JP2009243295A - Engine intake valve control method and device - Google Patents

Engine intake valve control method and device Download PDF

Info

Publication number
JP2009243295A
JP2009243295A JP2008088292A JP2008088292A JP2009243295A JP 2009243295 A JP2009243295 A JP 2009243295A JP 2008088292 A JP2008088292 A JP 2008088292A JP 2008088292 A JP2008088292 A JP 2008088292A JP 2009243295 A JP2009243295 A JP 2009243295A
Authority
JP
Japan
Prior art keywords
intake valve
intake
valve
mode
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008088292A
Other languages
Japanese (ja)
Other versions
JP5040772B2 (en
Inventor
Hidefumi Fujimoto
英史 藤本
Suketoshi Seto
祐利 瀬戸
Tooru Sotozono
徹 外薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008088292A priority Critical patent/JP5040772B2/en
Publication of JP2009243295A publication Critical patent/JP2009243295A/en
Application granted granted Critical
Publication of JP5040772B2 publication Critical patent/JP5040772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce variation in the torque or air-fuel ratio of an engine in which a negative overlap (NVO) period is provided for intake/exhaust air during HCCI combustion, while suppressing a variation in the filling efficiency during change-over with SI combustion. <P>SOLUTION: During changing over the combustion condition of an engine 1 between a HCCI mode and a SI mode, when an operation timing for an intake valve 11 is changed so that its closing timing passes through a predetermined timing α for maximizing filling efficiency with the inertia of an intake air flow, a temporary increase of the filling efficiency is suppressed by adjusting a lift amount or a valve opening timing. This sufficiently reduces a variation in the torque or air-fuel ratio during a change-over transitional period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンの気筒内の予混合気を圧縮して自己着火により燃焼させるための制御技術に関し、特に、所定の運転域において気筒の排気行程ないし吸気行程で吸排気弁の双方を閉じる負のオーバーラップ期間を設けるようにしたものに係る。   The present invention relates to a control technique for compressing a premixed gas in a cylinder of an engine and burning it by self-ignition, and in particular, a negative pressure that closes both intake and exhaust valves in an exhaust stroke or an intake stroke of a cylinder in a predetermined operating range. It relates to what provided the overlap period.

近年、エンジンのさらなる燃費改善や排気の清浄化を図るために、気筒内の予混合気を圧縮して自己着火により燃焼させるという燃焼形態が提案されており、一般的には予混合圧縮着火燃焼(Premixed Charge Compression Ignition:PCCI、Homogeneous Charge Compression Ignition:HCCI、以下まとめてHCCI燃焼という)と呼ばれている。このような自己着火による燃焼では、従来一般的な火花点火による燃焼(Spark Ignition:以下SI燃焼という)とは異なり、気筒内の多数の箇所で予混合気が一斉に自己着火して燃焼を始めることから、熱効率が極めて高くなる。   In recent years, in order to further improve the fuel consumption of the engine and to clean the exhaust, a combustion mode in which the premixed gas in the cylinder is compressed and burned by self-ignition has been proposed, and generally the premixed compression ignition combustion (Premixed Charge Compression Ignition: PCCI, Homogeneous Charge Compression Ignition: HCCI, hereinafter collectively referred to as HCCI combustion). In such combustion by self-ignition, unlike the conventional spark ignition combustion (hereinafter referred to as SI combustion), the premixed gas is self-ignited at a large number of locations in the cylinder and starts combustion. As a result, the thermal efficiency is extremely high.

また、従来のSI燃焼を実現できない非常にリーンな予混合気や多量のEGRによって希釈した予混合気であっても、ピストンにより圧縮された気筒内の温度が所定以上に高くなれば自己着火するようになり、燃焼期間そのものは短いものの激しい燃焼にはならないことから、窒素酸化物の生成も格段に少なくなる。   In addition, even if the lean lean premixed gas that cannot achieve conventional SI combustion or the premixed gas diluted by a large amount of EGR is used, self-ignition occurs if the temperature in the cylinder compressed by the piston becomes higher than a predetermined level. Thus, although the combustion period itself is short, it does not become intense combustion, so that the generation of nitrogen oxides is remarkably reduced.

但し、低負荷側の運転領域では圧縮上死点(TDC)近傍においても予混合気の温度が自己着火温度に至らない可能性があるので、従来より、気筒の排気行程から吸気行程にかけて吸気弁及び排気弁の双方を閉じる負のオーバーラップ(Negative Valve Ovealap:NVO)期間を設けて、高温の既燃ガスを残留させることにより(以下、内部EGRともいう)気筒内の温度を高めることが行われている。   However, since there is a possibility that the temperature of the premixed gas does not reach the self-ignition temperature even in the vicinity of the compression top dead center (TDC) in the operation region on the low load side, the intake valve has been conventionally operated from the exhaust stroke of the cylinder to the intake stroke. In addition, a negative overlap (NVO) period that closes both the exhaust valve and the exhaust valve is provided to increase the temperature in the cylinder by allowing high-temperature burned gas to remain (hereinafter also referred to as internal EGR). It has been broken.

一方で高負荷側の運転領域では安定なHCCI燃焼を実現できず、SI燃焼を行うことになるが、このときにはHCCI燃焼のように多量の内部EGRガスがあってはならないから、二つの運転状態を切り替えるときには吸排気弁のオーバーラップ状態を変更して、内部EGRガス量を大幅に変化させなくてはならず、その際に急なトルク変動(トルク段差)の発生する虞れがあった。   On the other hand, in the operating region on the high load side, stable HCCI combustion cannot be realized and SI combustion is performed. However, at this time, there must be a large amount of internal EGR gas as in HCCI combustion. When switching between, the overlap state of the intake / exhaust valve must be changed to greatly change the internal EGR gas amount, which may cause a sudden torque fluctuation (torque step).

この点について特許文献1に記載のエンジンでは、例えばSI燃焼からHCCI燃焼に切り替えるときに、まず空燃比のリーンな均一混合気のSI燃焼とし、その後は点火プラグ周りに混合気を成層化させてSI燃焼させるようにしている。すなわち、SI燃焼からHCCI燃焼への移行前に予め吸気量を増加させて、できる限り空燃比をリーンにすることにより、トルク段差を抑えるものである。
特開2007−16685号公報
With regard to this point, in the engine described in Patent Document 1, for example, when switching from SI combustion to HCCI combustion, first, SI combustion of a lean air-fuel mixture with a lean air-fuel ratio is performed, and then the air-fuel mixture is stratified around the spark plug. SI is burned. That is, the torque step is suppressed by increasing the intake air amount in advance before the transition from SI combustion to HCCI combustion and making the air-fuel ratio as lean as possible.
Japanese Patent Laid-Open No. 2007-16665

ところで、一般的にエンジンの吸気弁は、排気弁とのオーバーラップを考慮して気筒の上死点(TDC)前の適切な時期に開くとともに、吸気流の慣性による充填効率を考慮して下死点(BDC)後に閉じるように設定されるが、そのリフト量や作動時期を変更する可変機構を設けたものでは、SI燃焼を行う運転領域の比較的低負荷側において吸気弁を、吸気流の慣性によって充填効率の最も高くなる所定時期よりも早めに(進角側で)閉じることが多い。   By the way, in general, an intake valve of an engine is opened at an appropriate time before the top dead center (TDC) of a cylinder in consideration of an overlap with an exhaust valve, and is charged in consideration of charging efficiency due to the inertia of the intake flow. Although it is set to close after the dead center (BDC), in the case of providing a variable mechanism for changing the lift amount and the operation timing, the intake valve is connected to the intake valve on the relatively low load side of the operation region where SI combustion is performed. In many cases, it closes earlier (on the advance side) than a predetermined time when the charging efficiency is the highest due to the inertia of.

一方で、HCCI燃焼の際には、NVO期間を設けるために吸気弁の作動時期が全体として大きく遅角側に変更され、しかも、リフト量ないし開弁期間が大きくなることから、その閉時期は前記の所定時期よりも遅角側になることが多い。このため、HCCI燃焼とSI燃焼との切り替えの際には、進角側又は遅角側のいずれかに変化する吸気弁の閉時期が前記の所定時期を通過することになり、このときに一時的に充填効率が高くなって、エンジントルクや空燃比の変動を生じる虞れがある。   On the other hand, during HCCI combustion, the operation timing of the intake valve is largely changed to the retard side as a whole in order to provide an NVO period, and the lift amount or the valve opening period increases, so the closing timing is In many cases, the angle is behind the predetermined time. For this reason, when switching between HCCI combustion and SI combustion, the closing timing of the intake valve, which changes to either the advance side or the retard side, passes the predetermined time, and at this time In particular, the charging efficiency may be increased, and the engine torque and the air-fuel ratio may be changed.

斯かる点に鑑みて本発明の目的は、HCCI燃焼(自己着火モード)とSI燃焼(火花点火モード)との切り替えの際に、進角側又は遅角側に変更される吸気弁の閉時期が前記の所定時期を通過するときの一時的な充填効率の上昇を抑えて、トルクや空燃比の変動を緩和することにある。   In view of such points, an object of the present invention is to close the intake valve closing timing that is changed to the advance side or the retard side when switching between HCCI combustion (self-ignition mode) and SI combustion (spark ignition mode). Is to suppress a temporary increase in charging efficiency when passing through the predetermined time and to mitigate fluctuations in torque and air-fuel ratio.

前記の目的を達成するために本発明では、エンジンの燃焼モード切替の際に吸気弁の閉時期が所定の吸気弁閉時期を通過するとき、そのリフト量ないし開弁期間の調整によって一時的な充填効率の上昇を抑えるようにしたものである。   In order to achieve the above object, according to the present invention, when the intake valve closing timing passes a predetermined intake valve closing timing when the combustion mode of the engine is switched, the lift amount or the valve opening period is temporarily adjusted. An increase in filling efficiency is suppressed.

具体的に請求項1の発明は、吸気弁及び排気弁の作動時期及びリフト量ないし開弁期間を変更可能な可変機構を備え、気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて既燃ガスを残留させて、圧縮行程の後期以降で予混合気を自己着火させる自己着火モードと、前記気筒内の混合気に点火する火花点火モードと、のいずれかに切り替えるようにしたエンジンの吸気弁制御方法を対象とする。   Specifically, the invention of claim 1 is provided with a variable mechanism capable of changing the operation timing and lift amount or valve opening period of the intake valve and the exhaust valve, and both the intake valve and the exhaust valve in the exhaust stroke or the intake stroke of the cylinder. A self-ignition mode in which a closed negative overlap period is provided to allow the burned gas to remain and the pre-mixture is self-ignited after the later stage of the compression stroke; and a spark ignition mode in which the mixture in the cylinder is ignited. The target is an intake valve control method for an engine that is switched to either one.

そして、前記自己着火モードと火花点火モードとのモード切替の際に、前記可変機構により吸気弁の閉時期を進角側又は遅角側のいずれか一方に変更しながら、そのリフト量ないし開弁期間を吸気の充填効率が低くなるように変化させる第1の工程と、前記可変機構により吸気弁の閉時期を前記一方に変更しながら、そのリフト量ないし開弁期間を充填効率が高くなるように変化させる第2の工程と、を有するものとする。   Then, when the mode is switched between the self-ignition mode and the spark ignition mode, the lift mechanism or the valve opening amount is changed while the closing timing of the intake valve is changed to either the advance side or the retard side by the variable mechanism. The first step of changing the period so that the charging efficiency of the intake air becomes low, and the closing mechanism of the intake valve is changed to the one by the variable mechanism so that the charging efficiency is increased in the lift amount or the valve opening period. And a second step of changing to

前記の方法により、まず、エンジンが自己着火モードにあれば、気筒の排気行程ないし吸気行程において所定期間(NVO期間)、吸気弁及び排気弁の双方が閉じられて、気筒内に多量の既燃ガス(内部EGRガス)が残留するようになり、これにより気筒の温度状態が高められて安定したHCCI燃焼が実現可能になる。一方で、エンジンが火花点火モードにあれば、吸排気弁が所定のオーバーラップを有するように制御される。   According to the above method, first, if the engine is in the self-ignition mode, both the intake valve and the exhaust valve are closed during a predetermined period (NVO period) in the exhaust stroke or the intake stroke of the cylinder, and a large amount of burned fuel is generated in the cylinder. Gas (internal EGR gas) remains, thereby increasing the temperature state of the cylinder and realizing stable HCCI combustion. On the other hand, if the engine is in the spark ignition mode, the intake and exhaust valves are controlled to have a predetermined overlap.

そして、前記二つの燃焼モードの切り替えの際、例えば自己着火モードから火花点火モードへ切り替わるときには、可変機構により吸気弁の作動時期が進角側に変更されて、その閉時期が上述の所定時期(吸気流の慣性によって充填効率の最も高くなる時期)を通過することになるが、この時期に吸気弁の閉時期が近づくときには、そのリフト量ないし開弁期間を充填効率が低くなるように変化させる(第1の工程)一方、その時期から離れるときにはリフト量ないし開弁期間を充填効率が高くなるように変化させることで(第2の工程)、一時的な充填効率の上昇を抑えることができる。   When the two combustion modes are switched, for example, when switching from the self-ignition mode to the spark ignition mode, the operation timing of the intake valve is changed to the advance side by the variable mechanism, and the closing timing is changed to the above-mentioned predetermined timing ( When the intake valve closes at this time, the lift amount or the valve opening period is changed so that the charging efficiency becomes low. (First step) On the other hand, when the time is away from the timing, the lift amount or the valve opening period is changed so as to increase the charging efficiency (second step), thereby suppressing a temporary increase in the charging efficiency. .

好ましいのは、前記第1の工程では、吸気流の慣性によって充填効率が最も高くなる所定の吸気弁閉時期になるまで、その閉時期に近づくほどリフト量ないし開弁期間を減少させるようにし、前記第2の工程では、前記所定吸気弁閉時期を通過してそこから離れるほど、リフト量ないし開弁期間を増大させることである(請求項2)。こうすれば、燃焼モード切替の際に吸気弁の閉時期が前記所定時期を通過するときにも、充填効率を概ね一定の割合で変化させることができ、トルクや空燃比の変動を解消することもできる。   Preferably, in the first step, the lift amount or the valve opening period is decreased as the closing timing is approached until a predetermined intake valve closing timing at which the charging efficiency becomes the highest due to the inertia of the intake air flow, In the second step, the lift amount or the valve opening period is increased as the predetermined intake valve closing timing passes and leaves. In this way, even when the intake valve closing timing passes the predetermined timing when switching the combustion mode, the charging efficiency can be changed at a substantially constant rate, and fluctuations in torque and air-fuel ratio can be eliminated. You can also.

特に自己着火モードから火花点火モードへの切り替えの場合は、前記第1の工程において前記可変機構により吸気弁の閉時期を進角させる一方、その開時期は変化させずに開弁期間を減少させるのがよい(請求項3)。自己着火モードから火花点火モードへの切り替えの場合は吸気弁の作動時期を全体として進角側に変更することになるので、その開時期、閉時期のいずれについても反対の遅角側への変化を生じさせないのが好ましいからである。   In particular, in the case of switching from the self-ignition mode to the spark ignition mode, the closing timing of the intake valve is advanced by the variable mechanism in the first step, while the opening timing is decreased without changing the opening timing. (Claim 3). In the case of switching from the self-ignition mode to the spark ignition mode, the operation timing of the intake valve is changed to the advance side as a whole, so the change to the opposite retard side for both the open timing and the close timing It is because it is preferable not to generate.

別な観点から本発明は、吸気弁及び排気弁のリフト量ないし開弁期間及びその時期を変更可能な可変機構を備え、気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて既燃ガスを残留させて、圧縮行程の後期以降で予混合気を自己着火させる自己着火モードと、前記気筒内の混合気に点火する火花点火モードと、のいずれかに切り替えるようにしたエンジンの吸気弁制御装置であって、前記自己着火モードと火花点火モードとのモード切替の際に、前記可変機構により吸気弁の作動時期を変更し、吸気流の慣性によって充填効率が最も高くなる所定の時期を通過するように、当該吸気弁の閉時期を進角側又は遅角側のいずれか一方に変化させる作動時期制御手段と、前記モード切替の際に吸気弁の閉時期が前記所定時期に近づくとき、それに連れてリフト量ないし開弁期間を減少させる一方、該所定時期を通過してそこから離れるときには、それに連れてリフト量ないし開弁期間を増大させるリフト制御手段と、を備えるものである(請求項4の発明)。   From another point of view, the present invention is provided with a variable mechanism that can change the lift amount or valve opening period and timing of the intake valve and the exhaust valve, and is a negative mechanism that closes both the intake valve and the exhaust valve in the exhaust stroke or intake stroke of the cylinder. Any one of a self-ignition mode in which the burned gas is left by providing an overlap period and self-ignition of the premixture in the later stage of the compression stroke and a spark ignition mode in which the mixture in the cylinder is ignited The intake valve control device for an engine is configured to switch to a self-ignition mode and a spark ignition mode, and when the mode is switched between the self-ignition mode and the spark ignition mode, the operation timing of the intake valve is changed by the variable mechanism, and charging is performed according to the inertia of the intake flow An operation timing control means for changing the closing timing of the intake valve to either the advance side or the retard side so as to pass a predetermined timing when the efficiency becomes the highest, and at the time of the mode switching When the closing timing of the air valve approaches the predetermined time, the lift amount or the valve opening period is decreased accordingly, while when the valve passes through the predetermined time and leaves the predetermined time, the lift amount or the valve opening period is increased accordingly. And a lift control means to be provided (invention of claim 4).

斯かる制御装置によれば、上述した請求項1、2の発明に係る吸気弁の制御方法が容易に実行可能であり、その発明の作用が容易且つ確実に得られる。そして、前記リフト制御手段を、自己着火モードから火花点火モードへのモード切替の際、吸気弁の閉時期が進角して所定時期に近づくときに、その開時期が変化しないように開弁期間を減少させるものとすれば(請求項5)、上述した請求項3に係る発明の作用が得られる。   According to such a control apparatus, the intake valve control method according to the first and second aspects of the invention can be easily executed, and the operation of the invention can be obtained easily and reliably. When the lift control means switches the mode from the self-ignition mode to the spark ignition mode, the valve opening period is set so that the opening timing does not change when the closing timing of the intake valve advances and approaches a predetermined timing. (5), the operation of the invention according to claim 3 described above can be obtained.

尚、上述した発明に係る吸気弁制御方法等は、前記可変機構が吸気弁のリフト量及び開弁期間の双方を関連づけて変更するものであって、構造上の制約により吸気弁の閉時期を自由に変更できない場合に特に有効である(請求項6)。   In the intake valve control method and the like according to the above-described invention, the variable mechanism changes both the lift amount and the valve opening period of the intake valve in association with each other. This is particularly effective when it cannot be freely changed (claim 6).

以上、説明したように本発明に係る吸気弁制御方法等によると、エンジンの燃焼状態を自己着火モードと火花点火モードとの間で切り替える際に、吸気弁の作動時期の変更に伴いその閉時期が、吸気流の慣性によって充填効率の最も高くなる所定時期を通過するとき、これに対応づけてリフト量等を調整することで、一時的な充填効率の上昇を抑えるようにしたから、モード切替の過渡時におけるトルクや空燃比の変動を十分に緩和することができる。   As described above, according to the intake valve control method and the like according to the present invention, when the combustion state of the engine is switched between the self-ignition mode and the spark ignition mode, the closing timing is changed along with the change of the operation timing of the intake valve. However, when passing the predetermined time when the charging efficiency becomes the highest due to the inertia of the intake air flow, by adjusting the lift amount etc. corresponding to this, the temporary increase in the charging efficiency is suppressed, so the mode switching The fluctuations in torque and air-fuel ratio during the transition can be sufficiently mitigated.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

(全体構成)
図1は本発明に係るエンジン制御装置Aの全体構成を示し、符号1は、車両に搭載された多気筒ガソリンエンジンである。このエンジン1の本体は、複数の気筒2,2,…(1つのみ図示する)が設けられたシリンダブロック3上にシリンダヘッド4が配置されてなり、各気筒2内にはピストン5が嵌挿されて、その頂面とシリンダヘッド4の下面との間に燃焼室6が形成されている。ピストン5はコネクティングロッドによってクランク軸7に連結されており、クランク軸7の一端側にはその回転角(クランク角)を検出するためのクランク角センサ8が配設されている。
(overall structure)
FIG. 1 shows an overall configuration of an engine control apparatus A according to the present invention, and reference numeral 1 denotes a multi-cylinder gasoline engine mounted on a vehicle. The main body of the engine 1 has a cylinder head 4 disposed on a cylinder block 3 provided with a plurality of cylinders 2, 2,... (Only one is shown), and a piston 5 is fitted in each cylinder 2. A combustion chamber 6 is formed between the top surface of the cylinder head 4 and the lower surface of the cylinder head 4. The piston 5 is connected to the crankshaft 7 by a connecting rod, and a crank angle sensor 8 for detecting the rotation angle (crank angle) is disposed on one end side of the crankshaft 7.

前記シリンダヘッド4には、各気筒2毎に燃焼室6の天井部に開口するように吸気ポート9及び排気ポート10が形成されている。吸気ポート9は燃焼室6の天井部から斜め上方に向かって延びて、シリンダヘッド4の一側面に開口しており、排気ポート10は反対側の他側面に開口している。吸気ポート9及び排気ポート10は、それぞれ吸気弁11及び排気弁12によって開閉されるようになっており、これら吸排気弁11,12は、シリンダヘッド4に配設された動弁機構13のカム軸(図示せず)によりクランク軸7の回転に同期して駆動されるようになっている。   An intake port 9 and an exhaust port 10 are formed in the cylinder head 4 so as to open to the ceiling portion of the combustion chamber 6 for each cylinder 2. The intake port 9 extends obliquely upward from the ceiling of the combustion chamber 6 and opens on one side of the cylinder head 4, and the exhaust port 10 opens on the other side opposite to the cylinder head 4. The intake port 9 and the exhaust port 10 are opened and closed by an intake valve 11 and an exhaust valve 12, respectively. These intake and exhaust valves 11 and 12 are cams of a valve mechanism 13 disposed in the cylinder head 4. The shaft (not shown) is driven in synchronism with the rotation of the crankshaft 7.

前記動弁機構13には、吸気側及び排気側にそれぞれ、弁リフト量を連続的に変更可能な公知のリフト可変機構14(以下、VVLと略称する)と、弁リフトのクランク回転に対する位相角を連続的に変更可能な公知の位相可変機構15(以下、VVTと略称する)と、が組み込まれており、それらの作動によって吸排気弁11,12のリフト特性を変更し、気筒2への吸気の充填量や残留既燃ガス(内部EGRガス)の量を調整することができる。尚、VVL14、VVT15の構成について詳しい説明は省略する。   The valve mechanism 13 includes a known variable lift mechanism 14 (hereinafter abbreviated as VVL) capable of continuously changing the valve lift amount on the intake side and the exhaust side, and a phase angle of the valve lift with respect to crank rotation. And a known phase variable mechanism 15 (hereinafter abbreviated as VVT) that can be continuously changed are incorporated, and the lift characteristics of the intake and exhaust valves 11 and 12 are changed by their operation to It is possible to adjust the amount of intake air and the amount of residual burnt gas (internal EGR gas). A detailed description of the configurations of the VVL 14 and VVT 15 is omitted.

また、各気筒2の燃焼室6の天井部に電極を臨ませて点火プラグ16が配設され、点火回路17によって所定の点火タイミングにて通電されるようになっている。一方、燃焼室6の吸気側の周縁部に先端を臨ませて気筒2内に燃料を直接、噴射するインジェクタ18(燃料噴射弁)が配設されている。このインジェクタ18により気筒2の吸気行程において燃料が噴射されると、その燃料噴霧は吸気と混ざり合いながら、ピストン5の下降に伴い容積の拡大する気筒2内に広く分散して、概ね均一な予混合気を形成する。   In addition, a spark plug 16 is disposed with an electrode facing the ceiling of the combustion chamber 6 of each cylinder 2 and is energized by the ignition circuit 17 at a predetermined ignition timing. On the other hand, an injector 18 (fuel injection valve) that directly injects fuel into the cylinder 2 with the tip facing the peripheral edge of the intake side of the combustion chamber 6 is disposed. When fuel is injected by the injector 18 in the intake stroke of the cylinder 2, the fuel spray is mixed with the intake air and is widely dispersed in the cylinder 2 whose volume is increased as the piston 5 is lowered. A mixture is formed.

図においてエンジン1の右側に位置するシリンダヘッド4の一側には吸気系が配設され、各気筒2の吸気ポート9には吸気通路20が連通している。この吸気通路20は、エンジン1の各気筒2の燃焼室6に対して図外のエアクリーナにより濾過した空気を供給するためのものであり、サージタンク21の上流の共通通路には電気式のスロットル弁22が配設されている。サージタンク21の下流で吸気通路20は各気筒2毎に分岐して、それぞれ吸気ポート9に連通している。   In the figure, an intake system is disposed on one side of the cylinder head 4 located on the right side of the engine 1, and an intake passage 20 communicates with the intake port 9 of each cylinder 2. The intake passage 20 is for supplying air filtered by an air cleaner (not shown) to the combustion chamber 6 of each cylinder 2 of the engine 1, and an electric throttle is provided in the common passage upstream of the surge tank 21. A valve 22 is provided. The intake passage 20 is branched for each cylinder 2 downstream of the surge tank 21 and communicates with the intake port 9.

一方、シリンダヘッド4の他側には排気系が配設され、各気筒2の排気ポート10にはそれぞれ、各気筒2毎に分岐した排気通路25(排気マニホルド)が接続されている。この排気マニホルドの集合部には排気中の酸素濃度を検出するセンサ26が配設されている。また、排気マニホルドよりも下流側には、排気中の有害成分を浄化するための触媒27が配設されている。   On the other hand, an exhaust system is disposed on the other side of the cylinder head 4, and an exhaust passage 25 (exhaust manifold) branched for each cylinder 2 is connected to the exhaust port 10 of each cylinder 2. A sensor 26 for detecting the oxygen concentration in the exhaust gas is disposed at the collection portion of the exhaust manifold. Further, a catalyst 27 for purifying harmful components in the exhaust is disposed downstream of the exhaust manifold.

上述の如く構成されたエンジン1の運転制御を行うために、パワートレインコントロールモジュール30(以下、PCMという)が設けられている。これは、周知の如くCPU、メモリ、I/Oインターフェース回路等を備えており、図2にも示すように、クランク角センサ8等からの信号を入力するとともに、吸気通路20における空気の流量を計測するエアフローセンサ31からの信号と、図示しないアクセルペダルの操作量(アクセル開度)を検出するアクセル開度センサ32からの信号と、車両の走行速度を検出する車速センサ33からの信号と、を少なくとも受け入れる。   In order to control the operation of the engine 1 configured as described above, a powertrain control module 30 (hereinafter referred to as PCM) is provided. As is well known, this includes a CPU, a memory, an I / O interface circuit, and the like. As shown in FIG. 2, a signal from the crank angle sensor 8 or the like is input, and the flow rate of air in the intake passage 20 is controlled. A signal from the airflow sensor 31 to be measured, a signal from an accelerator opening sensor 32 that detects an operation amount (accelerator opening) of an accelerator pedal (not shown), a signal from a vehicle speed sensor 33 that detects the traveling speed of the vehicle, Accept at least.

そして、PCM30は、前記各種センサからの信号等に基づいて、エンジン1の運転状態(例えば負荷状態及びエンジン回転数)を判定し、これに応じてVVL14、VVT15、点火回路17、インジェクタ18等を少なくとも制御する。すなわち、PCM30は、主にVVL14の作動によって吸排気弁11,12のリフト量及び作用角を調整するとともに、主にVVT15の作動によって吸排気弁11,12のそれぞれの開閉作動タイミングを調整して、気筒2への吸気の充填量や内部EGRガス量を制御するようになっている。   Then, the PCM 30 determines the operating state of the engine 1 (for example, the load state and the engine speed) based on signals from the various sensors, and in accordance with this, the VVL 14, VVT 15, ignition circuit 17, injector 18, etc. At least control. That is, the PCM 30 adjusts the lift amount and working angle of the intake and exhaust valves 11 and 12 mainly by the operation of the VVL 14 and adjusts the opening / closing operation timing of the intake and exhaust valves 11 and 12 mainly by the operation of the VVT 15. The amount of intake air charged into the cylinder 2 and the amount of internal EGR gas are controlled.

より具体的には、図3に吸気弁11について一例を示すように、この実施形態のVVL14は、リフト量の増大とともにその作用角、即ち吸気弁11の開時期から閉時期までのクランク角期間(以下、開弁期間という。尚、緩衝区間は含まない)も増大するようになっている。図の例では吸気弁11のリフト量ないし開弁期間の小さなときほど、この開弁期間全体が進角し、リフト量等の増大とともに遅角する。この結果、リフト量等の変化によらず吸気弁11の開時期は概ね一定になり、その閉時期のみが進角側又は遅角側に変化するようになる。   More specifically, as shown in FIG. 3 for an example of the intake valve 11, the VVL 14 of this embodiment is configured to increase the lift amount, that is, the operating angle, that is, the crank angle period from the opening timing to the closing timing of the intake valve 11. (Hereinafter referred to as a valve opening period, not including the buffer section) is also increased. In the example shown in the figure, the smaller the lift amount or the valve opening period of the intake valve 11 is, the more the valve opening period is advanced, and the angle is retarded as the lift amount increases. As a result, the opening timing of the intake valve 11 becomes substantially constant regardless of changes in the lift amount and the like, and only the closing timing changes to the advance side or the retard side.

言い換えると、この実施形態のVVL14によれば吸気弁11は、リフト量の小さなときには燃費改善に有利な所謂早閉じの特性になり、リフト量の増大に連れて開弁期間も増大して、その閉時期が遅角するようになる。このような閉時期の変化は、吸気流の慣性によって充填効率を高め、エンジン出力を確保する上で好ましい。また、そうしてVVL14の制御によって気筒2への吸気の充填量を広範囲に変更することができるので、この実施形態のエンジン1ではスロットル弁22によらず出力を制御するようにしている。   In other words, according to the VVL 14 of this embodiment, when the lift amount is small, the intake valve 11 has a so-called early closing characteristic that is advantageous for improving fuel efficiency, and the valve opening period increases as the lift amount increases. The closing time is delayed. Such a change in the closing timing is preferable for increasing the charging efficiency by the inertia of the intake air flow and ensuring the engine output. In addition, the amount of intake air charged into the cylinder 2 can be changed over a wide range by controlling the VVL 14 in this way, so the engine 1 of this embodiment controls the output regardless of the throttle valve 22.

そのようなVVL14の構造的な特性に加えてPCM30は、VVT15の作動により吸気弁11の作動時期をより広範囲に変更する。すなわち、以下に詳しく述べるように、HCCI燃焼とするときには吸気弁11の作動時期を大幅に遅角させるとともに、同様に排気弁12の作動時期を進角させて、気筒2の排気行程から吸気行程にかけて吸排気弁11,12の双方が閉じる負のオーバーラップ(Negative Valve Ovealap:NVO)期間を設け(図5(a)参照)、これにより多量の既燃ガス(内部EGRガス)を気筒2内に残留させるようにしている。   In addition to the structural characteristics of the VVL 14, the PCM 30 changes the operation timing of the intake valve 11 in a wider range by the operation of the VVT 15. That is, as will be described in detail below, when HCCI combustion is performed, the operation timing of the intake valve 11 is significantly retarded, and similarly, the operation timing of the exhaust valve 12 is advanced, and the exhaust stroke of the cylinder 2 is changed to the intake stroke. (Negative Valve Ovealap: NVO) period in which both intake and exhaust valves 11 and 12 are closed (refer to FIG. 5 (a)), so that a large amount of burned gas (internal EGR gas) is stored in the cylinder 2. It is made to remain in.

さらに、PCM30は、インジェクタ18を所定のタイミングで作動させることにより、気筒2内の空燃比や混合気の形成状態を切替えるとともに、点火プラグ16による点火の状態も変更し、前記のような内部EGRガス量の大幅な変更と併せて、エンジン1の燃焼状態を以下に述べるHCCI燃焼(自己着火モード)とSI燃焼(火花点火モード)とのいずれかに切替えるようになっている。   Further, the PCM 30 operates the injector 18 at a predetermined timing to switch the air-fuel ratio in the cylinder 2 and the state of air-fuel mixture formation, and also changes the state of ignition by the spark plug 16 so as to change the internal EGR as described above. Along with a significant change in the gas amount, the combustion state of the engine 1 is switched to either HCCI combustion (self-ignition mode) or SI combustion (spark ignition mode) described below.

(エンジン制御の概要)
具体的には図4に制御マップの一例を示すように、相対的に低負荷且つ低回転側の運転領域(H)においては、気筒2内に形成した予混合気に基本的には点火をすることなく、ピストン5の上昇により圧縮して自己着火させるようにする。この際、図5(a)に示すように、気筒2の排気行程から吸気行程にかけてNVO期間を設け、多量の内部EGRガスによって気筒2内の温度を高めるとともに、この気筒2の主に吸気行程においてインジェクタ18により燃料を噴射させ、吸気や内部EGRガスと十分に混合させて、概ね均一な予混合気を形成した上で燃焼させる。尚、自己着火のタイミングをより精密に制御するために補助的な点火を行うこともある。
(Outline of engine control)
Specifically, as shown in an example of the control map in FIG. 4, in the operation region (H) on the relatively low load and low rotation side, ignition is basically performed on the premixed gas formed in the cylinder 2. Instead, the piston 5 is compressed and self-ignited by raising the piston 5. At this time, as shown in FIG. 5 (a), an NVO period is provided from the exhaust stroke to the intake stroke of the cylinder 2, the temperature in the cylinder 2 is increased by a large amount of internal EGR gas, and the intake stroke of the cylinder 2 is mainly used. Then, the fuel is injected by the injector 18 and sufficiently mixed with intake air and internal EGR gas to form a substantially uniform premixed gas and burned. In addition, in order to control the self-ignition timing more precisely, auxiliary ignition may be performed.

そのような予混合気の圧縮による自己着火については従来より知られており、一般的に予混合圧縮着火燃焼(HCCI燃焼)と呼ばれている。気筒2内の燃焼室6に形成された予混合気が圧縮されると、その燃焼室6における多数の箇所で略同時に自己着火温度に到達し、予混合気が概ね一斉に自己着火して燃焼を開始すると考えられており、より一般的な火炎伝播による燃焼(SI燃焼)に比べて燃焼期間が短くなり、熱効率が高くなる。   Such self-ignition due to compression of the premixed gas is conventionally known and is generally called premixed compression ignition combustion (HCCI combustion). When the premixed gas formed in the combustion chamber 6 in the cylinder 2 is compressed, the self-ignition temperature is reached almost simultaneously at a number of locations in the combustion chamber 6, and the premixed gas is self-ignited almost simultaneously and burns. The combustion period is shortened and the thermal efficiency is increased as compared with the more general flame propagation combustion (SI combustion).

また、そうして予混合気が自己着火するHCCI燃焼は、SI燃焼の実現が困難な非常にリーンな予混合気や多量の内部EGRガスによって希釈した予混合気であっても実現可能であり、前記のように燃焼期間は短くても燃焼温度は低いことから、窒素酸化物の生成は非常に少なくなる。逆に言えば、あまりリーンでない予混合気や希釈度合いの低い予混合気では自己着火のタイミングが早くなり過ぎて、所謂ノッキングを起こしてしまう。   In addition, HCCI combustion in which the premixed gas self-ignites can be realized even with a very lean premixed gas that is difficult to realize SI combustion or a premixed gas diluted with a large amount of internal EGR gas. As described above, since the combustion temperature is low even if the combustion period is short, the production of nitrogen oxides is very small. In other words, a pre-mixed gas that is not so lean or a pre-mixed gas with a low degree of dilution causes the timing of self-ignition to be too early and causes so-called knocking.

つまり、HCCI燃焼は非常にリーンな予混合気か、或いは多量のEGRによって希釈した予混合気によって実現されるものであり、あまり高い出力は得られないので、前記の制御マップ(図4)に示すように、相対的に高負荷側ないし高回転側の運転領域(S)においては従来までと同じくSI燃焼が行われる(以下、運転領域(H)をHCCI領域と呼び、運転領域(S)をSI領域と呼ぶ)。   In other words, HCCI combustion is realized by a very lean premixed gas or a premixed gas diluted by a large amount of EGR, and a very high output cannot be obtained, so the above control map (FIG. 4) is used. As shown, SI combustion is performed in the operation region (S) on the relatively high load side or high rotation side as before (hereinafter, the operation region (H) is referred to as the HCCI region, and the operation region (S)). Is called the SI region).

尚、図示の制御マップによれば、アイドルを含む極く低負荷の領域ではHCCI燃焼を行わないようにしているが、この限りではない。また、図の例ではHCCI領域(H)とその高負荷側に隣接するSI領域(S)との間が、低回転側ほど高負荷になるように傾斜した境界によって区分されている。図示しないが、この境界には制御のハンチングを防止するためにヒステリシスが設定されている。   According to the illustrated control map, HCCI combustion is not performed in an extremely low load region including idle, but this is not restrictive. Further, in the example of the figure, the HCCI region (H) and the SI region (S) adjacent to the high load side are divided by a boundary inclined so that the load becomes higher as the rotation speed is lower. Although not shown, hysteresis is set at this boundary to prevent control hunting.

−モード切替−
ところで、一般的にSI燃焼の際は吸気弁11を上死点(TDC)前に開くとともに、エンジン1の負荷や回転数の上昇に応じて、前記図3のようにリフト量や開弁期間を増大させることから、HCCI領域(H)との境界に近いSI領域(S)の低負荷側では、図5(d)に示すように、吸気弁11のリフト量及び開弁期間はあまり大きくなくて、それは吸気の下死点(BDC)よりも早く(進角側で)閉じるようになる。
−Mode switching−
By the way, in general, during SI combustion, the intake valve 11 is opened before the top dead center (TDC), and the lift amount and the valve opening period as shown in FIG. Therefore, on the low load side of the SI region (S) close to the boundary with the HCCI region (H), the lift amount and the valve opening period of the intake valve 11 are too large as shown in FIG. Without it, it closes earlier (in advance) than the bottom dead center (BDC) of inspiration.

一方で、前記したようにHCCI領域(H)では、図5(a)のように吸気弁11の作動時期(In)を遅角させるとともに、排気弁12の作動時期(Ex)は進角させて、NVO期間を設けるようにしており、SI領域(S)との境界に近い高負荷側ではリフト量や開弁期間も比較的大きくなるから、吸気弁11の閉時期はBDCよりも遅角側になるばかりか、吸気流の慣性によって充填効率が最も高くなる所定の閉時期αよりもさらに遅角側になることが多い。   On the other hand, as described above, in the HCCI region (H), the operation timing (In) of the intake valve 11 is retarded and the operation timing (Ex) of the exhaust valve 12 is advanced as shown in FIG. Thus, the NVO period is provided, and the lift amount and the valve opening period are relatively large on the high load side close to the boundary with the SI region (S). Therefore, the closing timing of the intake valve 11 is retarded relative to the BDC. In many cases, it is more retarded than a predetermined closing time α at which the charging efficiency is highest due to the inertia of the intake air flow.

この所定の閉時期αについて詳しくは、従来より周知のようにエンジンの気筒の吸気行程では、ピストンの下降によって吸入される吸気の流れがその慣性によってBDC後まで継続するので、ピストンが上昇に転じた後も吸気弁は開いておき、吸気流が消失して吹き返しが起きる直前の所定時期αに閉じるようにすれば、充填効率が最も高くなるのである。この閉時期αは吸気流の慣性の大きさによって変化するので、流量が多く流速の高い高負荷側及び高回転側ほど遅角側になる。   For details on the predetermined closing timing α, as is well known in the art, in the intake stroke of the cylinder of the engine, the flow of the intake air that is drawn in by the lowering of the piston continues until after BDC due to its inertia, so the piston starts to rise. After that, if the intake valve is kept open and closed at a predetermined time α immediately before the intake flow disappears and the blowback occurs, the charging efficiency becomes the highest. Since the closing timing α varies depending on the magnitude of the inertia of the intake air flow, the higher the load side and the higher the rotation speed side, the higher the flow rate and the higher the flow velocity, the more retarded side α becomes.

そして、そのような所定時期αよりも遅角側で吸気弁11が閉じるHCCIモードと、その時期αよりも進角側で吸気弁11が閉じるSIモードと、の間でエンジン1の燃焼モードが切り替わるときには、吸気弁11の閉時期が前記所定時期αを通過することになり、このとき一時的に充填効率が高くなってエンジントルクや空燃比の変動を生じる虞れがあった。   The combustion mode of the engine 1 is between the HCCI mode in which the intake valve 11 is closed on the retard side with respect to the predetermined timing α and the SI mode in which the intake valve 11 is closed on the advance side with respect to the timing α. At the time of switching, the closing timing of the intake valve 11 passes the predetermined timing α, and at this time, the charging efficiency is temporarily increased, which may cause fluctuations in engine torque and air-fuel ratio.

すなわち、例えば図5(a)〜(d)のようにHCCIモードからSIモードへ移行する場合には、同図(d)の移行後の状態(同図(b),(c)にも破線で示す)に向かって吸気弁11の作動時期全体が進角するとともに、そのリフト量及び開閉期間はやや減少することになるが、その際、図6(a)の破線のように一律に作動時期を進角させるとともに、同図(b)の破線のように一律にリフト量等を減少させると、吸気弁11の閉時期が前記所定時期αを通過するときにはリフト量等の減少による分を差し引いても、同図(c)の破線のように一時的に充填効率ceが高くなってしまう。   That is, for example, when shifting from the HCCI mode to the SI mode as shown in FIGS. 5A to 5D, the state after the transition shown in FIG. 5D (the broken lines in FIGS. 5B and 5C are also shown). As shown in FIG. 6 (a), the entire operation timing of the intake valve 11 is advanced, and the lift amount and the opening / closing period are slightly reduced. When the timing is advanced and the lift amount or the like is uniformly reduced as shown by the broken line in FIG. 5B, when the intake valve 11 closes the predetermined timing α, the amount of decrease in the lift amount is reduced. Even if it is subtracted, the filling efficiency ce temporarily increases as shown by the broken line in FIG.

このような充填効率ceの変動によって、図6(e)の点線のように空燃比が一時的にリーン側に変動し、小さなトルク変動を生じるとともにエミッションの悪化を招くことになる一方、仮に充填効率ceの上昇に対応して燃料噴射量を増量すれば、大きなトルク変動が起きることは避けられない。   Due to such fluctuations in the charging efficiency ce, the air-fuel ratio temporarily fluctuates to the lean side as shown by the dotted line in FIG. 6 (e), resulting in small torque fluctuations and worsening emissions. If the fuel injection amount is increased corresponding to the increase in efficiency ce, it is inevitable that a large torque fluctuation occurs.

そこで、この実施形態では、以下に詳しく説明するが、前記のようなモード切替の際に進角側又は遅角側のいずれかに変更される吸気弁11の閉時期が、前記の所定時期α(以下、所定の吸気弁閉時期αともいう)を通過するのに対応づけて、そのリフト量等を調整することにより、前記のような充填効率の変動を抑えるようにしたものである。   Therefore, in this embodiment, as will be described in detail below, the closing timing of the intake valve 11 that is changed to either the advance side or the retard side at the time of mode switching as described above is the predetermined time α. By adjusting the lift amount or the like in association with passing (hereinafter also referred to as a predetermined intake valve closing timing α), the above-described fluctuation in the charging efficiency is suppressed.

(具体的な制御手順)
以下にモード切替えの際の具体的な制御手順を、図7及び図8のフローチャートに基づき前記図5、6の他、図9、10も参照して説明する。まず、図7においてスタート後のステップS1では、クランク角センサ8、エアフローセンサ31、アクセル開度センサ32、車速センサ33等からの信号を入力し、続くステップS2ではエンジン1の運転領域を判定する。すなわち、クランク角センサ8からの信号によりエンジン回転数を演算し、例えば車速及びアクセル開度に基づいて、或いはエアフローセンサ31からの信号とエンジン回転数とに基づき内部EGR量を加味して、エンジン1への要求トルク(負荷状態)を演算する。そうして求めたエンジン回転数と要求トルクとに基づき、図4の制御マップを参照してHCCI領域(H)にあるか、SI領域(S)にあるか判定する。
(Specific control procedure)
A specific control procedure at the time of mode switching will be described below with reference to FIGS. 9 and 10 in addition to FIGS. First, in step S1 after the start in FIG. 7, signals from the crank angle sensor 8, the airflow sensor 31, the accelerator opening sensor 32, the vehicle speed sensor 33, and the like are input, and in the subsequent step S2, the operating range of the engine 1 is determined. . That is, the engine speed is calculated based on the signal from the crank angle sensor 8, and the internal EGR amount is taken into account based on, for example, the vehicle speed and the accelerator opening, or on the basis of the signal from the airflow sensor 31 and the engine speed. The required torque (load state) to 1 is calculated. Based on the engine speed and the required torque thus obtained, it is determined whether the vehicle is in the HCCI region (H) or the SI region (S) with reference to the control map of FIG.

続いてステップS3においてモード切替中かどうか判定する。これは、前記ステップS2にて判定する運転領域が図4のマップの境界を挟んで、HCCI領域(H)とSI領域(S)との間で変化したとき、例えばPCM30のタイマカウントによって規定される所定時間が経過するまでの間は切替中(YES)と判定し、それ以外は切替中でない(NO)と判定する。そして、切替中でなければリターンする一方、切替中であればステップS4に進み、ここでは前記ステップS2の判定結果によってHCCIモードからSIモードへの切り替えかどうか判定する。   Subsequently, in step S3, it is determined whether or not the mode is being switched. This is defined by, for example, the timer count of the PCM 30 when the operation region determined in step S2 changes between the HCCI region (H) and the SI region (S) across the boundary of the map of FIG. Until the predetermined time elapses, it is determined that switching is in progress (YES), and otherwise, it is determined that switching is not being performed (NO). If it is not switched, the process returns. On the other hand, if it is switched, the process proceeds to step S4. Here, it is determined whether or not the mode is switched from the HCCI mode to the SI mode based on the determination result in step S2.

その判定がNOで、SIモードからHCCIモードへの切り替え中であれば、後述のステップS13に進む一方、判定がYESならばステップS5〜S12へ進んで、HCCIからSIへのモード切替のための吸気弁11の制御を行う。すなわち、まず、現在のエンジン1の負荷及び回転数に基づいて、予め設定してあるマップから所定の吸気弁閉時期αを読み込み(ステップS5)、この閉時期αよりも現在の吸気弁11の閉時期が遅角側かどうか判定する(ステップS6)。   If the determination is NO and switching from the SI mode to the HCCI mode is in progress, the process proceeds to step S13 to be described later. If the determination is YES, the process proceeds to steps S5 to S12 to switch the mode from HCCI to SI. The intake valve 11 is controlled. That is, first, based on the current load and rotation speed of the engine 1, a predetermined intake valve closing timing α is read from a preset map (step S5). It is determined whether the closing timing is on the retard side (step S6).

その判定がYESで現在、吸気弁11の閉時期が所定時期αよりも遅角側にあれば、SIモードへの切り替えに伴い進角する吸気弁11の閉時期がその所定時期αを通過することになるから、ステップS7にて制御信号を出力し、VVL14やVVT15の作動によって吸気弁11の作動時期、リフト量及び開閉期間を変更する。具体的には図6(a)に実線で示すように、モード切替の開始から暫くの間(時刻t1〜t2)はVVT15は作動させず、VVL14の作動によって吸気弁11のリフト量及び開弁期間を減少させる。こうすると、図5(b)に示すように吸気弁11の開時期は殆ど変化せず、開弁期間の減少に連れてその閉時期のみが進角する。   If the determination is YES and the closing timing of the intake valve 11 is currently retarded from the predetermined timing α, the closing timing of the intake valve 11 that advances with the switching to the SI mode passes the predetermined timing α. Therefore, a control signal is output in step S7, and the operation timing, lift amount, and opening / closing period of the intake valve 11 are changed by the operation of the VVL 14 and VVT 15. Specifically, as indicated by a solid line in FIG. 6A, the VVT 15 is not operated for a while (time t1 to t2) from the start of mode switching, and the lift amount and valve opening of the intake valve 11 are activated by the operation of VVL14. Decrease period. As a result, the opening timing of the intake valve 11 hardly changes as shown in FIG. 5B, and only the closing timing advances as the valve opening period decreases.

つまり、吸気弁11の閉時期が進角して前記所定時期αに近づくとともに、これに連れてリフト量等が急減し、閉時期の変化によって起こり得る図6(c)の点線のような充填効率ceの変動が打ち消されて、同図の実線のように充填効率ceは、略一定の割合で低下するようになる。尚、HCCIモードからSIモードへの切り替えの前後では吸気弁11の作動時期が全体として進角側に変化することになるから、前記のように開弁期間が減少しても開時期が遅角側に変化しないことは制御上、好ましいと言える。   That is, as the closing timing of the intake valve 11 is advanced and approaches the predetermined timing α, the lift amount and the like rapidly decrease with this, and filling as indicated by the dotted line in FIG. The fluctuation of the efficiency ce is cancelled, and the charging efficiency ce decreases at a substantially constant rate as indicated by the solid line in FIG. In addition, before and after switching from the HCCI mode to the SI mode, the operation timing of the intake valve 11 changes to the advance side as a whole. Therefore, even if the valve opening period is reduced as described above, the opening timing is retarded. It can be said that it is preferable for control not to change to the side.

そして、ステップS8では吸気弁11の閉時期が所定時期αを通過したかどうか判定し、通過するまでは(NO)前記ステップS7に戻る一方、通過すれば(YES)ステップS9に進んで、図5(c)や図6(a)のようにVVT15によって作動時期を進角させるとともに、図6(b)に示すように、VVL14によってリフト量及び開閉期間を増大させる。このとき、図5(c)に示すように吸気弁11の閉時期は進角して、所定時期αから離れるようになり、これにより充填効率は急に低下しようとするが、これはリフト量等の増大により補完されるので、図6(c)の実線のように充填効率ceは前記と同じ略一定の割合で低下し続ける。   Then, in step S8, it is determined whether or not the closing timing of the intake valve 11 has passed the predetermined time α. Until it passes (NO), the process returns to step S7, while if it passes (YES), the process proceeds to step S9. The operation timing is advanced by the VVT 15 as shown in FIG. 5C and FIG. 6A, and the lift amount and the opening / closing period are increased by the VVL 14 as shown in FIG. 6B. At this time, as shown in FIG. 5 (c), the closing timing of the intake valve 11 is advanced to move away from the predetermined timing α, so that the charging efficiency is suddenly lowered. Therefore, as shown by the solid line in FIG. 6C, the filling efficiency ce continues to decrease at the same substantially constant rate as described above.

そうして吸気弁11の作動時期、リフト量及び開弁期間をそれぞれ変化させていって、それらがモード切替後のSIモードにおける制御目標値になったかどうかステップS10にて判定する。この判定がNOの間は前記ステップS9に戻り、判定がYESになれば、即ち吸気弁11のリフト量等がSIモードに適した状態になれば、切替終了でリターンする(図6の時刻t3)。   In this way, it is determined in step S10 whether or not the operation timing, lift amount, and valve opening period of the intake valve 11 have been changed, and these have become control target values in the SI mode after mode switching. While this determination is NO, the process returns to step S9, and if the determination is YES, that is, if the lift amount of the intake valve 11 is in a state suitable for the SI mode, the process returns to completion (time t3 in FIG. 6). ).

尚、前記ステップS6においてNOと判定した場合は、モード切替前の吸気弁11の閉時期が所定時期αよりも進角側にあり、切替時にそれを通過することはないので、ステップS11に進んで、ステップS12にて切替終了と判定するまで吸気弁11の作動時期を進角させ、そのリフト量及び開閉期間を減少させるようにする。   If NO is determined in step S6, the closing timing of the intake valve 11 before the mode switching is on the advance side with respect to the predetermined timing α, and does not pass through at the time of switching, so the process proceeds to step S11. In step S12, the operation timing of the intake valve 11 is advanced until it is determined that the switching is completed, and the lift amount and the opening / closing period are decreased.

次に、エンジン1をSIモードからHCCIモードへ切り替えるときには、前記ステップS4においてNOと判定し、図8のフローに示すステップS13〜S18へ進んで、モード切替のための吸気弁11の制御を行う。すなわち、ステップS13では前記ステップS5と同じく、現在のエンジン1の負荷及び回転数に対応する所定の吸気弁閉時期αを読み込み、続くステップS14では、切替後のHCCIモードにおける吸気弁11の閉時期が前記所定時期αよりも遅角側になるかどうか判定する。   Next, when the engine 1 is switched from the SI mode to the HCCI mode, NO is determined in step S4, and the process proceeds to steps S13 to S18 shown in the flow of FIG. 8 to control the intake valve 11 for mode switching. . That is, in step S13, as in step S5, a predetermined intake valve closing timing α corresponding to the current load and speed of the engine 1 is read, and in subsequent step S14, the closing timing of the intake valve 11 in the HCCI mode after switching is read. Is determined to be retarded from the predetermined time α.

この判定がYESで、モード切替後の吸気弁11の閉時期が所定時期αよりも遅角側になるのであれば、HCCIモードへの切り替えに伴い図9(a)〜(d)のように遅角する吸気弁11の閉時期が所定の吸気弁閉時期αを通過することになる。そこで、ステップS15では、図10(a)のようにVVT15によって吸気弁11の作動時期全体を遅角させるとともに、同図(b)のようにVVL14によって吸気弁11のリフト量及び開閉期間を増大させる(時刻t1〜)。   If this determination is YES and the closing timing of the intake valve 11 after the mode switching is on the retard side of the predetermined timing α, as shown in FIGS. 9A to 9D along with the switching to the HCCI mode. The retarded closing timing of the intake valve 11 passes a predetermined intake valve closing timing α. Therefore, in step S15, the entire operation timing of the intake valve 11 is retarded by the VVT 15 as shown in FIG. 10 (a), and the lift amount and the opening / closing period of the intake valve 11 are increased by the VVL 14 as shown in FIG. 10 (b). (Time t1).

そうしてVVL14及びVVT15の両方の作動により吸気弁11の閉時期が遅角されて急速に所定時期αに近づくと、図10(c)のように充填効率ceが速やかに上昇する。そして、それが切替後のHCCIモードに相応しい値になる頃に、同図(b)や図9(b)のように吸気弁11のリフト量及び開弁期間を減少させて、それ以上は充填効率ceが上昇しないようにする。つまり、吸気弁11の閉時期が所定時期αに近づくに連れてリフト量や開弁期間を減少させ、図10(c)の点線のような充填効率ceの変動を抑えることができる。   Then, when the closing timing of the intake valve 11 is retarded by the operation of both VVL 14 and VVT 15 and rapidly approaches the predetermined timing α, the charging efficiency ce rapidly increases as shown in FIG. Then, when it becomes a value suitable for the HCCI mode after switching, the lift amount and the valve opening period of the intake valve 11 are decreased as shown in FIG. 9B and FIG. Prevent efficiency ce from rising. That is, as the closing timing of the intake valve 11 approaches the predetermined timing α, the lift amount and the valve opening period can be reduced, and fluctuations in the charging efficiency ce as shown by the dotted line in FIG.

そして、ステップS16で吸気弁11の閉時期が所定時期αを通過したかどうか判定し、通過するまでは(NO)前記ステップS13に戻る一方、通過すれば(YES)ステップS17に進んで、今度は図9(c)、図10(b)のように、吸気弁11の作動時期の遅角に連れてリフト量及び開閉期間を増大させる。この開閉期間の増大によっても吸気弁11の閉時期は遅角側に変化することになるが、リフト量及び開閉期間の増大によって充填効率は略一定に維持される(時刻t2〜t3)。   Then, in step S16, it is determined whether or not the closing timing of the intake valve 11 has passed the predetermined time α. Until it passes (NO), the process returns to step S13, but if it passes (YES), the process proceeds to step S17. As shown in FIGS. 9 (c) and 10 (b), the lift amount and the opening / closing period are increased as the operation timing of the intake valve 11 is delayed. The closing timing of the intake valve 11 also changes to the retard side even with this increase in the opening / closing period, but the charging efficiency is maintained substantially constant by increasing the lift amount and the opening / closing period (time t2 to t3).

そうして吸気弁11の作動時期、リフト量及び開弁期間をそれぞれ変化させていって、それらがモード切替後のHCCIモードにおける制御目標値になったかどうかステップS18にて判定し、この判定がNOの間は前記ステップS17に戻り、判定がYESになればSIモードに適した状態になったので、切替終了でリターンする(図10の時刻t3)。尚、前記ステップS14においてNOと判定した場合は、モード切替の際に吸気弁11の閉時期が所定時期αを通過することはないので、直ちにステップS17,S18に進むことになる。   Thus, the operation timing, lift amount and valve opening period of the intake valve 11 are changed, and it is determined in step S18 whether or not they have become control target values in the HCCI mode after mode switching. During NO, the process returns to step S17, and if the determination is YES, the state is suitable for the SI mode, and the process returns upon completion of switching (time t3 in FIG. 10). If it is determined as NO in step S14, the closing timing of the intake valve 11 does not pass the predetermined timing α when the mode is switched, and the process immediately proceeds to steps S17 and S18.

前記図7のステップS7と図8のステップS15とが、それぞれ、モード切替の際にVVT15により吸気弁11の閉時期を進角側又は遅角側のいずれか一方に変更しながら、それが所定の吸気弁閉時期αに近づくに連れてVVL14によりリフト量及び開弁期間を減少させる第1の工程に対応する。   Step S7 in FIG. 7 and step S15 in FIG. 8 are respectively performed while changing the closing timing of the intake valve 11 to either the advance side or the retard side by the VVT 15 at the time of mode switching. This corresponds to the first step of reducing the lift amount and the valve opening period by the VVL 14 as the intake valve closing timing α approaches.

また、ステップS9及びステップS17が、それぞれ、モード切替の際にVVT15により吸気弁11の閉時期を前記一方に変更しながら、それが所定の吸気弁閉時期αを通過してそこから離れるに連れて、VVL14によりリフト量及び開弁期間を増大させる第2の工程に対応する。   Further, in steps S9 and S17, respectively, when the mode is changed, the closing timing of the intake valve 11 is changed to the one by the VVT 15 while passing through the predetermined intake valve closing timing α and away from it. This corresponds to the second step of increasing the lift amount and the valve opening period by the VVL 14.

そして、前記した制御は、PCM30のメモリに電子的に格納されている制御プログラムがCPUにより実行されることによって実現するものであり、その意味でPCM30は、モード切替の際にVVT15を制御して、所定時期αを通過するように吸気弁11の閉時期を進角側又は遅角側のいずれか一方に変化させる作動時期制御手段と、その際、吸気弁11の閉時期が所定時期αに近づくに連れてリフト量ないし開弁期間を減少させる一方、その時期αから離れるに連れてリフト量ないし開弁期間を増大させるリフト制御手段と、をそれぞれソフトウエア・プログラムの形態で備えている。   The control described above is realized by the CPU executing a control program stored electronically in the memory of the PCM 30. In this sense, the PCM 30 controls the VVT 15 at the time of mode switching. The operation timing control means for changing the closing timing of the intake valve 11 to either the advance side or the retard side so as to pass the predetermined timing α, and at that time, the closing timing of the intake valve 11 is set to the predetermined timing α. A lift control means for decreasing the lift amount or the valve opening period as it approaches and increasing the lift amount or the valve opening period as it moves away from the time α is provided in the form of a software program.

したがって、この実施形態に係るエンジン制御装置Aによると、まず、エンジン1が相対的に低負荷側のHCCI領域(H)にあるときには、吸排気弁11,12の作動に所謂負のオーバーラップ(NVO)期間を設けて、多量の内部EGRガスにより気筒2内の温度を高めることによって予混合気の圧縮による自己着火を促進することができる。一方、相対的に高負荷側のSI領域(S)では従来一般的なSI燃焼によって十分な出力を確保することができる。   Therefore, according to the engine control apparatus A according to this embodiment, first, when the engine 1 is in the HCCI region (H) on the relatively low load side, the so-called negative overlap ( NVO) period is provided, and self-ignition due to compression of the premixed gas can be promoted by increasing the temperature in the cylinder 2 with a large amount of internal EGR gas. On the other hand, in the SI region (S) on the relatively high load side, a sufficient output can be ensured by conventional general SI combustion.

そして、エンジン1が前記HCCI領域(H)とSI領域(S)との間で移行して、その燃焼モードが切り替わるときには、VVL14やVVT15の作動によって吸気弁11の作動時期やリフト量等を変更するのに伴い、その閉時期が所定の吸気弁閉時期αを通過するのに合わせて一時的にリフト量等を減少させることで、充填効率の変動を十分に抑制し、過渡時のトルクや空燃比の変動を概ね解消することができる。   When the engine 1 shifts between the HCCI region (H) and the SI region (S) and the combustion mode is switched, the operation timing or lift amount of the intake valve 11 is changed by the operation of the VVL 14 or VVT 15. As the engine is closed, when the closing timing passes the predetermined intake valve closing timing α, the amount of lift etc. is temporarily reduced to sufficiently suppress fluctuations in charging efficiency, The fluctuation of the air-fuel ratio can be almost eliminated.

しかも、この実施形態では、図5(b)や図6(a)に示すように、HCCIモードからSIモードへの切り替えに際して制御の開始から暫くの間(時刻t1〜t2)、吸気弁11の開時期を殆ど変化させず、そのリフト量及び開弁期間を減少させて、閉時期のみを進角させるようにしており、これにより制御の簡略化が図られる。   In addition, in this embodiment, as shown in FIG. 5B and FIG. 6A, when the control mode is switched from the HCCI mode to the SI mode for a while (time t1 to t2), The opening time is hardly changed, the lift amount and the valve opening period are decreased, and only the closing time is advanced, thereby simplifying the control.

(他の実施形態)
本発明の構成は、前記した実施形態のものに限定されることなく、それ以外の種々の構成を包含する。すなわち、前記の実施形態では、相対的に低負荷側のHCCI領域(H)全体で吸排気弁11,12の動作にNVO期間を設けるようにしているが、これに限らず、HCCI領域(H)の中でも低負荷側でのみNVO期間を設けるようにしてもよい。
(Other embodiments)
The configuration of the present invention is not limited to the above-described embodiment, and includes various other configurations. That is, in the above-described embodiment, the NVO period is provided for the operation of the intake and exhaust valves 11 and 12 in the entire HCCI region (H) on the relatively low load side, but the present invention is not limited to this, and the HCCI region (H ), The NVO period may be provided only on the low load side.

また、前記の実施形態では、HCCIモードからSIモードへの切り替えの際に暫くの間、吸気弁11の開時期を殆ど変化させず、その閉時期のみを進角させるようにしているが、このような期間は設けなくてもよい。   In the above embodiment, the opening timing of the intake valve 11 is hardly changed for a while when switching from the HCCI mode to the SI mode, and only the closing timing is advanced. Such a period may not be provided.

また、前記実施形態のVVL14は、構造的にリフト量の増大に伴い開弁期間も増大し且つ作動時期が遅角するようになっているが、これに限らず、リフト量や開弁期間が変化しても作動時期は変化しないものや、リフト量が変化しても開弁期間や作動時期は変化しないものであってもよい。   In addition, the VVL 14 of the above embodiment has a structure in which the valve opening period increases and the operation timing is retarded as the lift amount increases. However, the present invention is not limited to this, and the lift amount and the valve opening period are not limited. The operating time may not change even if it changes, or the valve opening period and operating time may not change even if the lift amount changes.

さらに、前記の実施形態では、吸気弁11のリフト特性をVVL14及びVVT15の作動によって連続的に変更するようにしているが、これに限らず、例えば、吸気弁11を個々にアクチュエータによって開閉するような動弁機構を用いてもよい。   Furthermore, in the above-described embodiment, the lift characteristics of the intake valve 11 are continuously changed by the operation of the VVL 14 and VVT 15, but the present invention is not limited to this. For example, the intake valve 11 is individually opened and closed by an actuator. A simple valve mechanism may be used.

以上、説明したように本発明は、HCCIモードとSIモードとに切り替わるエンジンにおいて、そのモード切替の際のトルクや空燃比の変動を十分に緩和することができるものであり、自動車用として好適である。   As described above, the present invention can sufficiently reduce fluctuations in torque and air-fuel ratio at the time of mode switching in an engine that switches between the HCCI mode and the SI mode, and is suitable for automobiles. is there.

本発明の実施形態に係る吸気弁制御装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of an intake valve control device according to an embodiment of the present invention. 制御の概略を示すブロック図である。It is a block diagram which shows the outline of control. 吸気弁のリフト特性の変化を示す説明図である。It is explanatory drawing which shows the change of the lift characteristic of an intake valve. 燃焼モードを切替える制御マップの一例を示す説明図である。It is explanatory drawing which shows an example of the control map which switches combustion mode. HCCIモードからSIモードへ切り替えるときの吸気弁のリフト特性の変化を示す説明図である。It is explanatory drawing which shows the change of the lift characteristic of an intake valve when switching from HCCI mode to SI mode. 同モード切替のときの吸気弁の作動時期、リフト量、充填効率、EGR率、及び空燃比の変化を示すタイムチャート図である。It is a time chart which shows the change of the operation timing of the intake valve, the lift amount, the charging efficiency, the EGR rate, and the air-fuel ratio when the mode is switched. HCCIモードからSIモードへ切り替えるときの吸気弁の制御手順を示すフローチャート図である。It is a flowchart figure which shows the control procedure of an intake valve when switching from HCCI mode to SI mode. SIモードからHCCIモードへ切り替えるときの図7相当図である。FIG. 8 is a diagram corresponding to FIG. 7 when switching from the SI mode to the HCCI mode. SIモードからHCCIモードへ切り替えるときの図5相当図である。FIG. 6 is a diagram corresponding to FIG. 5 when switching from the SI mode to the HCCI mode. SIモードからHCCIモードへ切り替えるときの図6相当図である。FIG. 7 is a diagram corresponding to FIG. 6 when switching from the SI mode to the HCCI mode.

符号の説明Explanation of symbols

A エンジン制御装置(吸気弁制御装置)
1 エンジン
2 気筒
11 吸気弁
12 排気弁
14 VVL(可変機構)
15 VVT(可変機構)
30 PCM(作動時期制御手段、リフト制御手段)
A Engine control device (Intake valve control device)
1 Engine 2 Cylinder 11 Intake valve 12 Exhaust valve 14 VVL (variable mechanism)
15 VVT (variable mechanism)
30 PCM (operation timing control means, lift control means)

Claims (6)

吸気弁及び排気弁の作動時期及びリフト量ないし開弁期間を変更可能な可変機構を備え、気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて既燃ガスを残留させて、圧縮行程の後期以降で予混合気を自己着火させる自己着火モードと、前記気筒内の混合気に点火する火花点火モードと、のいずれかに切り替えるようにしたエンジンの吸気弁制御方法であって、
前記自己着火モードと火花点火モードとのモード切替の際に、前記可変機構により吸気弁の閉時期を進角側又は遅角側のいずれか一方に変更しながら、そのリフト量ないし開弁期間を吸気の充填効率が低くなるように変化させる第1の工程と、
前記モード切替の際に、前記可変機構により吸気弁の閉時期を前記一方に変更しながら、そのリフト量ないし開弁期間を充填効率が高くなるように変化させる第2の工程と、
を有することを特徴とするエンジンの吸気弁制御方法。
A variable mechanism that can change the operation timing and lift amount or valve opening period of the intake valve and exhaust valve is provided, and a negative overlap period that closes both the intake valve and the exhaust valve in the exhaust stroke or intake stroke of the cylinder is provided. Intake of the engine that switches between the self-ignition mode in which the fuel gas remains and the pre-mixed gas is self-ignited in the later stage of the compression stroke and the spark ignition mode in which the air-fuel mixture in the cylinder is ignited A valve control method comprising:
When the mode is switched between the self-ignition mode and the spark ignition mode, the lift amount or the valve opening period is changed while changing the closing timing of the intake valve to either the advance side or the retard side by the variable mechanism. A first step of changing the charging efficiency of the intake air to be low;
A second step of changing the lift amount or the valve opening period so as to increase the charging efficiency while changing the closing timing of the intake valve to the one by the variable mechanism when the mode is switched;
An engine intake valve control method comprising:
前記第1の工程では、吸気流の慣性によって充填効率が最も高くなる所定の吸気弁閉時期になるまで、その閉時期に近づくほどリフト量ないし開弁期間を減少させ、
前記第2の工程では、前記所定の吸気弁閉時期を通過してそこから離れるほど、リフト量ないし開弁期間を増大させる、ことを特徴とする請求項1記載のエンジンの吸気弁制御方法。
In the first step, the lift amount or the valve opening period is decreased as the closing timing is approached until the predetermined intake valve closing timing at which the charging efficiency becomes the highest due to the inertia of the intake flow,
2. The engine intake valve control method according to claim 1, wherein in the second step, the lift amount or the valve opening period is increased as the predetermined intake valve closing timing passes and leaves.
自己着火モードから火花点火モードへのモード切替の場合、前記第1の工程では前記可変機構により吸気弁の閉時期を進角させる一方、その開時期は変化させずに開弁期間を減少させる、ことを特徴とする請求項2記載のエンジンの吸気弁制御方法。   In the case of mode switching from the self-ignition mode to the spark ignition mode, in the first step, the closing mechanism of the intake valve is advanced by the variable mechanism, while the valve opening period is decreased without changing the opening timing. The engine intake valve control method according to claim 2, wherein: 吸気弁及び排気弁の作動時期及びリフト量ないし開弁期間を変更可能な可変機構を備え、気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて既燃ガスを残留させて、圧縮行程の後期以降で予混合気を自己着火させる自己着火モードと、前記気筒内の混合気に点火する火花点火モードと、のいずれかに切り替えるようにしたエンジンの吸気弁制御装置であって、
前記自己着火モードと火花点火モードとのモード切替の際に、前記可変機構により吸気弁の少なくとも閉時期を進角側又は遅角側のいずれか一方に変更し、吸気流の慣性によって充填効率が最も高くなる所定の時期を通過させる作動時期制御手段と、
前記モード切替の際に吸気弁の閉時期が前記所定時期に近づくとき、それに連れてリフト量ないし開弁期間を減少させる一方、該所定時期を通過してそこから離れるときには、それに連れてリフト量ないし開弁期間を増大させるリフト制御手段と、
を備えることを特徴とするエンジンの吸気弁制御装置。
A variable mechanism that can change the operation timing and lift amount or valve opening period of the intake valve and exhaust valve is provided, and a negative overlap period that closes both the intake valve and the exhaust valve in the exhaust stroke or intake stroke of the cylinder is provided. Intake of the engine that switches between the self-ignition mode in which the fuel gas remains and the pre-mixed gas is self-ignited in the later stage of the compression stroke and the spark ignition mode in which the air-fuel mixture in the cylinder is ignited A valve control device,
When the mode is switched between the self-ignition mode and the spark ignition mode, at least the closing timing of the intake valve is changed to either the advance side or the retard side by the variable mechanism, and the charging efficiency is increased by the inertia of the intake flow. An operation timing control means for passing a predetermined timing that is the highest,
When the closing timing of the intake valve approaches the predetermined time at the time of the mode switching, the lift amount or the valve opening period is decreased accordingly, and when the predetermined time passes and leaves, the lift amount is accordingly increased. Or lift control means for increasing the valve opening period;
An intake valve control device for an engine, comprising:
前記リフト制御手段は、自己着火モードから火花点火モードへのモード切替の際、吸気弁の閉時期が進角して前記所定時期に近づくときに、その開時期が変化しないように開弁期間を減少させる、ことを特徴とする請求項4記載のエンジンの吸気弁制御装置。   When the mode is switched from the self-ignition mode to the spark ignition mode, the lift control means sets a valve opening period so that the opening timing does not change when the closing timing of the intake valve advances and approaches the predetermined timing. 5. The engine intake valve control device according to claim 4, wherein the intake valve control device is reduced. 前記可変機構は、吸気弁のリフト量及び開弁期間の双方を、リフト量の増大に伴い開弁期間も増大する一方、リフト量の減少に伴い開弁期間も減少するように変更する、ことを特徴とする請求項4又は5のいずれか記載のエンジンの吸気弁制御装置。   The variable mechanism changes both the lift amount and the valve opening period of the intake valve so that the valve opening period increases as the lift amount increases while the valve opening period also decreases as the lift amount decreases. The intake valve control device for an engine according to any one of claims 4 and 5.
JP2008088292A 2008-03-28 2008-03-28 Engine intake valve control method and intake valve control apparatus Expired - Fee Related JP5040772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088292A JP5040772B2 (en) 2008-03-28 2008-03-28 Engine intake valve control method and intake valve control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088292A JP5040772B2 (en) 2008-03-28 2008-03-28 Engine intake valve control method and intake valve control apparatus

Publications (2)

Publication Number Publication Date
JP2009243295A true JP2009243295A (en) 2009-10-22
JP5040772B2 JP5040772B2 (en) 2012-10-03

Family

ID=41305491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088292A Expired - Fee Related JP5040772B2 (en) 2008-03-28 2008-03-28 Engine intake valve control method and intake valve control apparatus

Country Status (1)

Country Link
JP (1) JP5040772B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299600A (en) * 2008-06-13 2009-12-24 Hitachi Ltd Control device and control method of engine
JP2010203271A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Combustion control device of internal combustion engine
CN102261289A (en) * 2010-05-24 2011-11-30 通用汽车环球科技运作有限责任公司 Method for managing transitions in internal combustion engines with combustion phasing
CN102261288A (en) * 2010-05-24 2011-11-30 通用汽车环球科技运作有限责任公司 Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
US20130018565A1 (en) * 2011-07-13 2013-01-17 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
JP2013133813A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine
CN104074663A (en) * 2013-03-25 2014-10-01 马自达汽车株式会社 Control device of spark-ignition engine
JP6252661B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274951A (en) * 2005-03-29 2006-10-12 Mazda Motor Corp Four cycle spark ignition engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274951A (en) * 2005-03-29 2006-10-12 Mazda Motor Corp Four cycle spark ignition engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299600A (en) * 2008-06-13 2009-12-24 Hitachi Ltd Control device and control method of engine
JP4642095B2 (en) * 2008-06-13 2011-03-02 日立オートモティブシステムズ株式会社 Engine control apparatus and control method
US8050846B2 (en) 2008-06-13 2011-11-01 Hitachi, Ltd. Apparatus and method for controlling engine
JP2010203271A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Combustion control device of internal combustion engine
CN102261289A (en) * 2010-05-24 2011-11-30 通用汽车环球科技运作有限责任公司 Method for managing transitions in internal combustion engines with combustion phasing
CN102261288A (en) * 2010-05-24 2011-11-30 通用汽车环球科技运作有限责任公司 Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
US20130018565A1 (en) * 2011-07-13 2013-01-17 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
US9074551B2 (en) * 2011-07-13 2015-07-07 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
JP2013133813A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
CN104074663A (en) * 2013-03-25 2014-10-01 马自达汽车株式会社 Control device of spark-ignition engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine
JP6252661B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine

Also Published As

Publication number Publication date
JP5040772B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP3945152B2 (en) Combustion control device for internal combustion engine
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
EP1167734B1 (en) Enhanced multiple injection for auto-ignition in internal combustion engines
JP7077768B2 (en) Compression ignition engine controller
JP4737103B2 (en) Control unit for gasoline engine
US10704523B2 (en) Control system of compression-ignition engine
EP1085192A2 (en) Compression autoignition gasoline engine
JP7167831B2 (en) Compression ignition engine controller
US10704524B2 (en) Control system of compression-ignition engine
JP2009197740A (en) Intake exhaust control method and intake exhaust control device for engine
WO2013080454A1 (en) Device and method for controlling spark-ignition gasoline engine
JP2010236496A (en) Method and device for controlling internal combustion engine
JP7223271B2 (en) Homogeneous mixture compression ignition engine controller
JP2011214477A (en) Engine control device
JP7047581B2 (en) Compression ignition engine controller
JP7024586B2 (en) Compression ignition engine controller
JP5428473B2 (en) Method and apparatus for controlling an internal combustion engine
JP7024585B2 (en) Compression ignition engine controller
JP7024584B2 (en) Compression ignition engine controller
CN114483353B (en) Engine system
CN114483351B (en) engine system
JP7088049B2 (en) Compression ignition engine controller
JP2009085175A (en) Control device for gasoline engine
JP7024587B2 (en) Compression ignition engine controller
JP5552869B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees