JP2013129544A - Ozone production and ozone dissolution device - Google Patents

Ozone production and ozone dissolution device Download PDF

Info

Publication number
JP2013129544A
JP2013129544A JP2011277951A JP2011277951A JP2013129544A JP 2013129544 A JP2013129544 A JP 2013129544A JP 2011277951 A JP2011277951 A JP 2011277951A JP 2011277951 A JP2011277951 A JP 2011277951A JP 2013129544 A JP2013129544 A JP 2013129544A
Authority
JP
Japan
Prior art keywords
ozone
tube
fluid
venturi tube
venturi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011277951A
Other languages
Japanese (ja)
Other versions
JP5915884B2 (en
Inventor
Hideyuki Nakajima
秀之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2011277951A priority Critical patent/JP5915884B2/en
Priority to PCT/JP2012/077742 priority patent/WO2013094309A1/en
Priority to KR1020147016476A priority patent/KR20140110866A/en
Priority to TW101143451A priority patent/TW201335061A/en
Publication of JP2013129544A publication Critical patent/JP2013129544A/en
Application granted granted Critical
Publication of JP5915884B2 publication Critical patent/JP5915884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing ozone by causing discharge within a dielectric tube by the application of voltage to gas, and dissolving the ozone in a fluid.SOLUTION: A device for producing ozone by causing plasma by discharge within a dielectric tube by the application of voltage to supplied gas and dissolving the ozone in a fluid is provided, wherein the dielectric tube is disposed at the outer periphery of a Venturi tube to form an enclosed space; a source gas introduction port for supplying the source gas is provided on one side of the dielectric tube; an ozone discharge port for introducing the produced ozone into the Venturi tube is provided on the other side thereof; the interior of the enclosed space of the dielectric tube and a branch tube of the Venturi tube communicate with each other through an ozone transfer tube; the branch tube is provided with a check valve for preventing backflow of the fluid; a high-voltage electrode is placed on the outer side of the dielectric tube, and a ground electrode is disposed in the fluid within the Venturi tube or the fluid discharged from the Venturi tube.

Description

本発明は、ガスに電圧を印加することによって誘電体管内に放電を生起させオゾンを生成させ、オゾンを流体に溶解させる装置に関するものである。   The present invention relates to an apparatus for generating a discharge in a dielectric tube by applying a voltage to a gas to generate ozone and dissolving the ozone in a fluid.

近年、上下水処理施設、化学工場、薬品工場、食品工場等において、細菌類、カビ類および酵母などの殺菌、アルデヒド、イオウ化合物、窒素化合物等の臭気物質の脱臭、し尿や染料廃液の脱色、有機溶剤などの有害物質を無害化するためにオゾン発生装置が用いられている。   In recent years, in water and sewage treatment facilities, chemical factories, pharmaceutical factories, food factories, etc., sterilization of bacteria, molds and yeasts, deodorization of odorous substances such as aldehydes, sulfur compounds, nitrogen compounds, decolorization of human waste and dye waste liquids, An ozone generator is used to detoxify harmful substances such as organic solvents.

この技術は一般に放電式オゾナイザでオゾンを生成して、バブラー、エジェクター、スタティックミキサーなどの気液混合部で処理が必要な水と混合して気液接触させるものである。   In this technique, ozone is generally generated by a discharge-type ozonizer, mixed with water that requires treatment in a gas-liquid mixing section such as a bubbler, an ejector, or a static mixer, and brought into gas-liquid contact.

しかしながら、従来の方法ではオゾン発生部と処理すべき水との気液接触部の距離が離れており、オゾン発生部から気液接触部へオゾンガスを移送する際に、オゾンの強力な酸化作用によってチューブの破損等によるオゾン漏洩の危険性があり、また、オゾンは非常に不安定な気体で容易に酸素に分解するので、できるだけユースポイントに近い場所でオゾンを生成させることが望まれる。   However, in the conventional method, the distance of the gas-liquid contact part between the ozone generation part and the water to be treated is separated, and when ozone gas is transferred from the ozone generation part to the gas-liquid contact part, due to the strong oxidizing action of ozone. There is a risk of ozone leakage due to breakage of the tube, and ozone is a very unstable gas and easily decomposes into oxygen. Therefore, it is desirable to generate ozone as close to the point of use as possible.

この問題に対して、円筒形の絶縁基体に放電電極と誘導電極とを設けたオゾン発生体を用いたオゾン発生器と、内部に流水通路を有して該流水通路を有して該流水通路を流れる水にオゾン発生器から得られるオゾンを注入するオゾン注入器とを備えた水のオゾン処理装置が提案されている(例えば、特許文献1参照)。   To solve this problem, an ozone generator using an ozone generator in which a discharge electrode and an induction electrode are provided on a cylindrical insulating base, and a flowing water passage inside the flowing water passage, the flowing water passage An ozone treatment apparatus for water comprising an ozone injector for injecting ozone obtained from an ozone generator into water flowing through the water has been proposed (for example, see Patent Document 1).

しかしながら、前記水のオゾン処理装置では冷却水となる水が前記絶縁基体の内側を流れ、前記絶縁基体の外周面に設けられた前記放電電極が前記絶縁基体を流れる水によって冷却されるが、水が高温の場合は冷却されずオゾン生成量が少なくなるという問題点があった。   However, in the water ozone treatment apparatus, water serving as cooling water flows inside the insulating base, and the discharge electrode provided on the outer peripheral surface of the insulating base is cooled by the water flowing through the insulating base. When the temperature is high, there is a problem that the amount of ozone generation is reduced without being cooled.

また別な方法として、円筒形誘電体の外周面にコロナ放電極を設け、該コロナ放電極の外側に外筒を同心的に設けて密閉空間を形成し、またその円筒形誘電体の内周面に誘導電極を設け、該円筒形誘電体の内部に冷却用液体を流通せしめて該誘電体を冷却するオゾナイザ及びこれを用いたオゾン水製造装置が提案されている(例えば、特許文献2参照)。   As another method, a corona discharge electrode is provided on the outer peripheral surface of the cylindrical dielectric, an outer cylinder is provided concentrically outside the corona discharge electrode to form a sealed space, and the inner periphery of the cylindrical dielectric is also provided. An ozonizer that cools the dielectric by providing an induction electrode on the surface and circulating a cooling liquid inside the cylindrical dielectric and an ozone water production apparatus using the same have been proposed (for example, see Patent Document 2). ).

しかし、前記オゾナイザ及びこれを用いたオゾン水製造装置の場合、円筒形誘電体の外周面及び内周面に電極を設ける必要があり、特に狭い円筒計状誘電体の内周に電極を設けることは容易に製作できるとは言い難く、また、コロナ放電で得られるオゾンは濃度が低く、オゾン収率も良くないことが知られている。   However, in the case of the ozonizer and the ozone water production apparatus using the same, it is necessary to provide electrodes on the outer peripheral surface and inner peripheral surface of the cylindrical dielectric, and in particular, provide an electrode on the inner periphery of the narrow cylindrical meter-shaped dielectric. Is not easily manufactured, and ozone obtained by corona discharge is known to have a low concentration and a poor ozone yield.

特開平2−157091号公報Japanese Patent Laid-Open No. 2-157091 特開平2−184505号公報Japanese Patent Laid-Open No. 2-184505

上記の問題点に鑑み本発明者は鋭意研究の結果、二重管の外管外壁に高電圧電極を設け、ベンチュリ構造を形成した内管に接地電極を配設し、内管内に流体を通過させながら外管内壁と内管外壁の間隙に原料ガス(酸素を含むガス)を導入し、電極間に電圧を印加しバリア放電を生起させることによってオゾンを生成し、生成したオゾンは内管(ベンチュリ管)の狭窄部に導入され、直ちに流体へ溶解される。また、放電部と狭窄部を繋ぐ管路に調節弁を設け、放電部の圧力を任意に制御することによって高濃度なオゾンを生成することができるオゾン生成及びオゾン溶解装置を提供するに至った。   As a result of earnest research, the present inventor has provided a high voltage electrode on the outer wall of the outer tube of the double tube, arranged a ground electrode on the inner tube formed with the venturi structure, and passed the fluid into the inner tube. Then, a raw material gas (gas containing oxygen) is introduced into the gap between the inner wall of the outer tube and the outer wall of the inner tube, and a voltage is applied between the electrodes to generate a barrier discharge, thereby generating ozone. It is introduced into the constriction of the Venturi tube and immediately dissolved in the fluid. In addition, a control valve is provided in a conduit connecting the discharge part and the constriction part, and an ozone generation and ozone dissolution apparatus capable of generating high-concentration ozone by arbitrarily controlling the pressure of the discharge part has been provided. .

供給される原料ガスに電圧を印加することによって誘電体管の内部に放電を生起させオゾンを生成させ、該オゾンを流体に溶解させる装置において、ベンチュリ管の外周に該誘電体管を配置し密閉空間を形成し、該誘電体管の一方に該原料ガスを供給するための原料ガス導入口を設け、他方に生成された該オゾンを前記ベンチュリ管の内部に導入するためのオゾン排出口が設けられ、該誘電体管の密閉空間内と該ベンチュリ管の枝管がオゾン移送管で連通され、該枝管に流体の逆流を防止する逆止弁が具備され、該誘電体管の外側に高電圧電極を配置し、該ベンチュリ管の内部の流体又は該ベンチュリ管から吐出される流体に接地電極が配設されていることを第1の特徴とする。   In a device for generating ozone by generating a voltage in the dielectric tube by applying a voltage to the supplied raw material gas and dissolving the ozone in the fluid, the dielectric tube is disposed on the outer periphery of the venturi tube and sealed. A source gas introduction port for forming a space and supplying the source gas to one of the dielectric tubes is provided, and an ozone discharge port for introducing the generated ozone into the venturi tube is provided on the other side. The branch pipe of the venturi pipe and the branch pipe of the venturi pipe are communicated with each other by an ozone transfer pipe, and a check valve for preventing a back flow of fluid is provided in the branch pipe. The first feature is that a voltage electrode is disposed, and a ground electrode is disposed in a fluid inside the venturi tube or a fluid discharged from the venturi tube.

供給される原料ガスに電圧を印加することによって誘電体管の内部に放電を生起させオゾンを生成させ、該オゾンを流体に溶解させる装置において、ベンチュリ管の外周に該誘電体管を配置し密閉空間を形成し、該誘電体管の一方に該原料ガスを供給するための原料ガス導入口を設け、他方に生成された該オゾンを該ベンチュリ管の内部に導入するためのオゾン排出口が設けられ、該誘電体管の密閉空間内と該ベンチュリ管の枝管がオゾン移送管で連通され、該枝管に流体の逆流を防止する逆止弁が具備され、該誘電体管の外側に高電圧電極を配置し、該ベンチュリ管に接地電極が配設されていることを第2の特徴とする。   In a device for generating ozone by generating a voltage in the dielectric tube by applying a voltage to the supplied raw material gas and dissolving the ozone in the fluid, the dielectric tube is disposed on the outer periphery of the venturi tube and sealed. A raw material gas introduction port for forming a space and supplying the raw material gas to one of the dielectric tubes is provided, and an ozone discharge port for introducing the generated ozone into the venturi tube is provided on the other side. The branch pipe of the venturi pipe and the branch pipe of the venturi pipe are communicated with each other by an ozone transfer pipe, and a check valve for preventing a back flow of fluid is provided in the branch pipe. A second feature is that a voltage electrode is disposed and a ground electrode is disposed on the venturi tube.

前記オゾン移送管に前記オゾンの流量を調節する調節弁が具備されていることを第3の特徴とし、前記接地電極がガラス被覆されていることを第4の特徴とする。   A third feature is that the ozone transfer pipe is provided with a regulating valve for regulating the flow rate of the ozone, and a fourth feature is that the ground electrode is covered with glass.

前記誘電体管が少なくともセラミックスかガラスのいずれか一方であることを第5の特徴とし、前記ベンチュリ管がセラミックス、ガラス、樹脂、金属のいずれか1つからなることを第6の特徴とする。   A fifth feature is that the dielectric tube is at least one of ceramics and glass, and a sixth feature is that the venturi tube is made of any one of ceramics, glass, resin, and metal.

前記誘電体管及び前記ベンチュリ管が石英ガラス製であることを第7の特徴とし、前記原料ガスと前記流体の気液比が0.3以下であることを第8の特徴とする。   The seventh feature is that the dielectric tube and the venturi tube are made of quartz glass, and the eighth feature is that the gas-liquid ratio of the source gas to the fluid is 0.3 or less.

オゾンが溶解した流体を再度前記ベンチュリ管に返送し、流体を循環させる構造を有していることを第9の特徴とする。   A ninth feature is that the fluid in which ozone is dissolved is returned to the venturi tube again to circulate the fluid.

本発明に係るオゾン生成及びオゾン溶解装置によれば、以下の優れた効果が得られる。   According to the ozone generation and ozone dissolution apparatus according to the present invention, the following excellent effects can be obtained.

(1)本発明のオゾン生成及びオゾン溶解装置は簡単に製作ができ、高濃度にオゾンを生成し高効率にオゾンを流体へ溶解することができる。
(2)放電部から流体の距離が近く、放電部で生成したオゾン等のガスは直ちに流体に作用するので、オゾンだけでなく放電によって生成するラジカルの利用が可能となる。
(3)生成したオゾンをベンチュリ管の内部に導入する際にオゾン気泡が圧壊することによってOHラジカル等の活性種を生成することができ、オゾンでは酸化分解できない化合物の分解が可能となる。
(4)ベンチュリ管の枝管に具備された調節弁を調整することによって、放電部の圧力を操作することができ、高濃度オゾンの生成が可能になると共に、オゾン濃度の調整ができる。
(5)誘電体管内に導入するガスと流体の気液比を制御することによって、簡単に目的とする濃度のオゾン水を製造できる。
(1) The ozone generation and ozone dissolution apparatus of the present invention can be easily manufactured, can generate ozone at a high concentration, and can dissolve ozone into a fluid with high efficiency.
(2) Since the fluid is close to the discharge part and the gas such as ozone generated in the discharge part immediately acts on the fluid, not only ozone but also radicals generated by the discharge can be used.
(3) When the generated ozone is introduced into the venturi tube, the ozone bubbles are crushed so that active species such as OH radicals can be generated, and a compound that cannot be oxidatively decomposed by ozone can be decomposed.
(4) By adjusting the control valve provided in the branch pipe of the venturi pipe, the pressure of the discharge part can be manipulated, high-concentration ozone can be generated, and the ozone concentration can be adjusted.
(5) By controlling the gas-liquid ratio of the gas and fluid introduced into the dielectric tube, ozone water having a target concentration can be easily produced.

本発明の第一及び第二の実施形態における実験装置のフロー図である。It is a flowchart of the experimental apparatus in 1st and 2nd embodiment of this invention. 本発明の第一の実施形態のオゾン生成及びオゾン溶解装置を示した図である。It is the figure which showed the ozone production | generation and ozone dissolution apparatus of 1st embodiment of this invention. 本発明の第一の実施形態の別のオゾン生成及びオゾン溶解装置を示した図である。It is the figure which showed another ozone production | generation and ozone dissolution apparatus of 1st embodiment of this invention. 本発明の第二の実施形態のオゾン生成及びオゾン溶解装置を示した図である。It is the figure which showed the ozone production | generation and ozone dissolution apparatus of 2nd embodiment of this invention. 本発明の実施例1及び実施例3から実施例7における電圧印加時間毎の生成オゾン濃度の推移を示したグラフである。It is the graph which showed transition of the production | generation ozone concentration for every voltage application time in Example 1 and Example 3 to Example 7 of this invention. 本発明の実施例1及び実施例3から実施例7における電圧印加時間毎の溶存オゾン濃度の推移を示したグラフである。It is the graph which showed transition of the dissolved ozone concentration for every voltage application time in Example 1 and Example 3 to Example 7 of this invention. 実施例2及び比較例1における処理時間毎の生成オゾンの積算生成量の推移を示したグラフである。It is the graph which showed transition of the integrated production amount of the production | generation ozone for every processing time in Example 2 and Comparative Example 1. FIG. 実施例2及び比較例1における処理時間毎のメチレンブルー除去量の推移を示したグラフである。It is the graph which showed transition of the methylene blue removal amount for every processing time in Example 2 and Comparative Example 1. 本発明の第三の実施形態における実験装置のフロー図である。It is a flowchart of the experimental apparatus in 3rd embodiment of this invention. 本発明の実施例8から実施例9及び比較例2における気液比とオゾンの溶解効率の関係を示したグラフである。It is the graph which showed the relationship between the gas-liquid ratio and the dissolution efficiency of ozone in Example 8 to Example 9 and Comparative Example 2 of the present invention. 本発明の実施例10及び比較例3における電極温度を示したグラフである。It is the graph which showed the electrode temperature in Example 10 and Comparative Example 3 of this invention. 本発明の実施例10及び比較例3における消費電力を示したグラフである。It is the graph which showed the power consumption in Example 10 and Comparative Example 3 of this invention.

(実施形態1)
以下、本発明における第一の実施形態について図2、図3を基に説明するが、本発明が本実施形態に限定されないことはいうまでもない。
(Embodiment 1)
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 2 and 3, but it goes without saying that the present invention is not limited to the present embodiment.

図2において本発明のオゾン生成及びオゾン溶解装置は誘電体管1、ベンチュリ管2、高電圧電極3、接地電極4、電源5、原料ガス導入口6、オゾン吐出口7、枝管8、オゾン移送管9、逆止弁10、調節弁11からなる。   In FIG. 2, the ozone generating and ozone dissolving apparatus of the present invention includes a dielectric tube 1, a venturi tube 2, a high voltage electrode 3, a ground electrode 4, a power source 5, a raw material gas inlet 6, an ozone outlet 7, a branch pipe 8, and ozone. It consists of a transfer pipe 9, a check valve 10 and a control valve 11.

誘電体管1は、ガラス製の略円筒状のものである。誘電体管1の断面は四角形、ひし形、多角形でも構わないが、高電圧電極3の配設し易さやベンチュリ管2との間隙の調整及び製作のし易さでは円形が望ましい。   The dielectric tube 1 has a substantially cylindrical shape made of glass. The dielectric tube 1 may have a quadrilateral, rhombus, or polygonal cross section, but a circular shape is desirable for ease of disposition of the high voltage electrode 3, adjustment of the gap with the venturi tube 2 and ease of manufacture.

ベンチュリ管2は、誘電体管1の同一円心上にあり、通常のベンチュリ管同様、一部分が狭窄部となっている。ベンチュリ管2の断面は四角形、ひし形、多角形でも構わないが、ベンチュリ管2は誘電体の働きをするので、誘電体管1との間隙が均一となるように、誘電体管1と同じ形状が望ましい。   The venturi tube 2 is on the same circle center of the dielectric tube 1, and a part of the venturi tube 2 is a constricted portion like a normal venturi tube. The Venturi tube 2 may have a quadrilateral, rhombus, or polygonal cross section. However, since the Venturi tube 2 functions as a dielectric, it has the same shape as the dielectric tube 1 so that the gap with the dielectric tube 1 is uniform. Is desirable.

ベンチュリ管2は誘電体管1によっては密閉構造を形成しており、誘電体管1には、一方に原料ガスを導入するための原料ガス導入口6、他方に生成したオゾンを吐出するオゾン吐出口7が設けられている。   The venturi tube 2 has a sealed structure depending on the dielectric tube 1. The dielectric tube 1 has a raw material gas inlet 6 for introducing a raw material gas on one side and an ozone discharge port for discharging generated ozone on the other side. An outlet 7 is provided.

ベンチュリ管2に導入される流体は高低差やポンプ等により加圧供給されれば良く、流体は液体や例えば蒸気のように液体を含むガスである。   The fluid introduced into the venturi tube 2 may be pressurized and supplied by a height difference or a pump, and the fluid is a liquid or a gas containing a liquid such as vapor.

誘電体管1とベンチュリ管2で形成される間隙はオゾン移送管9を介してベンチュリ管2の狭窄部から突出した枝管8に連通されており、流体がベンチュリ管2を通過すると、ベンチュリ管2の狭窄部に強い負圧が発生し、誘電体管1とベンチュリ管2の間隙で生成されるオゾンを吸い込むようになっている。   The gap formed by the dielectric tube 1 and the venturi tube 2 is connected to the branch tube 8 protruding from the narrowed portion of the venturi tube 2 via the ozone transfer tube 9, and when the fluid passes through the venturi tube 2, the venturi tube A strong negative pressure is generated in the constricted portion 2 and ozone generated in the gap between the dielectric tube 1 and the venturi tube 2 is sucked.

高電圧電極3は、誘電体管1の外側に配設され、電源5と接続される。電極の材質や形状は特に限定されないが、好ましくは電極が劣化しないように誘電体管1をジャケット構造とし内部に電解水を封入し、ステンレス製の針金を内部に挿入して電源5が接続される。   The high voltage electrode 3 is disposed outside the dielectric tube 1 and connected to the power source 5. The material and shape of the electrode are not particularly limited, but preferably the dielectric tube 1 has a jacket structure so that the electrode does not deteriorate, electrolytic water is sealed inside, and a stainless steel wire is inserted inside to connect the power source 5. The

接地電極4はベンチュリ管2の中央部に電極棒を配置すればよく、ベンチュリ管2の内部を流体が流れることによってベンチュリ管2の内部が接地の役割となる。また、図3に示すように、接地電極4はベンチュリ管2から吐出される水に配設しても良い。   The ground electrode 4 may be provided with an electrode rod at the center of the venturi tube 2, and fluid flows through the venturi tube 2, so that the inside of the venturi tube 2 serves as a ground. Further, as shown in FIG. 3, the ground electrode 4 may be disposed in the water discharged from the venturi tube 2.

オゾン移送管9にはベンチュリ管2の内部を通過する流体が逆流しないように逆止弁10が設けてあり、更にオゾンの流量や放電部の圧力を調節できるように調節弁11が設けてある。流体の速度は任意に決定することができ、用いる電源の周波数から算出される放電頻度より処理すべき流体の目的に応じた流速にすると良い。放電により生成したオゾン等のガスを流体に溶解させるには、流体とガスの量の比が気液比0.3以下であることが好ましい。   The ozone transfer pipe 9 is provided with a check valve 10 so that the fluid passing through the inside of the venturi pipe 2 does not flow backward, and further a control valve 11 is provided so that the flow rate of ozone and the pressure of the discharge part can be adjusted. . The speed of the fluid can be arbitrarily determined, and it is preferable to set the flow rate according to the purpose of the fluid to be processed based on the discharge frequency calculated from the frequency of the power source to be used. In order to dissolve the gas such as ozone generated by the discharge in the fluid, the ratio of the amount of the fluid and the gas is preferably 0.3 or less.

誘電体管1の材質は耐プラズマ性、耐熱性、耐オゾン性があるセラミックスかガラスが良く、好ましくは誘電率が低い石英ガラスが良い。   The material of the dielectric tube 1 is preferably ceramic or glass having plasma resistance, heat resistance and ozone resistance, preferably quartz glass having a low dielectric constant.

ベンチュリ管2の材質は任意に選定することができるが、耐オゾン性、耐久性に優れているセラミックス、ガラス、樹脂、金属が良く、好ましくは石英ガラスが良い。   The material of the venturi tube 2 can be arbitrarily selected, but ceramic, glass, resin, and metal excellent in ozone resistance and durability are preferable, and quartz glass is preferable.

接地電極4の材質は流体の性質に応じて、銅やステンレス等の金属を選定すれば良いが、電子部品洗浄等のように金属成分が溶出しては困る場合には、接地電極4に絶縁化合物を被覆すれば良く、好ましくは誘電率が低く、流体への溶出が少ない石英ガラスが良い。   The material of the ground electrode 4 may be selected from metals such as copper and stainless steel according to the properties of the fluid. However, if it is difficult to elute the metal components, such as when cleaning electronic parts, the ground electrode 4 is insulated. The compound may be coated, and quartz glass having a low dielectric constant and less elution into the fluid is preferable.

導入される原料ガスはブロアやボンベ等により加圧供給されるか、流体がベンチュリ管2を通過する際に生じる負圧を利用して自給することもでき、いずれの場合も原料ガス導入口6を通じて誘電体管1の内部へと導入される。原料ガス12は処理すべき流体の目的に応じて任意に決めることができるが、オゾンやOHラジカル等の活性種を生成させるには少なくとも酸素を含むガスであれば良い。   The introduced source gas can be pressurized and supplied by a blower, a cylinder, or the like, or can be self-supplied by using the negative pressure generated when the fluid passes through the venturi tube 2. In either case, the source gas inlet 6 Is introduced into the inside of the dielectric tube 1. The source gas 12 can be arbitrarily determined according to the purpose of the fluid to be processed. However, in order to generate active species such as ozone and OH radicals, any gas containing at least oxygen may be used.

本願装置を水処理に用いる際、一度処理した水に除去すべき化合物が残存している際には、再度、ポンプ等を用いて本装置のベンチュリ管2の内部へ再送し、繰り返し処理を行えば良い。   When the device of the present application is used for water treatment, if a compound to be removed remains in the treated water, it is resent again inside the venturi 2 of the device using a pump or the like, and the treatment is repeated. Just do it.

原料ガス導入口6から原料ガス(酸素を含むガス)12を導入すると共にベンチュリ管2の内部に流体を流しながら電圧を印加すると、高電圧電極3が配設された部分の誘電体管1の内壁とベンチュリ管2の外壁の間に円周状に放電が生起され、放電部を通過した原料ガス12中の酸素が励起し、オゾンが生成され、生成されたオゾンはオゾン吐出口7及びオゾン移送管9を通じて、ベンチュリ管2の狭窄部へ導入され直ちに流体へ溶解される。またこの時、原料ガス12と流体の流速の比(気液比)を小さくすると、強力な負圧が生じるので、気液混合時にオゾンが圧壊し、OHラジカルを生成することができる。   When a source gas (gas containing oxygen) 12 is introduced from the source gas inlet 6 and a voltage is applied while flowing a fluid through the venturi tube 2, the dielectric tube 1 of the portion where the high voltage electrode 3 is disposed is provided. A discharge is generated circumferentially between the inner wall and the outer wall of the venturi tube 2, oxygen in the raw material gas 12 that has passed through the discharge part is excited, ozone is generated, and the generated ozone is generated in the ozone discharge port 7 and the ozone. It is introduced into the narrow portion of the venturi tube 2 through the transfer tube 9 and immediately dissolved in the fluid. At this time, if the ratio of the flow rate of the raw material gas 12 and the fluid (gas-liquid ratio) is reduced, a strong negative pressure is generated, so that ozone is crushed during gas-liquid mixing, and OH radicals can be generated.

(実施形態2)
次に、本発明における第二の実施形態について図4を基に説明するが、本発明が本実施形態に限定されないことはいうまでもない。
(Embodiment 2)
Next, although 2nd embodiment in this invention is described based on FIG. 4, it cannot be overemphasized that this invention is not limited to this embodiment.

装置の構成は、接地電極の位置以外は第一の実施の形態と同じであるため説明を省略する。   Since the configuration of the apparatus is the same as that of the first embodiment except for the position of the ground electrode, description thereof is omitted.

接地電極4はベンチュリ管2の外側あるいは内側でも良く、図4に示すように、ベンチュリ管2をジャケット構造とし内部に電解水を封入し、ステンレス製の針金を内部に挿入して電源を接続しても良く、この場合には誘電体管1の高電圧電極3とベンチュリ管2の接地電極4を入れ替えることもできる。   The ground electrode 4 may be outside or inside the venturi tube 2. As shown in FIG. 4, the venturi tube 2 has a jacket structure, and electrolytic water is sealed inside, and a stainless steel wire is inserted inside to connect the power source. In this case, the high voltage electrode 3 of the dielectric tube 1 and the ground electrode 4 of the venturi tube 2 can be interchanged.

また、ベンチュリ管2が金属製の場合は、ベンチュリ管2自体が、接地電極4の役割を果たす。   When the venturi tube 2 is made of metal, the venturi tube 2 itself serves as the ground electrode 4.

(実施形態3)
次に、本発明における第三の実施形態について図9を基に説明するが、本発明が本実施形態に限定されないことはいうまでもない。
(Embodiment 3)
Next, although 3rd embodiment in this invention is described based on FIG. 9, it cannot be overemphasized that this invention is not limited to this embodiment.

装置の構成は、第一の実施形態と同じであるため説明を省略する。   Since the configuration of the apparatus is the same as that of the first embodiment, description thereof is omitted.

図9に示すように、本願装置を通過する流体を循環させずに通過させる。   As shown in FIG. 9, the fluid passing through the device of the present application is passed without being circulated.

本発明において前記の実施形態を用いて、放電時の写真撮影および排オゾン濃度及び溶存オゾン濃度の試験を行った。試験の測定方法を以下に示す。   In the present invention, using the above-described embodiment, photography during discharge and tests of exhaust ozone concentration and dissolved ozone concentration were performed. The measurement method of the test is shown below.

(1)生成オゾン濃度の測定
気相オゾン濃度計:東亜ディーケーケー社製 OZ−3O
受水槽上部にオゾン濃度センサーを差込み、気相オゾン濃度計を用いて測定した。
(2)溶存オゾン濃度の測定
溶存オゾン濃度計:東亜ディーケーケー社製 OZ−2O
循環槽内に溶存オゾン濃度センサーを投入し測定した。
(1) Measurement of generated ozone concentration Gas phase ozone concentration meter: OZ-3O manufactured by TOA DK Corporation
An ozone concentration sensor was inserted into the upper part of the water receiving tank, and measurement was performed using a gas phase ozone concentration meter.
(2) Measurement of dissolved ozone concentration Dissolved ozone concentration meter: OZ-2O manufactured by TOA DK Corporation
A dissolved ozone concentration sensor was put into the circulation tank and measured.

[実施例1]
図1に実験装置のフロー図を示す。実験装置はオゾン生成及びオゾン溶解装置とオゾン生成及びオゾン溶解装置から吐出される処理水を受水する受水槽(15L)で構成されており、循環槽からオゾン生成及びオゾン溶解装置へ循環移送できるようにポンプを配置し配管し、受水槽には水面上部にオゾン濃度センサーと水面下部に溶存オゾン濃度センサーを設置した。また、オゾン生成及びオゾン溶解装置のガス導入口と酸素ボンベをチューブで接続した。
図2にオゾン生成及びオゾン溶解装置を示す。オゾン生成及びオゾン溶解装置本体の誘電体管及びベンチュリ管は石英ガラス製でベンチュリ管狭窄部より1次側が2重管となっている。ベンチュリ管(内径12mm、外径14mm、通水部口径5mm)内には水道水を通過させると共に、誘電体管(内径16mm、外径18mm)とベンチュリ管の間隙(1mm)には酸素ボンベより酸素を流した。ベンチュリ管と誘電体管の間隙を通過する酸素は、ベンチュリ管と誘電体管の間隙で放電が生起されオゾンとなるが、生成したオゾンはベンチュリ管内管の狭窄部へ導入されるようにチューブ接続している。尚、このチューブには放電部の圧力が調整できるように調節弁を具備すると共に、ベンチュリ管内を通過する水道水が狭窄部から逆流しないように逆止弁が具備されている。
また、誘電体管はジャケット構造(内部5mm、長さ100mm)となっており、ジャケット内部には35%塩化ナトリウム溶液が封入してあり、ステンレス製の針金を挿入して高電圧電極とし、電源と接続されている。一方、水道水が通過するベンチュリ管内に直径2mmのステンレス製の接地電極を挿入して電源と接続してある。
実験はポンプを起動させ30L/minの流速で水道水を循環させると共に、酸素ボンベから3L/minの風量で酸素を導入しながら電圧を印加(12kV、7kHz)し放電を行い、オゾン生成量及びオゾン水濃度の測定を行った。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は10500ppmとなり、図6に示すように、溶存オゾン濃度は3.75ppmとなった。
[Example 1]
FIG. 1 shows a flowchart of the experimental apparatus. The experimental device consists of an ozone generator and ozone dissolver and a water receiving tank (15L) that receives treated water discharged from the ozone generator and ozone dissolver, and can be circulated from the circulation tank to the ozone generator and ozone dissolver. As shown in the figure, a pump was arranged and piped, and an ozone concentration sensor was installed in the upper part of the water surface and a dissolved ozone concentration sensor was installed in the lower part of the surface of the water receiving tank. In addition, the gas inlet of the ozone generating and ozone dissolving apparatus and an oxygen cylinder were connected by a tube.
FIG. 2 shows an ozone generation and ozone dissolution apparatus. The dielectric tube and the venturi tube of the ozone generating and ozone dissolving apparatus main body are made of quartz glass, and the primary side from the narrowed portion of the venturi tube is a double tube. Tap water is allowed to pass through the Venturi tube (inner diameter 12 mm, outer diameter 14 mm, water passage diameter 5 mm), and the gap (1 mm) between the dielectric tube (inner diameter 16 mm, outer diameter 18 mm) and the venturi tube is from an oxygen cylinder. Oxygen was flushed. Oxygen that passes through the gap between the Venturi tube and the dielectric tube is discharged to generate ozone in the gap between the Venturi tube and the dielectric tube, but the generated ozone is connected to the tube so that it is introduced into the constricted part of the tube inside the Venturi tube. doing. The tube is provided with a control valve so that the pressure of the discharge part can be adjusted, and a check valve is provided so that tap water passing through the venturi tube does not flow backward from the constriction part.
The dielectric tube has a jacket structure (internal 5 mm, length 100 mm), 35% sodium chloride solution is sealed inside the jacket, and a stainless steel wire is inserted to form a high voltage electrode. Connected with. On the other hand, a stainless steel ground electrode having a diameter of 2 mm is inserted into a venturi tube through which tap water passes and connected to a power source.
In the experiment, the pump was started and tap water was circulated at a flow rate of 30 L / min. A voltage was applied (12 kV, 7 kHz) while introducing oxygen from an oxygen cylinder at a flow rate of 3 L / min. The ozone water concentration was measured. As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 10500 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 3.75 ppm.

[実施例2]
メチレンブルー濃度が5mg/Lとなるように水道水に添加したこと以外は、実施例1と同様にして行い、積算生成オゾン量の経時変化を図7、メチレンブルー除去量の経時変化を図8に示した。
[Example 2]
Except that it was added to tap water so that the methylene blue concentration was 5 mg / L, it was carried out in the same manner as in Example 1, and the time-dependent change of the accumulated ozone amount is shown in FIG. 7, and the time-dependent change of the methylene blue removal amount is shown in FIG. It was.

[比較例1]
OHラジカル補足剤であるt−BuOHが1mMとなるように添加したこと以外は実施例2と同様にして行い、積算生成オゾン量の経時変化を図7、メチレンブルー除去量の経時変化を図8に示した。この結果から、生成オゾンが同等であるにも関わらずt−BuOHの添加によって脱色率が低下しており、本オゾン生成及びオゾン溶解装置によるOHラジカルの生成が示唆された。
[Comparative Example 1]
Except that t-BuOH, which is an OH radical scavenger, was added so as to be 1 mM, it was carried out in the same manner as in Example 2. FIG. 7 shows the change over time in the total amount of ozone produced and FIG. Indicated. From this result, although the generated ozone was equivalent, the decolorization rate was lowered by the addition of t-BuOH, suggesting the generation of ozone and the generation of OH radicals by the ozone dissolution apparatus.

[実施例3]
ベンチュリ管から吐出された水に接地電極を配設したこと以外は実施例1と同様に行い、オゾン生成量及びオゾン水濃度の測定を行った(図3参照)。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は5400ppmとなり、図6に示すように、溶存オゾン濃度は1.57ppmとなった。
[Example 3]
Except that the ground electrode was disposed on the water discharged from the venturi tube, the same procedure as in Example 1 was performed to measure the amount of ozone generated and the concentration of ozone water (see FIG. 3). As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 5400 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 1.57 ppm.

[実施例4]
ベンチュリ管の外側に接地電極を配設したこと以外は実施例1と同様に行い、オゾン生成量及びオゾン水濃度の測定を行った(図4参照)。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は10850ppmとなり、図6に示すように、溶存オゾン濃度は3.84ppmとなった。
[Example 4]
Except that the ground electrode was disposed outside the venturi tube, the same procedure as in Example 1 was performed, and the amount of ozone generated and the concentration of ozone water were measured (see FIG. 4). As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 10850 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 3.84 ppm.

[実施例5]
接地電極をステンレス製の針金にガラス被覆し、印加電圧を(15kV、7kHz)とした以外は実施例1と同様に行い、オゾン生成量及びオゾン水濃度の測定を行った。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は9400ppmとなり、図6に示すように、溶存オゾン濃度は3.28ppmとなった。
[Example 5]
The amount of ozone generated and the concentration of ozone water were measured in the same manner as in Example 1 except that the ground electrode was covered with glass on a stainless steel wire and the applied voltage was (15 kV, 7 kHz). As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 9400 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 3.28 ppm.

[実施例6]
ベンチュリ管と誘電体管の間隙(放電部)の圧力が107kPaとなるように、ベンチュリ管の枝管に接続している調節弁を調整した以外は実施例1と同様に行い、オゾン生成量及びオゾン水濃度の測定を行った。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は11750ppmとなり、図6に示すように、溶存オゾン濃度は4.15ppmとなった。
[Example 6]
Except that the control valve connected to the branch pipe of the venturi tube was adjusted so that the pressure in the gap (discharge part) between the venturi tube and the dielectric tube was 107 kPa, The ozone water concentration was measured. As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 11750 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 4.15 ppm.

[実施例7]
ベンチュリ管と誘電体管の間隙(放電部)の圧力が117kPaとなるように、ベンチュリ管の狭窄部に接続している調節弁を調整した以外は実施例6と同様に行い、オゾン生成量及びオゾン水濃度の測定を行った。その結果、図5に示すように、放電開始から30分後の生成オゾン濃度は13150ppmとなり、図6に示すように、溶存オゾン濃度は4.68ppmとなった。
[Example 7]
Except that the control valve connected to the narrowed portion of the venturi tube was adjusted so that the pressure in the gap (discharge portion) between the venturi tube and the dielectric tube was 117 kPa, The ozone water concentration was measured. As a result, as shown in FIG. 5, the generated ozone concentration 30 minutes after the start of discharge was 13150 ppm, and as shown in FIG. 6, the dissolved ozone concentration was 4.68 ppm.

[実施例8]
図9に示すように、水道水を循環させずに連続通水したこと以外は実施例1(気液比0.1)と同様に行い、オゾン水濃度を測定した。その結果、図10に示すように、オゾン溶解効率は57%となった。
[Example 8]
As shown in FIG. 9, ozone water concentration was measured in the same manner as in Example 1 (gas-liquid ratio 0.1) except that tap water was continuously passed without being circulated. As a result, as shown in FIG. 10, the ozone dissolution efficiency was 57%.

[実施例9]
水道水の流速を10L/min(気液比0.3)とした以外は実施例8と同様に行い、オゾン水濃度を測定した。その結果、図10に示すように、オゾン溶解効率は23%となった。
[Example 9]
The ozone water concentration was measured in the same manner as in Example 8 except that the flow rate of tap water was 10 L / min (gas-liquid ratio 0.3). As a result, as shown in FIG. 10, the ozone dissolution efficiency was 23%.

[比較例2]
水道水の流速を7.5L/min(気液比0.4)とした以外は実施例8と同様に行い、オゾン水濃度を測定した。その結果、図10に示すように、オゾン溶解効率は17%となった。
[Comparative Example 2]
The ozone water concentration was measured in the same manner as in Example 8 except that the flow rate of tap water was 7.5 L / min (gas-liquid ratio 0.4). As a result, as shown in FIG. 10, the ozone dissolution efficiency was 17%.

[実施例10]
オゾン生成及びオゾン溶解装置本体の誘電体管1及びベンチュリ管2は石英ガラス製でベンチュリ管2狭窄部より1次側が2重管となっている。(図4参照)ベンチュリ管2(内径12mm、外径14mm、通水部口径5mm)内には水道水を通過させると共に、誘電体管1(内径19mm、外径21mm)とベンチュリ管2の間隙(1mm)には酸素ボンベより酸素を流した。ベンチュリ管2と誘電体管1の間隙を通過する酸素は、ベンチュリ管2と誘電体管1の間隙で放電が生起されオゾンとなるが、生成したオゾンはベンチュリ管2の内管の狭窄部へ導入されるようにチューブ接続している。尚、このチューブには放電部の圧力が調整できるように調節弁11を具備すると共に、ベンチュリ管2の内部を通過する水道水が狭窄部から逆流しないように逆止弁12が具備されている。
[Example 10]
The dielectric tube 1 and the venturi tube 2 of the ozone generating and ozone dissolving device main body are made of quartz glass, and the primary side of the narrowed portion of the venturi tube 2 is a double tube. (See FIG. 4) Tap water is passed through the venturi tube 2 (inner diameter: 12 mm, outer diameter: 14 mm, water passage diameter: 5 mm) and the gap between the dielectric tube 1 (inner diameter: 19 mm, outer diameter: 21 mm) and the venturi tube 2. In (1 mm), oxygen was supplied from an oxygen cylinder. Oxygen that passes through the gap between the venturi tube 2 and the dielectric tube 1 is discharged into the gap between the venturi tube 2 and the dielectric tube 1 to become ozone, but the generated ozone goes to the narrowed portion of the inner tube of the venturi tube 2. The tube is connected so that it can be introduced. The tube is provided with a control valve 11 so that the pressure of the discharge part can be adjusted, and a check valve 12 is provided so that tap water passing through the interior of the venturi tube 2 does not flow backward from the constriction part. .

また、ベンチュリ管2及び誘電体管1はジャケット構造(内部5mm、長さ100mm)となっており、ジャケット内部には35%塩化ナトリウム溶液が封入してあり、ベンチュリ管2のジャケット内部にステンレス製の針金を挿入して接地電極4とし、誘電体管1のジャケット内部にステンレス製の針金を挿入して高電圧電極3とし、それぞれ電源と接続されている。   The Venturi tube 2 and the dielectric tube 1 have a jacket structure (internal 5 mm, length 100 mm). A 35% sodium chloride solution is sealed inside the jacket, and the Venturi tube 2 is made of stainless steel inside the jacket. Are inserted into the ground electrode 4, and a stainless steel wire is inserted into the jacket of the dielectric tube 1 to form the high voltage electrode 3, each of which is connected to a power source.

実験は水道水を10L/minの流速で通過させると共に、酸素ボンベから3L/minの風量で酸素を導入しながら電圧を印加(15kV、7kHz)し放電を行い、非接触式温度計を用いて電極温度を測定すると共に、消費電力を測定した。その結果、図11に示すように、放電開始後30分の電極温度は高電圧電極が42.3℃、接地電極が28.1℃となった。また図12に示すように、消費電力は35Wとなった。   In the experiment, tap water is passed at a flow rate of 10 L / min, a voltage is applied (15 kV, 7 kHz) while oxygen is introduced from an oxygen cylinder at a flow rate of 3 L / min, and a non-contact thermometer is used. The electrode temperature was measured and the power consumption was measured. As a result, as shown in FIG. 11, the electrode temperature for 30 minutes after the start of discharge was 42.3 ° C. for the high voltage electrode and 28.1 ° C. for the ground electrode. Moreover, as shown in FIG. 12, the power consumption was 35 W.

[比較例3]
水道水を通過させずに実施例10と同様に行い、非接触式温度計を用いて電極温度を測定すると共に、消費電力を測定した。その結果、図11に示すように、放電開始後30分の電極温度は高電圧電極が62.3℃、接地電極が66.6℃となった。また図12に示すように、消費電力は38Wとなった。
[Comparative Example 3]
It carried out similarly to Example 10 without letting a tap water pass, and while measuring electrode temperature using the non-contact-type thermometer, power consumption was measured. As a result, as shown in FIG. 11, the electrode temperature for 30 minutes after the start of discharge was 62.3 ° C. for the high voltage electrode and 66.6 ° C. for the ground electrode. Moreover, as shown in FIG. 12, the power consumption was 38W.

1…誘電体管
2…ベンチュリ管
3…高電圧電極
4…接地電極
5…電源
6…原料ガス導入口
7…オゾン吐出口
8…枝管
9…オゾン移送管
10…逆止弁
11…調節弁
12…原料ガス
DESCRIPTION OF SYMBOLS 1 ... Dielectric tube 2 ... Venturi tube 3 ... High voltage electrode 4 ... Ground electrode 5 ... Power supply 6 ... Source gas introduction port 7 ... Ozone discharge port 8 ... Branch pipe 9 ... Ozone transfer pipe 10 ... Check valve 11 ... Control valve 12 ... Raw material gas

Claims (9)

供給される原料ガスに電圧を印加することによって誘電体管の内部に放電を生起させオゾンを生成させ、該オゾンを流体に溶解させる装置において、ベンチュリ管の外周に該誘電体管を配置し密閉空間を形成し、該誘電体管の一方に該原料ガスを供給するための原料ガス導入口を設け、他方に生成された該オゾンを該ベンチュリ管の内部に導入するためのオゾン排出口が設けられ、該誘電体管の密閉空間内と該ベンチュリ管の枝管がオゾン移送管で連通され、該枝管に流体の逆流を防止する逆止弁が具備され、該誘電体管の外側に高電圧電極を配置し、該ベンチュリ管の内部の流体又は該ベンチュリ管から吐出される流体に接地電極が配設されていることを特徴とするオゾン生成及びオゾン溶解装置。   In a device for generating ozone by generating a voltage in the dielectric tube by applying a voltage to the supplied raw material gas and dissolving the ozone in the fluid, the dielectric tube is disposed on the outer periphery of the venturi tube and sealed. A raw material gas introduction port for forming a space and supplying the raw material gas to one of the dielectric tubes is provided, and an ozone discharge port for introducing the generated ozone into the venturi tube is provided on the other side. The branch pipe of the venturi pipe and the branch pipe of the venturi pipe are communicated with each other by an ozone transfer pipe, and a check valve for preventing a back flow of fluid is provided in the branch pipe. An ozone generation and ozone dissolution apparatus characterized in that a voltage electrode is disposed, and a ground electrode is disposed in a fluid inside the venturi tube or a fluid discharged from the venturi tube. 供給される原料ガスに電圧を印加することによって誘電体管の内部に放電を生起させオゾンを生成させ、該オゾンを流体に溶解させる装置において、ベンチュリ管の外周に該誘電体管を配置し密閉空間を形成し、該誘電体管の一方に該原料ガスを供給するための原料ガス導入口を設け、他方に生成された該オゾンを該ベンチュリ管の内部に導入するためのオゾン排出口が設けられ、該誘電体管の密閉空間内と該ベンチュリ管の枝管がオゾン移送管で連通され、該枝管に流体の逆流を防止する逆止弁が具備され、該誘電体管の外側に高電圧電極を配置し、該ベンチュリ管に接地電極が配設されていることを特徴とするオゾン生成及びオゾン溶解装置。   In a device for generating ozone by generating a voltage in the dielectric tube by applying a voltage to the supplied raw material gas and dissolving the ozone in the fluid, the dielectric tube is disposed on the outer periphery of the venturi tube and sealed. A raw material gas introduction port for forming a space and supplying the raw material gas to one of the dielectric tubes is provided, and an ozone discharge port for introducing the generated ozone into the venturi tube is provided on the other side. The branch pipe of the venturi pipe and the branch pipe of the venturi pipe are communicated with each other by an ozone transfer pipe, and a check valve for preventing a back flow of fluid is provided in the branch pipe. An ozone generation and ozone dissolution apparatus characterized in that a voltage electrode is disposed and a ground electrode is disposed on the venturi tube. 前記オゾン移送管に前記オゾンの流量を調節する調節弁が具備されていることを特徴とする請求項1又は2に記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to claim 1 or 2, wherein the ozone transfer pipe is provided with a control valve for adjusting a flow rate of the ozone. 前記接地電極がガラス被覆されていることを特徴とする請求項1乃至3のいずれかに記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to any one of claims 1 to 3, wherein the ground electrode is coated with glass. 前記誘電体管が少なくともセラミックスかガラスのいずれか一方であることを特徴とする請求項1乃至4のいずれかに記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to any one of claims 1 to 4, wherein the dielectric tube is at least one of ceramics and glass. 前記ベンチュリ管がセラミックス、ガラス、樹脂、金属のいずれか1つからなることを特徴とする請求項1乃至5のいずれかに記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to any one of claims 1 to 5, wherein the venturi tube is made of any one of ceramics, glass, resin, and metal. 前記誘電体管及び前記ベンチュリ管が石英ガラス製であることを特徴とする請求項1乃至6のいずれかに記載のオゾン生成及びオゾン溶解装置。   7. The ozone generation and ozone dissolution apparatus according to claim 1, wherein the dielectric tube and the venturi tube are made of quartz glass. 前記供給される原料ガスと前記流体の量が、気液比0.3以下であることを特徴とする請求項1乃至7のいずれかに記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to any one of claims 1 to 7, wherein an amount of the supplied source gas and the fluid is a gas-liquid ratio of 0.3 or less. オゾンが溶解した流体を再度前記ベンチュリ管に返送し、流体を循環させる構造を有していることを特徴とする請求項1乃至8のいずれかに記載のオゾン生成及びオゾン溶解装置。   The ozone generation and ozone dissolution apparatus according to any one of claims 1 to 8, further comprising a structure in which the fluid in which ozone is dissolved is returned to the venturi pipe and the fluid is circulated.
JP2011277951A 2011-12-20 2011-12-20 Ozone generator and ozone dissolver Expired - Fee Related JP5915884B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011277951A JP5915884B2 (en) 2011-12-20 2011-12-20 Ozone generator and ozone dissolver
PCT/JP2012/077742 WO2013094309A1 (en) 2011-12-20 2012-10-26 Ozone production and ozone dissolution device
KR1020147016476A KR20140110866A (en) 2011-12-20 2012-10-26 Ozone production and ozone dissolution device
TW101143451A TW201335061A (en) 2011-12-20 2012-11-21 Ozone production and ozone dissolution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277951A JP5915884B2 (en) 2011-12-20 2011-12-20 Ozone generator and ozone dissolver

Publications (2)

Publication Number Publication Date
JP2013129544A true JP2013129544A (en) 2013-07-04
JP5915884B2 JP5915884B2 (en) 2016-05-11

Family

ID=48668210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277951A Expired - Fee Related JP5915884B2 (en) 2011-12-20 2011-12-20 Ozone generator and ozone dissolver

Country Status (4)

Country Link
JP (1) JP5915884B2 (en)
KR (1) KR20140110866A (en)
TW (1) TW201335061A (en)
WO (1) WO2013094309A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017456A1 (en) * 2014-07-28 2016-02-04 日本碍子株式会社 Treatment device, sterilization device, sterilization water, and sterilization method
WO2023199604A1 (en) * 2022-04-13 2023-10-19 日本未来科学研究所合同会社 Liquid treatment apparatus and liquid treatment method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106629996B (en) * 2016-12-31 2019-10-18 陕西师范大学 A kind of microbubble circulation reaction system
CN107673445B (en) * 2017-09-29 2020-09-25 昆明理工大学 Method for treating wastewater by venturi discharge plasma
KR102115843B1 (en) * 2018-10-24 2020-05-27 인하대학교 산학협력단 Apparatus for synthesizing O3 water through treatment of microplasma
KR102192040B1 (en) * 2019-03-19 2020-12-16 썬더에코 주식회사 A system for producing water containing nitrogen oxides
KR102231982B1 (en) * 2019-03-19 2021-03-25 썬더에코 주식회사 Odor removal system using Thunderbolt discharge of electricity and micro bubble water
CN111559790B (en) * 2020-05-21 2023-06-20 重庆工商大学 Pollutant treatment device of venturi type water mist discharge plasma
KR102564803B1 (en) * 2021-05-20 2023-08-07 홍승훈 System for dissolving gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184505A (en) * 1989-01-12 1990-07-19 Senichi Masuda Ozonizer and production device of ozone using the ozonizer
JP2000354747A (en) * 1999-06-15 2000-12-26 Ishigaki Co Ltd Ozone gas dissolving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184505A (en) * 1989-01-12 1990-07-19 Senichi Masuda Ozonizer and production device of ozone using the ozonizer
JP2000354747A (en) * 1999-06-15 2000-12-26 Ishigaki Co Ltd Ozone gas dissolving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017456A1 (en) * 2014-07-28 2016-02-04 日本碍子株式会社 Treatment device, sterilization device, sterilization water, and sterilization method
WO2023199604A1 (en) * 2022-04-13 2023-10-19 日本未来科学研究所合同会社 Liquid treatment apparatus and liquid treatment method

Also Published As

Publication number Publication date
WO2013094309A1 (en) 2013-06-27
KR20140110866A (en) 2014-09-17
TW201335061A (en) 2013-09-01
JP5915884B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5915884B2 (en) Ozone generator and ozone dissolver
JP5884074B2 (en) Liquid processing apparatus and liquid processing method
US9814127B2 (en) Liquid treatment device and liquid treatment method
JP2013206767A (en) Plasma generation method and device
TW201309105A (en) Plasma generating method and generating device
WO2007147097A2 (en) Fluid treatment using plasma technology
JP2008178870A (en) Plasma generator, method for producing radical, and washing and cleaning apparatus
KR101265489B1 (en) Advanced water treatment apparatus using plasma
JP6097942B2 (en) Liquid processing apparatus and liquid processing method
CN211570217U (en) Organic waste liquid treatment device of cylinder type DBD plasma
KR102110637B1 (en) Plasma irradiation method and plasma irradiation device
CN207573691U (en) A kind of dielectric impedance low-temperature plasma device of liquid waterfall type processing
Son et al. Electrical discharges with liquid electrodes used in water decontamination
CN107896413A (en) The dielectric impedance low-temperature plasma device and method of work of liquid waterfall type processing
RU173849U1 (en) PLASMA-CHEMICAL REACTOR FOR LIQUID PROCESSING OF BARRIER DISCHARGE
KR20120111544A (en) Advanced water treatment apparatus using plasma
US20150136672A1 (en) Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
JP2015018654A (en) Plasma processing device and method
JPH0316200B2 (en)
TWI383957B (en) Normal-pressure plasma-based apparatus for processing waste water by mixing the waste water with working gas
Ma et al. A study of plasma inactivation effects on Desulfovibrio bastinii in liquid using dielectric barrier discharge
JP2002126769A (en) Ozone water treatment apparatus
KR101699039B1 (en) Apparatus for manufacturing sterilization water
RU156915U1 (en) DEVICE FOR CLEANING AND DISINFECTING WATER
KR20150083498A (en) Apparatus for generating high density ozone gas dissolved water using electromagnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5915884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees