JP2013133813A - Control device for compression-ignition internal combustion engine - Google Patents

Control device for compression-ignition internal combustion engine Download PDF

Info

Publication number
JP2013133813A
JP2013133813A JP2011286795A JP2011286795A JP2013133813A JP 2013133813 A JP2013133813 A JP 2013133813A JP 2011286795 A JP2011286795 A JP 2011286795A JP 2011286795 A JP2011286795 A JP 2011286795A JP 2013133813 A JP2013133813 A JP 2013133813A
Authority
JP
Japan
Prior art keywords
engine
compression
ignition operation
compression ignition
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011286795A
Other languages
Japanese (ja)
Other versions
JP5756399B2 (en
Inventor
Hibiki Koga
古賀  響
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011286795A priority Critical patent/JP5756399B2/en
Publication of JP2013133813A publication Critical patent/JP2013133813A/en
Application granted granted Critical
Publication of JP5756399B2 publication Critical patent/JP5756399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a control device for a compression-ignition internal combustion engine, which does not cause upsizing, and which enhances exhaust emission performance by properly controlling switching between a spark-ignition operation and a compression-ignition operation while having a simple configuration.SOLUTION: The control device for the compression-ignition internal combustion engine switches an operation of the compression-ignition internal combustion engine (engine) between the compression-ignition operation of bringing about premixed compression-ignition combustion of an air-fuel mixture supplied to a combustion chamber and the spark-ignition operation of bringing about spark-ignition combustion of the air-fuel mixture via a spark plug of the combustion chamber. The control device detects a temperature Tc of a catalyst for exhaust emission control, which is arranged in an exhaust system of the engine (S12 and S20), performs switching from the compression-ignition operation to the spark-ignition operation when the catalyst temperature Tc detected during the compression-ignition operation of the engine is lower than a first predetermined value Tc1 (S14 and S18), and performs switching from the spark-ignition operation to the compression-ignition operation when the catalyst temperature Tc detected during the spark-ignition operation of the engine is higher than a second predetermined value Tc2 (S22 and S26).

Description

この発明は圧縮着火内燃機関の制御装置に関し、より詳しくは燃料と空気とを混合して得た予混合気を燃焼室に供給し、これを高圧縮比の下で自着火を行わせ、高い熱効率を得るようにした予混合圧縮自着火式内燃機関の制御装置の改良に関する。   The present invention relates to a control device for a compression ignition internal combustion engine. More specifically, a premixed gas obtained by mixing fuel and air is supplied to a combustion chamber, and this is self-ignited under a high compression ratio. The present invention relates to an improvement in a control device for a premixed compression self-ignition internal combustion engine that achieves thermal efficiency.

予混合圧縮自着火式内燃機関は、例えば特許文献1に開示されるように、燃焼室に供給される混合気(予混合気)を予混合圧縮着火燃焼させる圧縮着火運転(HCCI(Homogeneous Charge Compression Ignition)運転)と点火プラグを介して混合気を火花点火燃焼させる火花点火運転(SI(Spark Ignition)運転)のいずれかを行うように構成される。このような内燃機関においては、予混合気を高圧縮比(通常の火花点火式内燃機関の圧縮比より高い)の下で圧縮することで、同時多点的に自着火するため、燃焼室全体への火炎の伝播が早く、燃焼が短時間に完了し、よって熱効率が改善され、低燃費性を良好にしつつNOxの排出量を減少させ得る利点がある。   A premixed compression self-ignition internal combustion engine, for example, as disclosed in Patent Document 1, is a compression ignition operation (HCCI (Homogeneous Charge Compression) for premixed compression ignition combustion of an air-fuel mixture (premixed gas) supplied to a combustion chamber. Ignition operation) and spark ignition operation (SI (Spark Ignition) operation) in which the air-fuel mixture is spark-ignited and combusted via the spark plug. In such an internal combustion engine, the pre-mixed gas is compressed under a high compression ratio (higher than the compression ratio of a normal spark ignition type internal combustion engine), and thus self-ignition is performed simultaneously at multiple points. There is an advantage that the flame can be propagated quickly and the combustion is completed in a short time, thereby improving the thermal efficiency and reducing the NOx emission while improving the fuel efficiency.

上記した内燃機関にあっては、始動時には火花点火運転を行い、その後暖機が終了するとき圧縮着火運転に切り替えるように構成される。しかしながら、圧縮着火運転の場合、排気温度が低下するため、排気浄化用触媒の温度も低下して活性状態を維持できず、排気エミッション性能が悪化するという不都合が発生するおそれがあった。   The above-described internal combustion engine is configured to perform a spark ignition operation at the start, and then switch to a compression ignition operation when the warm-up is completed. However, in the case of the compression ignition operation, since the exhaust temperature is lowered, the temperature of the exhaust purification catalyst is also lowered, and the active state cannot be maintained, and there is a possibility that the exhaust emission performance deteriorates.

そこで、例えば排気を加熱するヒータなどの付加装置を配置することが考えられる。また、特許文献2に記載される如く、排気浄化用触媒を2分割にして上流側と下流側に配置するように構成し、排気温度が低下した場合であっても、下流側の触媒の活性状態を可能な限り長く維持するようにした技術が提案されている。   Therefore, for example, it is conceivable to provide an additional device such as a heater for heating the exhaust. Further, as described in Patent Document 2, the exhaust purification catalyst is divided into two parts and arranged on the upstream side and the downstream side, and even if the exhaust gas temperature decreases, the activity of the catalyst on the downstream side is reduced. Techniques have been proposed that maintain the state as long as possible.

特開2005−69097号公報JP 2005-69097 A 特開2007−309251号公報JP 2007-309251 A

しかしながら、ヒータなどの付加装置を設けたり、または特許文献2記載の技術の如く構成すると、付加装置や排気浄化用触媒を2分割した分だけ構造が複雑になると共に、機関全体が大型化するという不具合が生じていた。   However, if an additional device such as a heater is provided or configured as in the technique described in Patent Document 2, the structure is complicated by the amount of the additional device and the exhaust purification catalyst divided into two parts, and the entire engine is increased in size. There was a bug.

従って、この発明の目的は上記した課題を解決し、大型化を招くことがないと共に、簡易な構成でありながら火花点火運転と圧縮着火運転の切り替えを適切に制御し、よって排気エミッション性能を向上させるようにした圧縮着火内燃機関の制御装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and not to increase the size, and to appropriately control switching between the spark ignition operation and the compression ignition operation with a simple configuration, thereby improving the exhaust emission performance. An object of the present invention is to provide a control device for a compression ignition internal combustion engine.

上記した課題を解決するために、請求項1にあっては、圧縮着火内燃機関の燃焼室に配置される点火手段と、前記機関の運転を前記燃焼室に供給される混合気を予混合圧縮着火燃焼させる圧縮着火運転と前記点火手段を介して前記混合気を火花点火燃焼させる火花点火運転との間で切り替える運転切替手段とを備えた圧縮着火内燃機関の制御装置において、前記機関の排気系に配置される排気浄化用触媒と、前記触媒の温度を検出する触媒温度検出手段とを備えると共に、前記運転切替手段は、前記機関の圧縮着火運転のときに検出される触媒温度が第1所定値未満の場合、前記圧縮着火運転から前記火花点火運転に切り替えると共に、前記機関の火花点火運転のときに検出される触媒温度が第2所定値より大きい場合、前記火花点火運転から前記圧縮着火運転に切り替える如く構成した。   In order to solve the above-described problem, in claim 1, the ignition means disposed in the combustion chamber of the compression ignition internal combustion engine and the air-fuel mixture supplied to the combustion chamber are premixed and compressed to operate the engine. In a control apparatus for a compression ignition internal combustion engine, comprising an operation switching means for switching between a compression ignition operation for igniting combustion and a spark ignition operation for spark ignition combustion of the air-fuel mixture via the ignition means, an exhaust system of the engine And a catalyst temperature detection means for detecting the temperature of the catalyst, and the operation switching means has a first predetermined catalyst temperature detected during the compression ignition operation of the engine. If it is less than the value, the compression ignition operation is switched to the spark ignition operation, and if the catalyst temperature detected during the spark ignition operation of the engine is greater than a second predetermined value, the spark ignition operation is performed. It was composed as switching to the compression ignition operation.

請求項2に係る圧縮着火内燃機関の制御装置にあっては、前記機関の吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構を備えると共に、前記運転切替手段は、前記可変動弁機構の動作を制御することで前記機関の運転を前記火花点火運転と前記圧縮着火運転との間で切り替える如く構成した。   The control apparatus for a compression ignition internal combustion engine according to claim 2 includes a variable valve mechanism capable of opening and closing an intake valve and an exhaust valve of the engine at an arbitrary timing, and the operation switching means includes the variable operation mechanism. The engine operation is switched between the spark ignition operation and the compression ignition operation by controlling the operation of the valve mechanism.

請求項3に係る圧縮着火内燃機関の制御装置にあっては、前記第2所定値は前記第1所定値以上の値に設定される如く構成した。   In the control apparatus for the compression ignition internal combustion engine according to claim 3, the second predetermined value is set to a value equal to or greater than the first predetermined value.

請求項1に係る圧縮着火内燃機関の制御装置にあっては、機関の排気系に配置される排気浄化用触媒の温度を検出し、機関の圧縮着火運転のときに検出される触媒温度が第1所定値未満の場合、圧縮着火運転から火花点火運転に切り替えると共に、機関の火花点火運転のときに検出される触媒温度が第2所定値より大きい場合、火花点火運転から圧縮着火運転に切り替えるように構成、換言すれば、圧縮着火運転のときに触媒温度が低下した場合は圧縮着火運転から火花点火運転に切り替え、火花点火運転のときに触媒温度が上昇した場合は火花点火運転から圧縮着火運転に切り替える(戻す)ように構成したので、簡易な構成でありながら火花点火運転と圧縮着火運転の切り替えを適切に制御でき、よって排気浄化用触媒の温度を比較的高く保持できる、即ち、触媒の活性状態を維持でき、排気エミッション性能を向上させることができる。また、ヒータなどの付加装置や特許文献2記載の技術のような2分割された排気浄化用触媒を不要にすることができるため、機関全体の大型化を招くことがないと共に、コスト的にも有利である。   In the control apparatus for the compression ignition internal combustion engine according to claim 1, the temperature of the exhaust purification catalyst disposed in the exhaust system of the engine is detected, and the catalyst temperature detected during the compression ignition operation of the engine is the first. When the catalyst temperature detected during the spark ignition operation of the engine is higher than a second predetermined value, the spark ignition operation is switched to the compression ignition operation. In other words, if the catalyst temperature drops during compression ignition operation, switch from compression ignition operation to spark ignition operation, and if the catalyst temperature rises during spark ignition operation, switch from spark ignition operation to compression ignition operation Therefore, it is possible to appropriately control the switching between the spark ignition operation and the compression ignition operation, and the temperature of the exhaust purification catalyst is relatively high. Can be held, i.e., to maintain the active state of the catalyst, it is possible to improve the exhaust emission performance. Further, since an additional device such as a heater and an exhaust purification catalyst divided into two parts as in the technique described in Patent Document 2 can be eliminated, the overall size of the engine is not increased and the cost is reduced. It is advantageous.

請求項2に係る圧縮着火内燃機関の制御装置にあっては、機関の吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構を備えると共に、運転切替手段は、可変動弁機構の動作を制御することで機関の運転を火花点火運転と圧縮着火運転との間で切り替えるように構成したので、上記した効果に加え、より簡易な構成で火花点火運転と圧縮着火運転の切り替えを行うことができる。   The control apparatus for a compression ignition internal combustion engine according to claim 2 includes a variable valve mechanism capable of opening and closing an intake valve and an exhaust valve of the engine at an arbitrary timing, and the operation switching means includes a variable valve mechanism. Since the engine operation is switched between the spark ignition operation and the compression ignition operation by controlling the operation, in addition to the above effects, the spark ignition operation and the compression ignition operation are switched with a simpler configuration. be able to.

請求項3に係る圧縮着火内燃機関の制御装置にあっては、第2所定値は第1所定値以上の値に設定されるように構成したので、上記した効果に加え、第2所定値を第1所定値と相違する値、具体的には第1所定値より大きい値に設定することも可能となり、よって検出された触媒温度に応じて火花点火運転と圧縮着火運転とが頻繁に切り替わる(ハンチングが生じる)のを防止することができる。   In the control apparatus for the compression ignition internal combustion engine according to the third aspect, since the second predetermined value is set to a value equal to or larger than the first predetermined value, in addition to the above effect, the second predetermined value is It is also possible to set a value different from the first predetermined value, specifically, a value larger than the first predetermined value, so that the spark ignition operation and the compression ignition operation are frequently switched according to the detected catalyst temperature ( Hunting can be prevented.

この発明の実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall control apparatus for a compression ignition internal combustion engine according to an embodiment of the present invention. 図1に示す装置の可変動弁機構によって切り換えられる(設定される)2つのバルブタイミング(およびリフト量)特性を示すグラフである。2 is a graph showing two valve timing (and lift amount) characteristics that are switched (set) by the variable valve mechanism of the apparatus shown in FIG. 1. 図1に示す電子制御ユニットによる、火花点火運転と圧縮着火運転との間で切り替える切替制御動作を示すフロー・チャートである。It is a flowchart which shows the switching control operation | movement switched between a spark ignition driving | operation and a compression ignition driving | operation by the electronic control unit shown in FIG.

以下、添付図面に即してこの発明に係る圧縮着火内燃機関の制御装置を実施するための形態について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment for implementing a control apparatus for a compression ignition internal combustion engine according to the invention will be described with reference to the accompanying drawings.

図1は、この発明の実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a control apparatus for a compression ignition internal combustion engine according to an embodiment of the present invention.

図1において、符号10は、都市ガス(あるいはLPガス。以下、単に「ガス」という)を燃料とする水冷4サイクルの単気筒OHV型の圧縮着火内燃機関(予混合圧縮自着火式内燃機関。以下「エンジン」という)を示す。エンジン10は、例えば発電機、農業機械、コージェネレーション装置の駆動源等として使用される汎用内燃機関であり、例えば163ccの排気量を備える。   In FIG. 1, reference numeral 10 denotes a water-cooled four-cycle single-cylinder OHV type compression ignition internal combustion engine (a premixed compression self-ignition internal combustion engine) that uses city gas (or LP gas; hereinafter simply referred to as “gas”) as fuel. (Hereinafter referred to as “engine”). The engine 10 is a general-purpose internal combustion engine used as, for example, a generator, an agricultural machine, a drive source for a cogeneration system, and the like, and has a displacement of 163 cc, for example.

エンジン10において、エアクリーナ(図示せず)から吸入されて吸気管(吸気系)12を通る空気はスロットルバルブ14で流量を調節され、吸気バルブ16が開弁されるとき、燃焼室20に流入する。   In the engine 10, the air drawn from an air cleaner (not shown) and passing through the intake pipe (intake system) 12 is adjusted in flow rate by the throttle valve 14 and flows into the combustion chamber 20 when the intake valve 16 is opened. .

吸気バルブ16の手前の吸気ポート付近にはインジェクタ(ガスインジェクタ)22が配置される。インジェクタ22には、燃料供給源から燃料供給管(共に図示せず)を介してガス燃料が圧送されると共に、駆動回路24を通じて電子制御ユニット(Electronic Control Unit。以下「ECU」という)26に接続される。ECU26から開弁時間を示す駆動信号が駆動回路24に供給されると、インジェクタ22は開弁し、開弁時間に応じたガス燃料を吸気ポートに噴射する。噴射されたガス燃料は流入した空気と混合して混合気(予混合気)を形成しつつ、燃焼室20に流入する。   An injector (gas injector) 22 is disposed near the intake port in front of the intake valve 16. Gas fuel is pumped to the injector 22 from a fuel supply source via a fuel supply pipe (both not shown) and connected to an electronic control unit (hereinafter referred to as “ECU”) 26 through a drive circuit 24. Is done. When a drive signal indicating the valve opening time is supplied from the ECU 26 to the drive circuit 24, the injector 22 opens, and gas fuel corresponding to the valve opening time is injected into the intake port. The injected gaseous fuel flows into the combustion chamber 20 while mixing with the air that flows in to form an air-fuel mixture (pre-air mixture).

燃焼室20の付近には点火プラグ(点火手段)28が配置される。点火プラグ28はイグナイタなどからなる点火装置30を介してECU26に接続され、ECU26から点火信号が点火装置30に供給されると、燃焼室20に臨む電極間に火花放電を生じる。混合気はそれによって着火されて燃焼し、気筒32に摺動可能に収容されたピストン34を下方に駆動する。   A spark plug (ignition means) 28 is disposed in the vicinity of the combustion chamber 20. The spark plug 28 is connected to the ECU 26 via an ignition device 30 such as an igniter. When an ignition signal is supplied from the ECU 26 to the ignition device 30, a spark discharge is generated between the electrodes facing the combustion chamber 20. Thus, the air-fuel mixture is ignited and burned, and the piston 34 slidably accommodated in the cylinder 32 is driven downward.

尚、混合気は圧縮着火によっても燃焼させられる。即ち、エンジン10は、運転状態に応じて混合気を予混合圧縮着火燃焼させる圧縮着火運転と点火プラグ28を介して混合気を火花点火で燃焼させる火花点火運転のいずれかを行う、換言すれば、運転を圧縮着火運転と火花点火運転との間で切り換える(予混合)圧縮着火内燃機関として構成される。具体的には、例えばエンジン10の始動時や暖機時には火花点火運転を行う一方、エンジン10の暖機後には圧縮着火運転を行うように構成される。尚、圧縮着火運転を開始した後の運転の切り替えについては後に詳説する。   The air-fuel mixture is also burned by compression ignition. That is, the engine 10 performs either a compression ignition operation in which the air-fuel mixture is premixed compression ignition combustion or a spark ignition operation in which the air-fuel mixture is combusted by spark ignition via the ignition plug 28 according to the operating state. The operation is switched between the compression ignition operation and the spark ignition operation (premixed), and is configured as a compression ignition internal combustion engine. Specifically, for example, a spark ignition operation is performed when the engine 10 is started or warmed up, and a compression ignition operation is performed after the engine 10 is warmed up. The operation switching after starting the compression ignition operation will be described in detail later.

燃焼によって生じた排気ガスは、排気バルブ36が開弁するとき、排気管(排気系)40を流れる。排気管40の途中には、排気浄化用の触媒(具体的には酸化触媒)からなる触媒装置42が配置される。排気は、触媒装置42が活性状態にあるとき、HC(炭化水素)、CO(一酸化炭素)などの有害成分が除去されて浄化され、エンジン外の大気に放出される。   The exhaust gas generated by the combustion flows through the exhaust pipe (exhaust system) 40 when the exhaust valve 36 is opened. In the middle of the exhaust pipe 40, a catalyst device 42 made of an exhaust purification catalyst (specifically, an oxidation catalyst) is disposed. When the catalyst device 42 is in an active state, the exhaust gas is purified by removing harmful components such as HC (hydrocarbon) and CO (carbon monoxide), and is released to the atmosphere outside the engine.

エンジン10のクランク軸(図示せず)の付近にはクランク角センサ(図で「ENG回転数センサ」と示す)44が配置され、TDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。それらの出力はECU26に入力される。   A crank angle sensor (shown as “ENG rotation speed sensor” in the figure) 44 is disposed near the crankshaft (not shown) of the engine 10, and a TDC signal indicating a TDC (top dead center) or a crank angle in the vicinity thereof. And a crank angle signal obtained by subdividing the TDC signal. Those outputs are input to the ECU 26.

ECU26はマイクロ・コンピュータからなり、CPU,ROM,RAMなどを備える。ECU26は入力信号のうち、クランク角度信号をカウントしてエンジン回転数NEを算出(検出)する。   The ECU 26 includes a microcomputer and includes a CPU, a ROM, a RAM, and the like. The ECU 26 calculates (detects) the engine speed NE by counting the crank angle signal among the input signals.

前記したスロットルバルブ14は、電動モータ(例えばステッピングモータ。アクチュエータ)46に接続される。電動モータ46はECU26に接続される。ECU26は、入力される各センサの出力に基づいて電動モータ46を駆動し、スロットルバルブ14の開度THを制御する。即ち、スロットルバルブ14の動作は、DBW(Drive By Wire)方式で制御される。   The throttle valve 14 is connected to an electric motor (for example, a stepping motor or actuator) 46. The electric motor 46 is connected to the ECU 26. The ECU 26 drives the electric motor 46 based on the output of each sensor that is input, and controls the opening TH of the throttle valve 14. That is, the operation of the throttle valve 14 is controlled by a DBW (Drive By Wire) method.

スロットルバルブ14の付近にはスロットル開度センサ50が配置され、スロットル開度THを示す出力を生じる。また、吸気管12においてスロットルバルブ14の下流側には吸気温度センサ52が設けられる。吸気温度センサ52は、スロットルバルブ14の下流側を流れる吸気の温度(即ち、エンジン10の吸気温度)Tinを示す信号を出力する。   A throttle opening sensor 50 is disposed in the vicinity of the throttle valve 14 and generates an output indicating the throttle opening TH. An intake air temperature sensor 52 is provided downstream of the throttle valve 14 in the intake pipe 12. The intake air temperature sensor 52 outputs a signal indicating the temperature of intake air flowing through the downstream side of the throttle valve 14 (that is, the intake air temperature of the engine 10) Tin.

排気管40において触媒装置42の上流側には広域空燃比センサ56が配置されると共に、触媒装置42の下流にはNOxセンサ60が配置される。広域空燃比センサ56は排気の酸素濃度(即ち、空燃比)に比例する信号を出力し、NOxセンサ60は排気中のNOx量(正確にはNOx濃度)を示す信号を出力する。また、触媒装置42には触媒温度センサ(触媒温度検出手段)62が設けられ、排気浄化用触媒の温度Tc[℃]を示す出力を生じる。これらセンサ群の出力もECU26に入力される。   A wide-range air-fuel ratio sensor 56 is disposed upstream of the catalyst device 42 in the exhaust pipe 40, and a NOx sensor 60 is disposed downstream of the catalyst device 42. The wide area air-fuel ratio sensor 56 outputs a signal proportional to the oxygen concentration (ie, air-fuel ratio) of the exhaust gas, and the NOx sensor 60 outputs a signal indicating the amount of NOx (exactly NOx concentration) in the exhaust gas. Further, the catalyst device 42 is provided with a catalyst temperature sensor (catalyst temperature detecting means) 62, which generates an output indicating the temperature Tc [° C.] of the exhaust purification catalyst. The outputs of these sensor groups are also input to the ECU 26.

前記した吸気バルブ16と排気バルブ36は可変動弁機構64に接続される。可変動弁機構64は詳細な図示は省略するが、例えば本出願人が先に提案した特開2010−65565号公報に開示される構造を備える。具体的には、動弁カム軸(カムシャフト)上に第1、第2吸気カムと第1、第2排気カムの4個のカムが隣接して配置され、第1、第2吸気カムには吸気リフタが、第1、第2排気カムには排気リフタが摺接される。吸気リフタと排気リフタはそれぞれプッシュロッドを介してロッカアームに接続される。   The intake valve 16 and the exhaust valve 36 described above are connected to a variable valve mechanism 64. Although the detailed illustration of the variable valve mechanism 64 is omitted, for example, the variable valve mechanism 64 has a structure disclosed in Japanese Patent Application Laid-Open No. 2010-65565 previously proposed by the present applicant. Specifically, four cams of a first and a second intake cam and a first and a second exhaust cam are arranged adjacent to each other on a valve camshaft (camshaft). The intake lifter is in sliding contact with the first and second exhaust cams. The intake lifter and the exhaust lifter are each connected to a rocker arm via a push rod.

エンジン10の火花点火運転のときは、各カムに接続される電磁アクチュエータや制御ロッドなどの動作を適宜に制御することで、第1吸気カムの回転動作によって吸気リフタ、吸気側のプッシュロッドおよびロッカアームを動作させ、第1吸気カムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ16を駆動する。   During the spark ignition operation of the engine 10, by appropriately controlling the operation of an electromagnetic actuator, a control rod and the like connected to each cam, the intake lifter, the intake-side push rod and the rocker arm are controlled by the rotation operation of the first intake cam. And the intake valve 16 is driven with a valve timing (and lift amount) characteristic determined by the first intake cam.

他方、エンジン10の圧縮着火運転のときは、第2吸気カムの回転動作によって吸気リフタ、吸気側のプッシュロッドおよびロッカアームを動作させ、第2吸気カムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ16を駆動する。また、排気バルブ36に関しても同様に動作するように構成される。   On the other hand, during the compression ignition operation of the engine 10, the intake lifter, the intake-side push rod and the rocker arm are operated by the rotation operation of the second intake cam, and the valve timing (and lift amount) characteristics determined by the second intake cam. Then, the intake valve 16 is driven. The exhaust valve 36 is also configured to operate in the same manner.

図2にその特性を実線で示す(吸気バルブ16のそれを16、排気バルブ36のそれを36と表示する)。圧縮着火運転のとき、バルブタイミング(およびリフト量)は図2に実線で示す特性に設定される。具体的には、排気バルブ36の閉弁時期を進角させると共に、吸気バルブ16の開弁時期を遅角させる(クランク角度において)。それによって、気筒内に所定量の排ガスを残留させて混合気の温度(筒内ガス温度)を高めて圧縮着火運転を可能とする。   The characteristic is shown by a solid line in FIG. 2 (16 for the intake valve 16 and 36 for the exhaust valve 36). During the compression ignition operation, the valve timing (and lift amount) is set to the characteristics shown by the solid line in FIG. Specifically, the closing timing of the exhaust valve 36 is advanced, and the opening timing of the intake valve 16 is retarded (at the crank angle). As a result, a predetermined amount of exhaust gas remains in the cylinder to increase the temperature of the air-fuel mixture (in-cylinder gas temperature), thereby enabling the compression ignition operation.

一方、火花点火運転のとき、バルブタイミング(およびリフト量)は、図2に破線で示す特性に設定される。具体的には、排気バルブ36の閉弁時期と吸気バルブ16の開弁時期を共にピストン上死点付近に変更させる。それによって、排気バルブ36の閉弁が遅角されて燃焼室内のガスの排出量が増加する一方、吸気バルブ16の開弁が進角されて吸入空気の流入が早められることから、排ガスは燃焼室に残留することなく、排気系に送り出される。   On the other hand, during the spark ignition operation, the valve timing (and the lift amount) is set to a characteristic indicated by a broken line in FIG. Specifically, the closing timing of the exhaust valve 36 and the opening timing of the intake valve 16 are both changed to near the piston top dead center. As a result, the closing of the exhaust valve 36 is retarded and the amount of gas discharged in the combustion chamber increases, while the opening of the intake valve 16 is advanced and the inflow of intake air is accelerated, so that the exhaust gas is combusted. It is sent to the exhaust system without remaining in the chamber.

図1の説明に戻ると、可変動弁機構64は制御回路66を介してECU26に接続される。ECU26は、制御回路66を通じて可変動弁機構64(正確には電磁アクチュエータ)の動作を制御し、吸気バルブ16と排気バルブ36のバルブタイミング(およびリフト量)を上記した2つの特性のいずれかに設定(変更)する。   Returning to the description of FIG. 1, the variable valve mechanism 64 is connected to the ECU 26 via the control circuit 66. The ECU 26 controls the operation of the variable valve mechanism 64 (more precisely, the electromagnetic actuator) through the control circuit 66, and sets the valve timing (and lift amount) of the intake valve 16 and the exhaust valve 36 to one of the above two characteristics. Set (change).

このように、エンジン10の吸気バルブ16と排気バルブ36は、可変動弁機構64によって任意の時期(バルブタイミングおよびリフト量)で開閉自在とされると共に、エンジン10の運転は、可変動弁機構64の動作を制御することで火花点火運転と圧縮着火運転との間で切り替えられる。   Thus, the intake valve 16 and the exhaust valve 36 of the engine 10 can be freely opened and closed at any time (valve timing and lift amount) by the variable valve mechanism 64, and the operation of the engine 10 is controlled by the variable valve mechanism. Switching between the spark ignition operation and the compression ignition operation is performed by controlling the operation of 64.

次いで、本実施例に係るエンジン10の制御装置の動作を説明する。   Next, the operation of the control device for the engine 10 according to the present embodiment will be described.

図3は、ECU26の動作のうち、エンジン10の暖機が終了して圧縮着火運転が行われているとき、運転を火花点火運転と圧縮着火運転との間で切り替える切替制御動作を示すフロー・チャートである。   FIG. 3 is a flow chart showing a switching control operation for switching the operation between the spark ignition operation and the compression ignition operation when the warm-up of the engine 10 is finished and the compression ignition operation is performed. It is a chart.

図3に示す如く、先ずS(ステップ)10において、エンジン10の暖機が終了して火花点火運転から圧縮着火運転に切り替えられたか否か判断する。S10で否定されるときは以降の処理をスキップする一方、肯定されるときはS12に進み、触媒温度センサ62の出力に基づき排気浄化用触媒(触媒装置42)の温度Tcを検出する。   As shown in FIG. 3, first, in S (step) 10, it is determined whether or not the warm-up of the engine 10 has ended and the spark ignition operation has been switched to the compression ignition operation. When the result in S10 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S12, and the temperature Tc of the exhaust purification catalyst (catalyst device 42) is detected based on the output of the catalyst temperature sensor 62.

次いでS14に進み、検出された触媒温度Tcが第1所定値Tc1未満か否か判断する。この第1所定値Tc1は、排気浄化用触媒の温度が比較的高く、触媒の活性状態を維持できる下限値、例えば400[℃]に設定される。   Next, in S14, it is determined whether or not the detected catalyst temperature Tc is lower than a first predetermined value Tc1. The first predetermined value Tc1 is set to a lower limit value, for example, 400 [° C.], at which the temperature of the exhaust purification catalyst is relatively high and the active state of the catalyst can be maintained.

S14で否定されるときはS16に進み、圧縮着火運転を継続する一方、肯定されるときはS18に進んで圧縮着火運転から火花点火運転に切り替える。具体的にS18では、可変動弁機構64(正確には電磁アクチュエータ)の動作を制御し、圧縮着火運転用の第2吸(排)気カムから火花点火運転用の第1吸(排)気カムに切り替える。   When the result in S14 is negative, the program proceeds to S16, and the compression ignition operation is continued. When the result is affirmed, the program proceeds to S18, and the compression ignition operation is switched to the spark ignition operation. Specifically, in S18, the operation of the variable valve mechanism 64 (more precisely, the electromagnetic actuator) is controlled, and the first suction (exhaust) air for the spark ignition operation is controlled from the second intake (exhaust) cam for the compression ignition operation. Switch to cam.

これにより、吸気バルブ16と排気バルブ36は、第1吸(排)気カムで決定されるバルブタイミング(およびリフト量)特性で駆動され、火花点火運転が実行される。火花点火運転が行われると、排気温度が上昇するため、触媒温度Tcも上昇して活性状態が確実に維持される(再活性化される)こととなる。   Thus, the intake valve 16 and the exhaust valve 36 are driven with the valve timing (and lift amount) characteristics determined by the first intake (exhaust) air cam, and the spark ignition operation is executed. When the spark ignition operation is performed, the exhaust temperature rises, so the catalyst temperature Tc also rises and the active state is reliably maintained (reactivated).

次いでS20に進み、触媒温度Tcを再度検出すると共に、S22に進み、S20で検出された触媒温度Tcが第2所定値Tc2より大きいか否か判断する。第2所定値Tc2は、触媒温度Tcがそれより大きいとき火花点火運転から圧縮着火運転に戻しても(圧縮着火運転を再開しても)触媒の活性状態を維持可能と判断できるような値、具体的には前述した第1所定値Tc1以上の値、正確には第1所定値Tc1より大きい値(例えば450[℃])に設定される。   Next, in S20, the catalyst temperature Tc is detected again, and in S22, it is determined whether or not the catalyst temperature Tc detected in S20 is greater than a second predetermined value Tc2. The second predetermined value Tc2 is such a value that it can be determined that the active state of the catalyst can be maintained even when the spark ignition operation is returned to the compression ignition operation when the catalyst temperature Tc is higher (even when the compression ignition operation is resumed). Specifically, it is set to a value equal to or greater than the first predetermined value Tc1 described above, more precisely, a value larger than the first predetermined value Tc1 (for example, 450 [° C.]).

S22で否定されるときはS24に進んで火花点火運転を継続する一方、肯定されるときはS26に進み、火花点火運転から圧縮着火運転に切り替える。具体的にS26では、可変動弁機構64の動作を制御し、火花点火運転用の第1吸(排)気カムから圧縮着火運転用の第2吸(排)気カムに切り替える。これにより、吸気バルブ16と排気バルブ36は、第2吸(排)気カムで決定されるバルブタイミング(およびリフト量)特性で駆動され、圧縮着火運転が実行される(再開される)。   When the result in S22 is negative, the program proceeds to S24 and the spark ignition operation is continued. When the result is affirmative, the program proceeds to S26, and the spark ignition operation is switched to the compression ignition operation. Specifically, in S26, the operation of the variable valve mechanism 64 is controlled to switch from the first intake (exhaust) cam for spark ignition operation to the second intake (exhaust) cam for compression ignition operation. As a result, the intake valve 16 and the exhaust valve 36 are driven with the valve timing (and lift amount) characteristics determined by the second intake (exhaust) air cam, and the compression ignition operation is executed (restarted).

以上の如く、この発明の実施例にあっては、圧縮着火内燃機関(エンジン)10の燃焼室20に配置される点火手段(点火プラグ)28と、前記機関10の運転を前記燃焼室に供給される混合気を予混合圧縮着火燃焼させる圧縮着火運転と前記点火手段を介して前記混合気を火花点火燃焼させる火花点火運転との間で切り替える運転切替手段(ECU26)とを備えた圧縮着火内燃機関の制御装置において、前記機関10の排気系(排気管)40に配置される排気浄化用触媒(触媒装置)42と、前記触媒の温度Tcを検出する触媒温度検出手段(触媒温度センサ62,ECU26。S12,S20)とを備えると共に、前記運転切替手段は、前記機関の圧縮着火運転のときに検出される触媒温度Tcが第1所定値Tc1未満の場合、前記圧縮着火運転から前記火花点火運転に切り替えると共に(S14,S18)、前記機関の火花点火運転のときに検出される触媒温度Tcが第2所定値Tc2より大きい場合、前記火花点火運転から前記圧縮着火運転に切り替える如く構成した(S22,S26)。   As described above, in the embodiment of the present invention, the ignition means (ignition plug) 28 disposed in the combustion chamber 20 of the compression ignition internal combustion engine (engine) 10 and the operation of the engine 10 are supplied to the combustion chamber. Compression ignition internal combustion engine having operation switching means (ECU 26) for switching between compression ignition operation for premixed compression ignition combustion of the air-fuel mixture to be performed and spark ignition operation for spark ignition combustion of the air-fuel mixture via the ignition means In the engine control device, an exhaust purification catalyst (catalyst device) 42 disposed in the exhaust system (exhaust pipe) 40 of the engine 10 and catalyst temperature detection means (catalyst temperature sensor 62,) for detecting the temperature Tc of the catalyst. ECU 26. S12, S20), and when the catalyst temperature Tc detected during the compression ignition operation of the engine is lower than a first predetermined value Tc1, the compression ignition is performed. When switching from the operation to the spark ignition operation (S14, S18) and the catalyst temperature Tc detected during the spark ignition operation of the engine is larger than a second predetermined value Tc2, the spark ignition operation is changed to the compression ignition operation. It was configured to switch (S22, S26).

これにより、簡易な構成でありながら火花点火運転と圧縮着火運転の切り替えを適切に制御でき、よって排気浄化用触媒(触媒装置)42の温度を比較的高く保持できる、即ち、触媒の活性状態を維持でき、排気エミッション性能を向上させることができる。また、ヒータなどの付加装置や特許文献2記載の技術のような2分割された排気浄化用触媒を不要にすることができるため、エンジン全体の大型化を招くことがないと共に、コスト的にも有利である。   This makes it possible to appropriately control the switching between the spark ignition operation and the compression ignition operation with a simple configuration, so that the temperature of the exhaust purification catalyst (catalyst device) 42 can be kept relatively high, that is, the active state of the catalyst can be changed. It is possible to maintain the exhaust emission performance. Further, since an additional device such as a heater and an exhaust purification catalyst divided into two parts as in the technique described in Patent Document 2 can be eliminated, the overall size of the engine is not increased, and the cost is reduced. It is advantageous.

また、前記機関(エンジン)10の吸気バルブ16と排気バルブ36を任意の時期で開閉自在な可変動弁機構64を備えると共に、前記運転切替手段は、前記可変動弁機構64の動作を制御することで前記機関10の運転を前記火花点火運転と前記圧縮着火運転との間で切り替えるように構成したので(S18,S26)、より簡易な構成で火花点火運転と圧縮着火運転の切り替えを行うことができる。   The engine (engine) 10 includes a variable valve mechanism 64 that can freely open and close the intake valve 16 and the exhaust valve 36 at an arbitrary timing, and the operation switching means controls the operation of the variable valve mechanism 64. Thus, since the engine 10 is switched between the spark ignition operation and the compression ignition operation (S18, S26), the spark ignition operation and the compression ignition operation can be switched with a simpler configuration. Can do.

また、前記第2所定値Tc2は前記第1所定値Tc1以上の値に設定されるように構成したので、第2所定値Tc2を第1所定値Tc1と相違する値、具体的には第1所定値Tc1より大きい値に設定することも可能となり、よって検出された触媒温度Tcに応じて火花点火運転と圧縮着火運転とが頻繁に切り替わる(ハンチングが生じる)のを防止することができる。   Further, since the second predetermined value Tc2 is set to be equal to or greater than the first predetermined value Tc1, the second predetermined value Tc2 is different from the first predetermined value Tc1, specifically, the first It is also possible to set a value larger than the predetermined value Tc1, and thus it is possible to prevent the spark ignition operation and the compression ignition operation from being switched frequently (hunting occurs) in accordance with the detected catalyst temperature Tc.

尚、上記においては、触媒温度Tcを触媒温度センサ62を用いて検出するようにしたが、それに限られるものではなく、他の手法によって検出するように構成しても良い。また、第1、第2所定値やエンジン10の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。   In the above description, the catalyst temperature Tc is detected by using the catalyst temperature sensor 62. However, the present invention is not limited to this, and it may be detected by other methods. In addition, the first and second predetermined values, the displacement of the engine 10 and the like are shown as specific values, but these are examples and are not limited.

10 エンジン(圧縮着火内燃機関)、16 吸気バルブ、20 燃焼室、28 点火プラグ(点火手段)、26 ECU(電子制御ユニット)、36 排気バルブ、40 排気管(排気系)、42 触媒装置(排気浄化用触媒)、62 触媒温度センサ(触媒温度検出手段)、64 可変動弁機構   DESCRIPTION OF SYMBOLS 10 engine (compression ignition internal combustion engine), 16 intake valve, 20 combustion chamber, 28 spark plug (ignition means), 26 ECU (electronic control unit), 36 exhaust valve, 40 exhaust pipe (exhaust system), 42 catalyst device (exhaust) Purification catalyst), 62 catalyst temperature sensor (catalyst temperature detection means), 64 variable valve mechanism

Claims (3)

圧縮着火内燃機関の燃焼室に配置される点火手段と、前記機関の運転を前記燃焼室に供給される混合気を予混合圧縮着火燃焼させる圧縮着火運転と前記点火手段を介して前記混合気を火花点火燃焼させる火花点火運転との間で切り替える運転切替手段とを備えた圧縮着火内燃機関の制御装置において、前記機関の排気系に配置される排気浄化用触媒と、前記触媒の温度を検出する触媒温度検出手段とを備えると共に、前記運転切替手段は、前記機関の圧縮着火運転のときに検出される触媒温度が第1所定値未満の場合、前記圧縮着火運転から前記火花点火運転に切り替えると共に、前記機関の火花点火運転のときに検出される触媒温度が第2所定値より大きい場合、前記火花点火運転から前記圧縮着火運転に切り替えることを特徴とする圧縮着火内燃機関の制御装置。   Ignition means arranged in a combustion chamber of a compression ignition internal combustion engine, compression ignition operation for premixed compression ignition combustion of an air-fuel mixture supplied to the combustion chamber and operation of the engine, and the mixture through the ignition means In a control apparatus for a compression ignition internal combustion engine provided with an operation switching means for switching between spark ignition operation for spark ignition combustion, an exhaust purification catalyst disposed in an exhaust system of the engine, and a temperature of the catalyst are detected A catalyst temperature detecting means, and the operation switching means switches from the compression ignition operation to the spark ignition operation when the catalyst temperature detected during the compression ignition operation of the engine is less than a first predetermined value. When the catalyst temperature detected during the spark ignition operation of the engine is larger than a second predetermined value, the compression ignition operation is switched to the compression ignition operation. The control device of fire internal combustion engine. 前記機関の吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構を備えると共に、前記運転切替手段は、前記可変動弁機構の動作を制御することで前記機関の運転を前記火花点火運転と前記圧縮着火運転との間で切り替えることを特徴とする請求項1記載の圧縮着火内燃機関の制御装置。   A variable valve mechanism that can freely open and close the intake valve and the exhaust valve of the engine at any time is provided, and the operation switching means controls the operation of the variable valve mechanism to control the operation of the engine by the spark ignition. 2. The control apparatus for a compression ignition internal combustion engine according to claim 1, wherein the control is switched between an operation and the compression ignition operation. 前記第2所定値は前記第1所定値以上の値に設定されることを特徴とする請求項1または2記載の圧縮着火内燃機関の制御装置。   The control apparatus for a compression ignition internal combustion engine according to claim 1 or 2, wherein the second predetermined value is set to a value equal to or greater than the first predetermined value.
JP2011286795A 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine Expired - Fee Related JP5756399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286795A JP5756399B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286795A JP5756399B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013133813A true JP2013133813A (en) 2013-07-08
JP5756399B2 JP5756399B2 (en) 2015-07-29

Family

ID=48910674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286795A Expired - Fee Related JP5756399B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5756399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061251A (en) * 2014-09-19 2016-04-25 マツダ株式会社 Cooling device for engine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265873A (en) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2001207887A (en) * 2000-01-25 2001-08-03 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2001280123A (en) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd Internal combustion engine
JP2002047969A (en) * 2000-08-02 2002-02-15 Hitachi Ltd Controller for engine
JP2002188484A (en) * 2000-12-15 2002-07-05 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004017759A (en) * 2002-06-14 2004-01-22 Toyota Motor Corp Exhaust emission control catalyst activating device of internal combustion engine
JP2005069097A (en) * 2003-08-25 2005-03-17 Yanmar Co Ltd Premixed compression self-ignition type gas engine
JP2007077919A (en) * 2005-09-15 2007-03-29 Hitachi Ltd Control device and control method for internal combustion engine
JP2007309251A (en) * 2006-05-19 2007-11-29 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009047094A (en) * 2007-08-21 2009-03-05 Mazda Motor Corp Controller of gasoline engine
JP2009243295A (en) * 2008-03-28 2009-10-22 Mazda Motor Corp Engine intake valve control method and device
JP2010112192A (en) * 2008-11-04 2010-05-20 Nissan Motor Co Ltd Exhaust emission purifying apparatus for internal combustion engine
JP2011240840A (en) * 2010-05-19 2011-12-01 Honda Motor Co Ltd Device for control of hybrid vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265873A (en) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2001207887A (en) * 2000-01-25 2001-08-03 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2001280123A (en) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd Internal combustion engine
JP2002047969A (en) * 2000-08-02 2002-02-15 Hitachi Ltd Controller for engine
JP2002188484A (en) * 2000-12-15 2002-07-05 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004017759A (en) * 2002-06-14 2004-01-22 Toyota Motor Corp Exhaust emission control catalyst activating device of internal combustion engine
JP2005069097A (en) * 2003-08-25 2005-03-17 Yanmar Co Ltd Premixed compression self-ignition type gas engine
JP2007077919A (en) * 2005-09-15 2007-03-29 Hitachi Ltd Control device and control method for internal combustion engine
JP2007309251A (en) * 2006-05-19 2007-11-29 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009047094A (en) * 2007-08-21 2009-03-05 Mazda Motor Corp Controller of gasoline engine
JP2009243295A (en) * 2008-03-28 2009-10-22 Mazda Motor Corp Engine intake valve control method and device
JP2010112192A (en) * 2008-11-04 2010-05-20 Nissan Motor Co Ltd Exhaust emission purifying apparatus for internal combustion engine
JP2011240840A (en) * 2010-05-19 2011-12-01 Honda Motor Co Ltd Device for control of hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061251A (en) * 2014-09-19 2016-04-25 マツダ株式会社 Cooling device for engine

Also Published As

Publication number Publication date
JP5756399B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US9797325B2 (en) Apparatus for controlling an internal combustion engine
JP5858971B2 (en) Control device and method for internal combustion engine
JPH10169488A (en) Exhaust temperature raising device
JP2006348863A (en) Starter of internal combustion engine
US20080173277A1 (en) Quick Restart HCCI Internal Combustion Engine
JP2015227631A (en) Internal combustion engine control unit
JP2009091995A (en) Combustion control device for internal combustion engine
JPWO2014167649A1 (en) Control device for internal combustion engine
JP4172319B2 (en) Variable valve timing controller for engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JP5709738B2 (en) Control device for compression ignition internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP5756399B2 (en) Control device for compression ignition internal combustion engine
JP3912500B2 (en) Internal combustion engine
JP2020029788A (en) Control device of internal combustion engine and control method of internal combustion engine
JP2009243360A (en) Engine combustion control device
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP5756400B2 (en) Control device for compression ignition internal combustion engine
JP5739799B2 (en) Control device for compression ignition internal combustion engine
WO2012137055A1 (en) Internal combustion engine starting control device and internal combustion engine starting control method
JP2001182586A (en) Exhaust-temperature raising device
JP4102268B2 (en) Compression ignition internal combustion engine
JP2004100561A (en) Valve gear of internal combustion engine
JP2015004343A (en) Control device of direct injection engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150529

R150 Certificate of patent or registration of utility model

Ref document number: 5756399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees