 mm, and at least an apparatus height dimension equivalent to this is required. Similarly, since the winding outer diameter D of each superconducting coil 10 is 268 mm and the distance (gap) δ2 between the coils in the vertical direction is 1 mm, the required height dimension is within 268 mm × 2 + 1 mm = 537 mm. Therefore, it can be expected that the height dimension is reduced by 694 mm−537 mm = 110 mm as compared with the comparative example as in the first embodiment.

また、図9は、前記図8と同様に本実施例2の装置における磁場分布をシミュレーション解析したヒストグラムを示しているが、この図9と前記図8の上段図を比較して明らかなように、本発明の適用により装置の高さ寸法を抑えながらも磁場の均一度は前記比較例以上のレベルに保つことができる。   Further, FIG. 9 shows a histogram obtained by analyzing the magnetic field distribution in the apparatus of the second embodiment in the same manner as in FIG. 8. As is clear from comparison between FIG. 9 and the upper diagram of FIG. By applying the present invention, the uniformity of the magnetic field can be maintained at a level higher than that of the comparative example while suppressing the height of the apparatus.

本発明の実施の形態に係る磁場形成装置が導入されるクライオスタットの概略斜視図である。1 is a schematic perspective view of a cryostat in which a magnetic field forming apparatus according to an embodiment of the present invention is introduced. (a)は前記磁場形成装置における超電導コイルの配列を示す斜視図、(b)はその平面図である。(A) is a perspective view which shows the arrangement | sequence of the superconducting coil in the said magnetic field formation apparatus, (b) is the top view. 前記磁場形成装置の各コイル配設領域における超電導コイルの配列を示す正面図である。It is a front view which shows the arrangement | sequence of the superconducting coil in each coil arrangement | positioning area | region of the said magnetic field formation apparatus. (a)は図2とは別の実施の形態に係る磁場形成装置における超電導コイルの配列を示す斜視図、(b)はその平面図である。(A) is a perspective view which shows the arrangement | sequence of the superconducting coil in the magnetic field formation apparatus based on Embodiment different from FIG. 2, (b) is the top view. 図2に示される配列で各超電導コイルを支持するためのコイル支持枠を示す斜視図である。It is a perspective view which shows the coil support frame for supporting each superconducting coil by the arrangement | sequence shown by FIG. 前記コイル支持枠及びこのコイル支持枠に支持される各超電導コイルがクライオスタットに導入された例を示す断面正面図である。It is a cross-sectional front view which shows the example in which each said superconducting coil supported by the said coil support frame and this coil support frame was introduce | transduced into the cryostat. 比較例での各超電導コイルの配置を示す平面図である。It is a top view which shows arrangement | positioning of each superconducting coil in a comparative example. 前記比較例及び本発明の実施例1の装置により形成される磁場の分布を示すヒストグラムである。It is a histogram which shows distribution of the magnetic field formed with the apparatus of the said comparative example and Example 1 of this invention. 本発明の実施例2の装置により形成される磁場の分布を示すヒストグラムである。It is a histogram which shows distribution of the magnetic field formed with the apparatus of Example 2 of this invention. (a)は従来の磁場形成装置におけるコイルの配置例を示す斜視図、(b)はその平面図である。(A) is a perspective view which shows the example of arrangement | positioning of the coil in the conventional magnetic field formation apparatus, (b) is the top view. 鞍型コイルの例を示す斜視図である。It is a perspective view which shows the example of a saddle type coil.

符号の説明Explanation of symbols

R1,R2,R3,Rs,R1′,R2′,R3′,Rs′ コイル配設領域
S 磁場利用空間
X1〜X3 中心軸
α コイル配設領域の配置角度
θ コイルの配置角度
1 クライオスタット
10 ソレノイド型超電導コイル
11,12,13,11′,12′,13′ 平板部(コイル支持部材)
14 コイル支持枠
R1, R2, R3, Rs, R1 ', R2', R3 ', Rs' Coil arrangement area S Magnetic field utilization space X1 to X3 Central axis α Coil arrangement area θ Coil arrangement angle 1 Cryostat 10 Solenoid type Superconducting coil 11, 12, 13, 11 ', 12', 13 'Flat plate (coil support member)
14 Coil support frame

Claims (5)

中心軸が鉛直方向を向く磁場利用空間の周囲に、複数個のソレノイド型超電導コイルが、その中心軸が略水平方向を向く姿勢で配列され、これらの超電導コイルの通電により前記磁場利用空間にその軸方向と直交する磁場が形成される磁場形成装置において、前記磁場利用空間を挟んで一方の側に複数個のソレノイド型超電導コイルが前記磁場利用空間の半径方向に対して略直交する水平方向及び鉛直方向の双方に並ぶように複数個配列され、他方の側に前記一方の側に配列された各超電導コイルと前記磁場利用空間を挟んで対向するように複数個の超電導コイルが配列されていることを特徴とする磁場形成装置。   A plurality of solenoid-type superconducting coils are arranged around the magnetic field utilization space whose central axis is oriented in the vertical direction, with the central axis oriented in a substantially horizontal direction, and these superconducting coils are energized in the magnetic field utilization space. In the magnetic field forming apparatus in which a magnetic field orthogonal to the axial direction is formed, a plurality of solenoid type superconducting coils on one side across the magnetic field utilization space, a horizontal direction substantially perpendicular to the radial direction of the magnetic field utilization space, and A plurality of superconducting coils are arranged so as to be arranged in both vertical directions, and a plurality of superconducting coils are arranged on the other side so as to face each superconducting coil arranged on the one side across the magnetic field utilization space. Magnetic field forming apparatus characterized by that. 請求項1記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の半径方向と直交する平面状のコイル配列領域が軸方向及び半径方向の双方に直交する周方向に並ぶ複数箇所に設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列されていることを特徴とする磁場形成装置。   2. The magnetic field forming apparatus according to claim 1, wherein a planar coil array region perpendicular to the radial direction of the magnetic field utilization space is disposed on both sides of the magnetic field utilization space across the axial direction and the radial direction. And a plurality of solenoid type superconducting coils arranged in both the horizontal direction and the vertical direction on each coil arrangement region. 請求項2記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に互いに対向する3つのコイル配列領域が設定され、各コイル配列領域上に6個のソレノイド型超電導コイルが水平方向に3個、鉛直方向に2個並ぶように配列されていることを特徴とする磁場形成装置。   3. The magnetic field forming apparatus according to claim 2, wherein three coil arrangement areas facing each other are set on both sides of the magnetic field utilization space, and six solenoid type superconducting coils are horizontally arranged on each coil arrangement area. An apparatus for forming a magnetic field, wherein two are arranged in a vertical direction. 請求項2または3記載の磁場形成装置において、前記各コイル配設領域に当該コイル配設領域と平行なコイル支持部材が配設され、各コイル支持部材に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列された状態で固定されていることを特徴とする磁場形成装置。   4. The magnetic field forming apparatus according to claim 2, wherein a coil support member parallel to the coil arrangement region is arranged in each coil arrangement region, and a plurality of solenoid type superconducting coils are horizontally arranged in each coil support member. And a magnetic field forming device fixed in a state of being arranged so as to be aligned in both the vertical direction and the vertical direction. 請求項1記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の中心軸と同軸の円筒面状のコイル配列領域が設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶように配列されていることを特徴とする磁場形成装置。   2. The magnetic field forming apparatus according to claim 1, wherein on both sides of the magnetic field utilization space, a cylindrical coil arrangement region coaxial with the central axis of the magnetic field utilization space is set, and a plurality of coil arrangement regions are provided on each coil arrangement region. A magnetic field forming apparatus characterized in that the solenoid type superconducting coils are arranged so as to be aligned in both the circumferential direction and the vertical direction of the coil arrangement region.
JP2006000986A 2006-01-06 2006-01-06 Magnetic field forming device Pending JP2007184383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000986A JP2007184383A (en) 2006-01-06 2006-01-06 Magnetic field forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000986A JP2007184383A (en) 2006-01-06 2006-01-06 Magnetic field forming device

Publications (1)

Publication Number Publication Date
JP2007184383A true JP2007184383A (en) 2007-07-19

Family

ID=38340218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000986A Pending JP2007184383A (en) 2006-01-06 2006-01-06 Magnetic field forming device

Country Status (1)

Country Link
JP (1) JP2007184383A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278391A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting coil and method of manufacturing superconducting coil
WO2022102251A1 (en) * 2020-11-10 2022-05-19 株式会社Sumco Single crystal production method, magnetic field generator, and single crystal production device
WO2022163091A1 (en) * 2021-01-26 2022-08-04 信越半導体株式会社 Single crystal pulling device and single crystal pulling method
WO2022196127A1 (en) * 2021-03-15 2022-09-22 信越半導体株式会社 Single crystal pulling-up apparatus and single crystal pulling-up method
JP7439900B2 (en) 2020-03-17 2024-02-28 信越半導体株式会社 Single crystal pulling equipment and single crystal pulling method
US11978586B2 (en) 2021-01-18 2024-05-07 Sumitomo Heavy Industries, Ltd. Superconducting magnet device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278391A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting coil and method of manufacturing superconducting coil
JP7439900B2 (en) 2020-03-17 2024-02-28 信越半導体株式会社 Single crystal pulling equipment and single crystal pulling method
WO2022102251A1 (en) * 2020-11-10 2022-05-19 株式会社Sumco Single crystal production method, magnetic field generator, and single crystal production device
TWI797764B (en) * 2020-11-10 2023-04-01 日商Sumco股份有限公司 Method for producing single crystal, magnetic field generator and apparatus for producing single crystal
US11978586B2 (en) 2021-01-18 2024-05-07 Sumitomo Heavy Industries, Ltd. Superconducting magnet device
WO2022163091A1 (en) * 2021-01-26 2022-08-04 信越半導体株式会社 Single crystal pulling device and single crystal pulling method
WO2022196127A1 (en) * 2021-03-15 2022-09-22 信越半導体株式会社 Single crystal pulling-up apparatus and single crystal pulling-up method

Similar Documents

Publication Publication Date Title
JP5534713B2 (en) Superconducting magnet
JP2007184383A (en) Magnetic field forming device
JP4716284B2 (en) Charged particle beam deflection apparatus and charged particle beam irradiation apparatus
US6984264B2 (en) Single crystal pulling device and method and superconducting magnet
US9588198B2 (en) Open-type nuclear magnetic resonance magnet system having an iron ring member
US8917153B2 (en) Supported pot magnet for magnetic resonance system
KR100282562B1 (en) Superconducting magnet device
JP2006102060A (en) Superconducting electromagnetic device for magnetic resonance imaging apparatus
CN209961896U (en) Magnet for magnetic resonance imaging
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
WO2013099702A1 (en) In-field heat treatment device
JP2008125893A (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP2011194136A (en) Superconducting magnet device and magnetic resonance imaging apparatus
JP4550669B2 (en) Magnetic force field generator
JP2006261335A (en) Superconducting magnet apparatus
JP6001499B2 (en) Magnetic resonance imaging system
JP2017183525A (en) Superconducting electromagnet device
JP2014241217A (en) Cyclotron
JP2010200794A (en) Magnetic resonance imaging apparatus
JP2006326177A (en) Superconductive magnet device for mri
JP5145451B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
KR101243318B1 (en) Coil bobbin for superconducting magnetic energy storage
JP2017162646A (en) Superconducting cyclotron and superconducting electromagnet device