JP2013129274A - ハイブリッド車両の駆動制御装置 - Google Patents

ハイブリッド車両の駆動制御装置 Download PDF

Info

Publication number
JP2013129274A
JP2013129274A JP2011279268A JP2011279268A JP2013129274A JP 2013129274 A JP2013129274 A JP 2013129274A JP 2011279268 A JP2011279268 A JP 2011279268A JP 2011279268 A JP2011279268 A JP 2011279268A JP 2013129274 A JP2013129274 A JP 2013129274A
Authority
JP
Japan
Prior art keywords
clutch mechanism
operation period
speed difference
rotational speed
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011279268A
Other languages
English (en)
Other versions
JP5899898B2 (ja
Inventor
Noriko Matsuo
紀子 松尾
Yoshiyasu Kamiya
吉恭 神谷
Toshie Murahashi
利得 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2011279268A priority Critical patent/JP5899898B2/ja
Publication of JP2013129274A publication Critical patent/JP2013129274A/ja
Application granted granted Critical
Publication of JP5899898B2 publication Critical patent/JP5899898B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】トルク制御の実行中における各駆動源の回転数差の発生を抑制することが可能なハイブリッド車両の駆動制御装置を提供することを目的とする。
【解決手段】ハイブリッド車両1の駆動制御装置60は、エンジン回転数Neがモータ回転数Nmと同期するように同期制御を実行する同期制御部61と、クラッチ機構30の接続制御を実行するクラッチ機構制御部64と、エンジン10のトルク制御を実行するトルク制御部62と、エンジン回転数Neとモータ回転数Nmとの回転数差Dnを取得する回転数差取得部63と、回転数差Dnに基づいてクラッチ機構30の作動期間Trを算出する作動期間算出部65とを備える。駆動制御装置60は、クラッチ機構制御部64による接続制御が開始されてから作動期間Trを経過すると、クラッチ機構30が接続状態であるものと判断してトルク制御を開始させる。
【選択図】図1

Description

本発明は、エンジンおよび電動モータを駆動源とするハイブリッド車両の駆動制御装置に関する。
ハイブリッド車両の駆動制御装置は、運転者による操作を含む車両状態に基づいて、各駆動源により出力される駆動力の合成や各駆動源の回転数などを制御するものである。このようなハイブリッド車両の駆動制御装置として、例えば、特許文献1,2には、車両状態に応じた駆動制御が開示されている。この駆動制御装置によると、車両が停車状態から発進する場合には、エンジンと電動モータとの間に配置されたクラッチ機構を切断状態として、電動モータによって車輪を駆動するように駆動制御を行っている。また、走行中に加速をする場合には、上記のクラッチ機構を接続状態として、電動モータによる車輪駆動をエンジンによってアシストしている。
ところで、このようなハイブリッド車両の駆動制御装置において、電動モータのみを駆動源とする走行状態からエンジンと電動モータが駆動源となり得る走行状態に切り換える場合に、単にクラッチ機構を接続状態にするように制御すると両駆動源の回転数差に起因するショックが発生することがある。そこで、特許文献2の駆動制御装置では、先ず、エンジンの回転数が電動モータの回転数と同期するように、即ち両駆動源の回転数差が所定値以下となるように同期制御を行っている。そして、各駆動源の回転数が同期した状態でクラッチ機構を接続状態とするように接続制御を行っている。これにより、クラッチ機構が切断状態から接続状態に移行した際に、車両に発生するショックを低減することが可能である。
特開2009−208565号公報 特開2008−055993号公報
また、ハイブリッド車両の駆動制御装置は、上述したようなクラッチ機構の接続制御を行ってクラッチ機構が接続状態である場合に、エンジンのトルク制御を実行して所定の加速力または制動力を得られるようにしている。つまり、エンジンのトルク制御では、クラッチ機構が接続状態となり、車両が電動モータのみを駆動源とする走行状態からエンジンと電動モータが駆動源となり得る走行状態に移行した後に、運転者の要求に応じた制御を行うようにしている。ところが、クラッチ機構の接続制御の完了後にトルク制御を開始したにも関わらず、その後にエンジンと電動モータのそれぞれの回転数に差が生じることがあった。これは、クラッチ機構などの経年変化により、クラッチ機構の接続制御に要する時間が変化したことが一因と考えられる。そして、上記のような回転数差が発生すると、ハイブリッド車両の操縦性やクラッチ機構の耐久性に影響するおそれがある。
本発明は、上記課題を鑑みてなされたものであり、トルク制御の実行中における各駆動源の回転数差の発生を抑制することが可能なハイブリッド車両の駆動制御装置を提供することを目的とする。
上述した課題を解決するために、請求項1に係る発明によると、エンジンおよび電動モータを駆動源とし、前記エンジンの駆動力を係脱するクラッチ機構を備えるであって、前記クラッチ機構を切断状態から接続状態へと作動させる場合に、前記エンジンの回転数が前記電動モータの回転数と同期するように同期制御を実行する同期制御部と、前記同期制御が開始した後に、前記クラッチ機構が接続状態となるように接続制御を実行するクラッチ機構制御部と、前記クラッチ機構が接続状態である場合に、現在の車両状態に基づいて前記エンジンのトルク制御を実行するトルク制御部と、前記トルク制御の実行中における前記エンジンの回転数と前記電動モータの回転数との回転数差を取得する回転数差取得部と、前記クラッチ機構制御部による前記接続制御が実行される際に、前回の前記トルク制御の実行中において取得された前記回転数差と現在の車両状態とに基づいて、前記クラッチ機構の作動開始から作動終了までの作動期間を算出する作動期間算出部と、を備え、前記同期制御を実行する場合に、前記クラッチ機構制御部による前記接続制御が開始されてから前記作動期間算出部により算出された前記作動期間を経過すると、前記クラッチ機構が接続状態であるものと判断して前記トルク制御を開始させる。
請求項2に係る発明によると、請求項1において、前記作動期間算出部は、前記作動期間に係る前記クラッチ機構の状態遷移を示す遷移指数と、当該遷移指数に対応し前記車両状態と前記作動期間の関係を示す複数のマップと、を有し、前記遷移指数および取得した前記回転数差に基づいて当該遷移指数を更新し、前記接続制御が実行される際に、更新された前記遷移指数に対応する前記マップと現在の車両状態とに基づいて前記作動時間を算出する。
請求項3に係る発明によると、請求項2において、前記作動期間算出部は、取得された前記回転数差が予め設定された閾値以下の場合に、前記遷移指数を遡及させるように当該遷移指数を更新する。
請求項4に係る発明によると、請求項1〜3の何れか一項において、前記回転数差取得部は、前記トルク制御の開始後から所定期間における最大の回転数差を前記回転数差として取得する。
請求項5に係る発明によると、請求項1〜4の何れか一項において、前記作動期間算出部は、前記回転数差が取得された際の前記電動モータの回転数、前記エンジンのスロットル開度を含む前記車両状態に基づいて前記作動期間を算出する。
請求項6に係る発明によると、請求項1〜5の何れか一項において、前記エンジンまたは前記電動モータの回転軸に前記クラッチ機構が一体的に設けられ、前記クラッチ機構制御部は、前記クラッチ機構に供給する作動油の供給状態を制御することにより、前記クラッチ機構の作動を制御し、前記作動期間算出部は、前記回転軸の回転数を含む前記車両状態に基づいて前記作動期間を算出する。
請求項7に係る発明によると、請求項1〜6の何れか一項において、前記クラッチ機構制御部は、前記クラッチ機構に供給する作動油の供給状態を制御することにより、前記クラッチ機構の作動を制御し、前記作動期間算出部は、前記作動油の油温を含む前記車両状態に基づいて前記作動期間を算出する。
請求項1に係る発明によると、クラッチ機構制御部による接続制御が開始されてから、クラッチ機構の作動期間を経過すると、クラッチ機構が接続状態であるものと判断してトルク制御を開始させるものとしている。この「作動期間」は、クラッチ機構が切断状態から接続状態へと作動する場合に、当該作動の開始から終了までの時間である。そして、作動期間算出部は、前回のトルク制御の実行中において取得された回転数差と現在の車両状態とに基づいて作動期間を算出する構成としている。
ここで、エンジンのトルク制御はクラッチ機構が接続状態となっている場合に実行されるものであるが、クラッチ機構が完全にロックアップしているか否かについては、クラッチ機構に対する接続制御が開始されてから経過した時間に基づいて判断することができる。つまり、このような判断においては、クラッチ機構の作動開始から、作動期間の経過を待ってトルク制御を開始することになる。ところが、車両状態に基づいて作動期間を算出したとしても、クラッチ機構の経年変化により、実際の作動期間が延びることがあった。そうすると、クラッチ機構がロックアップする前にエンジンが出力する駆動力を上昇させるようにトルク制御を行った場合には、エンジンの回転数が電動モータの回転数よりも高くなることがあった。
そこで、本発明は、上記の構成のように、トルク制御を実行する場合には、前回のトルク制御の実行中における各駆動源の回転数差を取得し、この回転数差と現在の車両状態とに基づいてクラッチ機構の作動期間を算出する。これにより、作動期間をより正確に算出することが可能となる。よって、駆動制御装置は、回転数差の発生を抑制し好適なトルク制御を行うことができるので、運転者の加速要求または減速要求への応答性を向上させることが可能となる。
請求項2に係る発明によると、作動期間算出部は、取得された回転数差に基づいて遷移指数を更新し、当該遷移指数に対応するマップと現在の車両状態に基づいて作動期間を算出するものとしている。上述したように、クラッチ機構は、経年変化を一因として作動期間が延びる傾向にある。そのため、回転数差が発生している場合には、作動開始から作動終了までに要する実際の作動期間が延びているものと考えられる。そこで、作動期間算出部は、例えば、クラッチ機構の状態遷移を示す遷移指数を増加させるように更新し、当該遷移指数に対応するマップと現在の車両状態に基づいて作動時間を取得するようにしてもよい。また、このマップは、例えば、遷移指数を複数に区分し、その区分にそれぞれ対応するものとして記憶されるようにしてもよい。これにより、作動期間算出部は、より簡易に作動時間を算出することができる。
また、前回の作動期間が好適に算出されている場合には、その後のトルク制御の実行中において回転数差の発生が抑制されることになる。この場合には、遷移指数を前回値と等しい値で更新し、同様の作動期間が算出されるようにすることができる。一方で、回転数差が発生した場合には、遷移指数を増加させて、前回値よりもさらいに長い作動期間を算出するようにすることができる。このような構成により、駆動制御装置は、より適正な作動期間を算出することができる。よって、確実に回転数差の発生を抑制することができるとともに、好適にトルク制御を開始することができる。
請求項3に係る発明によると、作動期間算出部は、取得された回転数差が予め設定された閾値以下の場合に、遷移指数を遡及させるように当該遷移指数を更新するものとしている。クラッチ機構の作動期間は経年変化などにより塑性的に延びるものと考えられるが、この作動期間を算出するために取得されるトルク制御の実行中における回転数差は、クラッチ機構の温度や各種センサのノイズなどにより誤差を含むおそれがある。そこで、前回のトルク制御を開始する際に算出された作動期間の適否を判断可能な閾値を予め設定しておき、この閾値と回転数差を比較することにより、遷移指数を遡及させるように更新する構成とする。これにより、誤差によって遷移指数が進行するように更新されても、次回以降では、これを補正するように遷移指数を更新され、前回値よりも短い作動期間が算出することが可能となる。
また、クラッチ機構の作動期間は、クラッチ機構の個体差によっても変動するものであり、初期状態においても個々のクラッチ機構で異なる値となる。そのため、例えば、作動期間を取得するためのマップでは、この個体差を吸収するように、何れのクラッチ機構であっても超えない作動期間を設定していることがある。そうすると、あるクラッチ機構では、実際に要する作動期間よりも長い作動期間が算出されることがある。このような場合には、算出値と実際値との差分だけトルク制御の開始を早期に開始できるにも関わらず、当該差分だけ冗長に待機していることになる。これに対して、本発明によると、遷移指数を遡及させるように更新し、前回値よりも短い作動期間を算出できる。よって、個体差を吸収するように設定された初期値に対しても、次回以降では、これを補正するように、より適正な作動期間を算出することができる。
請求項4に係る発明によると、回転数差取得部は、トルク制御の開始後から所定期間における最大の回転数差を回転数差として取得するようにしている。各駆動源の回転数差は、想定されるクラッチ機構の作動期間よりも実際の作動期間が長かった場合に発生するものである。そのため、回転数差が発生した場合であっても、クラッチ機構の作動開始から実際の作動期間が経過すると、クラッチ機構は接続状態となる。よって、回転数差取得部は、想定されるクラッチ機構の作動期間の経過後から予備的に所定期間だけ各駆動源の回転数を測定して、回転数差を算出すれば足りることになる。また、回転数差が発生した場合には、発生している間にもクラッチ機構の係合力、およびエンジンが出力している駆動力は変動しているものと考えられるが、ここでは所定期間における最大の回転数差を算出値としている。これにより、好適に回転数差を算出できるので、作動期間算出部がより適正な作動期間を算出することができる。
請求項5に係る発明によると、作動期間算出部は、回転数差が取得された際の電動モータの回転数、エンジンのスロットル開度を含む車両状態に基づいて作動期間を算出する。クラッチ機構の作動期間を算出するために取得される回転数差は、上述したように誤差を含むおそれがある。一方で、例えば回転数差が発生しなかったとしても、算出されたクラッチ機構の作動期間と実際の作動期間が一致していたとは限らないことがある。これは、トルク制御の実行中にエンジンにより出力された駆動力が、ロックアップする前のクラッチ機構でも伝達可能な駆動力を下回っている場合が考えられる。
そこで、作動期間算出部は、このような状態を勘案して、例えば、取得された回転数差の有効性について、電動モータの回転軸またはエンジンのスロットル開度に基づいて判断するようにしてもよい。これにより、作動期間算出部は、前回のトルク制御の実行中において取得された回転数差、この回転数差が取得された際の車両状態、および現在の車両状態に基づいて、より適正な作動期間を算出することができる。
請求項6に係る発明によると、作動期間は、クラッチ機構が一体的に設けられた回転軸の回転数を含む車両状態に基づいて算出されるようにしている。ここで、クラッチ機構は、例えば、複数のクラッチ板や当該クラッチ板を押圧する油圧機構が電動モータのロータに一体的に設けられることがある。そして、クラッチ機構制御部は、クラッチ機構における油圧機構に供給する作動油の供給状態を制御することにより、クラッチ機構の作動を制御している。
このような場合に、クラッチ機構は、連結されたエンジンまたは電動モータの回転軸と共に回転することになる。そうすると、この回転により油圧機構における作動油に遠心力が作用し、クラッチ機構の作動開始から作動終了までの作動期間に影響することがある。そこで、作動期間算出部は、この回転軸の回転数を勘案して作動期間を算出するようにしている。これにより、クラッチ機構の作動期間をより正確に算出することができるので、より好適にトルク制御を開始することができる。
請求項7に係る発明によると、作動期間は、クラッチ機構に供給される作動油の油温を含む車両状態に基づいて算出されるようにしている。ここで、クラッチ機構は、上述したように、エンジンまたは電動モータの回転軸に一体的に設けられることがある。そして、クラッチ機構制御部は、クラッチ機構における油圧機構に供給する作動油の供給状態を制御することにより、クラッチ機構の作動を制御している。
このような場合に、作動油は、各駆動源において発生する熱の影響を受けて、その温度(油温)が変動して流動性が変化することがある。そうすると、この作動油の油温の変動により油圧機構における給油または排油に要する時間が変化することになり、クラッチ機構の作動開始から作動終了までの作動期間に影響することがある。そこで、作動期間算出部は、この作動油の油温を勘案して作動期間を算出するようにしている。これにより、作動期間をより正確に算出することができるので、より好適にトルク制御を開始することができる。
実施形態におけるハイブリッド車両の駆動制御装置を示すブロック図である。 ハイブリッド車両におけるフロントモジュールの断面図である。 クラッチ機構の作動期間を取得するためのマップの一部を示す図であり、(a)〜(e)はメインカウンタ1〜5にそれぞれ対応したマップである。 回転数差を取得する駆動制御を示すタイムチャートである。 駆動制御装置による駆動制御を示すフローチャートである。 駆動制御装置による回転数差の取得処理を示すフローチャートである。 駆動制御装置によるメインカウンタの演算処理を示すフローチャートである。 トルク制御の開始を遅延させた場合の駆動制御を示すタイムチャートである。 トルク制御の開始を早期化した場合の駆動制御を示すタイムチャートである。
<実施形態>
(ハイブリッド車両1の構成)
本発明の実施形態におけるハイブリッド車両1について、図1〜図3を参照して説明する。図1は、ハイブリッド車両1の駆動システムの概略を示している。図1において、太実線は各構成間の機械的な接続を示し、実線による矢印は制御用の信号線を示し、破線による矢印は作動油の流れを示している。
ハイブリッド車両1は、図1に示すように、エンジン10と、電動モータ20と、クラッチ機構30と、ポンプユニット40と、自動変速機50と、駆動制御装置60を備える。このハイブリッド車両1は、エンジン10と電動モータ20を駆動源としている。また、クラッチ機構30は、エンジン10と電動モータ20との間に配置され、エンジン10の駆動力を係脱する機構である。本実施形態において、クラッチ機構30は、電動モータ20の回転軸である出力部材23に一体的に設けられ、電動モータ20とともにクラッチモジュールMDを構成している。また、駆動制御装置60は、運転者による操作を含む車両状態に基づいて、エンジン10および電動モータ20により出力される駆動力の合成や各駆動源の回転数などを制御するものである。
エンジン10は、燃料を燃焼させて、回転軸である軸部材11から駆動力を出力するレシプロエンジンなどの内燃機関である。軸部材11には、図1に示すように、エンジン回転数センサ91が取り付けられており、エンジン回転数Neを検出している。電動モータ20は、左右の車輪Wr,Wlを駆動させる車輪駆動用の同期モータであり、車両の減速時などに電力の回生を行う発電機としても機能するものである。また、電動モータ20は、図2に示すように、ロータ21と、ロータ21よりも径方向外側に配置されたステータ22を有している。ロータ21は、電動モータ20の回転軸である出力部材23と連結部材24を介して一体的に連結されている。電動モータ20は、クラッチモジュールMDのハウジングHに固定されたステータ22に対してロータ21を回転させて、出力部材23から駆動力を出力する。出力部材23には、図1に示すように、モータ回転数センサ92が取り付けられており、モータ回転数Nmを検出している。
クラッチ機構30は、エンジン10の駆動力を係脱する湿式多板クラッチである。クラッチ機構30は、図2に示すように、ハウジングHに形成された油路Hpを介して連結されたポンプユニット40より作動油を供給される。そして、クラッチ機構30は、作動油の供給状態に応じて、クラッチプレート31とプレッシャープレート32との間の係合力が変化し、伝達可能な駆動力を変動させている。より具体的には、電動モータ20の連結部材24とピストン部材33との間に形成されたシリンダ空間34に供給される作動油の液圧によって係合力が変化するものである。液圧が供給されていない場合には、スプリング35により付勢されるピストン部材33がプレッシャープレート32を押圧し、クラッチプレート31との間に係合力が発生する。そして、シリンダ空間34における液圧が所定値以下となると、クラッチプレート31とプレッシャープレート32が一体的に回転する接続状態となる。
一方で、液圧が供給されている場合には、スプリング35の付勢力に抗してピストン部材33がプレッシャープレート32から離間する方向に移動し、クラッチプレート31との間の係合力が発生しない切断状態となる。このように、クラッチ機構30は、ピストン部材33、シリンダ空間34、およびスプリング35により油圧機構を構成し、本実施形態では、液圧が供給されない常態においてロックアップするノーマルクローズタイプとしている。上述したように、電動モータ20およびクラッチ機構30は、ハイブリッド車両1におけるクラッチモジュールMDを構成している。
ポンプユニット40は、クラッチ機構30の油圧機構への作動油の供給状態を制御する装置であり、図1に示すように、電動オイルポンプ41と、電磁弁42を有する。電動オイルポンプ41は、供給される電力に応じて作動油を吐出して、所定の液圧を発生させるポンプである。電磁弁42は、図示しないソレノイドの励磁状態と非励磁状態によって、電動オイルポンプ41が発生させた液圧をクラッチ機構30に供給するか否かを切り換え可能な制御弁である。自動変速機50は、トルクコンバータ51を含んだ通常のトランスミッションである。自動変速機50の出力シャフト52には、デファレンシャル機構を介して、右車輪Wrおよび左車輪Wlが接続されている。また、左右何れかの車輪には、車輪の回転数を検出する車輪速度センサ93が取り付けられている。検出された車輪Wr,Wlの回転数に基づいて車両速度が算出される。
駆動制御装置60は、エンジンECU、ハイブリッドECU、クラッチECUなどにより構成される電子制御ユニットであり、図1に示すように、同期制御部61と、トルク制御部62と、回転数差取得部63と、クラッチ機構制御部64と、作動期間算出部65を有する。エンジンECUの同期制御部61は、クラッチ機構30を切断状態から接続状態へと作動させる場合に、エンジン10の回転数が電動モータ20の回転数と同期するように同期制御を実行する。この同期制御は、クラッチ機構30が切断状態から接続状態へとさせる場合に、即ち電動モータ20のみを駆動源とする走行状態からエンジン10と電動モータ20が駆動源となり得る走行状態に切り換える場合に実行される。
また、同期制御部61による同期制御は、クラッチ機構30が接続状態に移行した際に、ハイブリッド車両1に発生するショックを低減することを目的とするものである。そのため、両駆動源の回転数の「同期」には、両駆動源の回転数差が所定値以下となった状態、クラッチ機構30を接続状態にするために好適な目標回転数Ntに達した状態も含まれる。また、本実施形態では、エンジン10と電動モータ20がクラッチ機構30を介して連結される構成としているが、両駆動源の間に変速機が介在している場合には変速後の回転数と同期するように制御することになる。
エンジンECUのトルク制御部62は、クラッチ機構30が接続状態である場合に、現在の車両状態に基づいてエンジン10のトルク制御を実行する。このようにエンジンECUは、トルク制御部62によるトルク制御を実行して所定の加速力または制動力を得られるようにしている。つまり、エンジン10のトルク制御では、クラッチ機構30が接続状態となり、ハイブリッド車両1が電動モータ20のみを駆動源とする走行状態からエンジン10と電動モータ20が駆動源となり得る走行状態に切り換えた後に、運転者の要求に応じた制御を行うようにしている。
ハイブリッドECUの回転数差取得部63は、トルク制御の実行中におけるエンジン10の回転数と電動モータ20の回転数との差分である回転数差Dnを取得する。ここで、トルク制御は、上述したようにクラッチ機構30が接続状態である場合に実行される。そのため、トルク制御の実行中においては、エンジン回転数Neとモータ回転数Nmとは一致しているはずである。しかし、クラッチ機構30などの経年変化に起因して、トルク制御の実行中にエンジン回転数Neと目標回転数Ntとが一致せずに、回転数差Dnが発生することがある。そこで、駆動制御装置60は、この回転数差Dnの発生を抑制するように駆動制御をするために、当該回転数差Dnを取得するようにしている。
また、回転数差取得部63は、トルク制御の開始後から所定期間における最大の回転数差を回転数差Dnとして取得する。トルク制御の実行中におけるエンジン回転数Neとモータ回転数Nmの回転数差Dnは、想定されるクラッチ機構30の作動期間Trよりも実際の作動期間が長かった場合に発生するものである。そのため、回転数差Dnが発生した場合であっても、クラッチ機構30の作動開始から実際の作動期間が経過すると、クラッチ機構30は接続状態となる。よって、回転数差取得部63は、想定されるクラッチ機構30の作動期間Trの経過後から予備的に所定の検出期間Tsだけ各駆動源の回転数を測定して、回転数差Dnを算出すれば足りることになる。また、回転数差Dnが発生した場合には、発生している間にもクラッチ機構30の係合力、およびエンジン10が出力している駆動力は変動しているものと考えられるが、ここでは検出期間Tsにおける最大の回転数差を算出値としている。
クラッチECUのクラッチ機構制御部64は、ポンプユニット40を介してクラッチ機構30の作動を制御する。より具体的には、クラッチ機構制御部64は、ポンプユニット40に対して電動オイルポンプ41への制御指令、および電磁弁42の開閉を切り換えるように制御指令を出力する。これにより、クラッチ機構30の油圧機構への作動油の供給状態が制御され、クラッチ機構30が接続状態または切断状態となるように作動する。このように、クラッチECUのクラッチ機構制御部64は、電動モータ20のみを駆動源とする走行状態、またはエンジン10と電動モータ20が駆動源となり得る走行状態に切り換えるためにハイブリッドECUから制御指令を受信して、クラッチ機構30が接続状態となるように接続制御または切断状態となるように切断制御を実行するものである。
クラッチECUの作動期間算出部65は、クラッチ機構制御部64による接続制御が実行される際に、前回のトルク制御の実行中において取得された回転数差Dnと現在の車両状態に基づいて、クラッチ機構30の作動開始から作動終了までの作動期間Trを算出する。この作動期間Trは、油圧機構のシリンダ空間34から作動油が排出され、スプリング35の付勢力によりピストン部材33がプレッシャープレート32を押圧して、クラッチ機構30が接続状態となるまでの期間である。また、作動期間Trは、クラッチ機構制御部64による接続制御が開始されてから、この作動期間Trの経過をもってクラッチ機構30が接続状態に移行したものと駆動制御装置60が判断するために使用される。
また、作動期間算出部65は、本実施形態においては、図3に示すように複数のマップを有し、回転数差Dnおよび車両状態に基づいて適正なマップを選択して、クラッチ機構30の作動期間Trを取得している。より具体的には、作動期間算出部65は、回転数差Dnに応じたメインカウンタCmを設定し、このメインカウンタCmを適宜増減させるようにしている。このメインカウンタCmは、作動期間Trに係るクラッチ機構30の状態遷移を示す遷移指数である。つまり、クラッチ機構30の経年変化の度合いを示す指標に相当する。本実施形態においては、メインカウンタCmは1〜5の整数値を取り得るものとしている。また、複数のマップ(図3(a)〜図3(e))は、メインカウンタCm(1〜5)にそれぞれ対応し、車両状態と作動期間Trの関係を示している。そして、このメインカウンタCmに基づいて所定のマップを選択することで、トルク制御を実行する際の車両状態やクラッチ機構30の状態に対応している。
この作動期間Trの算出用のメインカウンタCmは、少なくとも前回のトルク制御の実行中において取得された回転数差Dnに基づいて増減または同値に維持されるように更新される。例えば、作動期間算出部65は、所定値を越えるような回転数差Dnが取得された場合には、メインカウンタCmを増加するように更新する。これは、クラッチ機構30の作動期間Trが経年変化を一因として延びる傾向にあり、回転数差Dnが発生すると、実際の作動期間が延びているものと考えられるためである。また、前回の作動期間Trが好適に算出されている場合には、その後のトルク制御の実行中において回転数差の発生が抑制されることになる。この場合には、メインカウンタCmを前回値と等しくして、同様の作動期間Trが算出されるようにしている。
さらに、作動期間算出部65は、取得された回転数差Dnが予め設定された閾値以下の場合に、メインカウンタCmを減少させるように更新する。これは、クラッチ機構30の作動期間は経年変化などに伴い塑性的に延びるものと考えられるが、作動期間Trを算出するために取得されるトルク制御の実行中における回転数差Dnは、クラッチ機構30の温度や各種センサのノイズなどにより誤差を含むおそれがある。そこで、前回のトルク制御を開始する際に算出された作動期間Trの適否を判断可能な閾値を予め設定しておき、この閾値と回転数差Dnを比較することにより、メインカウンタCmを遡及させるように更新することを許容している。これにより、例えば、誤差によって遷移指数が進行するように更新されても、次回以降では、これを補正するように遷移指数を更新さすることが可能となる。
その他に、作動期間算出部65は、回転数差Dnが取得された際の電動モータ20の回転数、エンジン10のスロットル開度を含む車両状態に基づいて作動期間Trを算出するものとしている。クラッチ機構30の作動期間Trを算出するために取得される回転数差Dnは、上述したように誤差を含むおそれがある。一方で、例えば回転数差が発生しなかった(Dn=0)としても、算出されたクラッチ機構30の作動期間Trと実際の作動期間が一致していたとは限らないことがある。これは、トルク制御の実行中にエンジン10により出力された駆動力が、ロックアップする前のクラッチ機構30でも伝達可能な駆動力を下回っている場合が考えられる。そこで、作動期間算出部65は、電動モータ20の回転軸およびエンジン10のスロットル開度に基づいて、取得された回転数差Dnの有効性について判断するようにしている。
ここで、油圧機構を有するクラッチ機構30が電動モータ20と一体的に設けられた構成においては、電動モータ20の回転に伴い油圧機構も回転することになり、シリンダ空間34にはモータ回転数Nmに応じた遠心油圧が発生する。さらに、油圧機構に供給される作動油は、電動モータ20などが発生する熱の影響を受けて油温が変動して流動性が変化することがある。このような遠心油圧や作動油の流動性の変化は、シリンダ空間34における作動油の供給および排出に影響し、作動期間Trを変動させる要因となり得る。そこで、作動期間算出部65は、図3に示すように、モータ回転数Nm、作動油の油温、および作動期間Trの関係を示す複数のマップを記憶するようにしている。
このような構成からなる駆動制御装置60は、車両状態に基づいて車両の電動モータ20のみを駆動源とする走行状態、およびエンジン10と電動モータ20が駆動源となり得る走行状態を切り換えたり、エンジン10の同期制御やトルク制御、クラッチ機構30の接続制御などを実行したりするものである。ここで、駆動制御装置60は、エンジン10と電動モータ20が駆動源となり得る走行状態の場合にトルク制御部62によるトルク制御を実行し、運転者の要求に応じた制御を行うようにしている。このように、トルク制御はクラッチ機構が接続状態となっている場合に実行されるものであることから、駆動制御装置60はクラッチ機構30が完全にロックアップしているか否かを適正に判断する必要がある。
クラッチ機構30のロックアップに係る判断は、例えば、エンジン回転数Neとモータ回転数Nmが一致しているか、プレッシャープレート32を押圧するピストン部材33のストロークが所定量であるか、などに基づいて行うことができる。本実施形態における駆動制御装置60は、上述したように、同期制御を実行する場合に、クラッチ機構制御部64による接続制御が開始されてから作動期間算出部65により算出された作動期間Trを経過すると、クラッチ機構30が接続状態であるものと判断するものとしている。
(ハイブリッド車両1の駆動制御)
ハイブリッド車両1の駆動制御について、図4および図5を参照して説明する。ここでは、図4に示すように、ハイブリッド車両1が電動モータ20のみを駆動源とする走行状態から運転者の加速要求に応答するために、エンジン10と電動モータ20が駆動源となり得る走行状態に切り換える駆動制御を例示する。先ず、定常走行中に、運転者によりアクセルが踏み込まれるとアクセル開度が上昇し、図4に示すように、時刻T1において、駆動制御装置60のハイブリッドECUがハイブリッド車両1の走行状態を切り換えるように駆動制御を開始する。
このような駆動制御が開始されると、図5に示すような処理を実行するプログラムが呼出される。ハイブリッドECUは、先ず、車両速度や自動変速機50の変速比などに基づいて、エンジン10の目標回転数Ntを算出する(S101)。ハイブリッドECUは、エンジン回転数Neが算出した目標回転数Ntとなるように、エンジンECUに対して同期制御を実行するように指令信号を出力する。この指令信号を入力して、エンジンECUの同期制御部61は、エンジン回転数Neに基づいてスロットル開度を調整するように同期制御を開始する(S102)。これにより、エンジン回転数Neが所定勾配で上昇し始める。
次に、時刻T2において、エンジン回転数Neが目標回転数Ntに達すると、ハイブリッドECUは、クラッチECUに対してクラッチ機構30を接続状態に切り換えるように指令信号を出力する。この指令信号を入力して、クラッチECUのクラッチ機構制御部64は、ポンプユニット40に対して電動オイルポンプ41への制御指令、および電磁弁42の開閉を切り換えるように制御指令を出力して接続制御を開始する(S103)。これにより、クラッチ機構30の作動し、切断状態から接続状態へと移行し始める。
続いて、駆動制御装置60は、上記のようにクラッチECUに対して指令信号を出力した後に、接続制御用タイマーをスタートさせる(S104)。そして、クラッチECUの作動期間算出部65は、作動期間Trを算出する(S105)。ここでは、作動期間算出部65は、先ず、前回のトルク制御の実行後に算出されたメインカウンタCmに対応するマップ(図3参照)を選択する。そして、作動期間算出部65は、現在のモータ回転数Nmおよび作動油の油温を取得し、選択されたマップに基づいて作動期間Trを取得する。
その後に、駆動制御装置60は、接続制御用タイマーをカウントアップして(S106)、クラッチ機構制御部64による接続制御が終了したか否かを判定する(S107)。より具体的には、駆動制御装置60は、先ず、接続制御用タイマーと作動期間Trを比較する。これは、駆動制御装置60がクラッチ機構30の作動開始から作動期間Trの経過により、接続制御の終了、即ちクラッチ機構30が接続状態であるものと判断するためである。さらに、駆動制御装置60は、現在のエンジン回転数Neとモータ回転数Nmの差分と閾値Ncthを比較する。これは、クラッチ機構30がロックアップしているのであれば、エンジン10と電動モータ20の各回転軸11,23は一体的に回転することになるためである。
何れかの条件を満たさなかった場合に(S107:No)、クラッチ機構30の接続制御が終了していないものと判断し、S106に戻る。そして、駆動制御装置60は、再び接続制御用タイマーをカウントアップする(S106)。このように、接続制御が開始されてから作動期間Trが経過するまでの間は、S106とS107を繰り返して作動期間Trだけ待機するように制御するようにしている。その後に、時刻T3において、何れの条件を満たした場合に(S107:Yes)、クラッチ機構30が接続状態であるものと判断し、ハイブリッドECUは、エンジンECUに対してトルク制御を実行するように指令信号を出力する。この指令信号を入力して、エンジンECUのトルク制御部62は、運転者の加速要求に応じたトルク制御を開始する(S108)。駆動制御装置60は、接続制御用タイマーなどをリセットする処理を行う(S109)。
ハイブリッドECUの回転数差取得部63は、トルク制御が開始されてから検出期間Tsにおいて、エンジン回転数Neおよびモータ回転数Nmを取得して、これらの差分である回転数差Dnを取得する回転数差取得処理を行う(S110)。そして、作動期間算出部65は、S110で取得した回転数差Dnに基づいて、現在のクラッチ機構30に応じたメインカウンタCmを演算するように、メインカウンタ演算処理を行う(S111)。その後に、駆動制御装置60は、ハイブリッド車両1の走行状態を切り換える駆動制御を終了する。なお、回転数差取得処理(S110)およびメインカウンタ演算処理(S111)の詳細については後述する。
(回転数差Dnの取得処理)
ハイブリッドECUの回転数差取得部63による回転数差Dnの取得処理について図4および図6を参照して説明する。回転数差取得部63は、トルク制御が実行中である場合に、図6に示すような処理を実行するプログラムを例えば数ms毎に呼出すことで回転数差取得処理を行っている。回転数差取得部63は、先ず、初回フラグFを確認する(S201)。このプログラムの呼出しが初回である場合には(S201:Yes)、回転数差取得用タイマーをスタートさせる(S204)とともに、回転数差Dnに初期値として0を代入する(S205)。
一方で、このプログラムの呼出しが初回でない場合には(S201:No)、回転数差取得処理用タイマーをカウントアップし(S202)、このタイマーと検出期間Tsとを比較する(S203)。回転数差取得処理用タイマーが検出期間Ts以下の場合には(S203:Yes)、トルク制御が開始されてから所定の検出期間Tsが経過しておらずS206に移行する。また、回転数差取得処理用タイマーが検出期間Tsを超えている場合には(S203:No)、トルク制御が開始されてから検出期間Tsが経過していることになる(図4の時刻T4以降)。そうすると、遅くともクラッチ機構30が完全にロックアップしてエンジン回転数Neとモータ回転数Nmが等しくなっているものと考えられ、この処理を終了する。
回転数差取得部63は、エンジン回転数Neとモータ回転数Nmを取得して、現在回転数差Dn1を算出する(S206)。そして、現在回転数差Dn1が、今のところ取得している回転数差Dnよりも大きい場合には(S207:Yes)、回転数差Dnを現在回転数差Dn1で更新する(S208)。さらに、回転数差取得部63は、現在回転数差Dn1を算出した際のモータ回転数Nmおよびエンジン10のスロットル開度を車両状態として記憶する(S209)。また、現在回転数差Dn1が、今のところ取得している回転数差Dn以下の場合には(S207:No)、回転数差Dnを更新することなく、この処理を終了する。
このように、回転数差取得部63は、検出期間Ts(図4の時刻T3から時刻T4の期間)においては、現在回転数差Dn1の算出と回転数差Dnの更新を繰り返している。結果として、回転数差取得部63は、当該検出期間Tsにおける最大の回転数差を回転数差Dnとして取得するように構成されている。また、ハイブリッドECUは、トルク制御部62によるトルク制御が終了すると、このプログラムの呼出しを終了するとともに、回転数差取得用タイマーおよび初回フラグをリセットする処理を行っている。
ここで、クラッチ機構30の接続制御の開始から作動期間Trの経過を待機してトルク制御を開始したにも関わらず、回転数差Dnが発生するのは、クラッチ機構30の実際の作動期間が算出された作動期間Trよりも長いことに起因する。つまり、作動期間算出部65は、クラッチ機構30の油圧機構における油圧が図4の破線で示されるように変化するものとして作動期間Trを算出している。しかし、実際には経年変化などによって実際の作動期間が延びて同図の実線で示されるように時刻T3を経過しても油圧が十分に低下していない状態となり、時刻T3を超えてからトルク制御を開始すると上記のような回転数差Dnが発生し得る状態となる。
(メインカウンタCmの演算処理)
クラッチECUの作動期間算出部65によるメインカウンタCmの演算処理について図4、図7〜図9を参照して説明する。作動期間算出部65は、ハイブリッドECUによる回転数差取得処理が終了した後に、次回のクラッチ機構30の接続制御が開始されるまでの間に、図7に示すような処理を実行するプログラムを呼出すことでメインカウンタ取得処理を行っている。作動期間算出部65は、先ず、トルク制御の実行中において取得された回転数差Dnと、当該回転数差Dnを取得した際の車両状態を取得する(S301)。
次に、S301で取得した車両状態に含まれるモータ回転数Nmおよびエンジン10のスロットル開度が、予め設定されている閾値とそれぞれ比較し、取得した回転数差Dnの有効性について判定する(S302)。このメインカウンタCmの演算処理においては、例えば回転数差Dnがゼロであったとしても、この回転数差Dnに基づいてメインカウンタCmなどが更新される。しかし、回転数差Dnについては、ノイズなどにより誤差を含むおそれがある一方で、他の要因によってゼロと測定されることがある。これは、前回の検出期間Tsにおいて、実際にはクラッチ機構30がロックアップしていないにも関わらず、エンジン10により出力された駆動力が、伝達可能な駆動力を下回っている場合が考えられる。そこで、作動期間算出部65は、このような状態を勘案して、モータ回転数Nmおよびエンジン10のスロットル開度に基づいて、回転数差Dnの有効性について判定している。
モータ回転数Nm、エンジン10のスロットル開度の何れかが閾値を下回り、回転数差Dnが有効でないものと判定された場合には(S302:No)、メインカウンタCmの更新を行わないので、この演算処理を終了する。一方で、回転数差Dnが有効であると判定された場合には(S302:Yes)、作動期間算出部65は、記憶されているメインカウンタCm、滑りカウンタCs、および戻しカウンタCrを取得する。メインカウンタCmは、上述したように、作動期間Trに係るクラッチ機構30の状態遷移を示す遷移指数である。
滑りカウンタCsと戻しカウンタCrは、クラッチ機構30の状態遷移の傾向を示す指数である。メインカウンタCmは、クラッチ機構30の使用に伴う経年変化に伴って進行するものであり、クラッチ機構30の接続制御または切断制御の度に更新されるものではない。そこで、トルク制御の実行中にクラッチ機構30のクラッチ板が滑ることで回転数差Dnが発生することから、クラッチ板が滑る傾向にあった回数を滑りカウンタCsに記憶させるようにしている。また、回転数差Dnが発生しない状態では、良好にトルク制御が行われている場合と、トルク制御の開始が遅れている場合とが考えられる。そこで、メインカウンタCmを遡及させるように戻す傾向にあった回数を戻しカウンタCrに記憶させるようにしている。
続いて、作動期間算出部65は、回転数差Dnと第一閾値Th1とを比較する(S304)。第一閾値Th1は、回転数差Dnに含まれる誤差を勘案して、この値以上となれば現在のクラッチ機構30においてはトルク制御の開始が早いと判断できる基準値である。例えば、図4に示すように、検出期間Tsにおいて第一閾値Th1を超える回転数差Dnが検出された場合には(S304:Yes)、トルク制御の実行中にエンジン10の吹き上げが生じたものと判断される。そして、作動期間算出部65は、滑りカウンタCsをカウントアップするとともに、戻しカウンタCrをリセットする(S305)。
その後に、カウントアップされた滑りカウンタCsと滑り閾値Thsとを比較する(S306)。滑り閾値Thsは、クラッチ機構30のクラッチ板が滑る傾向にあり、その状態が所定回数に亘って継続されたかを判定する基準値である。滑りカウンタCsが滑り閾値Thsよりも小さい場合には(S306:No)、上記のような傾向にあるもののメインカウンタCmを更新するには至っていないものと判断し、メインカウンタCmの演算処理を終了する。
一方で、S301〜S305を繰り返すことで、滑りカウンタCsが滑り閾値Ths以上となった場合には、(S306:Yes)、現在のクラッチ機構30においてはトルク制御の開始が早過ぎるものと判断される。そこで、メインカウンタCmをカウントアップするとともに、滑りカウンタCsをリセットし(S307)、この演算処理を終了する。これにより、次回以降の駆動制御においては、更新されたメインカウンタCmにより新たな作動期間Tr1が算出されることになる。
ここで、メインカウンタCmが更新(S307)された後に、図4と同様の駆動制御が実行されたものとする。そうすると、図8に示すように、前回の駆動制御における時刻T3に対応する時刻T5においてクラッチ機構30の接続制御が開始される。そして、新たな作動期間Tr1が経過した時刻T6以降にトルク制御が開始される。つまり、前回の駆動制御における時刻T3に対応する時刻よりも遅い時刻T6以降にトルク制御の開始が遅延される。これにより、クラッチ機構30の油圧機構における油圧が十分に低下してロックアップの状態となり、その後のトルク制御において回転数差の発生が抑制される。
また、検出期間Tsにおいて取得された回転数差Dnが第一閾値Th1を下回っていた場合には(S304:No)、トルク制御の実行中にエンジン10の吹き上げが生じなかったものと判断される。そして、作動期間算出部65は、さらに、回転数差Dnと第二閾値Th2とを比較する(S308)。第二閾値Th2は、取得された回転数差Dnに基づいて、トルク制御の開始が良好か否かを判断するための基準値である。例えば、検出期間Tsにおいて第二閾値以下の回転数差Dnが検出された場合には(S308:Y)、トルク制御の開始を早期にできる可能性があるものと判断される。そして、作動期間算出部65は、滑りカウンタCsをリセットするとともに、戻しカウンタCrをカウントアップする(S309)。
その後に、カウントアップされた戻しカウンタDrと戻し閾値Thrとを比較する(S310)。戻し閾値Thrは、トルク制御の開始がクラッチ機構30のロックアップに対して遅れている傾向にあり、その状態が所定回数に亘って継続されたかを判定する基準値である。戻しカウンタCrが戻し閾値Thrよりも小さい場合には(S310:No)、上記のような傾向にあるもののメインカウンタCmを更新するには至っていないものと判断し、メインカウンタCmの演算処理を終了する。
一方で、S301〜S304,S308,S309を繰り返すことで、戻しカウンタCrが戻し閾値Thr以上となった場合には(S310:Yes)、現在のクラッチ機構30においてはトルク制御の開始が遅過ぎるものと判断される。そこで、メインカウンタCmをカウントダウンするとともに、戻しカウンタCrをリセットし(S311)、この演算処理を終了する。これにより、次回以降の駆動制御においては、更新されたメインカウンタCmにより新たな作動期間Tr2が算出されることになる。
ここで、クラッチ機構30の接続制御の開始(時刻T7)から作動期間Trの経過を待機してトルク制御を開始したところ、このトルク制御の開始が遅過ぎるものと判断されるのは、クラッチ機構30の実際の作動期間が算出された作動期間Trよりも短いことに起因する。つまり、作動期間算出部65は、クラッチ機構30の油圧機構における油圧が図9の破線で示されるように変化するものとして作動期間Trを算出している。しかし、実際には、クラッチ機構30の個体差などにより作動期間が短く同図の実線で示されるように時刻T8を経過する前に油圧が十分に低下して、クラッチ機構30が接続状態となることがある。
そして、メインカウンタCmが更新(S311)された後に、図9と同様の駆動制御が実行されたものとする。そうすると、同図に示すように、前回の駆動制御における時刻T7に対応する時刻T9においてクラッチ機構30の接続制御が開始される。そして、新たな作動期間Tr2が経過した時刻T10以降にトルク制御が開始される。つまり、前回の駆動制御における時刻T8に対応する時刻よりも早い時刻T10以降にトルク制御の開始が早期化される。これにより、その後のトルク制御における回転数差の発生を抑制しつつ、クラッチ機構30の接続制御を実行してからトルク制御の開始までの期間が早期化される。
また、検出期間Tsにおいて取得された回転数差Dnが第二閾値Th2以上の場合には(S308:No)、現在のメインカウンタCmが適正に設定され、トルク制御の開始が良好なタイミングであると判断される。そのため、作動期間算出部65は、滑りカウンタCsおよび戻しカウンタCrをリセットし(S312)、メインカウンタCmの演算処理を終了する。
(駆動制御装置60による効果)
上述したハイブリッド車両1の駆動制御装置60によると、クラッチ機構制御部64による接続制御が開始されてから、クラッチ機構30の作動期間Trを経過すると、クラッチ機構30が接続状態であるものと判断してトルク制御を開始させるものとした。そして、作動期間算出部65は、前回のトルク制御の実行中において取得された回転数差Dnと現在の車両状態とに基づいて作動期間Trを算出する構成としている。これにより、作動期間Trをより正確に算出することが可能となる。よって、駆動制御装置60は、回転数差Dnの発生を抑制し好適なトルク制御を行うことができるので、運転者の加速要求または減速要求への応答性を向上させることが可能となる。
また、作動期間算出部65は、取得された回転数差Dnに基づいて遷移指数であるメインカウンタCmを更新し、当該メインカウンタCmに対応するマップと現在の車両状態に基づいて作動期間Trを算出するものとした。そして、このメインカウンタCmを回転数差Dnや滑りカウンタCs、戻しカウンタCrなどに基づいて適宜更新することにより、より適正な作動期間Trを算出することができる。よって、駆動制御装置60は、確実に回転数差Dnの発生を抑制することができるとともに、好適にトルク制御を開始することができる。
さらに、作動期間算出部65は、メインカウンタCmを遡及させるように更新する構成とする。これにより、誤差によってメインカウンタCmが進行するように更新されても、次回以降では、これを補正するようにメインカウンタCmを更新され、前回値よりも短い作動期間Trが算出することが可能となる。また、初期のメインカウンタCmは、クラッチ機構30の個体差を吸収するように設定されたマップに対応する値が設定される。そのため、あるクラッチ機構30にでは、実際に要する作動期間よりも長い作動期間Trが算出されることがある。これに対して、本実施形態のような構成によれば、メインカウンタCmを遡及させるように更新し、初期状態よりもさらに短い適正な作動期間Trが算出することが可能となる。
また、回転数差取得部63は、トルク制御の開始後から所定の検出期間Tsにおける最大の回転数差を回転数差Dnとして取得するものとした。さらに、作動期間算出部65は、回転数差Dnが取得された際のモータ回転数Nm、エンジン10のスロットル開度を含む車両状態に基づいて作動期間Trを算出するものとした。これは、例えば回転数差Dnが発生しなかったとしても、算出されたクラッチ機構30の作動期間Trと実際の作動期間が一致していたとは限らないことがあるためである。そこで、作動期間算出部65は、このような状態を勘案して、取得された回転数差Dnの有効性について、電動モータ20の回転軸およびエンジン10のスロットル開度に基づいて判断するようにしている。これにより、作動期間算出部65は、前回のトルク制御の実行中において取得された回転数差Dn、この回転数差Dnが取得された際の車両状態、および現在の車両状態に基づいて、より適正な作動期間Trを算出することができる。
作動期間算出部65は、モータ回転数Nmと作動油の油温とを含む車両状態に基づいて作動期間Trを算出するものとした。本実施形態において例示したクラッチ機構30の構成においては、クラッチ機構30の油圧機構にはモータ回転数Nmに応じた遠心油圧が生じ、クラッチ機構30の作動期間Trに影響することが考えられる。また、クラッチ機構30は作動油の供給状態によって作動することから、作動油の油温が作動期間Trに影響することが考えられる。そこで、これらモータ回転数Nmおよび作動油の油温を勘案することにより、作動期間Trをより正確に算出することができるので、より好適にトルク制御を開始することができる。
<実施形態の変形態様>
本実施形態において、駆動制御装置60の制御対象であるクラッチ機構30は、電動モータ20とともにクラッチモジュールMDを構成するものとした。これに対して、ハイブリッド車両1においてエンジン10の係合力を係脱するクラッチ機構であれば、電動モータ20と別体に構成されるものであっても駆動制御装置を適用することができる。
また、本実施形態のクラッチモジュールMDではクラッチ機構30が電動モータ20の回転軸に一体的に設けられるものとしたが、クラッチ機構がエンジン10の回転軸に一体的に設けられるようにしてもよい。この場合において、作動期間Trの算出に際して駆動源の回転数を勘案するためには、エンジン回転数Neに基づいて算出するようにすることが好適である。さらに、本実施形態のクラッチモジュールMDは、ノーマルクローズタイプを例示して説明したが、液圧が供給された場合にロックアップし、液圧が供給されない常態において切断状態となるノーマルオープンタイプとしてもよい。このような場合においても、駆動制御装置60を適用することで同様の効果を奏する。
また、駆動制御装置60は、本実施形態において、クラッチ機構30の作動期間Trについてモータ回転数Nmおよび作動油の油温を含む車両状態に基づいて算出するものとした。これに対して、作動期間Trは、予め設定された定数としたり、経年変化を勘案した係数を掛け合わせたりすることで算出するようにしてもよい。
1:ハイブリッド車両
10:エンジン(駆動源)、 11:軸部材(回転軸)
20:電動モータ(駆動源)、 21:ロータ、 22:ステータ
23:出力部材(回転軸)、 24:連結部材
30:クラッチ機構、 31:クラッチプレート、 32:プレッシャープレート
33:ピストン部材、 34:シリンダ空間、 35:スプリング
40:ポンプユニット、 41:電動オイルポンプ、 42:電磁弁
50:自動変速機、 51:トルクコンバータ、 52:出力シャフト
60:駆動制御装置、 61:同期制御部、 62:トルク制御部
63:回転数差算出部、 64:クラッチ機構制御部、 65:作動期間算出部
91:エンジン回転数センサ、 92:モータ回転数センサ、 93:車輪速度センサ
MD:クラッチモジュール、 H:ハウジング、 Hp:油路
DF:デファレンシャル機構、 Wr:右車輪、 Wl:左車輪
Tr:作動期間、 Ts:検出期間、 Dn:回転数差
Ne:エンジン回転数、 Nm:モータ回転数、 Nt:目標回転数
Cm:メインカウンタ(遷移指数)、 Cs:滑りカウンタ、 Cr:戻しカウンタ

Claims (7)

  1. エンジンおよび電動モータを駆動源とし、前記エンジンの駆動力を係脱するクラッチ機構を備えるハイブリッド車両の駆動制御装置であって、
    前記クラッチ機構を切断状態から接続状態へと作動させる場合に、前記エンジンの回転数が前記電動モータの回転数と同期するように同期制御を実行する同期制御部と、
    前記同期制御が開始した後に、前記クラッチ機構が接続状態となるように接続制御を実行するクラッチ機構制御部と、
    前記クラッチ機構が接続状態である場合に、現在の車両状態に基づいて前記エンジンのトルク制御を実行するトルク制御部と、
    前記トルク制御の実行中における前記エンジンの回転数と前記電動モータの回転数との回転数差を取得する回転数差取得部と、
    前記クラッチ機構制御部による前記接続制御が実行される際に、前回の前記トルク制御の実行中において取得された前記回転数差と現在の車両状態とに基づいて、前記クラッチ機構の作動開始から作動終了までの作動期間を算出する作動期間算出部と、
    を備え、
    前記同期制御を実行する場合に、前記クラッチ機構制御部による前記接続制御が開始されてから前記作動期間算出部により算出された前記作動期間を経過すると、前記クラッチ機構が接続状態であるものと判断して前記トルク制御を開始させるハイブリッド車両の駆動制御装置。
  2. 請求項1において、
    前記作動期間算出部は、
    前記作動期間に係る前記クラッチ機構の状態遷移を示す遷移指数と、当該遷移指数に対応し前記車両状態と前記作動期間の関係を示す複数のマップと、を有し、
    前記遷移指数および取得した前記回転数差に基づいて当該遷移指数を更新し、
    前記接続制御が実行される際に、更新された前記遷移指数に対応する前記マップと現在の車両状態とに基づいて前記作動時間を算出するハイブリッド車両の駆動制御装置。
  3. 請求項2において、
    前記作動期間算出部は、取得された前記回転数差が予め設定された閾値以下の場合に、前記遷移指数を遡及させるように当該遷移指数を更新するハイブリッド車両の駆動制御装置。
  4. 請求項1〜3の何れか一項において、
    前記回転数差取得部は、前記トルク制御の開始後から所定期間における最大の回転数差を前記回転数差として取得するハイブリッド車両の駆動制御装置。
  5. 請求項1〜4の何れか一項において、
    前記作動期間算出部は、前記回転数差が取得された際の前記電動モータの回転数、前記エンジンのスロットル開度を含む前記車両状態に基づいて前記作動期間を算出するハイブリッド車両の駆動制御装置。
  6. 請求項1〜5の何れか一項において、
    前記エンジンまたは前記電動モータの回転軸に前記クラッチ機構が一体的に設けられ、
    前記クラッチ機構制御部は、前記クラッチ機構に供給する作動油の供給状態を制御することにより、前記クラッチ機構の作動を制御し、
    前記作動期間算出部は、前記回転軸の回転数を含む前記車両状態に基づいて前記作動期間を算出するハイブリッド車両の駆動制御装置。
  7. 請求項1〜6の何れか一項において、
    前記クラッチ機構制御部は、前記クラッチ機構に供給する作動油の供給状態を制御することにより、前記クラッチ機構の作動を制御し、
    前記作動期間算出部は、前記作動油の油温を含む前記車両状態に基づいて前記作動期間を算出するハイブリッド車両の駆動制御装置。
JP2011279268A 2011-12-21 2011-12-21 ハイブリッド車両の駆動制御装置 Expired - Fee Related JP5899898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279268A JP5899898B2 (ja) 2011-12-21 2011-12-21 ハイブリッド車両の駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279268A JP5899898B2 (ja) 2011-12-21 2011-12-21 ハイブリッド車両の駆動制御装置

Publications (2)

Publication Number Publication Date
JP2013129274A true JP2013129274A (ja) 2013-07-04
JP5899898B2 JP5899898B2 (ja) 2016-04-06

Family

ID=48907220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279268A Expired - Fee Related JP5899898B2 (ja) 2011-12-21 2011-12-21 ハイブリッド車両の駆動制御装置

Country Status (1)

Country Link
JP (1) JP5899898B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054579A (ja) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 車両の制御装置
WO2015126719A1 (en) * 2014-02-22 2015-08-27 Borgwarner Inc. Drivetrain for a motor vehicle, and method for operating a drivetrain of said type
US20200114902A1 (en) * 2018-10-11 2020-04-16 Hyundai Motor Company Apparatus and method for controlling driving of vehicle, and vehicle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349310A (ja) * 2001-05-18 2002-12-04 Honda Motor Co Ltd ハイブリッド車の駆動制御装置
JP2007218271A (ja) * 2006-02-14 2007-08-30 Fujitsu Ten Ltd 無段変速機の制御装置
JP2010149640A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd エンジン始動制御装置及びエンジン始動制御方法
JP2011073483A (ja) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd 動力伝達装置および動力伝達装置の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349310A (ja) * 2001-05-18 2002-12-04 Honda Motor Co Ltd ハイブリッド車の駆動制御装置
JP2007218271A (ja) * 2006-02-14 2007-08-30 Fujitsu Ten Ltd 無段変速機の制御装置
JP2010149640A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd エンジン始動制御装置及びエンジン始動制御方法
JP2011073483A (ja) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd 動力伝達装置および動力伝達装置の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054579A (ja) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 車両の制御装置
WO2015126719A1 (en) * 2014-02-22 2015-08-27 Borgwarner Inc. Drivetrain for a motor vehicle, and method for operating a drivetrain of said type
CN105980186A (zh) * 2014-02-22 2016-09-28 博格华纳公司 用于机动车辆的动力传动系以及用于操作所述类型动力传动系的方法
US10040445B2 (en) 2014-02-22 2018-08-07 Borgwarner, Inc. Drivetrain for a motor vehicle, and method for operating a drivetrain of said type
CN105980186B (zh) * 2014-02-22 2021-05-25 博格华纳公司 用于机动车辆的动力传动系以及用于操作所述类型动力传动系的方法
US20200114902A1 (en) * 2018-10-11 2020-04-16 Hyundai Motor Company Apparatus and method for controlling driving of vehicle, and vehicle system
US10967850B2 (en) * 2018-10-11 2021-04-06 Hyundai Motor Company Apparatus and method for controlling driving of vehicle, and vehicle system

Also Published As

Publication number Publication date
JP5899898B2 (ja) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6192927B2 (ja) ハイブリッド車両のエンジンクラッチのトルク伝達開始点学習制御方法およびシステム
JP5168600B2 (ja) 制御装置
KR101363907B1 (ko) 차량의 제어 장치
KR101768825B1 (ko) 차량의 제어 장치
KR101696586B1 (ko) 차량의 제어 장치
JP4214405B2 (ja) 自動変速機の制御装置
KR101416375B1 (ko) 하이브리드 차량의 엔진클러치의 학습 주기 설정 방법 및 시스템
CN102725513B (zh) 发动机起动装置
JP5309962B2 (ja) ハイブリッド車両の制御装置
JP5857672B2 (ja) 車両のエンジン自動停止制御装置
WO2009109822A1 (en) Control apparatus for hybrid vehicle
WO2015068857A1 (en) Controller of vehicle for inertia driving control
JP6197874B2 (ja) 車両の制御装置
US20070225115A1 (en) Control device and method for automatic transmission
JP5899898B2 (ja) ハイブリッド車両の駆動制御装置
JP2006153091A (ja) 車両の制御装置
US20030017912A1 (en) Engine restart and vehicle start control apparatus in transmission unit
JP5200733B2 (ja) ハイブリッド車両のクラッチ制御装置
JP2009180361A (ja) 車両のパワートレイン制御装置
US10160460B2 (en) Failure determining device of hybrid vehicle and failure determining method therefor
JP5335021B2 (ja) 自動クラッチを有する自動車のドライブトレインの制御方法
JP5095810B2 (ja) 車両の制御装置
JP5534212B2 (ja) 車両の制御装置
JP2013129273A (ja) ハイブリッド車両の駆動制御装置
JP6362036B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5899898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees