JP2010137212A - Apparatus for generating plasma - Google Patents

Apparatus for generating plasma Download PDF

Info

Publication number
JP2010137212A
JP2010137212A JP2008336003A JP2008336003A JP2010137212A JP 2010137212 A JP2010137212 A JP 2010137212A JP 2008336003 A JP2008336003 A JP 2008336003A JP 2008336003 A JP2008336003 A JP 2008336003A JP 2010137212 A JP2010137212 A JP 2010137212A
Authority
JP
Japan
Prior art keywords
liquid
electrode
plasma
dielectric
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008336003A
Other languages
Japanese (ja)
Inventor
Naosuke Morita
直祐 森田
Ritsu Shirafuji
立 白藤
Osamu Sakai
道 酒井
Kunihide Tachibana
邦英 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PM DIMENSIONS KK
Original Assignee
PM DIMENSIONS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PM DIMENSIONS KK filed Critical PM DIMENSIONS KK
Priority to JP2008336003A priority Critical patent/JP2010137212A/en
Publication of JP2010137212A publication Critical patent/JP2010137212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating plasma, in which a large quantity of harmful organic compounds in waste water or liquid waste are decomposed/removed efficiently and stably by a small power consumption without using expendable members. <P>SOLUTION: A bar-shaped electrode 1 covered with a dielectric 2 is inserted into a liquid and a dielectric barrier discharge 3 is formed in the atmosphere above a liquid level to decompose/remove harmful organic compounds in the liquid. The dielectric barrier discharge is used for saving the power consumption, atmospheric pressure plasma is used for making expendable members unnecessary and the bar-shaped electrode is used for keeping stable plasma even when the liquid level is fluctuated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

液体が関与するプラズマ発生方法に関する。特に水処理や廃液処理、液体の関与する材料合成、および処理分野などに適用される。  The present invention relates to a plasma generation method involving a liquid. In particular, it is applied to water treatment, waste liquid treatment, material synthesis involving liquids, and the treatment field.

液体が関与するプラズマ発生方法には大別して次の3つがある。第一に気相放電空間に液滴を供給するもの、第二に液面上の放電、第三に液体中の放電である。本発明は第二および第三に関する。液面上の放電は、気相中で形成されたプラズマと液面との相互配置の工夫により両者が接触して存在する方法が示されている(非特許文献1)。他方液体中の放電は、針状電局に高電界を印可して液を絶縁破壊し、コロナストリームプラズマを誘起させる方法や、液体中に加熱や超音波などで気泡を発生させ、そこへ電磁波を照射してプラズマを誘発させる方法などが提案されている(特許文献1,2)。
特登2004−152523 特開2006−253056 Kitano:66th JSAP,9p−ZG−9(2005) Brisset,J.L.:J.Trace and Micropobe Techniques, 16,363−370(1998) 近年CO2排出削減とともに排水、廃液に関する環境浄化の必要性が強く認識され、特に地下水、土壌、底質や産業排水中の微量有害有機化合物の分解除去に対する要求が高まっている。有害有機化合物として低分子有機塩素化合物、ダイオキシン類、ポリ塩化ビフェニル、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、有機リン化合物などがある。一方排水、廃液処理の方法として凝集、濾過、膜分離、遠心分離、物理吸着、酸化、電気透析、微生物分解などがある。これらのうち有害有機化合物の分解除去には酸化と物理吸着が有効とされている。物理吸着には主として活性炭が用いられ、酸化には光触媒、オゾン、過酸化水素、紫外線、超音波が組み合わされて用いられている。液体が関与するプラズマは主として有害有機化合物、特に難分解性有機物質の酸化分解に供せられる新しい方法である。
There are roughly the following three plasma generation methods involving liquids. The first is to supply droplets to the gas phase discharge space, the second is discharge on the liquid surface, and the third is discharge in the liquid. The present invention relates to the second and third. As for the discharge on the liquid surface, a method has been shown in which both exist in contact with each other by devising the mutual arrangement of the plasma formed in the gas phase and the liquid surface (Non-Patent Document 1). On the other hand, the discharge in the liquid can be achieved by applying a high electric field to the acicular electrical station to cause dielectric breakdown of the liquid and inducing corona stream plasma, or by generating bubbles in the liquid by heating or ultrasonic waves, and generating electromagnetic waves there. There has been proposed a method of inducing plasma by irradiating with (Patent Documents 1 and 2).
Tohoku 2004-152523 JP 2006-253056 A Kitano: 66th JSAP, 9p-ZG-9 (2005) Brisset, J. et al. L. : J. Trace and Micropobe Technologies, 16, 363-370 (1998) In recent years, there has been a strong recognition of the need for environmental purification related to wastewater and waste liquid as well as CO2 emission reduction, and in particular, there is an increasing demand for the decomposition and removal of trace amounts of harmful organic compounds in groundwater, soil, sediment and industrial wastewater. Examples of harmful organic compounds include low-molecular organic chlorine compounds, dioxins, polychlorinated biphenyls, tetrachloroethylene, trichloroethylene, dichloroethylene, and organic phosphorus compounds. On the other hand, there are agglomeration, filtration, membrane separation, centrifugation, physical adsorption, oxidation, electrodialysis, microbial decomposition, etc. as methods of wastewater and waste liquid treatment. Of these, oxidation and physical adsorption are effective for decomposing and removing harmful organic compounds. Activated carbon is mainly used for physical adsorption, and photocatalyst, ozone, hydrogen peroxide, ultraviolet rays, and ultrasonic waves are used in combination for oxidation. Plasma involving liquids is a new method that is mainly used for oxidative decomposition of harmful organic compounds, particularly persistent organic substances.

排水廃液処理装置として機能および経済性の面から、有害有機化合が排水基準まで分解されること、低コストであること、できる限り小型であること、試薬を使用しないことなどが必要とされている。活性炭、光触媒、過酸化水素、紫外線ランプなどは消耗品である。また超音波や紫外線の発生には多量の電力を消費する。現在紫外線ランプを用いる方法が実用化されているが、上記理由により消耗部材である紫外線ランプを用いず、より低消費電力とすることが課題となっている。  From the viewpoint of function and economy as a wastewater wastewater treatment device, it is required that harmful organic compounds are decomposed to wastewater standards, are low-cost, are as small as possible, and do not use reagents. . Activated carbon, photocatalyst, hydrogen peroxide, ultraviolet lamp, etc. are consumables. In addition, a large amount of power is consumed to generate ultrasonic waves and ultraviolet rays. Currently, a method using an ultraviolet lamp has been put into practical use. However, for the above reason, there is a problem of lower power consumption without using an ultraviolet lamp as a consumable member.

水あるいは液を片方電極とし、誘電体を被覆した対抗電極との間に放電気体を介在させ、両電極間に電界を印加することにより気体中に放電を誘起し、放電空間と接した水あるいは液部位を放電空間に形成された活性種によって化学処理を行う。  Water or liquid is used as one electrode, a discharge gas is interposed between a counter electrode coated with a dielectric, and an electric field is applied between both electrodes to induce discharge in the gas. The liquid part is chemically treated with active species formed in the discharge space.

誘電体バリヤー放電を用いているため放電電流は間欠的であり消費電力は従来の赤外線ランプに比べ大幅に低減することができる。水に接した大気を放電気体として用いることにより酸化力の強いOHラジカルが形成され、水中の有害有機物を効率よく分解除去することができる。また誘電体被覆電極を水、あるいは液中に挿入することにより処理が可能なことから、従来の曝気処理に付加して行うことができる。  Since the dielectric barrier discharge is used, the discharge current is intermittent, and the power consumption can be greatly reduced as compared with the conventional infrared lamp. By using the atmosphere in contact with water as the discharge gas, OH radicals with strong oxidizing power are formed, and harmful organic substances in water can be efficiently decomposed and removed. Further, since the treatment can be performed by inserting the dielectric-coated electrode into water or liquid, it can be performed in addition to the conventional aeration treatment.

誘電体を被覆した棒状の電極を複数本処理すべき水あるいは液中へ大気中から挿入する。電極金属は耐環境性に優れたステンレス鋼が望ましい。電極を被覆する誘電体は高電圧に対して絶縁性の良いものであり、かつ水あるいは液および大気に対して耐環境性の高い材料であることが必要とされることからシリカ系ガラスが望ましい。誘電率は大気への電圧分割と壁電荷蓄積効果との兼ね合いで決定される。水あるいは液中に浸漬される誘電体被覆電極部位の長さは処理時の液面の変動幅より長くすることで常時安定した処理を行うことができる。印加電圧は水あるいは液を基準電位として数Kボルトの交流あるいはパルスであればよく、電圧値、周波数あるいはオンデューティやプラズマ形成と維持期間の分離などの条件は個々のプラズマ形成条件を考慮して決定されることが望ましい。  A plurality of rod-shaped electrodes coated with a dielectric are inserted into the water or liquid to be treated from the atmosphere. The electrode metal is preferably stainless steel with excellent environmental resistance. Silica-based glass is desirable because the dielectric covering the electrode is required to be a material that has good insulation against high voltages and is highly resistant to water, liquid, and air. . The dielectric constant is determined by the balance between the voltage division into the atmosphere and the wall charge accumulation effect. By making the length of the dielectric-coated electrode part immersed in water or liquid longer than the fluctuation range of the liquid level during the treatment, stable treatment can be performed at all times. The applied voltage may be an alternating current or pulse of several kilovolts with water or liquid as a reference potential, and the voltage value, frequency, on-duty, plasma formation and separation of the sustain period, etc., take into account the individual plasma formation conditions It is desirable to be determined.

図1に単電極を具備した処理装置の原理図を示す。▲1▼は金属電極でありガラス▲2▼で被覆されており交番電界▲4▼が印加されている。▲3▼は処理されるべき水もしくは液であり電位は接地されている。▲5▼は放電領域を示しており水あるいは液中との界面で有害有機成分が分解除去される。  FIG. 1 shows a principle diagram of a processing apparatus equipped with a single electrode. (1) is a metal electrode, which is covered with glass (2) and is applied with an alternating electric field (4). (3) is water or liquid to be treated, and the potential is grounded. {Circle over (5)} shows the discharge region, where harmful organic components are decomposed and removed at the interface with water or liquid.

図2は本実施例で用いた剣山状電極を用いた処理装置を示す。▲7▼は複数の棒状電極を束ね保持する絶縁支持体であり、▲6▼は各電極に電圧を供給する共通電極である。このように密に電極を並べることによって液面全体をプラズマで覆うことができる。図3は本実施例で水面に形成された大気プラズマによる発光を示している。本実施例では棒状金属電極として1/4インチ・のSUS304を用い、被覆シリケートガラスの肉厚は0.2mmとした。印加電圧は3KV幅、デューティー50の矩形とし、周波数は1KHとした。液はメチレンブルーを10mg/L含有する市水を用いプラズマによる脱色速度を測定した。図4はその結果を示す。本実施例からメチレンブルー酸化分解除去のエネルギー時間効率を求めると0.1mg/W/分となり、省エネ、高効率性が示唆された。  FIG. 2 shows a processing apparatus using a sword-shaped electrode used in this embodiment. (7) is an insulating support for bundling and holding a plurality of rod-shaped electrodes, and (6) is a common electrode for supplying a voltage to each electrode. By arranging the electrodes densely in this way, the entire liquid surface can be covered with plasma. FIG. 3 shows light emission by atmospheric plasma formed on the water surface in this embodiment. In this example, ¼ inch SUS304 was used as the rod-shaped metal electrode, and the thickness of the coated silicate glass was 0.2 mm. The applied voltage was a rectangle of 3 KV width and duty 50, and the frequency was 1 KH. The liquid used was city water containing 10 mg / L of methylene blue, and the decolorization rate by plasma was measured. FIG. 4 shows the result. The energy time efficiency of methylene blue oxidative decomposition removal was determined from this example to be 0.1 mg / W / min, suggesting energy saving and high efficiency.

液面プラズマ発生装置の原理図  Principle diagram of liquid level plasma generator 剣山型液面プラズマ発生装置  Kenyama liquid level plasma generator 剣山型液面プラズマ発生装置で得られたプラズマの例  Example of plasma obtained with Kenyama liquid level plasma generator 剣山型液面プラズマ発生装置によるメチレンブルーの分解結果  Decomposition result of methylene blue by Kenyama liquid level plasma generator

符号の説明Explanation of symbols

▲1▼・・・金属電極
▲2▼・・・誘電体
▲3▼・・・プラズマ
▲4▼・・・印加電圧
▲5▼・・・非処理液体
▲6▼・・・共通電極
▲7▼・・・剣山型電極基盤
(1) ... Metal electrode (2) ... Dielectric material (3) ... Plasma (4) ... Applied voltage (5) ... Non-treatment liquid (6) ... Common electrode (7) ▼ ... Kenyama electrode base

Claims (6)

誘電体で被覆された金属を一方の電極、液体を他方の電極として両電極間に交番電界を印加し、両電極間に介在する気体を放電破壊することによりプラズマを発生させ、プラズマの化学作用を界面を通して液体に及ぼし、該液体の改質をなすことを特徴とするプラズマ発生装置。A plasma is generated by applying an alternating electric field between both electrodes, with the metal coated with a dielectric as one electrode and the liquid as the other electrode, and by destroying the gas interposed between the two electrodes. Is applied to the liquid through the interface to modify the liquid. 誘電体で被覆された電極が棒状でありその長さが3mm以上あり、液面に対して垂直に挿入されてあることを特徴とする請求項1に記載のプラズマ発生装置。2. The plasma generating apparatus according to claim 1, wherein the electrode covered with the dielectric is rod-shaped, has a length of 3 mm or more, and is inserted perpendicular to the liquid surface. 複数個の誘電体で被覆された棒状電極が共通電極で支持されている請求項1および2に記載のプラズマ発生装置。The plasma generating apparatus according to claim 1 or 2, wherein a rod-shaped electrode covered with a plurality of dielectrics is supported by a common electrode. 金属電極が銅および銅合金、ステンレス鋼、アルミニウムおよびアルミニウム合金、ケイ素およびケイ素合金、クロムおよびクロム合金、炭素鋼およびステンレス以外の特殊鋼のいずれかからなることを特徴とする請求項3に記載のプラズマ発生装置。The metal electrode is made of any one of copper and copper alloy, stainless steel, aluminum and aluminum alloy, silicon and silicon alloy, chromium and chromium alloy, carbon steel and special steel other than stainless steel. Plasma generator. 誘電体が有機ポリマー、ガラス、電極基材の酸化被膜のいずれかからなることを特徴とする請求項3に記載のプラズマ発生装置。The plasma generator according to claim 3, wherein the dielectric is made of any one of an organic polymer, glass, and an oxide film of an electrode substrate. 誘電体が多孔質であることを特徴とする請求項3に記載のプラズマ発生装置。The plasma generating apparatus according to claim 3, wherein the dielectric is porous.
JP2008336003A 2008-12-10 2008-12-10 Apparatus for generating plasma Pending JP2010137212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336003A JP2010137212A (en) 2008-12-10 2008-12-10 Apparatus for generating plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336003A JP2010137212A (en) 2008-12-10 2008-12-10 Apparatus for generating plasma

Publications (1)

Publication Number Publication Date
JP2010137212A true JP2010137212A (en) 2010-06-24

Family

ID=42347809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336003A Pending JP2010137212A (en) 2008-12-10 2008-12-10 Apparatus for generating plasma

Country Status (1)

Country Link
JP (1) JP2010137212A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011301A (en) * 2010-06-30 2012-01-19 Nagoya Univ Water treatment method and water treatment apparatus
CN102487880A (en) * 2011-12-14 2012-06-13 苏州超等环保科技有限公司 Method of preparing plasma aquaculture water
KR101497591B1 (en) * 2012-11-30 2015-03-02 주식회사 스마텍 Apparatus for treating water using discharge in reactor
WO2015037565A1 (en) * 2013-09-10 2015-03-19 Pmディメンションズ株式会社 Method for synthesizing organic matter and submerged plasma device
JP2016056167A (en) * 2014-09-09 2016-04-21 Pmディメンションズ株式会社 Organic matter synthesis process
CN108337797A (en) * 2018-01-19 2018-07-27 河海大学常州校区 Gas-liquid two-phase discharge plasma material surface processing unit
KR20200032368A (en) * 2018-09-18 2020-03-26 주식회사 코드스테리 Activativg apparatus for medium material
JP2020081227A (en) * 2018-11-21 2020-06-04 矢崎エナジーシステム株式会社 Discharge sterilization method and discharge sterilization device for crop
KR20210123646A (en) * 2020-04-03 2021-10-14 인제대학교 산학협력단 Atmospheric Pressure Medium Frequency Plasma Processing Equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011301A (en) * 2010-06-30 2012-01-19 Nagoya Univ Water treatment method and water treatment apparatus
CN102487880A (en) * 2011-12-14 2012-06-13 苏州超等环保科技有限公司 Method of preparing plasma aquaculture water
KR101497591B1 (en) * 2012-11-30 2015-03-02 주식회사 스마텍 Apparatus for treating water using discharge in reactor
WO2015037565A1 (en) * 2013-09-10 2015-03-19 Pmディメンションズ株式会社 Method for synthesizing organic matter and submerged plasma device
US9452979B2 (en) 2013-09-10 2016-09-27 Pm Dimensions Kabushiki Kaisha Method for synthesizing organic matter and submerged plasma device
JP2016056167A (en) * 2014-09-09 2016-04-21 Pmディメンションズ株式会社 Organic matter synthesis process
CN108337797A (en) * 2018-01-19 2018-07-27 河海大学常州校区 Gas-liquid two-phase discharge plasma material surface processing unit
KR20200032368A (en) * 2018-09-18 2020-03-26 주식회사 코드스테리 Activativg apparatus for medium material
KR102139692B1 (en) * 2018-09-18 2020-07-30 주식회사 코드스테리 Activativg apparatus for medium material
JP2020081227A (en) * 2018-11-21 2020-06-04 矢崎エナジーシステム株式会社 Discharge sterilization method and discharge sterilization device for crop
KR20210123646A (en) * 2020-04-03 2021-10-14 인제대학교 산학협력단 Atmospheric Pressure Medium Frequency Plasma Processing Equipment
KR102328322B1 (en) * 2020-04-03 2021-11-19 인제대학교 산학협력단 Atmospheric Pressure Medium Frequency Plasma Processing Equipment

Similar Documents

Publication Publication Date Title
JP2010137212A (en) Apparatus for generating plasma
Yang et al. Plasma discharge in liquid: water treatment and applications
US9352984B2 (en) Fluid treatment using plasma technology
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
EP2716606B1 (en) Underwater capillary plasma device
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
Shi et al. Organic contaminants removal by the technique of pulsed high-voltage discharge in water
JP2004268003A (en) Underwater discharge plasma method and liquid treatment apparatus
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
JP2000093967A (en) Method and apparatus for liquid treatment
KR101497591B1 (en) Apparatus for treating water using discharge in reactor
US20100240943A1 (en) Degradation of organic pollutants in an aqueous environment using corona discharge
JP5438893B2 (en) Ozone generator
JP2013049015A (en) Water treatment apparatus
CN111530281A (en) Method and equipment for removing ammonia gas through low-temperature plasma concerted catalysis
Zhang et al. Organic dye removal from aqueous solution by pulsed discharge on the pinhole
KR100316802B1 (en) System for generating ionized gas using high-voltage discharging
CN201499364U (en) Novel plasma generating device
RU2372296C1 (en) Device for water purification and disinfection
Sato et al. Decomposition of phenol in water using water surface plasma in wetted-wall reactor
KR101661124B1 (en) Liquid processing device using plasma
JP2009034625A (en) Wastewater treatment apparatus and method
US7279845B2 (en) Plasma processing method and apparatus
KR100902138B1 (en) Apparatus For Purifying Waste Water Using Ozone
JP2002126769A (en) Ozone water treatment apparatus