JP2013135590A - 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法 - Google Patents

永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法 Download PDF

Info

Publication number
JP2013135590A
JP2013135590A JP2011286419A JP2011286419A JP2013135590A JP 2013135590 A JP2013135590 A JP 2013135590A JP 2011286419 A JP2011286419 A JP 2011286419A JP 2011286419 A JP2011286419 A JP 2011286419A JP 2013135590 A JP2013135590 A JP 2013135590A
Authority
JP
Japan
Prior art keywords
current
rotor
support
permanent magnet
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011286419A
Other languages
English (en)
Other versions
JP5893394B2 (ja
Inventor
Masashi Sawada
正志 澤田
Tomoaki Tamiya
智彰 田宮
Yuji Shindo
裕司 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2011286419A priority Critical patent/JP5893394B2/ja
Publication of JP2013135590A publication Critical patent/JP2013135590A/ja
Application granted granted Critical
Publication of JP5893394B2 publication Critical patent/JP5893394B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】永久磁石同期機において、軸受を用いることなくロータを支持する。
【解決手段】モータ4は、ステータ21と、ロータ23と、所定の基準位置に対するロータ23の回転軸の位置を検出する位置センサ5とを備える。コントローラ3は、ロータ23を回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、基準位置とロータ23の回転軸の位置との距離に基づいて、ロータ23の回転軸を基準位置において支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、トルク電流に支持電流を加算した電流を第1の巻線群に流すように電力変換装置1を制御し、トルク電流から支持電流を減算した電流を第2の巻線群に流すように電力変換装置2を制御し、第1及び第2の巻線群により生じる磁界によりロータ23を回転させると同時に支持する。
【選択図】図1

Description

本発明は、軸受を用いることなくロータを支持することができる永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法に関する。
永久磁石同期機において、特に高速回転が必要とされる場合、メンテナンスフリーやオイルフリー等の観点から、機械的に接触する軸受(転がり軸受、すべり軸受、など)を採用することが合理的ではない場合があった。この課題を解決するために、磁気軸受や空気軸受などの非接触式の軸受が採用されてきた。しかし、これらの軸受を用いる場合、軸長が長くなって危険回転数が下がるなどの課題が生じた。
そのような課題を解決するために、近年、ベアリングレスモータが研究されている。これは、ロータを径方向に支持するための巻線をステータコアに設けることで、軸受を用いずにロータを支持しようとするものである。言い換えれば、モータのステータをそのまま軸受としても使用するものである。
特許文献1は、ロータのシャフト位置を制御可能なモータ装置を開示している。特許文献1の発明によれば、ステータ巻線は、星型結線されてそれぞれ独立した中性点を有する3組のステータ巻線群を構成している。この中性点の電圧あるいは電流を制御することによってステータ内の磁束分布を不均衡とし、ロータの半径方向に作用する力を発生させている。ステータ巻線が回転力発生と位置制御の機能を兼ねており、またステータは分割コアの集中巻線方式で形成されている。
特開2002−325476号公報
一般に、従来のベアリングレスモータでは、ロータを支持するため巻線を追加で設ける必要があった。また、特許文献1の発明では巻線は1種類であるものの、その巻線に電流を流すためのインバータを追加で用意する必要があった。
また、通常のベアリングレスモータでは、回転しているロータに対して静止した方向に力を発生させる場合、ロータに大きな渦電流が発生する。その渦電流の大きさによっては、ロータを支持する力を低下させることもあった。
本発明の目的は、以上の課題を解決し、余分な巻線及び回路を必要としない簡単な構成でありながら、軸受を用いることなくロータを支持することができる永久磁石同期機を提供することにある。
本発明の目的は、さらに、上記永久磁石同期機において、渦電流による支持力への影響を除去することにある。
本発明の目的は、さらに、そのような永久磁石同期機の駆動装置及び駆動方法を提供することにある。
本発明の第1の態様に係る永久磁石同期機によれば、
異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機において、上記永久磁石同期機は、
ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサと、
上記少なくとも2組の巻線群のうちの第1及び第2の巻線群にそれぞれ接続された第1及び第2の交流電源と、
上記第1及び第2の交流電源を制御するコントローラとを備え、
上記コントローラは、
上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする。
上記永久磁石同期機において、上記ロータコアの表面は、渦電流が流れることを防止するように分割されていることを特徴とする。
上記永久磁石同期機において、上記ロータコアの表面は、絶縁層により互いに絶縁された積層金属板により構成されていることを特徴とする。
上記永久磁石同期機において、上記ロータコアは、高抵抗率材料又は非磁性体材料にてなることを特徴とする。
上記永久磁石同期機において、上記コントローラは、
上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする。
本発明の第2の態様に係る永久磁石同期機の駆動装置によれば、
異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機の駆動装置において、
上記永久磁石同期機は、
ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサとを備え、
上記駆動装置は、
上記少なくとも2組の巻線群のうちの第1及び第2の巻線群にそれぞれ接続された第1及び第2の交流電源と、
上記第1及び第2の交流電源を制御するコントローラとを備え、
上記コントローラは、
上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする。
上記永久磁石同期機の駆動装置において、上記コントローラは、
上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする。
本発明の第3の態様に係る永久磁石同期機の駆動方法によれば、
異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機の駆動方法において、
上記永久磁石同期機は、
ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサとを備え、
上記少なくとも2組の巻線群のうちの第1及び第2の巻線群は、第1及び第2の交流電源にそれぞれ接続され、
上記駆動方法は、
上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする。
上記永久磁石同期機の駆動方法は、
上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする。
本発明によれば、上記構成を備えたことにより、余分な巻線及び回路を必要としない簡単な構成でありながら、軸受を用いることなくロータを支持することができる永久磁石同期機を提供することができる。
本発明は、上記構成を備えたことにより、さらに、上記永久磁石同期機において、渦電流による支持力への影響を除去することができる。
本発明は、上記構成を備えたことにより、さらに以下の効果を有する。
(1)径方向の軸受がなくなるため、ロータの軸長が短くなる。
(2)既存のベアリングレスモータと異なり、通常の4極機と同じ巻線方式が採用可能であり、汎用的である。
(3)通常のベアリングレスモータは、特に高速で回転させる必要がある場合、一般的にはロータが地面に対して垂直に設置されるが、本発明の方法を用いることにより、ロータを地面に対して水平に設置することができる。
本発明の第1の実施形態に係るモータシステムの構成を示すブロック図である。 図1のコントローラ3の詳細構成を示すブロック図である。 図1のモータ4の横断面図である。 ロータ23のずれの方向及び支持力の方向を説明するための概略図である。 トルク電流Iut、Ivt、Iwtの波形を示すグラフである。 支持電流Ius、Ivs、Iwsの波形を示すグラフである。 トルク電流Iut、Ivt、Iwtと支持電流Ius、Ivs、Iwsとの和及び差から生成される目標電流の波形を示すグラフである。 ロータ23に渦電流が生じない条件下における、発生したロータ23の支持力を示すグラフである。 ロータ23にかかるトルクを示すグラフである。 本発明の第2の実施形態に係るモータシステムのロータ23を示す斜視図である。 図10のロータ23の縦断面図である。 図10のロータ23の第1の変形例の縦断面図である。 図10のロータ23の第2の変形例の縦断面図である。 図10のロータ23の第3の変形例の横断面図である。 比較例のロータに係る、発生したロータの支持力を示すグラフである。 実施例のロータ23に係る、発生したロータ23の支持力を示すグラフである。
第1の実施形態.
本発明の第1の実施形態では、軸受を用いることなくロータを支持するという課題を解決するために、モータにP重(P:極対数)の巻線を設けて、それぞれの巻線に独立に電力変換装置(インバータ)から電流を流す構造を採用した。本実施形態によれば、従来の多重巻線のモータと同様の巻線を用いながら、モータ巻線の断面積およびインバータの容量の増加を極力抑えたまま、ロータを支持する力を発生させることができる。
図1は、本発明の第1の実施形態に係るモータシステムの構成を示すブロック図である。本明細書では、二重三相の巻線を有する通常の4極機のモータの構成を参照して説明する。図1のモータシステムは、モータ4と、モータ4を駆動する駆動装置とを備える。詳しくは、図1のモータシステムは、直流から三相交流をそれぞれ発生する電力変換装置1,2と、電力変換装置1,2を制御するコントローラと、電力変換装置1,2にそれぞれ接続された2組の巻線群を備えたモータ4と、モータ4内における所定の基準位置に対するロータの回転軸の位置を検出する位置センサ5とを備える。モータ4は、中性点N1で互いに接続された巻線Lu1,Lv1,Lw1からなる第1の巻線群と、中性点N2で互いに接続された巻線Lu2,Lv2,Lw2からなる第2の巻線群とを備える。なお、2組の巻線群の中性点N1,N2は互いに接続されない。電力変換装置1は直流電源E1に接続され、U1相、V1相、及びW1相からなる三相交流の出力電圧を発生し、巻線Lu1,Lv1,Lw1にそれぞれ印加する。電力変換装置2もまた直流電源E1に接続され、U2相、V2相、及びW2相からなる三相交流の出力電圧を発生し、巻線Lu2,Lv2,Lw2にそれぞれ印加する。電力変換装置1とモータ4との間には、U1相の電流Iu1、V1相の電流Iv1、及びW1相の電流Iw1をそれぞれ検出する変流器CT1,CT2,CT3が設けられる。同様に、電力変換装置2とモータ4との間には、U2相の電流Iu2、V2相の電流Iv2、及びW2相の電流Iw2をそれぞれ検出する変流器CT4,CT5,CT6が設けられる。変流器CT1〜CT6によって検出された電流はコントローラ3に送られる。位置センサ5によって検出されたロータの回転軸の位置(位置情報)もまたコントローラ3に送られる。電力変換装置1,2とモータ4との間には、さらに、出力フィルタL11〜L13,L21〜L23が設けられる。
図2は、図1のコントローラ3の詳細構成を示すブロック図である。コントローラ3には、上位の速度コントローラ(図示せず)から、ロータを回転させるトルクを発生させるトルク電流Iut,Ivt,Iwtの大きさを示すトルク電流指令値が供給される。上位の速度コントローラによるトルク電流Iut,Ivt,Iwtの計算(速度ループ)は、従来のモータシステムと同様であり、説明を省略する。コントローラ3は、従来の上位の速度コントローラと一体化されていてもよい。コントローラ3は支持電流生成器17を備え、支持電流生成器17は、位置センサ5からの位置情報に基づいて、モータ4内における所定の基準位置とロータの回転軸の位置との距離を計算し、この距離が0になるようにロータの回転軸を支持する力を発生させる支持電流Ius,Ivs,Iwsの大きさを示す支持電流指令値を生成する。
コントローラ3は、トルク電流Iut,Ivt,Iwtに支持電流Ius,Ivs,Iwsをそれぞれ加算することで、U1相の目標電流Iu1、V1相の目標電流Iv1、及びW1相の目標電流Iw1を生成する。
[数1]
Iu1=Iut+Ius
Iv1=Ivt+Ivs
Iw1=Iwt+Iws
コントローラ3はまた、トルク電流Iut,Ivt,Iwtから支持電流Ius,Ivs,Iwsをそれぞれ減算することで、U2相の目標電流Iu2、V2相の目標電流Iv2、及びW2相の目標電流Iw2を生成する。
[数2]
Iu2=Iut−Ius
Iv2=Ivt−Ivs
Iw2=Iwt−Iws
コントローラ3はさらに、変流器CT1〜CT6によって検出される実際の電流が目標電流に一致するように電力変換装置1,2の制御電圧をそれぞれ生成する補償器11〜16を備える。詳しくは、補償器11〜13は、変流器CT1〜CT3によって検出される実際の電流Iu1,Iv1,Iw1が目標電流Iu1,Iv1,Iw1に一致するように、所定の制御電圧Vu1,Vv1,Vw1をそれぞれ生成して電力変換装置1に送る。同様に、補償器14〜16は、変流器CT4〜CT6によって検出される実際の電流Iu2,Iv2,Iw2が目標電流Iu2,Iv2,Iw2に一致するように、所定の制御電圧Vu2,Vv2,Vw2をそれぞれ生成して電力変換装置2に送る。
電力変換装置1は、制御電圧Vu1,Vv1,Vw1に基づいて従来のインバータと同様にパルス幅変調等を行うことにより、U1相、V1相、及びW1相の出力電圧を発生し、この出力電圧が巻線Lu1,Lv1,Lw1にそれぞれ印加されることで、巻線Lu1,Lv1,Lw1には、目標電流Iu1,Iv1,Iw1に等しい電流Iu1,Iv1,Iw1がそれぞれ流れる。電力変換装置2も同様に、制御電圧Vu2,Vv2,Vw2に基づいてパルス幅変調等を行うことにより、U2相、V2相、及びW2相の出力電圧を発生し、この出力電圧が巻線Lu2,Lv2,Lw2にそれぞれ印加されることで、巻線Lu2,Lv2,Lw2には、目標電流Iu2,Iv2,Iw2に等しい電流Iu2,Iv2,Iw2がそれぞれ流れる。
本実施形態では、トルク電流に支持電流を重畳した結果、モータ4の巻線を流れる電流により発生する磁界は、ロータを回転させるトルクを発生すると同時に、ロータを支持する力を発生することができる。
以下、コントローラ3における支持電流Ius,Ivs,Iwsの生成について説明する。
図3は、図1のモータ4の横断面図である。ステータ21は、ステータコア22と、その歯部の周囲に巻回された巻線Lu1,Lv1,Lw1,Lu2,Lv2,Lw2とを備え、ロータ23は、ロータコア24と、その表面に設けられた永久磁石25N1〜25N4,25S1〜25S4(以下、集合的に符号「25」で示す)とを備える。巻線Lu1,Lv1,Lw1,Lu2,Lv2,Lw2は、通常の4極機の巻線と同様に設けられる。例えば、巻線Lu1は、図3において符号「Lu1+」で示す領域から符号「Lu1−」で示す領域にわたって設けられ、符号「Lu1+」で示す領域の巻線の一端が電力変換装置1に接続され、符号「Lu1−」で示す領域の巻線の一端が中性点N1(図3には図示せず)に接続される。他の巻線Lv1,Lw1,Lu2,Lv2,Lw2も同様に設けられる。前述のように、2組の巻線群の中性点N1,N2は互いに接続されない。永久磁石25N1〜25N4は、ロータ23の表面にN極が位置するように設けられ、同様に、永久磁石25S1〜25S4は、ロータ23の表面にS極が位置するように設けられる。
図4は、ロータ23のずれの方向及び支持力の方向を説明するための概略図である。モータ4内における基準位置を、図4のXY座標の原点Oにより示す。この基準位置は、図3のXY平面内におけるモータ4の幾何的中心などである。位置センサ5は、基準位置に対するロータ23の回転軸(中心)の位置(x,y)を検出する。検出された位置(x,y)が基準位置からずれている場合には、コントローラ3の支持電流生成器17は、ずれの方向とは逆の方向に支持力を発生させるように支持電流Ius,Ivs,Iwsを計算する。そのため、支持電流生成器17は、まず、例えば次式を用いて、基準位置とロータ23の回転軸の位置との距離に基づく支持電流のピーク値Isを計算する。
[数3]
Is=k√(x+y)+G
ここで、kは所定の係数であり、Gは重力補正項である。数3は一例であり、他の式を用いて支持電流のピーク値Isを取得してもよい。
次いで、支持電流生成器17は、次式により支持電流Ius,Ivs,Iwsを計算する。
[数4]
Ius=Is×sin(θe−θf)
Ivs=Is×sin(θe−θf+120°)
Iws=Is×sin(θe−θf−120°)
ここで、θeは、電気角(電流位相)で表されたロータ23の回転角度であり、θfは、機械角で表された支持力の方向である。なお、実際には、ステータ21の構造により若干のオフセットが生じることがあるが、上式では省略している。
次に、図5〜図7を参照して、実際に流れる電流の波形を例示する。ここでは、図3のほぼ+Y方向に支持力を発生するように支持電流を生成する場合について示す。図5は、トルク電流Iut、Ivt、Iwtの波形を示すグラフであり、図6は、支持電流Ius、Ivs、Iwsの波形を示すグラフである。電気角の基点は、U相のトルク電流Iutが0になる点である。電流は、トルクが最大になるように流される。ロータ23の回転角が0°であるとき、永久磁石25は、図3に示す角度に位置する。図6の波形は、数4の支持電流Ius,Ivs,Iwsを、回転角度θeに関する関数として示した場合に相当する。図7は、トルク電流Iut、Ivt、Iwtと支持電流Ius、Ivs、Iwsとの和及び差から生成される目標電流の波形を示すグラフである。前述のように、目標電流Iu1,Iv1,Iw1は、トルク電流Iut,Ivt,Iwtに支持電流Ius,Ivs,Iwsをそれぞれ加算することで生成され、目標電流Iu2,Iv2,Iw2は、トルク電流Iut,Ivt,Iwtから支持電流Ius,Ivs,Iwsをそれぞれ減算することで生成される。変流器CT1〜CT6によって検出される実際の電流が目標電流に一致するとき、モータ4の各巻線に流れる電流は図7の波形になる。図5〜図7では、比較のために、図5のトルク電流Iut、Ivt、Iwtのピーク値の位置に点線を示すが、電流の大きさは、図示したものに限定されない。
図8は、ロータ23に渦電流が生じない条件下における、発生したロータ23の支持力を示すグラフである。図8のグラフは、図5〜図7の電流を生成する場合において、X方向の支持力Fxと、Y方向の支持力Fyとを示す。図8によれば、図5〜図7の電流を生成する場合、ほぼ+Y方向に支持力が発生することがわかる。
図9は、ロータ23にかかるトルクを示すグラフである。図9のグラフは、渦電流がある場合の3次元解析の結果を概略的に示す。図9において、点線は、支持力を発生させず、かつ、三相交流電流(トルク電流のみを含む)が平衡している場合を示す。図9において、実線は、一定方向に支持力を発生させ、かつ、三相交流電流(トルク電流に支持電流が重畳している)が平衡している場合を示す。図9において、一点鎖線(実線にほぼ重なっている)は、回転方向に同期した支持力を発生させている場合(例えばモータ4が地面に対して垂直に設置される場合)を示す。図9によれば、一定方向の支持力を発生させる場合(実線)も、回転方向に同期した支持力を発生させる場合(一点鎖線)も、支持力を発生させない場合(点線)と同様にトルクを発生できることがわかる。
本実施形態において、数1及び数2の目標電流に等しい電流を生成してモータ4の巻線に流すには、少なくとも2つの電力変換装置(インバータ)が必要である。モータの技術分野において、インバータによって供給される電力を増大させるために1つのモータに対して複数のインバータを設けることは、従来から実施されている。本実施形態において、電力変換装置1,2は、トルク電流に支持電流を重畳した電流を発生するために、このような複数のインバータとしての通常の電力供給能力の範囲内で電流を増減させるだけでよい。また、2つの電力変換装置1,2が必要であるが、これらの電力変換装置1,2は、1つのコントローラ3のみによって制御可能である。
また、本実施形態では、説明したように、二重三相の巻線を有する通常の4極機のモータなどが利用可能であり、特別な巻線方式を採用する必要がない。
本実施形態によれば、従来と同様の電力変換装置1,2と、従来の二重三相の巻線を有するモータと同様の巻線を用いながら、余分な巻線及び回路を必要とすることなく、ロータを支持する力を発生させることができる。従って、本実施形態によれば、モータから軸受を除去することにより、高速回転のモータを実現することができる。
以下、軸受を用いることなくロータを支持することの効果を箇条書きにて示す。
(1)径方向の軸受がなくなるので、ロータの軸長が短くなる。
(2)既存のベアリングレスモータと異なり、通常の4極機と同じ巻線方式が採用可能であり、汎用的である。
(3)通常のベアリングレスモータは、特に高速で回転させる必要がある場合、一般的にはロータが地面に対して垂直に設置されるが、本発明の方法を用いることにより、ロータを地面に対して水平に設置することができる。
本発明は、モータ4及びその駆動装置が一体化されたモータシステムとしてだけではなく、モータ4を駆動するための、モータ4とは独立した駆動装置として実施されてもよい。駆動装置は、例えば、図1の電力変換装置1,2、コントローラ3、及び変流器CT1〜CT6を備え、図1のモータ4(ステータ21、ロータ23、及び位置センサ5を含む)を駆動する。
本実施形態では、数1においてトルク電流に加算する支持電流の大きさを、数2においてトルク電流から減算する支持電流の大きさと同じ値とした。しかし、支持力に所定方向へのバイアス力を加えるために、例えば、数1の右辺及び数2の右辺が同じ大きさにわたって増加又は減少させてもよい。コントローラ3は、トルク電流に支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を巻線群Lu1,Lv1,Lw1に流すように電力変換装置1を制御し、トルク電流から支持電流を減算した電流にさらに同じバイアス電流を加算した電流を巻線群Lu2,Lv2,Lw2に流すように電力変換装置2を制御する。これにより、結果的に、数1の支持電流と数2の支持電流とに不釣合いをもたらし、支持力に所定方向へのバイアス力を加えることができる。
図1のブロック図では、出力フィルタL11〜L13,L21〜L23を設けているが、これらは不要であれば省略してもよい。
本実施形態の原理は、4極以上の極数のモータに同様に適用可能であり、また、巻線方法(集中巻、分布巻)にもよらない。また、モータの巻線は二重又は三重であればよく、例えば6極対のモータでは、二重、三重、及び六重のいずれであっても、本実施形態の原理を適用可能である。また、モータの巻線は、Y結線であってもΔ結線であってもよい。
第2の実施形態.
本発明の第2の実施形態では、渦電流による支持力への影響を除去するという課題を解決するためのロータ23(図3)の構成について説明する。
図10は、本発明の第2の実施形態に係るモータシステムのロータ23を示す斜視図である。図11は、図10のロータ23の縦断面図である。図10及び図11のロータ23の横断面は、図3のロータ23と同様に構成される。円筒形のロータコア24の表面に磁石25を設ける。ロータコア24の表面は、さらに、渦電流が流れることを防止するように分割されている。詳しくは、ロータコア24の表面をロータ23の軸方向(Z方向)に関して分割するように、ロータコア24の表面に溝が形成されている。この分割は、ロータコア24の表面が分離されていればよく、ロータ23を輪切りにする必要はない。ロータコア24の表面が分割されていない場合には、ロータ23の軸方向に大きな渦電流が流れ、この渦電流のためにロータ23の支持力が小さくなる。このため、本実施形態のようにロータコア24の表面を分割することにより渦電流を低減させることができ、ロータ23の支持力の低下も抑えることができる。
図12は、図10のロータ23の第1の変形例の縦断面図である。図11のようにロータコア24の表面に溝を形成することに代えて、図12に示すように、ロータコアの表面を、絶縁層27により互いに絶縁された積層金属板25により構成してもよい。図12のロータ23では、円筒形のロータコア24Aの周りにリング状の金属板25及び絶縁層27が積層されている。性能の観点では、金属板25として、絶縁処理された表面をそれぞれ有する積層鋼板を用いることが好ましい。
図13は、図10のロータ23の第2の変形例の縦断面図である。ロータコア24の表面を分割することに代えて、ロータコア24Bを高抵抗率材料又は非磁性体材料にて構成してもよい。高抵抗率材料又は非磁性体材料を用いることによっても、渦電流を低減することができる。
図14は、図10のロータ23の第3の変形例の横断面図である。永久磁石25をロータ23に確実に固定するために、ロータコア24Cの表面に少なくとも1つの突起を設け、この突起に対して(又は突起間に)永久磁石25を固定してもよい。
図15は、比較例のロータに係る、発生したロータの支持力を示すグラフである。この比較例のロータは、図13と同様の構成を有し、ロータコアとして金属を用いたものとする。ロータ23に渦電流が生じない場合と比較すると、Y方向の支持力Fyが低下し、さらに、余分なX方向の支持力Fxが生じている。図16は、実施例のロータ23に係る、発生したロータ23の支持力を示すグラフである。本実施形態のようにロータ23に生じる渦電流を低減することにより、ロータ23に渦電流が生じない場合の支持力に近づけることができる。
本発明によれば、中性点に流れ込む電流は常に0である。このことが、特許文献1の発明との根本的な違いである。
特許文献1の発明では、本発明と同様に巻線は1種類である。しかし、巻線の分割方法が異なること、シャフト位置制御用インバータを設けて中性点に積極的に電圧または電流を加えることが、本発明とは異なる点である。また、本発明は、コア素体が一つでも可能であることも、特許文献1の発明と異なる点である。
本発明は、永久磁石同期機を特に高速回転させる場合であって、機械的に接触する軸受の利用が困難な場合に実施することが有益である。
1,2…電力変換装置、
3…コントローラ、
4…モータ、
5…位置センサ、
11〜16…補償器、
17…支持電流生成器、
21…ステータ、
22…ステータコア、
23…ロータ、
24,24A,24B,24C…ロータコア、
25,25N1〜25N4,25S1〜25S4…永久磁石、
26…金属板、
27…絶縁層、
E1…直流電源、
CT1〜CT6…変流器、
L11〜L13,L21〜L23…出力フィルタ、
Lu1,Lv1,Lw1,Lu2,Lv2,Lw2…巻線、
N1,N2…中性点。

Claims (9)

  1. 異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機において、上記永久磁石同期機は、
    ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
    ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
    所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサと、
    上記少なくとも2組の巻線群のうちの第1及び第2の巻線群にそれぞれ接続された第1及び第2の交流電源と、
    上記第1及び第2の交流電源を制御するコントローラとを備え、
    上記コントローラは、
    上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
    上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
    上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
    上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする永久磁石同期機。
  2. 上記ロータコアの表面は、渦電流が流れることを防止するように分割されていることを特徴とする請求項1記載の永久磁石同期機。
  3. 上記ロータコアの表面は、絶縁層により互いに絶縁された積層金属板により構成されていることを特徴とする請求項1記載の永久磁石同期機。
  4. 上記ロータコアは、高抵抗率材料又は非磁性体材料にてなることを特徴とする請求項1記載の永久磁石同期機。
  5. 上記コントローラは、
    上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする請求項1〜4のいずれか1つに記載の永久磁石同期機。
  6. 異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機の駆動装置において、
    上記永久磁石同期機は、
    ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
    ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
    所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサとを備え、
    上記駆動装置は、
    上記少なくとも2組の巻線群のうちの第1及び第2の巻線群にそれぞれ接続された第1及び第2の交流電源と、
    上記第1及び第2の交流電源を制御するコントローラとを備え、
    上記コントローラは、
    上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
    上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
    上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
    上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする永久磁石同期機の駆動装置。
  7. 上記コントローラは、
    上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする請求項6記載の永久磁石同期機の駆動装置。
  8. 異なる交流電源にそれぞれ接続された少なくとも2組の巻線群を備えた永久磁石同期機の駆動方法において、
    上記永久磁石同期機は、
    ステータコアと、上記ステータコアに巻回された上記巻線群とを備えたステータと、
    ロータコアと、上記ロータコアに設けられた永久磁石とを備えたロータと、
    所定の基準位置に対する上記ロータの回転軸の位置を検出する位置センサとを備え、
    上記少なくとも2組の巻線群のうちの第1及び第2の巻線群は、第1及び第2の交流電源にそれぞれ接続され、
    上記駆動方法は、
    上記ロータを回転させるトルクを発生させるトルク電流の大きさを示すトルク電流指令値の供給を受け、
    上記基準位置と上記ロータの回転軸の位置との距離に基づいて、上記距離が0になるように上記ロータの回転軸を支持する力を発生させる支持電流の大きさを示す支持電流指令値を生成し、
    上記トルク電流に上記支持電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御し、
    上記第1及び第2の巻線群により生じる磁界により上記ロータを回転させると同時に支持することを特徴とする永久磁石同期機の駆動方法。
  9. 上記駆動方法は、
    上記トルク電流に上記支持電流を加算した電流にさらに所定の正又は負のバイアス電流を加算した電流を上記第1の巻線群に流すように上記第1の交流電源を制御し、
    上記トルク電流から上記支持電流を減算した電流にさらに上記バイアス電流を加算した電流を上記第2の巻線群に流すように上記第2の交流電源を制御することを特徴とする請求項8記載の永久磁石同期機の駆動方法。
JP2011286419A 2011-12-27 2011-12-27 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法 Expired - Fee Related JP5893394B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286419A JP5893394B2 (ja) 2011-12-27 2011-12-27 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286419A JP5893394B2 (ja) 2011-12-27 2011-12-27 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法

Publications (2)

Publication Number Publication Date
JP2013135590A true JP2013135590A (ja) 2013-07-08
JP5893394B2 JP5893394B2 (ja) 2016-03-23

Family

ID=48911931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286419A Expired - Fee Related JP5893394B2 (ja) 2011-12-27 2011-12-27 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法

Country Status (1)

Country Link
JP (1) JP5893394B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328674A (zh) * 2021-06-07 2021-08-31 广西大学 一种计及时空谐波条件的高速永磁电机永磁体损耗补偿方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426389A (en) * 1987-07-22 1989-01-27 Toshiro Higuchi Non-contact actuator
JPH04236188A (ja) * 1991-01-14 1992-08-25 Toshiba Corp 自己浮上モ―タシステム
JPH0946944A (ja) * 1995-07-28 1997-02-14 Daido Steel Co Ltd 電気モータのロータ
JP2002531185A (ja) * 1998-12-03 2002-09-24 クリトン・メディカル・インコーポレーテッド 血液ポンプ用能動磁気軸受
JP2009095087A (ja) * 2007-10-04 2009-04-30 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010206882A (ja) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機及び電気掃除機
WO2011114912A1 (ja) * 2010-03-15 2011-09-22 学校法人東京理科大学 ベアリングレスモータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426389A (en) * 1987-07-22 1989-01-27 Toshiro Higuchi Non-contact actuator
JPH04236188A (ja) * 1991-01-14 1992-08-25 Toshiba Corp 自己浮上モ―タシステム
JPH0946944A (ja) * 1995-07-28 1997-02-14 Daido Steel Co Ltd 電気モータのロータ
JP2002531185A (ja) * 1998-12-03 2002-09-24 クリトン・メディカル・インコーポレーテッド 血液ポンプ用能動磁気軸受
JP2009095087A (ja) * 2007-10-04 2009-04-30 Honda Motor Co Ltd アキシャルギャップ型モータ
JP2010206882A (ja) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機及び電気掃除機
WO2011114912A1 (ja) * 2010-03-15 2011-09-22 学校法人東京理科大学 ベアリングレスモータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328674A (zh) * 2021-06-07 2021-08-31 广西大学 一种计及时空谐波条件的高速永磁电机永磁体损耗补偿方法及系统

Also Published As

Publication number Publication date
JP5893394B2 (ja) 2016-03-23

Similar Documents

Publication Publication Date Title
US10833557B2 (en) Dual purpose no voltage winding design for bearingless AC homopolar and consequent pole motors and an AC homopolar flywheel energy storage system
JP5892628B2 (ja) ベアリングレスモータ
US20150364978A1 (en) Electric Machine
JP4629659B2 (ja) 1個の固定子と少なくとも1個の回転子を有する同期電機及び関連制御装置
US10992190B2 (en) Self-exciting synchronous reluctance generators
JP6193377B2 (ja) 電動機システムおよび磁気軸受システム
EP3349339A1 (en) Rotary electric machine, rotary electric machine system, and machine
JP6327221B2 (ja) 回転電機
JP2010136523A (ja) 回転電機の駆動制御装置
JP5893394B2 (ja) 永久磁石同期機、永久磁石同期機の駆動装置及び駆動方法
JP4750965B2 (ja) 磁気浮上型電動機
CN103746611A (zh) 一种双定子型磁悬浮开关磁阻双通道全周期发电机
CN111262411A (zh) 具有宽电压调节范围的双谐波绕组无刷励磁直流发电机
Jia et al. Finite element analysis of a novel bearingless flux-switching permanent magnet motor with the single winding
Ooshima Analyses of rotational torque and suspension force in a permanent magnet synchronous bearingless motor with short-pitch winding
JP2009270595A (ja) 磁気軸受装置
Lu et al. Design of a novel permanent magnet linear synchronous motor with segmented armature core for ropeless lifter
Asama et al. Asymmetrical four-phase combined winding arrangement for bearingless PM motors
JP6286115B2 (ja) 回転電気機械のステータの構成
Kushwaha et al. Motor Integrated Rotating Permanent Magnet based Electrodynamic Suspension Device: Part II—Investigation of Coupled Topology
Li et al. Analysis and control of seven-phase permanent-magnet bearingless motor with single set of half-coiled winding
JP5569135B2 (ja) 回転電機装置
Reinhard et al. New approaches for contactless power transmission systems integrated in PM motor drives transferring electrical energy to rotating loads
JP2002325476A (ja) モータ装置
Karutz et al. Acceleration-performance optimization for motors with large air gaps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees