JP5739799B2 - Control device for compression ignition internal combustion engine - Google Patents

Control device for compression ignition internal combustion engine Download PDF

Info

Publication number
JP5739799B2
JP5739799B2 JP2011286794A JP2011286794A JP5739799B2 JP 5739799 B2 JP5739799 B2 JP 5739799B2 JP 2011286794 A JP2011286794 A JP 2011286794A JP 2011286794 A JP2011286794 A JP 2011286794A JP 5739799 B2 JP5739799 B2 JP 5739799B2
Authority
JP
Japan
Prior art keywords
compression ignition
fuel supply
cylinder pressure
basic fuel
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011286794A
Other languages
Japanese (ja)
Other versions
JP2013133812A (en
Inventor
響 古賀
古賀  響
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011286794A priority Critical patent/JP5739799B2/en
Publication of JP2013133812A publication Critical patent/JP2013133812A/en
Application granted granted Critical
Publication of JP5739799B2 publication Critical patent/JP5739799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は圧縮着火内燃機関の制御装置に関し、より詳しくは燃料と空気とを混合して得た予混合気を燃焼室に供給し、これを高圧縮比の下で自着火を行わせ、高い熱効率を得るようにした予混合圧縮自着火式内燃機関の制御装置の改良に関する。   The present invention relates to a control device for a compression ignition internal combustion engine. More specifically, a premixed gas obtained by mixing fuel and air is supplied to a combustion chamber, and this is self-ignited under a high compression ratio. The present invention relates to an improvement in a control device for a premixed compression self-ignition internal combustion engine that achieves thermal efficiency.

予混合圧縮自着火式内燃機関は、例えば特許文献1に開示されるように、燃焼室に供給される混合気(予混合気)を予混合圧縮着火燃焼させる圧縮着火運転(HCCI(Homogeneous Charge Compression Ignition)運転)を行うように構成される。このような内燃機関においては、予混合気を高圧縮比(通常の火花点火式内燃機関の圧縮比より高い)の下で圧縮することで、同時多点的に自着火するため、燃焼室全体への火炎の伝播が早く、燃焼が短時間に完了し、よって熱効率が改善され、低燃費性を良好にしつつNOxの排出量を減少させ得る利点がある。   A premixed compression self-ignition internal combustion engine, for example, as disclosed in Patent Document 1, is a compression ignition operation (HCCI (Homogeneous Charge Compression) for premixed compression ignition combustion of an air-fuel mixture (premixed gas) supplied to a combustion chamber. Ignition)). In such an internal combustion engine, the pre-mixed gas is compressed under a high compression ratio (higher than the compression ratio of a normal spark ignition type internal combustion engine), and thus self-ignition is performed simultaneously at multiple points. There is an advantage that the flame can be propagated quickly and the combustion is completed in a short time, thereby improving the thermal efficiency and reducing the NOx emission while improving the fuel efficiency.

上記の如く圧縮着火運転は混合気を自着火させる方式であるため、燃焼室に供給される空気量や燃料量などを機関の運転状態に応じて精密に制御して燃焼タイミングを適切に制御する必要がある。そこで、特許文献1記載の技術にあっては、気筒にセンサを取り付けて筒内圧を直接検出し、検出された筒内圧に基づいて燃焼タイミングをフィードバック制御するように構成することで、圧縮着火運転を安定して継続するようにしている。   As described above, since the compression ignition operation is a method of self-igniting the air-fuel mixture, the amount of air supplied to the combustion chamber, the amount of fuel, etc. are precisely controlled according to the operating state of the engine to appropriately control the combustion timing. There is a need. Therefore, in the technique described in Patent Document 1, the compression ignition operation is performed by attaching a sensor to the cylinder, directly detecting the in-cylinder pressure, and performing feedback control of the combustion timing based on the detected in-cylinder pressure. To continue stably.

特開2005−69097号公報JP 2005-69097 A

しかしながら、特許文献1記載の技術の如く構成すると、筒内圧を検出するセンサやフィードバック制御を実行するための高速処理CPUなどが必要になり、構造が複雑になるという不都合が生じていた。   However, when configured as in the technique described in Patent Document 1, a sensor for detecting the in-cylinder pressure, a high-speed processing CPU for executing feedback control, and the like are required, resulting in inconvenience that the structure is complicated.

従って、この発明の目的は上記した課題を解決し、簡易な構成でありながら燃焼タイミングを適切に制御し、よって圧縮着火運転を安定して継続するようにした圧縮着火内燃機関の制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control device for a compression ignition internal combustion engine that solves the above-described problems and appropriately controls the combustion timing with a simple configuration, and thus stably continues the compression ignition operation. There is to do.

上記した課題を解決するために、請求項1にあっては、圧縮着火内燃機関の吸気ポートに設けられて燃料を噴射するインジェクタを備え、前記吸気ポートを介して供給される空気と前記インジェクタから噴射される燃料との混合気を前記吸気ポート内で予混合させてから燃焼室で圧縮着火燃焼させる圧縮着火運転を行う圧縮着火内燃機関の制御装置において、前記機関の圧縮着火運転のときの運転状態に基づいて前記圧縮着火運転の基本燃料供給量を算出する基本燃料供給量算出手段と、吸気温度を検出する吸気温度検出手段と、排気中のNOx量を検出するNOx量検出手段と、前記検出された吸気温度とNOx量に基づいて前記算出された基本燃料供給量を補正する基本燃料供給量補正手段とを備えると共に、前記基本燃料供給量補正手段は、前記検出された吸気温度とNOx量に基づいて前記機関の筒内圧変化率を推定し、前記推定された筒内圧変化率に基づいて前記基本燃料供給量を補正する如く構成した。 In order to solve the above-described problem, in claim 1, an injector is provided in an intake port of a compression ignition internal combustion engine to inject fuel, and air supplied via the intake port and the injector In a control apparatus for a compression ignition internal combustion engine that performs a compression ignition operation in which an air- fuel mixture with fuel to be injected is premixed in the intake port and then compression ignition combustion is performed in a combustion chamber, the operation during the compression ignition operation of the engine A basic fuel supply amount calculating means for calculating a basic fuel supply amount for the compression ignition operation based on a state; an intake air temperature detecting means for detecting an intake air temperature; a NOx amount detecting means for detecting a NOx amount in exhaust; together and a basic fuel supply quantity correcting means for correcting the basic fuel supply amount the calculated on the basis of the detected intake air temperature and the NOx amount, the basic fuel supply quantity corrected hand , The estimated in-cylinder pressure change rate of the engine based on the detected intake air temperature and the amount of NOx, and as configured to correct the basic fuel supply quantity based on the estimated in-cylinder pressure change rate.

請求項に係る圧縮着火内燃機関の制御装置にあっては、前記基本燃料供給量補正手段は、前記推定された筒内圧変化率が所定値以下のとき、前記基本燃料供給量を増加補正する一方、前記推定された筒内圧変化率が前記所定値より大きいとき、前記基本燃料供給量を減少補正する如く構成した。 In the control apparatus for a compression ignition internal combustion engine according to claim 2 , the basic fuel supply amount correction means corrects the basic fuel supply amount to be increased when the estimated in-cylinder pressure change rate is a predetermined value or less. On the other hand, the basic fuel supply amount is corrected to decrease when the estimated in-cylinder pressure change rate is larger than the predetermined value.

請求項1に係る圧縮着火内燃機関の制御装置にあっては、圧縮着火内燃機関の圧縮着火運転のときの運転状態に基づいて圧縮着火運転の基本燃料供給量を算出し、吸気温度と排気中のNOx量を検出すると共に、検出された吸気温度とNOx量に基づいて前記算出された基本燃料供給量を補正するように構成したので、簡易な構成でありながら燃焼タイミングを適切に制御でき、よって圧縮着火運転を安定して継続することができる。また、特許文献1で用いられる筒内圧センサや高速CPUなどを不要にすることができるため、コスト的にも有利である。   In the control apparatus for the compression ignition internal combustion engine according to claim 1, the basic fuel supply amount of the compression ignition operation is calculated based on the operation state at the time of the compression ignition operation of the compression ignition internal combustion engine, and the intake air temperature and the exhaust gas And the basic fuel supply amount calculated based on the detected intake air temperature and the NOx amount is corrected, so that the combustion timing can be appropriately controlled with a simple configuration, Therefore, the compression ignition operation can be continued stably. In addition, the in-cylinder pressure sensor and high-speed CPU used in Patent Document 1 can be eliminated, which is advantageous in terms of cost.

また、基本燃料供給量補正手段は、検出された吸気温度とNOx量に基づいて機関の筒内圧変化率を推定、即ち、気筒内の燃焼速度と相関関係にある筒内圧変化率を吸気温度とNOx量に基づいて推定し、推定された筒内圧変化率に基づいて基本燃料供給量を補正するように構成したので、燃焼タイミングをより適切に制御でき、よって圧縮着火運転をより安定して継続することができる。 The basic fuel supply amount correcting means estimates the in-cylinder pressure change rate of the engine based on the detected intake air temperature and the NOx amount, that is, the in-cylinder pressure change rate correlated with the combustion speed in the cylinder is taken as the intake air temperature. It estimated based on the NOx amount, since it is configured to correct the basic fuel supply quantity based on the estimated in-cylinder pressure change rate, can better control the combustion timing, thus the compression ignition operation more stably Can continue.

請求項に係る圧縮着火内燃機関の制御装置にあっては、基本燃料供給量補正手段は、推定された筒内圧変化率が所定値以下のとき、基本燃料供給量を増加補正する(具体的には、基本燃料供給量を増加補正して筒内圧変化率を上昇させる)一方、推定された筒内圧変化率が所定値より大きいとき、基本燃料供給量を減少補正する(具体的には、基本燃料供給量を減少補正して筒内圧変化率を下降させる)ように構成したので、請求項2で述べた効果に加え、所定値を例えば圧縮着火運転を確実に安定して継続できるような値に設定することが可能となり、筒内圧変化率をその所定値に保持することができる。これにより、燃焼タイミングをより一層適切に制御でき、よって圧縮着火運転を確実に安定して継続することができる。 In the control apparatus for the compression ignition internal combustion engine according to claim 2 , the basic fuel supply amount correction means increases and corrects the basic fuel supply amount when the estimated in-cylinder pressure change rate is equal to or less than a predetermined value (specifically, The basic fuel supply amount is increased and corrected to increase the in-cylinder pressure change rate. On the other hand, when the estimated in-cylinder pressure change rate is larger than a predetermined value, the basic fuel supply amount is corrected to decrease (specifically, In addition to the effect described in claim 2, for example, the compression ignition operation can be reliably and stably continued in addition to the effect described in claim 2. The value can be set to a value, and the in-cylinder pressure change rate can be held at the predetermined value. As a result, the combustion timing can be more appropriately controlled, and therefore the compression ignition operation can be continued stably and reliably.

この発明の実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall control apparatus for a compression ignition internal combustion engine according to an embodiment of the present invention. 図1に示す装置の可変動弁機構によって切り換えられる(設定される)2つのバルブタイミング(およびリフト量)特性を示すグラフである。2 is a graph showing two valve timing (and lift amount) characteristics that are switched (set) by the variable valve mechanism of the apparatus shown in FIG. 1. 図1に示す電子制御ユニットの動作のうち、圧縮着火内燃機関の圧縮着火運転のときの燃料供給量の制御の構成を示すブロック図である。It is a block diagram which shows the structure of control of the fuel supply amount at the time of the compression ignition driving | operation of a compression ignition internal combustion engine among operation | movement of the electronic control unit shown in FIG. 図1に示す電子制御ユニットによる圧縮着火内燃機関の燃料供給量制御動作を示すフロー・チャートである。2 is a flowchart showing a fuel supply amount control operation of a compression ignition internal combustion engine by an electronic control unit shown in FIG. 図1に示す圧縮着火内燃機関のNOx濃度に対する筒内圧変化率の特性を示すグラフである。2 is a graph showing the characteristics of the in-cylinder pressure change rate with respect to the NOx concentration of the compression ignition internal combustion engine shown in FIG. 1. 図1に示す圧縮着火内燃機関の補正値cに対する筒内圧変化率の特性を示すグラフである。It is a graph which shows the characteristic of the in-cylinder pressure change rate with respect to the correction value c of the compression ignition internal combustion engine shown in FIG.

以下、添付図面に即してこの発明に係る圧縮着火内燃機関の制御装置を実施するための形態について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment for implementing a control apparatus for a compression ignition internal combustion engine according to the invention will be described with reference to the accompanying drawings.

図1は、この発明の実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a control apparatus for a compression ignition internal combustion engine according to an embodiment of the present invention.

図1において、符号10は、都市ガス(あるいはLPガス。以下、単に「ガス」という)を燃料とする水冷4サイクルの単気筒OHV型の圧縮着火内燃機関(予混合圧縮自着火式内燃機関。以下「エンジン」という)を示す。エンジン10は、例えば発電機、農業機械、コージェネレーション装置の駆動源等として使用される汎用内燃機関であり、例えば163ccの排気量を備える。   In FIG. 1, reference numeral 10 denotes a water-cooled four-cycle single-cylinder OHV type compression ignition internal combustion engine (a premixed compression self-ignition internal combustion engine) that uses city gas (or LP gas; hereinafter simply referred to as “gas”) as fuel. (Hereinafter referred to as “engine”). The engine 10 is a general-purpose internal combustion engine used as, for example, a generator, an agricultural machine, a drive source for a cogeneration system, and the like, and has a displacement of, for example, 163 cc.

エンジン10において、エアクリーナ(図示せず)から吸入されて吸気管(吸気系)12を通る空気はスロットルバルブ14で流量を調節され、吸気バルブ16が開弁されるとき、燃焼室20に流入する。   In the engine 10, the air drawn from an air cleaner (not shown) and passing through the intake pipe (intake system) 12 is adjusted in flow rate by the throttle valve 14 and flows into the combustion chamber 20 when the intake valve 16 is opened. .

吸気バルブ16の手前の吸気ポート付近にはインジェクタ(ガスインジェクタ)22が配置される。インジェクタ22には、燃料供給源から燃料供給管(共に図示せず)を介してガス燃料が圧送されると共に、駆動回路24を通じて電子制御ユニット(Electronic Control Unit。以下「ECU」という)26に接続される。ECU26から開弁時間を示す駆動信号が駆動回路24に供給されると、インジェクタ22は開弁し、開弁時間に応じたガス燃料を吸気ポートに噴射する。噴射されたガス燃料は流入した空気と混合して混合気(予混合気)を形成しつつ、燃焼室20に流入する。   An injector (gas injector) 22 is disposed near the intake port in front of the intake valve 16. Gas fuel is pumped to the injector 22 from a fuel supply source via a fuel supply pipe (both not shown) and connected to an electronic control unit (hereinafter referred to as “ECU”) 26 through a drive circuit 24. Is done. When a drive signal indicating the valve opening time is supplied from the ECU 26 to the drive circuit 24, the injector 22 opens, and gas fuel corresponding to the valve opening time is injected into the intake port. The injected gaseous fuel flows into the combustion chamber 20 while mixing with the air that flows in to form an air-fuel mixture (pre-air mixture).

燃焼室20の付近には点火プラグ(点火手段)28が配置される。点火プラグ28はイグナイタなどからなる点火装置30を介してECU26に接続され、ECU26から点火信号が点火装置30に供給されると、燃焼室20に臨む電極間に火花放電を生じる。混合気はそれによって着火されて燃焼し、気筒32に摺動可能に収容されたピストン34を下方に駆動する。   A spark plug (ignition means) 28 is disposed in the vicinity of the combustion chamber 20. The spark plug 28 is connected to the ECU 26 via an ignition device 30 such as an igniter. When an ignition signal is supplied from the ECU 26 to the ignition device 30, a spark discharge is generated between the electrodes facing the combustion chamber 20. Thus, the air-fuel mixture is ignited and burned, and the piston 34 slidably accommodated in the cylinder 32 is driven downward.

尚、混合気は圧縮着火によっても燃焼させられる。即ち、エンジン10は、運転状態に応じて混合気を予混合圧縮着火燃焼させる圧縮着火運転と点火プラグ28を介して混合気を火花点火で燃焼させる火花点火運転(SI(Spark Ignition)運転)のいずれかを行う、換言すれば、運転を圧縮着火運転と火花点火運転との間で切り換える(予混合)圧縮着火内燃機関として構成される。具体的には、例えばエンジン10の始動時や暖機時には火花点火運転を行う一方、エンジン10が暖機後の定格運転領域にあるときには圧縮着火運転を行うように構成される。   The air-fuel mixture is also burned by compression ignition. That is, the engine 10 performs a compression ignition operation in which the air-fuel mixture is premixed compression ignition combustion according to the operating state and a spark ignition operation (SI (Spark Ignition) operation) in which the air-fuel mixture is combusted by spark ignition via the spark plug 28. Any one is performed, in other words, the operation is switched between the compression ignition operation and the spark ignition operation (premixing), and the engine is configured as a compression ignition internal combustion engine. Specifically, for example, the spark ignition operation is performed when the engine 10 is started or warmed up, and the compression ignition operation is performed when the engine 10 is in the rated operation region after warming up.

燃焼によって生じた排気ガスは、排気バルブ36が開弁するとき、排気管(排気系)40を流れる。排気管40の途中には、排気浄化用の触媒(具体的には酸化触媒)からなる触媒装置42が配置される。排気は、触媒装置42が活性状態にあるとき、HC(炭化水素)、CO(一酸化炭素)などの有害成分が除去されて浄化され、エンジン外の大気に放出される。   The exhaust gas generated by the combustion flows through the exhaust pipe (exhaust system) 40 when the exhaust valve 36 is opened. In the middle of the exhaust pipe 40, a catalyst device 42 made of an exhaust purification catalyst (specifically, an oxidation catalyst) is disposed. When the catalyst device 42 is in an active state, the exhaust gas is purified by removing harmful components such as HC (hydrocarbon) and CO (carbon monoxide), and is released to the atmosphere outside the engine.

エンジン10のクランク軸(図示せず)の付近にはクランク角センサ(図で「ENG回転数センサ」と示す)44が配置され、TDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。それらの出力はECU26に入力される。   A crank angle sensor (shown as “ENG rotation speed sensor” in the figure) 44 is disposed near the crankshaft (not shown) of the engine 10, and a TDC signal indicating a TDC (top dead center) or a crank angle in the vicinity thereof. And a crank angle signal obtained by subdividing the TDC signal. Those outputs are input to the ECU 26.

ECU26はマイクロ・コンピュータからなり、CPU,ROM,RAMなどを備える。ECU26は入力信号のうち、クランク角度信号をカウントしてエンジン回転数NEを算出(検出)する。   The ECU 26 includes a microcomputer and includes a CPU, a ROM, a RAM, and the like. The ECU 26 calculates (detects) the engine speed NE by counting the crank angle signal among the input signals.

前記したスロットルバルブ14は、電動モータ(例えばステッピングモータ。アクチュエータ)46に接続される。電動モータ46はECU26に接続される。ECU26は、入力される各センサの出力に基づいて電動モータ46を駆動し、スロットルバルブ14の開度THを制御する。即ち、スロットルバルブ14の動作は、DBW(Drive By Wire)方式で制御される。   The throttle valve 14 is connected to an electric motor (for example, a stepping motor or actuator) 46. The electric motor 46 is connected to the ECU 26. The ECU 26 drives the electric motor 46 based on the output of each sensor that is input, and controls the opening TH of the throttle valve 14. That is, the operation of the throttle valve 14 is controlled by a DBW (Drive By Wire) method.

スロットルバルブ14の付近にはスロットル開度センサ50が配置され、スロットル開度THを示す出力を生じる。また、吸気管12においてスロットルバルブ14の下流側には吸気温度センサ(吸気温度検出手段)52が設けられる。吸気温度センサ52は、スロットルバルブ14の下流側を流れる吸気の温度(即ち、エンジン10の吸気温度)Tinを示す信号を出力する。   A throttle opening sensor 50 is disposed in the vicinity of the throttle valve 14 and generates an output indicating the throttle opening TH. An intake air temperature sensor (intake air temperature detecting means) 52 is provided downstream of the throttle valve 14 in the intake pipe 12. The intake air temperature sensor 52 outputs a signal indicating the temperature of intake air flowing through the downstream side of the throttle valve 14 (that is, the intake air temperature of the engine 10) Tin.

排気管40において触媒装置42の上流側には広域空燃比センサ56が配置されると共に、触媒装置42の下流にはNOxセンサ(NOx量検出手段)60が配置される。広域空燃比センサ56は排気の酸素濃度(即ち、空燃比)に比例する信号を出力し、NOxセンサ60は排気中のNOx量(正確にはNOx濃度)を示す信号を出力する。また、触媒装置42には触媒温度センサ62が設けられ、排気浄化用触媒の温度Tcを示す出力を生じる。これらセンサ群の出力もECU26に入力される。   A wide area air-fuel ratio sensor 56 is disposed upstream of the catalyst device 42 in the exhaust pipe 40, and a NOx sensor (NOx amount detection means) 60 is disposed downstream of the catalyst device 42. The wide area air-fuel ratio sensor 56 outputs a signal proportional to the oxygen concentration (ie, air-fuel ratio) of the exhaust gas, and the NOx sensor 60 outputs a signal indicating the amount of NOx (exactly NOx concentration) in the exhaust gas. Further, the catalyst device 42 is provided with a catalyst temperature sensor 62, which generates an output indicating the temperature Tc of the exhaust purification catalyst. The outputs of these sensor groups are also input to the ECU 26.

前記した吸気バルブ16と排気バルブ36は可変動弁機構64に接続される。可変動弁機構64は詳細な図示は省略するが、例えば本出願人が先に提案した特開2010−65565号公報に開示される構造を備える。具体的には、動弁カム軸(カムシャフト)上に第1、第2吸気カムと第1、第2排気カムの4個のカムが隣接して配置され、第1、第2吸気カムには吸気リフタが、第1、第2排気カムには排気リフタが摺接される。吸気リフタと排気リフタはそれぞれプッシュロッドを介してロッカアームに接続される。   The intake valve 16 and the exhaust valve 36 described above are connected to a variable valve mechanism 64. Although the detailed illustration of the variable valve mechanism 64 is omitted, for example, the variable valve mechanism 64 has a structure disclosed in Japanese Patent Application Laid-Open No. 2010-65565 previously proposed by the present applicant. Specifically, four cams of a first and a second intake cam and a first and a second exhaust cam are arranged adjacent to each other on a valve camshaft (camshaft). The intake lifter is in sliding contact with the first and second exhaust cams. The intake lifter and the exhaust lifter are each connected to a rocker arm via a push rod.

エンジン10の火花点火運転のときは、各カムに接続される電磁アクチュエータや制御ロッドなどの動作を適宜に制御することで、第1吸気カムの回転動作によって吸気リフタ、吸気側のプッシュロッドおよびロッカアームを動作させ、第1吸気カムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ16を駆動する。   During the spark ignition operation of the engine 10, by appropriately controlling the operation of an electromagnetic actuator, a control rod and the like connected to each cam, the intake lifter, the intake-side push rod and the rocker arm are controlled by the rotation operation of the first intake cam. And the intake valve 16 is driven with a valve timing (and lift amount) characteristic determined by the first intake cam.

他方、エンジン10の圧縮着火運転のときは、第2吸気カムの回転動作によって吸気リフタ、吸気側のプッシュロッドおよびロッカアームを動作させ、第2吸気カムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ16を駆動する。また、排気バルブ36に関しても同様に動作するように構成される。   On the other hand, during the compression ignition operation of the engine 10, the intake lifter, the intake-side push rod and the rocker arm are operated by the rotation operation of the second intake cam, and the valve timing (and lift amount) characteristics determined by the second intake cam. Then, the intake valve 16 is driven. The exhaust valve 36 is also configured to operate in the same manner.

図2にその特性を実線で示す(吸気バルブ16のそれを16、排気バルブ36のそれを36と表示する)。圧縮着火運転のとき、バルブタイミング(およびリフト量)は図2に実線で示す特性に設定される。具体的には、排気バルブ36の閉弁時期を進角させると共に、吸気バルブ16の開弁時期を遅角させる(クランク角度において)。それによって、気筒内に所定量の排ガスを残留させて混合気の温度(筒内ガス温度)を高めて圧縮着火運転を可能とする。   The characteristic is shown by a solid line in FIG. 2 (16 for the intake valve 16 and 36 for the exhaust valve 36). During the compression ignition operation, the valve timing (and lift amount) is set to the characteristics shown by the solid line in FIG. Specifically, the closing timing of the exhaust valve 36 is advanced, and the opening timing of the intake valve 16 is retarded (at the crank angle). As a result, a predetermined amount of exhaust gas remains in the cylinder to increase the temperature of the air-fuel mixture (in-cylinder gas temperature), thereby enabling the compression ignition operation.

一方、火花点火運転のとき、バルブタイミング(およびリフト量)は、図2に破線で示す特性に設定される。具体的には、排気バルブ36の閉弁時期と吸気バルブ16の開弁時期を共にピストン上死点付近に変更させる。それによって、排気バルブ36の閉弁が遅角されて燃焼室内のガスの排出量が増加する一方、吸気バルブ16の開弁が進角されて吸入空気の流入が早められることから、排ガスは燃焼室に残留することなく、排気系に送り出される。   On the other hand, during the spark ignition operation, the valve timing (and the lift amount) is set to a characteristic indicated by a broken line in FIG. Specifically, the closing timing of the exhaust valve 36 and the opening timing of the intake valve 16 are both changed to near the piston top dead center. As a result, the closing of the exhaust valve 36 is retarded and the amount of gas discharged in the combustion chamber increases, while the opening of the intake valve 16 is advanced and the inflow of intake air is accelerated, so that the exhaust gas is combusted. It is sent to the exhaust system without remaining in the chamber.

図1の説明に戻ると、可変動弁機構64は制御回路66を介してECU26に接続される。ECU26は、制御回路66を通じて可変動弁機構64(正確には電磁アクチュエータ)の動作を制御し、吸気バルブ16と排気バルブ36のバルブタイミング(およびリフト量)を上記した2つの特性のいずれかに設定(変更)する。   Returning to the description of FIG. 1, the variable valve mechanism 64 is connected to the ECU 26 via the control circuit 66. The ECU 26 controls the operation of the variable valve mechanism 64 (more precisely, the electromagnetic actuator) through the control circuit 66, and sets the valve timing (and lift amount) of the intake valve 16 and the exhaust valve 36 to one of the above two characteristics. Set (change).

このように、エンジン10の吸気バルブ16と排気バルブ36は、可変動弁機構64によって任意の時期(バルブタイミングおよびリフト量)で開閉自在とされると共に、エンジン10の運転は、可変動弁機構64の動作を制御することで火花点火運転と圧縮着火運転との間で切り替えられる。   Thus, the intake valve 16 and the exhaust valve 36 of the engine 10 can be freely opened and closed at any time (valve timing and lift amount) by the variable valve mechanism 64, and the operation of the engine 10 is controlled by the variable valve mechanism. Switching between the spark ignition operation and the compression ignition operation is performed by controlling the operation of 64.

図3は、ECU26の動作のうち、エンジン10の圧縮着火運転のときの燃料供給量の制御の構成を示すブロック図である。   FIG. 3 is a block diagram showing the configuration of the fuel supply amount control during the compression ignition operation of the engine 10 among the operations of the ECU 26.

図3に示すように、上記した各センサ44,50,52,60の出力はECU26に入力される。ECU26は、これら各センサからの入力に基づいてインジェクタ22やスロットルバルブ14の電動モータ46の動作を制御して燃焼室20に供給される燃料供給量を制御する。   As shown in FIG. 3, the outputs of the sensors 44, 50, 52, 60 described above are input to the ECU 26. The ECU 26 controls the amount of fuel supplied to the combustion chamber 20 by controlling the operation of the electric motor 46 of the injector 22 and the throttle valve 14 based on the inputs from these sensors.

図4は、そのECU26によるエンジン10の燃料供給量制御動作を示すフロー・チャートである。尚、図示のプログラムは例えば所定のクランク角度で実行される。   FIG. 4 is a flowchart showing the fuel supply amount control operation of the engine 10 by the ECU 26. The illustrated program is executed at a predetermined crank angle, for example.

図4に示す如く、先ずS(ステップ)10において、エンジン10の圧縮着火運転のときの運転状態を検出、具体的には、エンジン回転数NEをクランク角センサ44の出力に基づいて、スロットル開度THをスロットル開度センサ50の出力に基づいて検出(算出)する。   As shown in FIG. 4, first, in S (step) 10, the operation state during the compression ignition operation of the engine 10 is detected. Specifically, the engine speed NE is determined based on the output of the crank angle sensor 44. The degree TH is detected (calculated) based on the output of the throttle opening sensor 50.

次いでS12に進み、検出されたエンジン10の運転状態に基づいて基本燃料供給量を算出する。具体的には、エンジン回転数NEやスロットル開度THなどに基づいて、ROM内に格納されるマップを検索して基本燃料供給量を算出する。   Next, in S12, the basic fuel supply amount is calculated based on the detected operating state of the engine 10. Specifically, a basic fuel supply amount is calculated by searching a map stored in the ROM based on the engine speed NE, the throttle opening TH, and the like.

次いでS14に進み、吸気温度センサ52の出力に基づいて吸気温度Tin[℃]を検出(算出)すると共に、S16に進んでNOxセンサ60の出力からNOx量(正確にはNOx濃度[ppm])を検出(算出)する。   Next, the routine proceeds to S14, where the intake air temperature Tin [° C.] is detected (calculated) based on the output of the intake air temperature sensor 52, and the routine proceeds to S16, where the NOx amount (NOx concentration [ppm] to be precise) is calculated from the output of the NOx sensor 60. Is detected (calculated).

S18に進み、検出された吸気温度TinとNOx濃度に基づいてエンジン10の筒内圧変化率dP/dθ[kPa/deg]を推定する。ここで、この筒内圧変化率dP/dθの推定について図5,6を参照しつつ説明する。   Proceeding to S18, the in-cylinder pressure change rate dP / dθ [kPa / deg] of the engine 10 is estimated based on the detected intake air temperature Tin and NOx concentration. Here, estimation of the in-cylinder pressure change rate dP / dθ will be described with reference to FIGS.

筒内圧変化率dP/dθは、エンジン10の単位クランク角あたりの筒内圧変化量であり、気筒内の燃焼の速度に相関する値である。具体的には筒内圧変化率dP/dθが上昇すると、気筒内の燃焼の速度も増加する一方、筒内圧変化率dP/dθが下降すると、燃焼の速度は減少する。尚、筒内圧変化率dP/dθは筒内の燃焼に伴う騒音にも比例し、筒内圧変化率dP/dθが上昇するにつれて騒音は大きくなる。   The in-cylinder pressure change rate dP / dθ is an in-cylinder pressure change amount per unit crank angle of the engine 10 and is a value correlated with the combustion speed in the cylinder. Specifically, when the in-cylinder pressure change rate dP / dθ increases, the combustion speed in the cylinder also increases, while when the in-cylinder pressure change rate dP / dθ decreases, the combustion speed decreases. Note that the in-cylinder pressure change rate dP / dθ is also proportional to the noise accompanying combustion in the cylinder, and the noise increases as the in-cylinder pressure change rate dP / dθ increases.

エンジン10は、前述の如く発電機などの駆動源として使用される汎用内燃機関であることから、筒内圧変化率dP/dθはある一定の値(例えば燃費効率などが比較的高くなるような値)で推移するように制御されるのが望ましい。そこで、発明者は吸気温度TinとNOx濃度に着目し、吸気温度Tinが50,70,100[℃]の3つの条件下で筒内圧変化率dP/dθとNOx濃度の関係を実験を通じて調べたところ、図5に示す如く、吸気温度Tinによって僅かに変化するものの、NOx濃度に対する筒内圧変化率dP/dθのグラフの立ち上がり位置はほぼ同じになることを知見した。   Since the engine 10 is a general-purpose internal combustion engine used as a drive source for a generator or the like as described above, the in-cylinder pressure change rate dP / dθ is a certain value (for example, a value at which the fuel efficiency is relatively high). It is desirable to be controlled so as to change at Therefore, the inventor paid attention to the intake air temperature Tin and the NOx concentration, and examined the relationship between the in-cylinder pressure change rate dP / dθ and the NOx concentration through three conditions under the intake air temperature Tin of 50, 70, and 100 [° C.]. However, as shown in FIG. 5, it was found that the rising position of the graph of the in-cylinder pressure change rate dP / dθ with respect to the NOx concentration is almost the same, although it slightly changes depending on the intake air temperature Tin.

よって図5に示すグラフを吸気温度Tinと定数(補正係数)を用いて補正すれば、筒内圧変化率dP/dθは、図6に示すような1次関数のグラフで表すことができる。具体的には、下記の式(1)によって補正値cを算出し、算出された補正値cをグラフの横軸にとることで、図6のグラフを得ることができる。
補正値c=a(吸気温度−b)×NOx濃度 ・・・式(1)
尚、式中の値a,bは実験を通じて得られた定数(補正係数)である。
Therefore, if the graph shown in FIG. 5 is corrected using the intake air temperature Tin and a constant (correction coefficient), the in-cylinder pressure change rate dP / dθ can be expressed by a linear function graph as shown in FIG. Specifically, the graph of FIG. 6 can be obtained by calculating the correction value c by the following equation (1) and taking the calculated correction value c on the horizontal axis of the graph.
Correction value c = a (intake air temperature−b) × NOx concentration (1)
The values a and b in the equation are constants (correction coefficients) obtained through experiments.

従って、図6に示す特性を有するマップを予めROMに格納しておき、検出された吸気温度TinとNOx濃度から補正値cを算出し、算出された補正値cに基づいてマップを検索することで、筒内圧をセンサなどで検出することなく、筒内圧変化率dP/dθを推定することが可能となる。   Therefore, a map having the characteristics shown in FIG. 6 is stored in the ROM in advance, the correction value c is calculated from the detected intake air temperature Tin and NOx concentration, and the map is searched based on the calculated correction value c. Thus, the in-cylinder pressure change rate dP / dθ can be estimated without detecting the in-cylinder pressure with a sensor or the like.

図4の説明に戻ると、次いでS20に進み、S18で推定された筒内圧変化率dP/dθが所定値より大きいか否か判定する。この所定値は、燃費効率などが比較的高く、また燃焼タイミング(燃焼速度)が適切で圧縮着火運転を確実に安定して継続できるような値、例えば800[kPa/deg]に設定される。   Returning to the description of FIG. 4, the process then proceeds to S20, in which it is determined whether the in-cylinder pressure change rate dP / dθ estimated in S18 is greater than a predetermined value. This predetermined value is set to a value such as 800 [kPa / deg] that is relatively high in fuel efficiency, has an appropriate combustion timing (combustion speed), and can reliably and stably continue the compression ignition operation.

S20で否定されるとき、即ち、筒内圧変化率dP/dθが所定値以下のときはS22に進み、S12で算出された基本燃料供給量を所定量だけ増加する補正を行う。次いでS24に進み、増加補正された基本燃料供給量となるように燃料供給量を制御、具体的にはインジェクタ22やスロットルバルブ14の電動モータ46の動作を制御する。これにより、筒内圧変化率dP/dθは上昇して所定値に近づくこととなる。   When the result in S20 is negative, that is, when the in-cylinder pressure change rate dP / dθ is equal to or smaller than a predetermined value, the process proceeds to S22, and correction is performed to increase the basic fuel supply amount calculated in S12 by a predetermined amount. Next, the process proceeds to S24, in which the fuel supply amount is controlled so that the increase-corrected basic fuel supply amount is obtained. Specifically, the operation of the electric motor 46 of the injector 22 and the throttle valve 14 is controlled. As a result, the in-cylinder pressure change rate dP / dθ increases and approaches a predetermined value.

一方、S20で肯定されるときはS26に進み、基本燃料供給量を所定量だけ減少する補正を行い、次いでS24に進んで前述した処理を実行、具体的には減少補正された基本燃料供給量となるように燃料供給量を制御する。これにより、筒内圧変化率dP/dθは下降して所定値に近づくこととなる。   On the other hand, when the result in S20 is affirmative, the process proceeds to S26, in which correction is performed to decrease the basic fuel supply amount by a predetermined amount, and then the process proceeds to S24 to execute the above-described processing. The fuel supply amount is controlled so that As a result, the in-cylinder pressure change rate dP / dθ decreases and approaches a predetermined value.

このように、S22およびS26では、検出された吸気温度TinとNOx濃度に基づいて算出された基本燃料供給量を補正するようにしたので、筒内圧変化率dP/dθが所定値付近で保持され、よって圧縮着火運転は安定して継続される。   As described above, in S22 and S26, the basic fuel supply amount calculated based on the detected intake air temperature Tin and NOx concentration is corrected, so that the in-cylinder pressure change rate dP / dθ is held near a predetermined value. Therefore, the compression ignition operation is stably continued.

以上の如く、この発明の実施例にあっては、圧縮着火内燃機関(エンジン)10の吸気ポートに設けられて燃料を噴射するインジェクタ(ガスインジェクタ)22を備え、前記吸気ポートを介して供給される空気と前記インジェクタ22から噴射される燃料との混合気を前記吸気ポート内で予混合させてから燃焼室20で圧縮着火運転を行う圧縮着火内燃機関の制御装置において、前記機関10の圧縮着火運転のときの運転状態に基づいて前記圧縮着火運転の基本燃料供給量を算出する基本燃料供給量算出手段(ECU26。S12)と、吸気温度Tinを検出する吸気温度検出手段(吸気温度センサ52,ECU26。S14)と、排気中のNOx量(NOx濃度)を検出するNOx量検出手段(NOxセンサ60,ECU26。S16)と、前記検出された吸気温度TinとNOx量に基づいて前記算出された基本燃料供給量を補正する基本燃料供給量補正手段(ECU26。S18〜S26)とを備える如く構成した。
As described above, the embodiment of the present invention includes the injector (gas injector) 22 that is provided in the intake port of the compression ignition internal combustion engine (engine) 10 and injects fuel, and is supplied through the intake port. In a control apparatus for a compression ignition internal combustion engine in which a mixture of air to be injected and fuel injected from the injector 22 is premixed in the intake port and then compression ignition operation is performed in the combustion chamber 20, the compression ignition of the engine 10 is performed. Basic fuel supply amount calculation means (ECU 26. S12) for calculating the basic fuel supply amount of the compression ignition operation based on the operation state at the time of operation, and intake air temperature detection means (intake air temperature sensor 52, S12) for detecting the intake air temperature Tin ECU 26. S14), NOx amount detection means (NOx sensor 60, ECU 26. S16) for detecting the NOx amount (NOx concentration) in the exhaust gas, Was composed as and a basic fuel supply amount correcting means (ECU26.S18~S26) for correcting the basic fuel supply amount the calculated on the basis of the detected intake air temperature Tin and the NOx amount.

これにより、簡易な構成でありながら燃焼タイミングを適切に制御でき、よって圧縮着火運転を安定して継続することができる。また、特許文献1で用いられる筒内圧センサや高速CPUなどを不要にすることができるため、コスト的にも有利である。   Thereby, although it is a simple structure, a combustion timing can be controlled appropriately and compression ignition operation can be continued stably. In addition, the in-cylinder pressure sensor and high-speed CPU used in Patent Document 1 can be eliminated, which is advantageous in terms of cost.

また、前記基本燃料供給量補正手段は、前記検出された吸気温度TinとNOx量に基づいて前記機関10の筒内圧変化率dP/dθを推定し(S18)、前記推定された筒内圧変化率に基づいて前記基本燃料供給量を補正する如く構成したので(S20〜S26)、燃焼タイミングをより適切に制御でき、よって圧縮着火運転をより安定して継続することができる。   The basic fuel supply amount correcting means estimates the in-cylinder pressure change rate dP / dθ of the engine 10 based on the detected intake air temperature Tin and the NOx amount (S18), and the estimated in-cylinder pressure change rate. (S20 to S26), the combustion timing can be controlled more appropriately, and the compression ignition operation can be continued more stably.

また、前記基本燃料供給量補正手段は、前記推定された筒内圧変化率dP/dθが所定値以下のとき、前記基本燃料供給量を増加補正する(具体的には、基本燃料供給量を増加補正して筒内圧変化率dP/dθを上昇させる)一方(S20,S22)、前記推定された筒内圧変化率dP/dθが前記所定値より大きいとき、前記基本燃料供給量を減少補正する(具体的には、基本燃料供給量を減少補正して筒内圧変化率dP/dθを下降させる)ように構成したので(S20,S26)、所定値を例えば圧縮着火運転を確実に安定して継続できるような値に設定することが可能となり、筒内圧変化率dP/dθをその所定値に保持することができる。これにより、燃焼タイミングをより一層適切に制御でき、よって圧縮着火運転を確実に安定して継続することができる。   Further, the basic fuel supply amount correction means increases the basic fuel supply amount when the estimated in-cylinder pressure change rate dP / dθ is equal to or less than a predetermined value (specifically, increases the basic fuel supply amount). (S20, S22) On the other hand, when the estimated in-cylinder pressure change rate dP / dθ is larger than the predetermined value, the basic fuel supply amount is corrected to decrease ( Specifically, since the basic fuel supply amount is corrected to decrease and the in-cylinder pressure change rate dP / dθ is decreased) (S20, S26), the predetermined value, for example, the compression ignition operation is reliably and stably continued. It is possible to set the value to such a value that the in-cylinder pressure change rate dP / dθ can be held at the predetermined value. As a result, the combustion timing can be more appropriately controlled, and therefore the compression ignition operation can be continued stably and reliably.

尚、上記においては、筒内圧変化率dP/dθを吸気温度TinとNOx量で推定するように構成したが、式(1)にエンジン10の冷却水温度、エンジン回転数NEやスロットル開度THなどを加えて筒内圧変化率dP/dθを推定するように構成しても良い。また、所定値やエンジン10の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。   In the above description, the in-cylinder pressure change rate dP / dθ is estimated from the intake air temperature Tin and the amount of NOx, but the cooling water temperature of the engine 10, the engine speed NE, and the throttle opening TH The in-cylinder pressure change rate dP / dθ may be estimated by adding the above. Moreover, although the predetermined value, the displacement of the engine 10 and the like are shown as specific values, they are merely examples and are not limited.

10 エンジン(圧縮着火内燃機関)、20 燃焼室、26 ECU(電子制御ユニット)、28 点火プラグ、52 吸気温度センサ(吸気温度検出手段)、60 NOxセンサ(NOx量検出手段)   10 engine (compression ignition internal combustion engine), 20 combustion chamber, 26 ECU (electronic control unit), 28 spark plug, 52 intake air temperature sensor (intake air temperature detecting means), 60 NOx sensor (NOx amount detecting means)

Claims (2)

圧縮着火内燃機関の吸気ポートに設けられて燃料を噴射するインジェクタを備え、前記吸気ポートを介して供給される空気と前記インジェクタから噴射される燃料との混合気を前記吸気ポート内で予混合させてから燃焼室で圧縮着火燃焼させる圧縮着火運転を行う圧縮着火内燃機関の制御装置において、前記機関の圧縮着火運転のときの運転状態に基づいて前記圧縮着火運転の基本燃料供給量を算出する基本燃料供給量算出手段と、吸気温度を検出する吸気温度検出手段と、排気中のNOx量を検出するNOx量検出手段と、前記検出された吸気温度とNOx量に基づいて前記算出された基本燃料供給量を補正する基本燃料供給量補正手段とを備えると共に、前記基本燃料供給量補正手段は、前記検出された吸気温度とNOx量に基づいて前記機関の筒内圧変化率を推定し、前記推定された筒内圧変化率に基づいて前記基本燃料供給量を補正することを特徴とする圧縮着火内燃機関の制御装置。 An injector is provided at an intake port of a compression ignition internal combustion engine and injects fuel, and an air-fuel mixture of air supplied through the intake port and fuel injected from the injector is premixed in the intake port. In a control apparatus for a compression ignition internal combustion engine that performs a compression ignition operation in which compression ignition combustion is performed in a combustion chamber, a basic fuel supply amount for the compression ignition operation is calculated based on an operation state at the time of the compression ignition operation of the engine Fuel supply amount calculation means, intake air temperature detection means for detecting intake air temperature, NOx amount detection means for detecting NOx amount in exhaust, and the calculated basic fuel based on the detected intake temperature and NOx amount Rutotomoni a basic fuel supply quantity correcting means for correcting the supply amount, the basic fuel supply quantity correcting means, before based on the intake air temperature and the NOx amount which the detected Estimating the in-cylinder pressure change rate of the engine, the control apparatus for a compression ignition internal combustion engine, characterized by correcting the basic fuel supply quantity based on the estimated in-cylinder pressure change rate. 前記基本燃料供給量補正手段は、前記推定された筒内圧変化率が所定値以下のとき、前記基本燃料供給量を増加補正する一方、前記推定された筒内圧変化率が前記所定値より大きいとき、前記基本燃料供給量を減少補正することを特徴とする請求項記載の圧縮着火内燃機関の制御装置。 The basic fuel supply amount correction means corrects the basic fuel supply amount to be increased when the estimated in-cylinder pressure change rate is equal to or less than a predetermined value, while the estimated in-cylinder pressure change rate is greater than the predetermined value. the control device of a compression ignition internal combustion engine according to claim 1, wherein the reducing correcting the basic fuel supply quantity.
JP2011286794A 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine Expired - Fee Related JP5739799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286794A JP5739799B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286794A JP5739799B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013133812A JP2013133812A (en) 2013-07-08
JP5739799B2 true JP5739799B2 (en) 2015-06-24

Family

ID=48910673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286794A Expired - Fee Related JP5739799B2 (en) 2011-12-27 2011-12-27 Control device for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5739799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808672B2 (en) * 2017-07-03 2020-10-20 Tula Technology, Inc. Dynamic charge compression ignition engine with multiple aftertreatment systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861418B2 (en) * 1997-12-02 2006-12-20 日産自動車株式会社 Diesel engine control device
JP3760725B2 (en) * 2000-05-16 2006-03-29 日産自動車株式会社 Compression self-ignition gasoline engine
JP3988383B2 (en) * 2000-12-19 2007-10-10 日産自動車株式会社 Self-igniting engine and its control device
JP3951616B2 (en) * 2001-02-16 2007-08-01 日産自動車株式会社 Control device for internal combustion engine
JP3927395B2 (en) * 2001-09-28 2007-06-06 株式会社日立製作所 Control device for compression ignition engine
JP2004100557A (en) * 2002-09-09 2004-04-02 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP4109588B2 (en) * 2003-08-25 2008-07-02 ヤンマー株式会社 Premixed compression self-ignition gas engine
JP4258396B2 (en) * 2004-02-10 2009-04-30 トヨタ自動車株式会社 Premixed compression ignition internal combustion engine
JP4977993B2 (en) * 2005-10-19 2012-07-18 いすゞ自動車株式会社 Diesel engine exhaust purification system
JP4737045B2 (en) * 2006-11-15 2011-07-27 トヨタ自動車株式会社 Multi-fuel internal combustion engine
JP4770742B2 (en) * 2007-01-17 2011-09-14 株式会社デンソー Engine fuel injection control device and combustion device
JP2009275691A (en) * 2008-04-16 2009-11-26 Mitsubishi Heavy Ind Ltd Combustion control method and control device for internal combustion engine
JP2010144677A (en) * 2008-12-22 2010-07-01 Nissan Motor Co Ltd Fuel injection control device and control method of internal combustion engine
JP2010196526A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Combustion control device of compression-ignition internal combustion engine

Also Published As

Publication number Publication date
JP2013133812A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
US9797325B2 (en) Apparatus for controlling an internal combustion engine
JP6183295B2 (en) Control device for internal combustion engine
JP5858971B2 (en) Control device and method for internal combustion engine
JP2017186984A (en) Control device of internal combustion engine
JPWO2014167649A1 (en) Control device for internal combustion engine
JP4468462B2 (en) Internal EGR control device for internal combustion engine
JP2018040264A (en) Control device for internal combustion engine
JP6301597B2 (en) In-cylinder injection engine control device
JP5709738B2 (en) Control device for compression ignition internal combustion engine
JP2009250055A (en) Internal egr control device for internal combustion engine
JP5739799B2 (en) Control device for compression ignition internal combustion engine
JP2005061323A (en) Control device for compression ignition internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
JP4729588B2 (en) Control device for internal combustion engine
JP5756399B2 (en) Control device for compression ignition internal combustion engine
JP5756400B2 (en) Control device for compression ignition internal combustion engine
JP5925099B2 (en) Control device for internal combustion engine
JP5303349B2 (en) EGR control device for internal combustion engine
JP2008050954A (en) Gas fuel internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine
JP2015031241A (en) Combustion state control device of internal combustion engine
JP5658205B2 (en) Start control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R150 Certificate of patent or registration of utility model

Ref document number: 5739799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees