JP2002126769A - Ozone water treatment apparatus - Google Patents

Ozone water treatment apparatus

Info

Publication number
JP2002126769A
JP2002126769A JP2000328825A JP2000328825A JP2002126769A JP 2002126769 A JP2002126769 A JP 2002126769A JP 2000328825 A JP2000328825 A JP 2000328825A JP 2000328825 A JP2000328825 A JP 2000328825A JP 2002126769 A JP2002126769 A JP 2002126769A
Authority
JP
Japan
Prior art keywords
water
ozone
pipe
gas
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000328825A
Other languages
Japanese (ja)
Inventor
Masayuki Sato
正之 佐藤
Shunsuke Hosokawa
俊介 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASUDA KENKYUSHO KK
Original Assignee
MASUDA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MASUDA KENKYUSHO KK filed Critical MASUDA KENKYUSHO KK
Priority to JP2000328825A priority Critical patent/JP2002126769A/en
Publication of JP2002126769A publication Critical patent/JP2002126769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2441Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes characterised by the physical-chemical properties of the dielectric, e.g. porous dielectric

Abstract

PROBLEM TO BE SOLVED: To simplify the water or gas piping of an ozone water treatment apparatus, to prevent the loss of ozone by ozone gas piping and to enhance the cooling efficiency of a discharge space by cooling water to prevent the lowering of ozone forming efficiency caused by the generation of heat. SOLUTION: A high voltage electrode is placed at the central part in a porous pipe to form a gas passage between the porous pipe and the high voltage power electrode and an earth electrode is placed on the outside of the porous pipe and a passage of water to be treated is formed to the porous pipe in a direct contact state and a high voltage high frequency power supply or a high voltage pulse power supply is connected across the high voltage electrode and the earth electrode to form ozone in the gas passage to supply ozone gas to water to be treated in a fine bubble state through a dielectric.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、オゾンガスを処理
すべき水に注入して水処理を行うためのオゾン処理装置
やオゾン水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone treatment apparatus and an ozone water producing apparatus for performing water treatment by injecting ozone gas into water to be treated.

【0002】[0002]

【従来の技術】従来、オゾンガスは放電式オゾナイザー
で製造され、それをバブラー、エジェクター、スタティ
ックミキサーなどの気液混合部で処理すべき水に混合接
触させることで、オゾン水の生成や水処理を行ってい
た。また、放電式オゾナイザーには水を別途供給して冷
却を行う場合が多く、水配管が複雑となるうえ、装置が
大きくなってしまう。
2. Description of the Related Art Conventionally, ozone gas is produced by a discharge-type ozonizer, and the ozone gas is mixed and brought into contact with water to be treated in a gas-liquid mixing section such as a bubbler, an ejector, a static mixer, etc., thereby producing ozone water and treating water. I was going. In many cases, water is separately supplied to the discharge-type ozonizer to cool the discharge-type ozonizer, so that the water piping becomes complicated and the device becomes large.

【0003】また、放電式オゾナイザーの水冷却では、
無声放電式オゾナイザーならびに沿面放電式オゾナイザ
ーのいずれの場合も稠密な誘電体を介して放電空間であ
るガス通路を冷却するために誘電体の熱抵抗に阻害され
放電空間の冷却が十分に行うことができず、オゾン発生
効率が低下してしまう。
[0003] In the water cooling of the discharge type ozonizer,
In both the silent discharge ozonizer and the creepage discharge ozonizer, the gas passage, which is the discharge space, is cooled through the dense dielectric, which is hindered by the thermal resistance of the dielectric and can sufficiently cool the discharge space. No, the ozone generation efficiency is reduced.

【0004】さらに、オゾナイザーで生成したオゾン
も、オゾナイザーから気液混合部間の配管中でその濃度
が低下するおそれがあった。
[0004] Furthermore, the concentration of ozone generated by the ozonizer may decrease in the pipe between the ozonizer and the gas-liquid mixing section.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は処理すべき水をそのまま放電式オゾナイザー
の冷却水として用いることで水配管を簡素化するととも
に、放電空間の冷却効率を改善し、生成された直後の高
濃度オゾンを途中の配管でロスすることなく水に混合・
溶解する手段を提供することにある。
The problem to be solved by the present invention is to simplify the water piping by using the water to be treated as it is as the cooling water for the discharge type ozonizer, and to improve the cooling efficiency of the discharge space. , Mixing high-concentration ozone immediately after generation with water without loss in the piping on the way
It is to provide a means for dissolution.

【0006】[0006]

【課題を解決するとめの手段】上記課題を解決するため
に、本発明のオゾン水処理装置では、多孔質誘電体パイ
プの内部中央に高電圧電極を置いて多孔質誘電体パイプ
と高電圧電極との間にガス通路を形成し、多孔質誘電体
パイプの外部に接地電極を置くとともにこの多孔質誘電
体パイプに直接して処理すべき水の通路を形成し、これ
ら高電圧電極と接地電極間に高電圧高周波電源や高電圧
パルス電源を接続することで該ガス通路においてオゾン
を生成のうえ該多孔質誘電体を通してオゾンガスを処理
すべき水に細泡状態で供給することを特徴とする。
In order to solve the above problems, in the ozone water treatment apparatus of the present invention, a high voltage electrode is placed at the center of the inside of the porous dielectric pipe, and the porous dielectric pipe and the high voltage electrode are connected to each other. A gas path is formed between the high-voltage electrode and the ground electrode, and a ground electrode is placed outside the porous dielectric pipe, and a water path to be treated is formed directly on the porous dielectric pipe. By connecting a high-voltage high-frequency power supply or a high-voltage pulse power supply therebetween, ozone is generated in the gas passage, and the ozone gas is supplied in a fine bubble state to the water to be treated through the porous dielectric.

【0007】この場合、多孔質誘電体パイプとしては、
ポーラスセラミックパイプが最も適しているが、耐オゾ
ン性のあるフッ素パイプを用いても良い。また、多孔質
誘電体パイプの代わりにステンレス製焼結多孔質体など
の多孔質金属パイプを用いても良い。
In this case, as the porous dielectric pipe,
A porous ceramic pipe is most suitable, but a fluorine pipe having ozone resistance may be used. Further, a porous metal pipe such as a sintered porous stainless steel body may be used instead of the porous dielectric pipe.

【0008】いずれの場合も多孔質パイプを介して処理
水(冷却水)とガス通路(放電空間)が接しており、ガ
ス圧を水圧より高く保っておくと水は放電空間に進入す
ることなく、効果的に放電空間を冷却することができ
る。さらに、多孔質パイプのポア径と肉厚、ガス圧と水
圧を適宜設定することにより、気液混合比(処理水に注
入するオゾンガスの水に対する比率)を最適に保つこと
ができる。
In any case, the treated water (cooling water) and the gas passage (discharge space) are in contact with each other via a porous pipe, and if the gas pressure is kept higher than the water pressure, the water does not enter the discharge space. Thus, the discharge space can be effectively cooled. Furthermore, by appropriately setting the pore diameter and wall thickness, the gas pressure and the water pressure of the porous pipe, the gas-liquid mixing ratio (the ratio of ozone gas injected into the treated water to water) can be kept optimal.

【0009】この場合、ガス圧の方が水圧より高く保っ
たとしても、多孔質パイプでは毛細管現象により多孔質
パイプ内部にまで水は進入しようとする。一方、ガスは
多孔質パイプを通過して処理水に細泡となって出てい
く。その結果、多孔質パイプは水とガスの両方で冷却さ
れ、放電空間を加熱するおそれがなくなる。
In this case, even if the gas pressure is kept higher than the water pressure, water tends to enter the inside of the porous pipe due to the capillary phenomenon in the porous pipe. On the other hand, the gas passes through the porous pipe and comes out as fine bubbles in the treated water. As a result, the porous pipe is cooled by both water and gas, and there is no risk of heating the discharge space.

【0010】また、オゾンガスはそのまま、途中の配管
なしにオゾン発生空間(放電空間、ガス通路)を形成す
る多孔質パイプを通過して処理水に供給されるために、
オゾン発生空間と混合部との間でオゾン濃度が低下する
ことも防止できる。
[0010] Further, the ozone gas is supplied to the treated water as it is through the porous pipe forming the ozone generating space (discharge space, gas passage) without any intermediate piping,
A decrease in ozone concentration between the ozone generation space and the mixing section can also be prevented.

【0011】これらの結果、本発明では冷却水配管と処
理水配管が1つとなるうえに、オゾンガス出口を別途設
ける必要がないため、配管に手間とコストが大幅に低減
できる。
As a result, according to the present invention, since the cooling water pipe and the treated water pipe become one and there is no need to separately provide an ozone gas outlet, the labor and cost of the pipe can be greatly reduced.

【0012】さらに、従来のオゾナイザーで調密な誘電
体を冷却する水の質によっては、冷却水中の有機物や微
生物が誘電体表面で膜を形成し冷却水と誘電体の熱接触
を妨げる場合があったが、本発明によるオゾン水処理装
置では熱交換部の多孔質パイプには常にオゾンが供給さ
れているため、オゾンの殺菌および有機物分解作用によ
り熱交換部は常に正常に保たれ熱交換効率の低下をきた
さないと言う副次的な効果もある。
Further, depending on the quality of water used to cool a dense dielectric with a conventional ozonizer, organic substances and microorganisms in the cooling water may form a film on the dielectric surface and hinder thermal contact between the cooling water and the dielectric. However, in the ozone water treatment apparatus according to the present invention, since the ozone is always supplied to the porous pipe of the heat exchange section, the heat exchange section is always maintained normally by the sterilization of ozone and the action of decomposing organic substances, so that the heat exchange efficiency is improved. There is also a side effect of not causing a decrease.

【0013】本発明では、多孔質パイプの内部中央に置
いた高電圧電極と多孔質パイプの間に形成されたガス通
路に放電を生じせしめる。多孔質誘電体パイプを用いた
場合には当該多孔質誘電体パイプ内部の細孔でも放電が
発生するが、いかなる場合もアーク放電に移行しない安
定な放電を保つ必要がある。そのために、電源としてパ
ルス幅1μs以下の急峻パルスを発生させるパルス電源
を用いると良い。パルス高電圧を高電圧電極と多孔質誘
電体パイプの外部に形成した接地電極や多孔質金属パイ
プ間に印加すると、十分強度の強い放電が発生するがア
ーク放電に移行するまえに電圧値が十分低下するために
安定な放電を保つことが可能である。
According to the present invention, a discharge is caused in a gas passage formed between the high-voltage electrode placed at the center of the inside of the porous pipe and the porous pipe. When a porous dielectric pipe is used, discharge occurs even in pores inside the porous dielectric pipe, but it is necessary to maintain stable discharge that does not shift to arc discharge in any case. Therefore, it is preferable to use a pulse power supply that generates a steep pulse having a pulse width of 1 μs or less as a power supply. When a pulsed high voltage is applied between the high-voltage electrode and the ground electrode or porous metal pipe formed outside the porous dielectric pipe, a sufficiently strong discharge occurs, but the voltage value is sufficient before the transition to arc discharge. It is possible to maintain a stable discharge due to the decrease.

【0014】多孔質誘電体パイプを用いた場合、パイプ
外部に接地電極を置く必要があるが、低抵抗の処理水が
当該多孔質誘電体パイプの外面を覆っているため外面全
面がほぼ同電位になると考えて良い。また、多孔質誘電
体パイプはパルス放電により電荷を蓄積していくが、や
はり、処理水が多孔質体にまで毛細管現象で進入するた
め、蓄積していこうとする電荷は速やかに緩和されてし
まいパルス印加ごとの電荷蓄積はなくなる。その結果、
パルスの印加周波数をあげてもガス通路には十分大きな
電界が形成され、強度の強い放電がパルスを印加する毎
に発生する。
When a porous dielectric pipe is used, it is necessary to place a ground electrode outside the pipe, but since the treated water of low resistance covers the outer surface of the porous dielectric pipe, the entire outer surface has substantially the same potential. You can think that it will be. In addition, the porous dielectric pipe accumulates charges by pulse discharge, but again, the treated water enters the porous body by capillary action, so that the charges that are going to accumulate are quickly alleviated. There is no charge accumulation for each pulse application. as a result,
Even if the pulse application frequency is increased, a sufficiently large electric field is formed in the gas passage, and a strong discharge is generated every time the pulse is applied.

【0015】一方、電源として高周波高電圧電源(交流
電源)を用いる場合は、多孔質パイプの内部中央に設置
する高電圧電極を稠密な誘電体で被覆すると良い。高周
波放電がアークに移行しようとしても高電圧電極を被覆
した誘電体がバリアとなって、アークの移行を防止でき
る。もちろん、パルス電源を用いた場合も誘電体の被覆
を行うことでより安定な放電が期待できるが、構造が複
雑になるために誘電体の被覆はなくても良い。
On the other hand, when a high-frequency high-voltage power supply (AC power supply) is used as the power supply, a high-voltage electrode provided at the center of the inside of the porous pipe is preferably covered with a dense dielectric. Even if the high-frequency discharge attempts to shift to the arc, the dielectric covering the high-voltage electrode serves as a barrier, and the shift of the arc can be prevented. Of course, even when a pulsed power supply is used, more stable discharge can be expected by coating the dielectric, but the dielectric coating may not be required because the structure becomes complicated.

【発明の実施の形態】以下、本発明について実施例に基
づき図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

【0016】[0016]

【実施例】図1は本発明の第1の実施例を示すオゾン水
処理装置である。アルミナセラミックなどで成形された
多孔質誘電体パイプ23aの内部中央に高電圧電極25
を配している。また、多孔質誘電体パイプ23aの代襲
に接して、又は、近傍に、網状、螺旋状、リング状など
に成型された接地電極24が置かれている。
FIG. 1 shows an ozone water treatment apparatus according to a first embodiment of the present invention. A high voltage electrode 25 is formed at the center of the inside of a porous dielectric pipe 23a formed of alumina ceramic or the like.
Is arranged. A ground electrode 24 formed in a mesh shape, a spiral shape, a ring shape, or the like is placed in contact with or in proximity to the porous dielectric pipe 23a.

【0017】高電圧電極25はブッシング35を、ま
た、接地電極24は電流導入端子31をそれぞれ介して
電源33に接続されている。電源33としては高電圧パ
ルス電源や高周波高電圧電源を用いるが、特に、高周波
高電圧電源を用いる場合は高電圧電極25を稠密な誘電
体26で被覆すると良い。
The high voltage electrode 25 is connected to a bushing 35, and the ground electrode 24 is connected to a power supply 33 via a current introduction terminal 31. As the power supply 33, a high-voltage pulse power supply or a high-frequency high-voltage power supply is used. In particular, when a high-frequency high-voltage power supply is used, the high-voltage electrode 25 is preferably covered with a dense dielectric 26.

【0018】オゾンの原料となる空気や酸素ガスを原料
ガス入口11より多孔質誘電体パイプ23aと高電圧電
極25の間に形成されたガス通路(放電空間)13に供
給する。高電圧パルス電源や高周波高電圧電源を稼働さ
せると、ガス通路(放電空間)13ならびに多孔質誘電
体パイプ23a内部の細孔で放電が発生する。この放電
は電子温度は高いがイオンや中性分子の温度の低い低温
プラズマを発生する。低温プラズマ中では酸素分子が効
率よく解離し、酸素原子を発生する。酸素原子は酸素分
子と3体衝突することでオゾンが生成される。
Air or oxygen gas serving as a source of ozone is supplied from a source gas inlet 11 to a gas passage (discharge space) 13 formed between the porous dielectric pipe 23a and the high-voltage electrode 25. When a high-voltage pulse power supply or a high-frequency high-voltage power supply is operated, discharge occurs in the gas passage (discharge space) 13 and the pores inside the porous dielectric pipe 23a. This discharge generates low-temperature plasma in which the electron temperature is high but the temperature of ions and neutral molecules is low. In low-temperature plasma, oxygen molecules are efficiently dissociated to generate oxygen atoms. Oxygen is generated by three collisions of oxygen atoms with oxygen molecules.

【0019】一方、処理すべき水は水入口10より多孔
質誘電体パイプ23aと容器21の間に形成された水の
通路12を通って水出口14から排出される。この水の
通路12を通過する間にガス通路(放電空間)13で生
成されたオゾンガスが多孔質誘電体パイプ23aを通過
して水の通路12に細泡となって処理すべき水に混合す
る。
On the other hand, the water to be treated is discharged from the water inlet 10 through the water passage 12 formed between the porous dielectric pipe 23a and the container 21 from the water inlet 10. The ozone gas generated in the gas passage (discharge space) 13 while passing through the water passage 12 passes through the porous dielectric pipe 23a, becomes fine bubbles in the water passage 12, and is mixed with the water to be treated. .

【0020】その結果、処理すべき水中の有機物、CO
D,BODなどはオゾンにより分解処理される。また、
処理すべき水が清浄な水の場合、オゾン水が水出口14
から排出される。
As a result, the organic matter in the water to be treated, CO
D, BOD, etc. are decomposed by ozone. Also,
When the water to be treated is clean water, ozone water is supplied to the water outlet 14.
Is discharged from

【0021】ガス通路(放電空間)13ならびに多孔質
誘電体パイプ23a内部に放電で注入されたエネルギー
のうちオゾン生成に用いられるのはたかだか20%で残
りは熱となってしまう。熱が蓄積し、特に多孔質誘電体
パイプ23aが高温となってしまうと、オゾン生成効率
が大幅に低下してしまう。すなわち、3体衝突によるオ
ゾン合成反応が熱により阻害されるうえに、せっかく生
成したオゾンも多孔質誘電体パイプ23aを通過する間
に熱分解する。
Of the energy injected by the discharge into the gas passage (discharge space) 13 and the inside of the porous dielectric pipe 23a, only 20% is used for generating ozone, and the rest becomes heat. When heat accumulates, and particularly when the temperature of the porous dielectric pipe 23a becomes high, the ozone generation efficiency is greatly reduced. That is, the ozone synthesis reaction due to the three-body collision is inhibited by heat, and the generated ozone is thermally decomposed while passing through the porous dielectric pipe 23a.

【0022】水の通路12を通る処理すべき水は多孔質
誘電体パイプ23aに直接接触しているため多孔質誘電
体パイプ23aを冷却することができる。多孔質パイプ
はガスの細孔が非常に多数あるために、元来、熱伝導性
が悪い。しかしながら、水が多孔質誘電体パイプ23a
に直接接して冷却するため、冷却は比較的有効に行われ
る。さらに、多孔質誘電体パイプ23aにも水は毛細管
力によって進入しようとする。一方、オゾンガスも多孔
質誘電体パイプ23aを通過しようとするため、気液界
面が多孔質誘電体パイプ23a内部に形成される結果、
多孔質パイプの熱伝導性も改善され冷却が効率的にな
る。
Since the water to be treated passing through the water passage 12 is in direct contact with the porous dielectric pipe 23a, the porous dielectric pipe 23a can be cooled. Porous pipes inherently have poor thermal conductivity due to the large number of gas pores. However, when water is injected into the porous dielectric pipe 23a,
The cooling is relatively effective because the cooling is performed in direct contact with the cooling water. Further, water tends to enter the porous dielectric pipe 23a by capillary force. On the other hand, ozone gas also tends to pass through the porous dielectric pipe 23a, so that a gas-liquid interface is formed inside the porous dielectric pipe 23a,
The thermal conductivity of the porous pipe is also improved and cooling is efficient.

【0023】電源33としてパルス高電圧電源を用いる
場合は、パルス幅が1μs以下、好ましくは500ns
以下とすることで放電がアーク放電に移行することや、
多孔質誘電体パイプ23aを絶縁破壊することを防止す
る必要がある。
When a pulse high voltage power supply is used as the power supply 33, the pulse width is 1 μs or less, preferably 500 ns.
By changing the discharge to arc discharge,
It is necessary to prevent the dielectric breakdown of the porous dielectric pipe 23a.

【0024】この場合、高電圧電極25は稠密な誘電体
26で被覆することもアーク放電防止対策として有効で
ある。特に、電源33として高周波高電圧電源を用いる
場合、誘電体26は不可欠なものである。すなわち、誘
電体26がないと高周波放電は容易にアークに移行する
ためで、無声放電法の誘電体バリアと同等なものと考え
て良い。
In this case, covering the high-voltage electrode 25 with a dense dielectric 26 is also effective as an arc discharge prevention measure. In particular, when a high-frequency high-voltage power supply is used as the power supply 33, the dielectric 26 is indispensable. That is, since the high-frequency discharge easily shifts to an arc without the dielectric 26, it can be considered to be equivalent to the dielectric barrier of the silent discharge method.

【0025】接地電極24として多孔質誘電体パイプ2
3aの外周近傍に網状、螺旋状、リング状などに成型さ
れたガスや水が容易に通過するような電極を設ける。水
は接地電極24、ならびに、多孔質誘電体パイプの外周
にも直接接する。純水を用いる場合は別として、水は導
電性であるため多孔質誘電体パイプの外周は接地電位に
保たれると考えて良い。
As the ground electrode 24, the porous dielectric pipe 2
An electrode is provided near the outer periphery of 3a so that gas or water formed in a net shape, a spiral shape, a ring shape, or the like can easily pass therethrough. Water directly contacts the ground electrode 24 and the outer periphery of the porous dielectric pipe. Apart from the case of using pure water, it can be considered that the outer periphery of the porous dielectric pipe is kept at the ground potential because water is conductive.

【0026】パルス高電圧電源を用いた場合、通常、正
極性パルスを印加するが、多孔質誘電体パイプ内面はパ
ルス放電で正イオンが蓄積されていく。通常、電荷緩和
時間τは誘電体パイプの抵抗率σと誘電率εの積の1/
2乗に比例する。ところが、水が多孔質誘電体パイプ外
面および毛細管力でパイプ内部にまで侵入しており、σ
が大幅に低下するため、パイプ内面に蓄積するイオンは
速やかに緩和される。その結果、パルスを印加する度に
蓄積するはずの電荷による電界は発生せず、パルス印加
によってガス通路(放電空間)13に形成される電界強
度を大きく保つことが可能である。
When a pulsed high voltage power supply is used, a positive polarity pulse is usually applied, but positive ions are accumulated on the inner surface of the porous dielectric pipe by pulse discharge. Normally, the charge relaxation time τ is 1 / (product of the resistivity σ of the dielectric pipe and the dielectric constant ε).
It is proportional to the square. However, water has penetrated into the outer surface of the porous dielectric pipe and the inside of the pipe by capillary force, and σ
Is greatly reduced, so that the ions accumulated on the inner surface of the pipe are quickly alleviated. As a result, an electric field due to charges that should accumulate every time a pulse is applied is not generated, and the intensity of the electric field formed in the gas passage (discharge space) 13 by the pulse application can be kept large.

【0027】図2は図1の多孔質誘電体パイプ23aの
代わりに多孔質金属パイプ23bを用いたものであり、
この場合は接地電極は多孔質金属パイプ23bそのもの
とすることになる。その他の原理は図1の場合と全く同
様である。
FIG. 2 shows a case where a porous metal pipe 23b is used instead of the porous dielectric pipe 23a of FIG.
In this case, the ground electrode is the porous metal pipe 23b itself. Other principles are exactly the same as in FIG.

【0028】図3は本発明によるオゾン水処理装置1を
水処理システムに接続した場合の1例を示す。オゾン水
処理装置1に乾燥空気や酸素などの原料ガス源41と処
理すべき水をポンプ45によって、それぞれ配管43な
らびに46で接続する。
FIG. 3 shows an example in which the ozone water treatment apparatus 1 according to the present invention is connected to a water treatment system. A source gas source 41 such as dry air or oxygen and water to be treated are connected to the ozone water treatment apparatus 1 by pipes 43 and 46 by a pump 45.

【0029】オゾン水処理装置1でオゾンガスを混合さ
れた処理すべき水は、スタティックミキサー47でオゾ
ンガスの混合・溶解が促進され処理タンク48の下部か
ら導入される。この処理タンク48では気液分離が行わ
れ、処理すべき水に溶解しなかったガス、特に残存オゾ
ンガスが分離される。残存オゾンガスはチャッキ弁49
を通ってオゾンキラー50で酸素に分解されて外界に放
出される。
The water to be treated mixed with the ozone gas in the ozone water treatment apparatus 1 is promoted by the static mixer 47 to mix and dissolve the ozone gas, and is introduced from the lower part of the treatment tank 48. In the processing tank 48, gas-liquid separation is performed, and gas that has not been dissolved in the water to be processed, particularly residual ozone gas, is separated. Residual ozone gas is checked valve 49
Then, it is decomposed into oxygen by the ozone killer 50 and released to the outside.

【0030】処理タンク48では、未溶解のオゾンガス
は気泡となって上昇し、さらなる溶解が進む。また、処
理タンク48には図示はしていないが、過酸化水素水や
紫外線ランプなどを併用する酸化促進法を用いても良
い。こうしてオゾン処理の結果清浄化された水は水出口
51から排出される。さらに、混合タンク48の水出口
51を活性炭層や活性汚泥タンクに導いて水処理システ
ムを構築しても良い。
In the processing tank 48, the undissolved ozone gas rises as bubbles and further dissolution proceeds. Although not shown in the processing tank 48, an oxidation promoting method using a hydrogen peroxide solution, an ultraviolet lamp, or the like may be used. The water purified as a result of the ozone treatment is discharged from the water outlet 51. Further, the water outlet 51 of the mixing tank 48 may be led to an activated carbon layer or an activated sludge tank to construct a water treatment system.

【0031】図3に示したのは水処理システムに本オゾ
ン水処理装置を組み込んだ1例であり、処理すべき水の
性状、量、目的とする清浄度などにより、システム構成
は自由に変更できることは言うまでもない。
FIG. 3 shows an example in which the present ozone water treatment apparatus is incorporated in a water treatment system. The system configuration can be freely changed according to the properties and amount of water to be treated and the desired cleanliness. It goes without saying that you can do it.

【0032】勿論、処理すべき水が清浄な水で、高濃度
オゾン水を得ることを目的とすることも可能である。ス
タティックミキサー47や処理タンク48、オゾンキラ
ー50を省くことも目的とするオゾン水濃度、余剰オゾ
ンガス濃度によっては可能である。
Of course, it is also possible to aim at obtaining high concentration ozone water with the water to be treated being clean water. It is also possible to omit the static mixer 47, the processing tank 48, and the ozone killer 50 depending on the ozone water concentration and the excess ozone gas concentration.

【0033】図3において、原料ガス圧力Pgと処理す
べき水の圧力Pwは常にPg>Pwになるように設定し
ておく必要がする。すなわち、図1における多孔質誘電
体パイプ23aや図2における多孔質金属パイプ23b
では常にガスがこれらを通して水に混合するように設定
されなければならない。逆に水がガス通路(放電空間)
13に侵入すると放電が不安定になる上、オゾン発生効
率が大幅に低下することになる。
In FIG. 3, the source gas pressure Pg and the pressure Pw of the water to be treated need to be set so that Pg> Pw is always satisfied. That is, the porous dielectric pipe 23a in FIG. 1 and the porous metal pipe 23b in FIG.
The gas must always be set up to mix with the water through these. Conversely, water is a gas passage (discharge space)
When the intrusion occurs, the discharge becomes unstable and the ozone generation efficiency is greatly reduced.

【0034】また、原料ガス圧力Pgと処理すべき水の
圧力Pwによって、水とオゾンガスの混合比は変わるた
め、原料ガス圧力Pgと処理すべき水の圧力Pwを細か
く制御することが望ましく、例えば、Pwを検知しなが
ら、常に設定圧力差△PになるようにPgを制御するこ
とが考えられが、ここでは制御回路は省略している。
Further, since the mixing ratio of water and ozone gas changes depending on the source gas pressure Pg and the pressure Pw of the water to be treated, it is desirable to finely control the pressure Pg of the source gas and the pressure Pw of the water to be treated. , Pw while controlling Pg such that the set pressure difference ΔP is always obtained, but the control circuit is omitted here.

【0035】[0035]

【発明の効果】以上説明した通り、本発明のオゾン水処
理装置は放電空間で生成したオゾンガスを直接配管なし
に多孔質パイプを介して直接接触する水の通路に細泡と
して供給するため、途中の配管でのオゾンの損失もな
い。さらに、処理すべき水がオゾン発生部の冷却水とし
て直接多孔質パイプを冷却するため、放電空間の冷却効
率も上がりオゾン発生効率の低下を防止できる。また、
これらの結果、オゾン水処理装置の配管は非常に簡素化
することが可能である。
As described above, the ozone water treatment apparatus of the present invention supplies the ozone gas generated in the discharge space as fine bubbles to the water passage directly contacting through the porous pipe without direct piping. There is no ozone loss in the piping. Further, since the water to be treated directly cools the porous pipe as the cooling water for the ozone generating section, the cooling efficiency of the discharge space is increased, and a decrease in the ozone generating efficiency can be prevented. Also,
As a result, the piping of the ozone water treatment device can be greatly simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例におけるオゾン水処理装
置の構成図の断面図である。
FIG. 1 is a sectional view of a configuration diagram of an ozone water treatment apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例におけるオゾン水処理装
置の構成図の断面図である。
FIG. 2 is a sectional view of a configuration diagram of an ozone water treatment apparatus according to a second embodiment of the present invention.

【図3】本発明によるオゾン水処理装置用いた水処理シ
ステムのブロック図である。
FIG. 3 is a block diagram of a water treatment system using the ozone water treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

20 容器フランジ(水入口部) 22 容器フランジ(水出口部) 30 配線 31 接地側配線 32 高圧側配線 42 ガス圧センサー 43 ガス配管 44 水圧センサー 45 ポンプ 46 水配管 Reference Signs List 20 container flange (water inlet part) 22 container flange (water outlet part) 30 wiring 31 ground side wiring 32 high pressure side wiring 42 gas pressure sensor 43 gas pipe 44 water pressure sensor 45 pump 46 water pipe

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D050 AB06 AB07 BB02 BC10 BD03 BD04 BD06 CA06 4G035 AA01 AB26 AE13 4G042 CA01 CC16 CE01 4K021 AA09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D050 AB06 AB07 BB02 BC10 BD03 BD04 BD06 CA06 4G035 AA01 AB26 AE13 4G042 CA01 CC16 CE01 4K021 AA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オゾンガスを処理すべき水に注入するオ
ゾン水処理装置において 多孔質誘電体パイプの内部中央に高電圧電極を置いて
多孔質誘電体パイプと高電圧電極との間にガス通路を形
成し、 多孔質誘電体パイプの外部に接地電極を置くとともに
この多孔質誘電体パイプに直接して処理すべき水の通路
を形成し、 これら高電圧電極と接地電極間に高電圧高周波電源や
高電圧パルス電源を接続することで該ガス通路において
オゾンを生成し、 該多孔質誘電体を通してオゾンガスを処理すべき水に
細泡状態で供給することを特徴とするオゾン水処理装置
In an ozone water treatment apparatus for injecting ozone gas into water to be treated, a high voltage electrode is placed in the center of the inside of a porous dielectric pipe, and a gas passage is provided between the porous dielectric pipe and the high voltage electrode. A ground electrode is placed outside of the porous dielectric pipe, and a water passage to be treated is formed directly on the porous dielectric pipe. An ozone water treatment apparatus characterized in that ozone is generated in the gas passage by connecting a high voltage pulse power supply, and ozone gas is supplied to the water to be treated in the form of fine bubbles through the porous dielectric.
【請求項2】 オゾンガスを処理すべき水に注入するオ
ゾン水処理装置において 多孔質金属パイプの内部中央に誘電体で高電圧電極を
置いて多孔質金属パイプと被覆高電圧電極の間にガス通
路を形成し、 多孔質金属パイプに直接して処理すべき水の通路を形
成し、 これら高電圧電極と多孔質金属パイプ間に高電圧高周
波電源や高電圧パルス電源を接続することで該ガス通路
においてオゾンを生成し、 該多孔質金属パイプを通してオゾンガスを処理すべき
水に細泡状態で供給することを特徴とするオゾン水処理
装置。
2. An ozone water treatment apparatus for injecting ozone gas into water to be treated, wherein a high voltage electrode made of a dielectric is placed in the center of the inside of the porous metal pipe, and a gas passage is provided between the porous metal pipe and the coated high voltage electrode. Forming a passage for water to be treated directly on the porous metal pipe, and connecting a high-voltage high-frequency power supply or a high-voltage pulse power supply between these high-voltage electrodes and the porous metal pipe to form the gas passage. Wherein the ozone gas is supplied to the water to be treated in the form of fine bubbles through the porous metal pipe.
【請求項3】 高電圧電極が誘電体で被覆されているこ
とを特徴とする請求項1ならびに2に記載のオゾン水処
理装置。
3. The ozone water treatment apparatus according to claim 1, wherein the high-voltage electrode is covered with a dielectric.
JP2000328825A 2000-10-27 2000-10-27 Ozone water treatment apparatus Pending JP2002126769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328825A JP2002126769A (en) 2000-10-27 2000-10-27 Ozone water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328825A JP2002126769A (en) 2000-10-27 2000-10-27 Ozone water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2002126769A true JP2002126769A (en) 2002-05-08

Family

ID=18805618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328825A Pending JP2002126769A (en) 2000-10-27 2000-10-27 Ozone water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2002126769A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013339A (en) * 2002-08-05 2004-02-14 이강중 Principle of Invention Using Space Generation and Natural Principle Electrolysis of seawater with laser light
KR100491833B1 (en) * 2001-09-10 2005-05-27 이학주 Water discharge in a dielectric barrier discharge system to generate an ozonated water
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
CN103404236A (en) * 2011-03-28 2013-11-20 松下电器产业株式会社 Plasma generator and cleaning/purification apparatus using same
CN103523856A (en) * 2013-09-09 2014-01-22 河海大学常州校区 Water mist discharge and ultrasound synergetic degradation wastewater treatment device and running method thereof
EP3562276A1 (en) * 2018-04-23 2019-10-30 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device for plasma-supported treatment of liquids
EP4073003A4 (en) * 2019-12-11 2024-01-17 Plasmaleap Tech Pty Ltd Plasma water treatment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491833B1 (en) * 2001-09-10 2005-05-27 이학주 Water discharge in a dielectric barrier discharge system to generate an ozonated water
KR20040013339A (en) * 2002-08-05 2004-02-14 이강중 Principle of Invention Using Space Generation and Natural Principle Electrolysis of seawater with laser light
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
CN102960073A (en) * 2010-07-21 2013-03-06 松下电器产业株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
US9119284B2 (en) 2010-07-21 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance using the same
CN103404236A (en) * 2011-03-28 2013-11-20 松下电器产业株式会社 Plasma generator and cleaning/purification apparatus using same
CN103523856A (en) * 2013-09-09 2014-01-22 河海大学常州校区 Water mist discharge and ultrasound synergetic degradation wastewater treatment device and running method thereof
CN103523856B (en) * 2013-09-09 2015-06-24 河海大学常州校区 Water mist discharge and ultrasound synergetic degradation wastewater treatment device and running method thereof
EP3562276A1 (en) * 2018-04-23 2019-10-30 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device for plasma-supported treatment of liquids
US10995018B2 (en) 2018-04-23 2021-05-04 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device for the plasma-supported treatment of liquids
EP4073003A4 (en) * 2019-12-11 2024-01-17 Plasmaleap Tech Pty Ltd Plasma water treatment

Similar Documents

Publication Publication Date Title
JP3995654B2 (en) Ozone water generator using underwater discharge in insulator discharge system
US9352984B2 (en) Fluid treatment using plasma technology
JP5067802B2 (en) Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP4111858B2 (en) Underwater discharge plasma method and liquid treatment apparatus
KR100358574B1 (en) Method of and apparatus for forming highly oxidative water
JP6161839B2 (en) Water treatment apparatus and water treatment method
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
JP5438893B2 (en) Ozone generator
KR20190043257A (en) System and method for producing plasma activated water
KR101984437B1 (en) Water treating apparatus using plasma
JP2012228644A (en) Liquid treating apparatus
JP6208968B2 (en) Water treatment method and water treatment apparatus
JP2013129544A (en) Ozone production and ozone dissolution device
JP2013049015A (en) Water treatment apparatus
WO2012147911A1 (en) Plasma generating method and generating device
JP2002126769A (en) Ozone water treatment apparatus
JP2010137212A (en) Apparatus for generating plasma
WO2019003484A1 (en) Liquid treatment device
US20170369341A1 (en) Water treatment apparatus and water treatment method
JP2001010808A (en) Formation of highly oxidative water and apparatus therefor
Wakisaka et al. Mechanism of pH variation and H 2 O 2 generation in water exposed to pulsed discharge plasma
JP2002517072A5 (en)
Tang et al. Degradation of acetic acid in water using gas-liquid plasma with SPG membrane
Lee et al. The effect of liquid phase plasma for photocatalytic degradation of bromothymol blue
Buntat Ozone generation using electrical discharges: A comparative study between pulsed streamer discharge and atmospheric pressure glow discharge