JP2013124762A - 等速自在継手 - Google Patents

等速自在継手 Download PDF

Info

Publication number
JP2013124762A
JP2013124762A JP2011275724A JP2011275724A JP2013124762A JP 2013124762 A JP2013124762 A JP 2013124762A JP 2011275724 A JP2011275724 A JP 2011275724A JP 2011275724 A JP2011275724 A JP 2011275724A JP 2013124762 A JP2013124762 A JP 2013124762A
Authority
JP
Japan
Prior art keywords
velocity universal
constant velocity
universal joint
joint member
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275724A
Other languages
English (en)
Inventor
Hiroyuki Noda
浩行 野田
Hajime Asada
一 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011275724A priority Critical patent/JP2013124762A/ja
Priority to DE112012001288.7T priority patent/DE112012001288T5/de
Priority to CN201280014099.XA priority patent/CN103429922B/zh
Priority to US14/005,367 priority patent/US9133886B2/en
Priority to PCT/JP2012/054880 priority patent/WO2012127995A1/ja
Publication of JP2013124762A publication Critical patent/JP2013124762A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】 必要とされる性能および強度、耐久性を備え、加工性よく量産可能で、材料歩留まりが高く、低コスト化を図ることができる等速自在継手を提供することを目的とする。
【解決手段】 外側継手部材(2、32、62)と、外側継手部材(2、32、62)の内部に配置される内側継手部材(3、33、63)と、トルク伝達部材(4、34、64)を備え、外側継手部材(2、32、62)と内側継手部材(3、33、63)の少なくとも一方に、トルク伝達部材(4、34、64)の転動面が係合するトラック溝(7、9、37、39、66)を形成した等速自在継手(1、31、61)において、等速自在継手(1、31、61)の構成部材の少なくとも1つが金属焼結体からなり、この金属焼結体の相対密度が80%以上で100%未満であり、その表面に熱処理による硬化層が形成されており、金属焼結体からなる構成部材のうち、リング状をなす構成部材に冷間ローリング加工が施されていることを特徴とする。
【選択図】図1

Description

この発明は、自動車、航空機、船舶や各種産業機械の動力伝達系に使用され、具体的には、例えば、FF車や4WD車などで使用されるドライブシャフトやプロペラシャフト等に組み込まれて駆動側と従動側の二軸間で角度変位を許容する等速自在継手に関する。
例えば、自動車のエンジンから車輪に回転力を等速で伝達するドライブシャフトやプロペラシャフト等に組み込まれる等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これらの等速自在継手は、駆動側と従動側の二軸を連結して、その二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。
自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、デフと車輪との相対的な位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的にデフ側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装着し、両等速自在継手をシャフトで連結した構造を有する。固定式等速自在継手の代表的なものとして、ツェッパ型等速自在継手があり、摺動式等速自在継手としては、ダブルオフセット型等速自在継手やトリポード型等速自在継手などがある。
上記の等速自在継手は強度や耐久性が要求されるので、一般に、等速自在継手の各構成部品には、中実の金属材料(溶製材)が用いられている。そのため、鍛造加工等により素形材を得る工程、外径面や内径面などの旋削加工工程、焼入れ等の熱処理工程や高精度が要求される部位の研削加工工程などを経て最終製品に仕上げられる。このため、加工量が多く材料ロスも多く、製造コストの低減には限界がある。
一方、等速自在継手の保持器に焼結金属を適用したものが、特許文献1に記載されているが、等速自在継手として、必要とする強度、耐久性の面で対策や多量生産という製造面での対策について検討の余地を残している。
また、使用環境の面では、極寒地に長時間放置された自動車では、その前輪を駆動するために使用される固定式等速自在継手も外気温と同等の低温(例えば、−20℃以下)となり、封入グリースも同様の低温になっている。このような場合に、高作動角状態で継手にトルクが入力されると、トルク入力した直後に、継手内部のトラック溝とボールとの間や、外輪内球面と保持器外球面との間、内輪外球面と保持器内球面との間のような球面部で、一時的な潤滑不足によるスティックスリップが発生することがある。このようなスティックスリップが発生すれば異音として運転者に聴こえる場合がある(この異音のことを冷時異音という)。この冷時異音はジョイントが回転すれば、その発熱によりジョイント内部温度が上昇しすぐに消えるため、発進する際のみ問題となり、発進直後以外は問題とならないが、対策が望まれる。
実開平3−105726号公報
特許文献1には、の焼結金属体で形成された保持器の焼結方法については記載されていないが、保持器の機械的特性を実現するためには、一般的には冷間静水圧成形法(CIP法)や熱間静水圧成形法(HIP法)が必要である。これらの手法では、焼結金属製の棒鋼を形成し、この棒鋼を所定の長さに切断した後、機械加工にて所定形状の保持器に仕上げることが考えられる。この場合には、仕上げ加工を施す必要があるので、材料の歩留まりが低く、保持器を金属焼結体で形成することによるコストメリットを十分に享受することができないという問題がある。
さらに、CIP法やHIP法は、設備が大掛かりになり連続生産に適さず、したがって、量産部品である保持器を製造するための手法として実現性に欠ける。
上記のような問題に鑑み、本発明は、必要とされる性能、強度および耐久性を備え、加工性よく量産可能で、材料歩留まりが高く、低コスト化を図ることができる等速自在継手を提供することを目的とする。
本発明者らは、上記の目的を達成するために種々検討した結果、等速自在継手の構成部材に高密度の金属焼結体を活用するという着想と、この金属焼結体の表面に熱処理による硬化層を形成するという二つの着想に加えて、金属焼結体からなるリング状をなす構成部品を、一般的な粉末冶金プレスと冷間ローリング加工による連続生産可能な構成にするという着想が相俟って本発明に至った。
前述の目的を達成するための技術的手段として、本発明は、外側継手部材と、該外側継手部材の内部に配置される内側継手部材と、トルク伝達部材を備え、前記外側継手部材と内側継手部材の少なくとも一方に、前記トルク伝達部材の転動面が係合するトラック溝を形成した等速自在継手において、前記等速自在継手の構成部材の少なくとも1つが金属焼結体からなり、この金属焼結体の相対密度が80%以上で100%未満であり、その表面に熱処理による硬化層が形成されており、前記金属焼結体からなる構成部材のうち、リング状をなす構成部材に冷間ローリング加工が施されていることを特徴とする。
上記の等速自在継手の構成部材の少なくとも1つを形成する金属焼結体の相対密度は80%以上で100%未満であることを特徴とするが、ここでいう相対密度は以下に示す計算式で示される。
相対密度=(金属焼結体の密度/真密度)×100[%]
上式における「真密度[g/cm3]」とは、溶製材からなる素材のように、素材内部に空孔が存在しないような材料の理論密度を意味し、下記の計算式から求めることができる。
(1)単一組成からなる材料の場合
真密度=100/(100/材料を構成する元素の密度)=材料を構成する元素の密度
(2)複数組成からなる材料の場合(ここでは組成A〜Cの3種類からなるものを例示)
真密度=100/[(元素Aの配合度/元素Aの密度)+(元素Bの配合度/元素Bの密度)+(元素Cの配合度/元素Cの密度)]
例えば、Fe/Crの化学成分が、それぞれ87.0/13.0[wt%]のステンレス材の真密度は、上記各元素の密度がそれぞれ7.87/7.15[g/cm3]であることから、
真密度=100/[(87.0/7.87)+(13.0/7.15)]≒7.78
となる。
本発明に係る等速自在継手は、相対密度が80%以上で100%未満という高密度の金属焼結体からなり、かつ、その表面に熱処理による硬化層が形成されているものであるため、必要とされる機械的強度、耐久性を確保することができる。等速自在継手の構成部材の形状に対応した圧粉体を形成し、これを焼結して金属焼結体を得た後、その表面に熱処理による硬化層を形成する。これにより、金属焼結体に一層高い表面硬度を付与することができ、金属焼結体のトラック溝や球状面に必要とされるロックウエルCスケール硬さ(HRC)55以上好ましくは57以上を確保することができる。熱処理としては、ずぶ焼入れ、浸炭焼入れなど種々適用でき、また、材料や製品仕様により適宜選択することができる。これにより、所定の精度および機械的強度を有する構成部材が得られる。したがって、必要とされる機能を備えた等速自在継手の構成部材を加工性よく量産することができる。複雑な形状の構成部材であっても材料の無駄なく製作することができ、等速自在継手の低コスト化を図ることができる。また性能面では、金属焼結体は高密度ではあるが適宜の空孔を有しているので、固定式等速自在継手におけるトラック溝表面とボール間や各接触部におけるスティックスリップが起こりにくい接触状態に加えて、潤滑剤であるグリースの高い保持能力により、スティックスリップ、冷時異音の発生を抑制することができる。したがって、ドライブシャフトやプロペラシャフトに装着される等速自在継手として好適である。
加えて、金属焼結体からなる構成部材のうち、リング状をなす構成部材の内外径面に冷間ローリング加工が施され、その内外径面が他の領域よりも多孔質組織が緻密化されている。これにより、CIP法やHIP法ではなく、一般的な粉末冶金プレスにより金属焼結体を製造できるため連続生産に適し、かつ金属焼結体を冷間ローリング加工により成形することで、材料の歩留まりが高く、完成品に近い寸法精度を得ることができる。また、リング状をなす構成部品の冷間ローリング加工を施した面が、他の領域よりも多孔質組織が緻密化されていることにより、強度を高めることができる。
上記のリング状をなす構成部材は、外側継手部材と内側継手部材の双方にトラック溝が形成され、このトラック溝間にトルク伝達ボールが係合すると共に、該トルク伝達ボールが保持器により保持されてなる等速自在継手の保持器とする。また、内側継手部材がトリポード部材であり、該トリポード部材にローラが回転自在に装着され、該ローラが前記外側継手部材のトラック溝に係合してなるトリポード型等速自在継手のローラとする。これにより、上記の摺動嵌合する保持器や転動するローラの強度を高めることができる。上記の保持器を備えた等速自在継手として、具体的には、ツェッパ型等速自在継手、アンダーカットフリー型等速自在継手などがあり、摺動式等速自在継手では、ダブルオフセット型等速自在継手、クロスグルーブ型等速自在継手などがある。これらの等速自在継手において、トルク伝達ボールの個数は3〜10個程度で適宜実施することができる。
上記の金属焼結体は、鉄系合金の金属粉末を主成分とし、これに少なくとも0.5〜20mass%のクロムおよび3mass%以下のモリブデンを含む合金化粉からなる原料粉末の圧粉体を焼結(焼結温度以上で加熱)することで形成することができる。具体的には、例えば、1.5mass%のクロムおよび0.2mass%のモリブデンを含み、残部を鉄系合金および不可避的不純物とした合金化粉の圧粉体を焼結することで形成することができる。なお、ここでいう合金化粉は、完全合金化粉と、部分合金化粉の双方を含む概念である。
上記の金属焼結体は、鉄系合金の金属粉末を主成分とする原料粉末からなる造粒粉の圧粉体を焼結したものとすることができる。
上記構成において、少なくとも、軌道面或いはトラック溝は、塑性加工により、他領域よりも多孔質組織が緻密化されている。軌道面或いはトラック溝が緻密化されると、応力集中源となる空孔が少なくなり、それを起点としたクラックも発生しにくくなる。塑性加工としてはバニシング加工(バニシ加工とも称される)を採用することができる。
圧粉体の成形に用いる原料粉末としては、原料粉末同士や粉末と成形金型間の摩擦力を低減させるための潤滑剤を含むものを使用することが望ましく、特に粉末体成形時の加圧力を受けることによって液相化し、原料粉末間に拡散・浸透していくような固体潤滑剤を含むものが望ましい。すなわち、金属焼結体は、固体潤滑剤を混合した原料粉末の圧粉体を加熱することで形成されたものとすることができる。これにより、圧粉体を成形金型からスムーズに離型することができるので、金属焼結体の高精度化を達成することができる。
上記の前記金属焼結体は、例えば、800MPa以上で1100MPa以下の加圧力で原料粉末を加圧することにより成形された圧粉体を、1150℃以上1300℃以下で焼結することにより形成することができる。この場合、原料粉末(金属粉末)、ひいては金属焼結体が酸化するのを可及的に防止するために、上記の金属焼結体は、圧粉体を、不活性ガス雰囲気下又は真空下で焼結することで形成するのが望ましい。
本発明によれば、等速自在継手の構成部材を加工性よく量産することができる。したがって、必要とされる性能や強度、耐久寿命を有する等速自在継手の低コスト化に寄与することができる。
本発明の第1の実施形態に係る等速自在継手示す部分的縦断面図である。 (a)図は第1の実施形態に係る等速自在継手の部分的縦断面図であり、(b)図は正面図である。 (a)図は等速自在継手の外側継手部材を示す部分的縦断面図であり、(b)図は(a)図のD−D線における横断面図である。 (a)図は、(b)図のE−E線における等速自在継手の内側継手部材の縦断面図であり、(b)図は正面図である。 (a)図は、(b)のG−G線における等速自在継手の保持器の縦断面図であり、(b)図は、(a)図のF−F線における横断面図である。 金属焼結体の製造工程を示す図である。 金属焼結体の製造工程を示す図である。 (a)図は保持器の焼結体を示す縦断面図であり、(b)図は冷間ローリング加工後の形状を示す縦断面図である。 保持器の冷間ローリング加工を模式的に示す図である。 (a)図は本発明の第2の実施形態に係る等速自在継手の部分的縦断面図であり、(b)図は正面図である。 (a)図は本発明の第3の実施形態に係る等速自在継手の部分的縦断面図であり、(b)図は正面図である。 本発明の第4の実施形態に係る等速自在継手の部分的縦断面図である。 第4の実施形態に係る等速自在継手のローラを示す図である。 第4の実施形態に係る等速自在継手のトリポード部材を示す図である。 本発明に係る等速自在継手を連結したドライブシャフトを示す部分的縦断面図である。
以下に本発明の実施の形態を図面に基づいて説明する。
本発明の第1の実施形態に係る等速自在継手を図1〜図9に基づいて説明する。図1に示す等速自在継手1は固定式等速自在継手であるツェッパ型等速自在継手で、自動車用ドライブシャフトに適用した例を示す。等速自在継手1は、外側継手部材2、内側継手部材3、トルク伝達ボール4および保持器5からなる。外側継手部材2の球状内周面6には6本のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7と対向するトラック溝9が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間にトルクを伝達する6個のボール4が介在されている。外側継手部材2の球状内周面6と内側継手部材3の球状外周面8の間に、ボール4を保持する保持器5が配置されている。トラック溝7、9とボール4は、通常、接触角(30°〜45°程度)をもって接触しているので、トラック溝7、9とボール4とは、実際にはトラック溝7、9の溝底より少し離れたトラック溝7、9の側面側の位置で接触している。内側継手部材3の内周孔には雌スプライン12が形成されており、中間シャフト10の軸端に形成された雄スプライン13に嵌合され、止め輪14により軸方向に固定されている。外側継手部材2には、車輪用軸受装置(図示省略)に接続される軸部15が一体に形成されている。外側継手部材2の外周と中間シャフト10の外周にブーツ11の両端が取り付けられ、ブーツバンド16、17により締め付け固定されて継手内部を密封している。継手内部には潤滑剤としてのグリースが封入されている。
図1に示すように、外側継手部材2の球状内周面6と内側継手部材3の球状外周面8の曲率中心は、いずれも、継手の中心Oに形成されている。これに対して、外側継手部材2のトラック溝7の曲率中心Aと、内側継手部材3のトラック溝9の曲率中心Bとは、継手の中心Oに対して軸方向に等距離オフセットされている。このため、外側継手部材2と内側継手部材3のトラック溝7、9は開口側に向けて拡がる楔状をなしており、両トラック溝7、9に挟まれたボール4には開口側に向けた押し出し力が作用する。この押し出し力によって、ボール4と保持器5のポケット面との間にポケット荷重が発生すると共に保持器5の球状外周面21(図2参照)と外側継手部材2の球状内周面6との間および保持器5の球状内周面22(図2参照)と内側継手部材3の球状外周面8との間に接触力が発生する。このため保持器5も機械的強度が要求される。上記のような構成により、継手が作動角をとった場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間で等速に回転トルクが伝達されることになる。
図2に、等速自在継手1の部分を取り出して示す。図2(a)は等速自在継手1の部分的縦断面図で、図2(b)は正面図である。本実施形態では、等速自在継手1の外側継手部材2、内側継手部材3および保持器5が金属焼結体で形成されている。外側継手部材2の開口側外周にブーツ装着用溝18が形成され、軸部15には、図示しない車輪用軸受装置のハブ輪と嵌合する雄スプライン19および軸端に締め付け固定用ねじ部20が形成されている。図2(b)に示すように内側継手部材3の内周孔には雌スプライン12が形成されており、図1に示す中間シャフト10の軸端の雄スプライン13に嵌合する。
等速自在継手1の各構成部材を図3〜図5に示す。図3は外側継手部材2の単体図である。図3(a)は縦断面図であり、図3(b)は図3(a)のD−D線における横断面図である。この図では、外側継手部材2の圧粉体を2’、金属焼結体を2”として示す。圧粉体2’および金属焼結体2”は最終製品として外側継手部材2とが若干細部形状が異なる部分があるが、この点については省略して単純化して説明する。以下の構成部材の単体図も同様に示す。図4は内側継手部材3の単体図である。図4(b)は正面図であり、図4(a)は図4(b)のE−E線における縦断面図である。図4(a)に示す切欠部23は、保持器5内に内側継手部材3を組み立てる際、保持器5のポケット20(図5参照)内に内側継手部材3を潜らせて組み立てるためのものである。図5は保持器5の単体図である。図示した保持器5は、後述する冷間ローリング加工後にポケット20を加工した完成品を示す。図5(a)はポケット20の中心面(図5(b)のG−G線)における縦断面図であり、図5(b)は図5(a)のF−F線における横断面図である。
まず、外側継手部材2と内側継手部材3の製造工程を説明し、その後、冷間ローリング加工を施す保持器の製造工程を説明する。図3および図4に示すように、外側継手部材2と内側継手部材3は、金属粉末を主成分とする原料粉末の圧粉体を焼結することによって形成された金属焼結体2”、3”からなり、その表面には、熱処理による硬化層(図示省略)が形成されている。このような構成を有する外側継手部材2と内側継手部材3は、主に、図6に示すような原料粉末準備工程S1、圧粉工程S2、脱脂工程S3、焼結工程S4、塑性加工工程S5、熱処理工程S6および仕上げ工程S7を経て製造される。製造工程の基本的なところは、外側継手部材2および内側継手部材3は同様であるので、以下の説明では2つの部材を併記する。
原料粉末準備工程S1では、金属焼結体からなる外側継手部材2および内側継手部材3の成形用材料としての原料粉末が準備・生成される。原料粉末は、例えば、鉄(Fe)を主成分とし、これに少なくとも0.5〜20mass%のクロム(Cr)および3mass%以下のモリブデン(Mo)を含む部分合金化粉又は完全合金化粉とすることができ、ここでは、1.5mass%のクロムおよび0.2mass%のモリブデンを加え、さらに0.3mass%の炭素(C)を含み、残部を鉄とした完全合金化粉とされる。
この原料粉末には、必要に応じて、添加剤として、銅、二硫化モリブデン、黒鉛等の固体潤滑剤や、成形を容易にするためにステアリン酸亜鉛や非金属系潤滑剤であるエチレンビスステアルアミド等の潤滑剤を混合しても良い。
圧粉工程S2では、上記の原料粉末を圧粉することにより、外側継手部材2および内側継手部材3の形状をなした圧粉体2’、3’(図3および図4参照)を形成する。圧粉体2’、3’は、焼結温度以上で加熱することにより形成される金属焼結体2”、3”の相対密度が80%以上で100%未満、望ましくは90%以上100%未満となるように高密度に圧縮成形される。本実施形態で用いられる原料粉末は鉄を主成分とするものであり、鉄の密度は約7.8g/cm3である。したがって、圧粉体2’、3’は、金属焼結体2”、3”となったときの密度が7.3〜7.5g/cm3の範囲内になるように圧縮成形することが望ましい。
具体的には、例えばサーボモータを駆動源としたCNCプレス機に圧粉体形状に倣ったキャビティを画成してなる成形金型をセットし、キャビティ内に充填した上記の原料粉末を800〜1100MPaの加圧力で加圧することにより圧粉体2’、3’を成形する。圧粉体2’、3’の成形時において、成形金型は70℃以上に加温してもよい。外側継手部材の圧粉体2’のトラック溝7、球状内周面6や内側継手部材の圧粉体3’のトラック溝9、球状外周面8は継手の軸方向に湾曲した形状であるので、キャビティを画成する成形金型は円周方向に分割した金型で適宜構成することができる。
金属焼結体2”、3”の相対密度を上記の範囲内となるような圧粉体2’、3’を得るべく、原料粉末を高密度に圧縮すると、圧粉体2’、3’の表面がキャビティの内壁面に密着してしまい、圧粉体2’、3’をスムーズに成形金型から離型することができなくなる恐れがある。この点、本実施形態では、原料粉末に固体潤滑剤を混合したことから、圧粉体2’、3’の成形時には、上記の高い加圧力により固体潤滑剤を液相化し、この液相化された固体潤滑剤を原料粉末相互間に拡散・浸透させることができる。したがって、脆性品である圧粉体2’、3’をスムーズに離型することができ、離型に伴う圧粉体2’、3’の形状の崩れを回避することができる。
脱脂工程S3では、圧粉体2’、3’に含まれる潤滑剤等が除去される。脱脂は、一般的な焼結金属製品を製作する場合と同様の条件で行うことができる。
焼結工程S4では、脱脂された圧粉体2’、3’を焼結温度以上で加熱し、隣接する原料粉末同士を焼結結合させることによって金属焼結体2”、3”を形成する。原料粉末は鉄を主成分とするものであることから、酸化を可及的に防止するために、例えば窒素ガスおよび水素ガスの混合ガス雰囲気下に圧粉体2’、3’を配置し、これを1150〜1300℃(例えば1250℃)で60分間加熱することにより金属焼結体2”、3”を形成する。なお、圧粉体2’、3’の焼結は、上記のような不活性ガス雰囲気下のみならず、真空下で行うようにしてもよい。
塑性加工工程S5では、上記のように形成された金属焼結体2”、3”のトラック溝7、9や球状面6、8にバニシング加工などの塑性加工を施すことにより、より高密度に形成することができる。なお、圧粉体の成形金型の設計面を考慮すると、外側継手部材2の軸端部のねじ部20(図2(a)参照)は、金属焼結体2”に転造加工することにより、また、外側継手部材2のブーツ装着用溝18(図2(a)参照)や外側継手部材61の軸部76の螺旋状油溝(図12参照)は、金属焼結体2”に旋削加工又は転造加工により形成することが望ましい。
上記の条件で圧粉体2’、3’を焼結し、さらにトラック溝7、9や球状面6、8の塑性加工が加わることで、相対密度が80%以上で100%未満にある金属焼結体2”、3”が形成される。また、トラック溝7、9や球状面6、8に塑性加工を施すことにより、当該塑性加工を施した部位は、その他の領域に比べて多孔質組織が緻密化される。そのため、当該塑性加工工程S5を経た金属焼結体2”、3”のうち、少なくともトラック溝7、9や球状面6、8の成形領域は一層緻密化(高密度化)され、機械的強度や耐久寿命の更なる向上が図れる。トラック溝7、9や球状面6、8が緻密化されれば、応力集中源となる空孔が少なくなり、それを起点としたクラックも発生しにくくなるというメリットがある。上記の塑性加工を施した部位は一層高密度化されるが、本発明おいては、当該塑性加工を施した部位を含めた金属焼結体2”、3”の相対密度を80%以上で100%未満とすることを意味する。上記の塑性加工工程S5は、必要に応じて実施すればよく、必ずしも実施する必要はない。
熱処理工程S6は、金属焼結体2”、3”に焼入れ処理等の熱処理を施すことにより、その表面に硬化層(図示省略)を形成する工程である。これにより、金属焼結体2”、3”に一層高い表面高度を付与することができ、金属焼結体2”、3”のトラック溝7、9や球状面6、8に必要とされるロックウエルCスケール硬さ(HRC)55以上を、好ましくは57以上を確保することができる。焼入れの手法としては、ずぶ焼入れや浸炭焼入れを採用することができ、また、材料や製品仕様により適宜選択することができる。
仕上げ工程S7は、金属焼結体2”、3”の所定部位に対して、研削加工等の仕上げ処理を施すことにより、金属焼結体2”、3”の必要な部位を一層高精度化する工程である。また、金属焼結体2”、3”の必要な部位に封孔処理を施すことも適宜実施することができる。この仕上げ工程S7は、必要に応じて実施すればよく、必ずしも実施する必要はない。
次に、保持器5の製造工程を図7に基づいて説明する。要約すると、保持器5の製造工程は、前述した外側継手部材2、内側継手部材2の製造工程(図6参照)の塑性加工工程S5が冷間ローリング工程S5’とポケット加工工程S5”となる点が異なる。
図7に示すように、原料粉末準備工程S1、圧粉工程S2、脱脂工程S3、焼結工程S4の工程自体は、図6と同じである。異なるところは、保持器5では、圧粉工程S2で図8(a)に示すようにポケット20(図5参照)のない円筒リング状の圧粉体5’が形成され、焼結工程S4を経て金属焼結体5”が形成される。その後、冷間ローリング工程S5’により、図8(b)に示すように球状外周面21”および球状内周面22”を形成した金属焼結体5”aが得られる。その後、ポケット加工工程S5”によりポケット20(図5参照)が開けられる。
以下に示すように、冷間ローリング加工は素材の薄肉化および大径化を伴う加工方法であることから、冷間ローリング加工で球状外周面、球状内周面を成形する場合、金属焼結体5’としては、図8に示すように、ローリング加工後の金属焼結体5”aよりも厚肉でかつ小径に形成されたものを用いる。
図9に示す加工機80は、球状内周面22”を成形する型部81を外周に有し、図示外の駆動源の出力を受けて回転するマンドレル82と、球状外周面21”を成形する型部85を外周に有し、金属焼結体5”の外径面に接した状態で図示外の駆動源の出力を受けて回転する(マンドレル82とは反対方向に回転する)ダイロール83と、マンドレル82の軸方向端部を支持するサポートロール84とを備えている。このような加工機80において、金属焼結体5”の内周に挿通させたマンドレル82をサポートロール84で支持しつつ、金属焼結体5”を互いに反対方向に回転するマンドレル82とダイロール83とで半径方向に挟み込むと、金属焼結体5”は徐々に薄肉化および大径化しながらその外径面および内径面がダイロール83の内径面(型部85)およびマンドレル82の外径面(型部81)にそれぞれ倣って塑性変形する。これにより、金属焼結体5”は、薄肉化および大径化されると共に、その内径面および外径面が所定形状に成形される。
上記のように、冷間ローリング加工では、金属焼結体5”に球状外周面21”および球状内周面22”が成形されるのと同時に、冷間ローリング加工後における金属焼結体5”aの内外径面(内径側および外径側の表層部)は、金属焼結体5”aの厚み方向の中央部に比べて多孔質組織が緻密化されることとなる。そのため、球状外周面21”および球状内周面22”の強度向上も図られる。
冷間ローリング加工により多孔質組織が緻密化される状況を説明する。図8(a)に示す内径面および外径面が平滑な円筒リング状をなした密度7.4g/cm3の金属焼結体5”に冷間ローリング加工を施すことにより、図8(b)に示す球状外周面21”、球状内周面22”を有する金属焼結体5”aに成形した。その結果、冷間ローリング加工後の金属焼結体5”aにおいては、加工前の金属焼結体5”に比べ、空孔が全体として少なくなっており、加工後の金属焼結体5”aのうち、特に球状外周面21”、球状内周面22”の表層部領域においては、空孔がほぼ消失している状態となった。密度を実測すると、金属焼結体5”aの球状外周面21”、球状内周面22”の表層部領域の密度は溶製材に限りなく近似した7.8g/cm3となっており、金属焼結体5”a全体としての密度(平均密度)は7.6g/cm3となった。
上記の冷間ローリング加工後、図7のポケット加工工程S5”において金属焼結体5”aにポケット20(図5参照)が開けられる。ポケット加工は一般的に行われるプレス加工や機械加工により行うことができる。
ポケット加工工程S5”の後、熱処理工程S6および仕上げ工程S7となる。仕上げ工程S7において、ポケットの研削加工や切削加工により仕上げる。その他は、前述した外側継手部材2、内側継手部材3の製造工程(図6参照)における熱処理工程S6および仕上げ工程S7と同様であるので、重複説明は省略する。
以上で説明したように、本発明の第1の実施形態に係る等速自在継手1の構成部材である外側継手部材2、内側継手部材3および保持器5は、相対密度が80%以上で100%未満という高密度の金属焼結体2”、3”、5”aからなるものであるため、必要とされる機械的強度および耐久寿命を確保することができる。また、金属焼結体2”、3”、5”aに焼入れ処理等の熱処理を施して、その表面に硬化層を形成することにより、金属焼結体2”、3”、5”aに一層高い表面高度を付与することができ、金属焼結体2”、3”、5”aのトラック溝7、9や球状面6、8、21、22に必要とされるロックウエルCスケール硬さ(HRC)55以上を、好ましくは57以上を確保することができる。
さらに、金属焼結体2”、3”に塑性加工を施すことにより、多孔質組織が緻密化されるため、トラック溝7、9や球状面6、8の強度や耐久寿命を向上することができる。また、金属焼結体5”に冷間ローリング加工(塑性加工)を施すことにより、金属焼結体5”aの球状外周面21”、球状内周面22”(内径側および外径側の表層部)は、金属焼結体5”aの厚み方向の中央部に比べて多孔質組織が緻密化されることとなる。そのため、球状外周面21”および球状内周面22”の強度向上も図られる。したがって、必要とされる機能を備えた等速自在継手1の構成部材である外側継手部材2、内側継手部材3および保持器5を加工性よく量産することができると共に、複雑な形状であっても材料の無駄なく製作することができる。これにより、等速自在継手1の低コスト化を図ることができる。保持器5は、CIP法やHIP法ではなく、一般的な粉末冶金プレスにより金属焼結体を製造できるため連続生産に適し、かつ金属焼結体を冷間ローリング加工により成形することで、材料の歩留まりが高く、完成品に近い寸法精度を得ることができる。さらに、金属焼結体2”、3”、5”aは高密度ではあるが適宜の空孔を有しているので、固定式等速自在継手におけるトラック溝7、9表面とボール4間や各接触部6、8、21、22におけるスティックスリップが起こりにくい接触状態に加えて、潤滑剤であるグリースの高い保持能力により、スティックスリップ、冷時異音の発生を抑制することができる。
以上、本発明の金属焼結体の一実施形態について説明したが、金属焼結体の相対密度が80%以上で100%未満とされる高密度の金属焼結体2”、3”、5”aを得るための具体的手段は、上記のものに限定されない。例えば、原料粉末を造粒することで形成した造粒粉を加圧して圧粉体を形成し、その後、この圧粉体を加熱・焼結結合させることで得ることもできる。この場合において金属焼結体2”、3”、5”を得るためには、次のような手順を踏む。
まず、鉄系合金を主成分とし、これに必要に応じて銅やニッケル、二硫化モリブデン、黒鉛などの粒子を配合した原料粉末を生成する。例えば、鉄を主成分として、これに炭素が0.3%以上含まれているものなどが好ましい。このとき、原料粉末の粉末粒度(D50)を20μm以下、好ましくは10μm以下とする。粗い粉末粒度の原料粉末では、圧粉体を構成する原料粉末間に大きな空孔ができてしまい、この圧粉体を加熱して金属焼結体を形成しても空孔が埋まらず、高密度化を達成することが難しくなるからである。これに対し、粉末粒度(D50)20μm以下の原料粉末であれば、焼結時に空孔を埋めることができるので高密度化を達成することができる。
次いで、上記の原料粉末を造粒して造粒粉を形成する。このように、原料粉末を造粒することにより、圧粉体成形用の成形金型内での原料粉末の流動性が向上し、成形性を確保することができる。造粒粉は、例えば、上記の原料粉末に、成形時の摩擦損失を低減させるための金属系潤滑剤であるステアリン酸亜鉛や非金属系潤滑剤であるエチレンビスステアルアミドなどの潤滑剤、離型剤および造粒粉に適度な強度を付与するための糊の作用を有する有機物などの造粒剤を加えて凝集した集合体である。
造粒粉の粉末粒度(D50)は500μm以下が好ましい。500μmを超えると、キャビティへの充填性が悪化するため、必要十分量の造粒粉を充填することができず、高密度の圧粉体、ひいては焼結体を得ることが難しくなる可能性があるからである。なお、造粒粉の形状は、流動性を考慮すると特に球形が好ましい。
そして、成形金型のキャビティ内に上記の造粒粉を充填し、これを加圧することによって圧粉体を成形する圧粉工程を実行すると共に、圧粉体に含まれる潤滑剤や造粒剤などを脱脂する脱脂工程を実行した後、圧粉体を焼結温度以上で加熱する焼結工程を実行する。これにより、上記範囲内の相対密度を有する高密度の金属焼結体2”、3”、5”を得ることができる。
なお、上記範囲内の相対密度を有する高密度の金属焼結体を得るための具体的な一例を挙げると、鉄系合金を主成分とし、粉末粒度(D50)が10μmとされた原料粉末を造粒して粉末粒度(D50)が120μmの造粒粉を形成する。そして、この造粒粉を800MPaで加圧することによって圧粉体を形成し、これを750℃で30分脱脂した後、脱脂された圧粉体を1200℃で60分加熱する。その結果、造粒粉の焼結金属体2”、3”、5”は、上記範囲内の相対密度になり、造粒粉を含まない粉末プレス成形用粉末を圧粉・焼結して得られる金属焼結体よりも大幅に高密度になる。
以上の手順を踏むことで高密度の金属焼結体2”、3”、5”を得ることができるのは次のような理由によるものと考えられる。まず、高密度の金属焼結体2”、3”、5”を得るための手段の一例として、微少な粒径の原料粉末(微粉末)を用いることが有効であると考えられるが、微粉末をそのまま加圧すると、摩擦損失によって成形性が悪化するため、このような手段を採用することができない。これに対し、上記のように原料粉末を適度な粒径に造粒した造粒粉を用いることにより、微粉末を用いているにもかかわらず摩擦損失が軽減され、かつ金型内での原料粉の流動性を向上することができるので、成形性を向上することができ、微粉末を用いることが可能となる。これにより、原料粉末の表面積を増大させて、密着した原料粉末との焼結性を向上させ、高密度の金属焼結体2”、3”、5”を得ることができる。
また、原料粉末として、その粉末粒度(D50)が20μm以下、好ましくは10μm以下のものを用いることにより、焼結時に空孔が埋まりやすくなった点、および造粒粉末として、その粉末粒度(D50)が500μm以下のものを用いることにより、圧粉体の成形金型への造粒粉末の充填性を向上した点、なども金属焼結体2”、3”、5”の高密度化に寄与するものと考えられる。
次に、第2の実施形態を図10に基づいて説明する。図10(a)は本実施形態に係る等速自在継手の部分的縦断面図であり、図10(b)は正面図である。前述した第1の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。
第2の実施形態に係る等速自在継手1は、保持器5のみが金属焼結体で形成されている。外側継手部材2、内側継手部材3およびボール4は、通常用いられる溶製材で形成されている。この実施形態に係る等速自在継手1の構成部品の内部形状、すなわち、外側継手部材2のトラック溝7、球状内周面6、内側継手部材3のトラック溝9、球状外周面8、保持器5の球状外周面21、球状内周面22およびボール4については第1の実施形態と同じであるので、重複説明を省略する。金属焼結体からなる保持器5は、その球状外周面21が外側継手部材2の球状内周面6と球面接触し、球状内周面22が内側継手部材3の球状外周面8に球面接触する。この保持器5も、相対密度が80%以上で100%未満という高密度の金属焼結体からなり、その表面に熱処理による硬化層(図示省略)が形成され、そして、金属焼結体には冷間ローリング加工が施されているので、必要とされる機械的強度および耐久寿命を確保することができる。保持器の金属焼結体の組成、性状や冷間ローリング加工、ポケット加工を含む製造の工程などは、第1実施形態において前述した内容と同様であるので、説明を省略する。
第3の実施形態を図11に基づき説明する。この実施形態は、摺動式等速自在継手の一つであるダブルオフセット型等速自在継手(DOJ)で、前述した実施形態と同様に自動車用ドライブシャフトに適用した例を示す。図11(a)は、この等速自在継手31の部分縦断面図であり、図11(b)は正面図である。等速自在継手31は、外側継手部材32、内側継手部材33、ボール34および保持器35からなる。外側継手部材32の筒状内周面36には6本のトラック溝37が円周方向等間隔に、かつ軸方向に直線状に形成されている。内側継手部材33の球状外周面38には、外側継手部材32のトラック溝37と対向するトラック溝39が円周方向等間隔に、かつ軸方向に直線状に形成されている。外側継手部材32のトラック溝37と内側継手部材33のトラック溝39との間にトルクを伝達する6個のボール34が介在されている。この摺動式等速自在継手31においても、第1の実施形態に係る固定式等速自在継手1と同様、トラック溝37、39とボール34は、通常、接触角(30°〜45°程度)をもって接触しているので、トラック溝37、39とボール34とは、実際にはトラック溝37、39の溝底より少し離れたトラック溝37、39の側面側の位置で接触している。外側継手部材32の筒状内周面36と内側継手部材33の球状外周面38との間に、ボール34を保持する保持器35が配置されている。ボール34は保持器35のポケット40に収容されている。保持器35の球状外周面41は外側継手部材32の筒状内周面36と嵌合し、保持器35の球状内周面42は内側継手部材33の球状外周面38と嵌合している。図示は省略するが、内側継手部材33の内径孔43に中間シャフトの軸端部がスプライン嵌合され、止め輪によって軸方向に固定される。そして、外側継手部材32の開口端部44の外周と中間シャフトの外周にブーツが取り付けられ、継手内部に潤滑剤としてのグリースが封入される。外側継手部材32の奥側の底部には軸部45が一体に形成されており、図示しないデファレンシャルのサイドギヤに連結される。
保持器35の球状外周面41は曲率中心Hを有し、保持器35の球状内周面42は曲率中心Iを有する。曲率中心H、Iは、継手中心Oに対して軸方向に等距離オフセットされている。これにより、継手が作動角をとった場合、外側継手部材32と内側継手部材33の両軸線がなす角度を二等分する平面上にボール34が常に案内され、二軸間で等速に回転が伝達されることになる。
本実施形態に係る摺動式等速自在継手31では、外側継手部材32、内側継手部材33および保持器35が、相対密度が80%以上で100%未満という高密度の金属焼結体からなり、その表面に熱処理による硬化層(図示省略)が形成されている。また、リング状をなす保持器35には冷間ローリング加工が施されている。したがって、トラック溝37、39や外側継手部材32の筒状内周面36、内側継手部材33の球状外周面38、保持器35の球状外周面41、球状内周面42は、必要とされる機械的強度および耐久寿命を確保することができる。本実施形態の球状内外周面41、42がオフセットされた保持器35の金属焼結体においても、冷間ローリング加工前はポケット40のない円筒リング状に形成され、冷間ローリング加工により球状外周面41および球状内周面42が成形される。ローリング加工機のダイロールの内径面(型部)およびマンドレルの外径面(型部)は、上記保持器35の形状に対応した形状となっている。金属焼結体の組成、性状や製造の工程などは、第1実施形態において前述した内容と同様であるので、説明を省略する。
第4の実施形態を図12に基づき説明する。この実施形態は、摺動式等速自在継手の他の例であるトリポード型等速自在継手であり、同様に自動車用ドライブシャフトに適用した例を示す。この等速自在継手61は、外側継手部材62、内側継手部材としてのトリポード部材63、転動体64および球面ローラ65とからなる。外側継手部材62の内周部に軸方向の三本のトラック溝66が形成され、各トラック溝66の両側にそれぞれ軸方向のローラ案内面67が形成されている。トリポード部材63は、そのボス部63aより三本の脚軸63bが放射状に形成されている(図14参照)。脚軸63bに多数の転動体64を介して球面ローラ65が嵌合され、転動体64の両端にワッシャ68、69を介させ、ワッシャ69は止め輪70により位置決めされている。これにより、転動体64の列が脚軸63b上で案内されると共に、球面ローラ65は、転動体64上で回転自在であると共に、脚軸63bの軸線方向に移動可能となっている。球面ローラ65は、外側継手部材62のトラック溝66のローラ案内面67に回転自在に収容されている。
このように、外側継手部材62のローラ案内面67とトリポード部材63の三本の脚軸63bとが球面ローラ65を介して回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、各球面ローラ65が脚軸63bに対して回転しながらローラ案内面67上を転動することにより、外側継手部材62とトリポード部材63との間の相対的な軸方向変位や角度変位が吸収される。
図12に示すように、トリポード部材63のボス部63aの内径孔72に雌スプライン73が形成されている。この雌スプライン73と中間シャフト71の雄スプライン75が嵌合され、止め輪77によって軸方向に固定されている。外側継手部材62の奥側の底部には軸部76が一体に形成されており、図示しないデファレンシャルのサイドギヤに連結される。
図13に球面ローラ65の単体図を示し、図14にトリポード部材63の単体図を示す。球面ローラ65は球状外径面65aと円筒状内径面65bを有する。球状外径面65aは転動面を構成し、外側継手部材62のトラック溝66(ローラ案内面67)に係合して、ローラ案内面67上を転動運動する。ローラ案内面67は円弧状横断面に形成されている。円筒状内周面65bは転動体(針状ころ)64の転走面である。図14に示すように、トリポード部材63は、ボス部63aから円周方向等間隔で放射状に3本の脚軸63bが形成されており、この脚軸63b上に転動体64を介して球面ローラ65が回転自在に支持される。ボス部63aの内径孔72には雌スプライン73が形成されており、この雌スプライン73が中間シャフト71の軸端に形成された雄スプライン75に嵌合する。
本実施形態では、トリポード型等速自在継手61の構成部材である外側継手部材62、内側継手部材としてのトリポード部材63および球面ローラ65が、相対密度が80%以上で100%未満という高密度の金属焼結体からなり、その表面に熱処理による硬化層(図示省略)が形成されている。そして、リング状をなすローラ65には冷間ローリング加工が施されている。図示は省略するが、この場合、ローラ65の冷間ローリング加工前の形状は、球状外周面と円筒状内周面からなるが、ローリング加工後の金属焼結体よりも厚肉でかつ小径に形成されたものを用いる。そして、冷間ローリング加工により薄肉化および大径化させて仕上げる。ローリング加工機のダイロールの外径面(型部)およびマンドレルの外径面(型部)は、上記ローラ65の球状外周面と円筒状内周面に対応した形状となっている。したがって、外側継手部材62のトラック溝66(ローラ案内面67)、球面ローラ65、トリポード部材63の脚軸63bは、必要とされる機械的強度および耐久寿命を確保することができる。金属焼結体の組成、性状や製造の工程などは、第1実施形態において前述した内容と同様であるので、説明を省略する。
図15に本発明の第1の実施形態に係る固定式等速自在継手1と第4の実施形態に係る摺動式等速自在継手61を中間シャフト10の両端に連結した自動車用ドライブシャフト25を示す。図示は省略するが、固定式等速自在継手1が車輪用軸受装置に連結され、摺動式等速自在継手61がデファレンシャルのサイドギヤに連結される。等速自在継手1、61の構成部材である外側継手部材2、62、内側継手部材3、63、保持器5および球面ローラ65が、相対密度が80%以上で100%未満という高密度の金属焼結体からなり、その表面に熱処理による硬化層(図示省略)が形成され、また、リング状をなす保持器5やローラ65を形成する金属焼結体には冷間ローリング加工が施されている。したがって、必要とされる機能を有する等速自在継手1、61を加工性よく量産することができると共に、複雑な形状であっても材料の無駄なく製作することができる。これにより、等速自在継手1、61の低コスト化、ひいては、ドライブシャフト25の低コスト化を図ることができる。
以上の各実施形態では、固定式等速自在継手としてツェッパ型等速自在継手、摺動式等速自在継手としてダブルオフセット型等速自在継手およびトリポード型等速自在継手を示したが、これに限定されるものではない。上記の他に、固定式等速自在継手として、アンダーカットフリー型等速自在継手、カウンタートラック形式の等速自在継手や、摺動式等速自在継手として、クロスグルーブ型等速自在継手でも適宜実施することができる。本実施形態の等速自在継手を自動車用ドライブシャフトに適用した例を示したが、これに限られず、プロペラシャフトや航空機、船舶や各種産業機械の動力伝達軸に使用することができる。
また、本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1 等速自在継手
2 外側継手部材
3 内側継手部材
4 トルク伝達部材(ボール)
5 保持器
7 トラック溝
9 トラック溝
10 中間シャフト
25 ドライブシャフト
31 等速自在継手
32 外側継手部材
33 内側継手部材
34 トルク伝達部材(ボール)
35 保持器
37 トラック溝
39 トラック溝
61 等速自在継手
62 外側継手部材
63 内側継手部材(トリポード部材)
64 転動体
65 トルク伝達部材(球面ローラ)
66 トラック溝
67 ローラ案内面

Claims (10)

  1. 外側継手部材と、該外側継手部材の内部に配置される内側継手部材と、トルク伝達部材を備え、前記外側継手部材と内側継手部材の少なくとも一方に、前記トルク伝達部材の転動面が係合するトラック溝を形成した等速自在継手において、
    前記等速自在継手の構成部材の少なくとも1つが金属焼結体からなり、この金属焼結体の相対密度が80%以上で100%未満であり、その表面に熱処理による硬化層が形成されており、前記金属焼結体からなる構成部材のうち、リング状をなす構成部材に冷間ローリング加工が施されていることを特徴とする等速自在継手。
  2. 前記リング状をなす構成部品の冷間ローリング加工を施した面が、他の領域よりも多孔質組織が緻密化されていることを請求項1に記載の等速自在継手。
  3. 前記リング状をなす構成部材は、外側継手部材と内側継手部材の双方にトラック溝が形成され、このトラック溝間にトルク伝達ボールが係合すると共に、該トルク伝達ボールが保持器により保持されてなる等速自在継手の保持器であることを特徴とする請求項1又は請求項2に記載の等速自在継手。
  4. 前記リング状をなす構成部材は、内側継手部材がトリポード部材であり、該トリポード部材にローラが回転自在に装着され、該ローラが前記外側継手部材のトラック溝に係合してなるトリポード型等速自在継手のローラであることを特徴とする請求項1又は請求項2に記載の等速自在継手。
  5. 前記金属焼結体は、鉄系合金の金属粉末を主成分とし、これに少なくとも0.5〜20mass%のクロムおよび3mass%以下のモリブデンを含む合金化粉からなることを特徴とする請求項1〜4のいずれか1項に記載の等速自在継手。
  6. 前記金属焼結体は、鉄系合金の金属粉末を主成分とする原料粉末からなる造粒粉を焼結したものであることを特徴とする請求項1〜5のいずれか1項に記載の等速自在継手。
  7. 少なくとも、前記軌道面或いはトラック溝は、塑性加工により、他の領域よりも多孔質組織が緻密化されていることを特徴とする請求項1〜6のいずれか1項に記載の等速自在継手。
  8. 前記金属焼結体は、固体潤滑剤を混合した原料粉末の圧粉体を焼結することで形成されたものであることを特徴とする請求項1〜7のいずれか1項に記載の等速自在継手。
  9. 前記金属焼結体は、800MPa以上で1100MPa以下の加圧力で原料粉末を加圧することにより成形された圧粉体を、1150℃以上、1300℃以下で焼結することにより形成されてものであることを特徴とする請求項1〜8のいずれか1項に記載の等速自在継手。
  10. 前記金属焼結体は、前記圧粉体を、不活性ガス雰囲気下、又は真空下で焼結することにより形成されたものであることを特徴とする請求項9に記載の等速自在継手。
JP2011275724A 2011-03-18 2011-12-16 等速自在継手 Pending JP2013124762A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011275724A JP2013124762A (ja) 2011-12-16 2011-12-16 等速自在継手
DE112012001288.7T DE112012001288T5 (de) 2011-03-18 2012-02-28 Konstantgeschwindigkeits-Universalgelenk
CN201280014099.XA CN103429922B (zh) 2011-03-18 2012-02-28 等速万向联轴器
US14/005,367 US9133886B2 (en) 2011-03-18 2012-02-28 Constant velocity universal joint
PCT/JP2012/054880 WO2012127995A1 (ja) 2011-03-18 2012-02-28 等速自在継手

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275724A JP2013124762A (ja) 2011-12-16 2011-12-16 等速自在継手

Publications (1)

Publication Number Publication Date
JP2013124762A true JP2013124762A (ja) 2013-06-24

Family

ID=48776136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275724A Pending JP2013124762A (ja) 2011-03-18 2011-12-16 等速自在継手

Country Status (1)

Country Link
JP (1) JP2013124762A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368608A (en) * 1976-11-30 1978-06-19 Honda Motor Co Ltd Carburizing and forging of ferrous powder molded article
JPS61502554A (ja) * 1984-06-27 1986-11-06 クリ−ヴランド モ−テイブ プロダクツ インコ−ポレイテツド 動力伝動装置
JP2000509440A (ja) * 1996-05-03 2000-07-25 スタックポール リミテッド 焼結、球状化及び温間成形による金属粉末品の製造方法
JP2009079136A (ja) * 2007-09-26 2009-04-16 Oiles Ind Co Ltd 銅系含油焼結摺動部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368608A (en) * 1976-11-30 1978-06-19 Honda Motor Co Ltd Carburizing and forging of ferrous powder molded article
JPS61502554A (ja) * 1984-06-27 1986-11-06 クリ−ヴランド モ−テイブ プロダクツ インコ−ポレイテツド 動力伝動装置
JP2000509440A (ja) * 1996-05-03 2000-07-25 スタックポール リミテッド 焼結、球状化及び温間成形による金属粉末品の製造方法
JP2009079136A (ja) * 2007-09-26 2009-04-16 Oiles Ind Co Ltd 銅系含油焼結摺動部材

Similar Documents

Publication Publication Date Title
US7854995B1 (en) High density dual helical gear
KR101522513B1 (ko) 헬리컬기어의 분말야금 제조방법
CN106662233B (zh) 齿轮和设置有齿轮的电致动器
WO2012127995A1 (ja) 等速自在継手
CN106460932B (zh) 滚道圈以及具有该滚道圈的滚动轴承
JP2014077527A (ja) 車輪用軸受装置およびその製造方法
US20040197219A1 (en) One-piece joint body
JP2008527166A (ja) 表面緻密化粉末金属部品を製造する方法
CN101827673B (zh) 可变表面渗碳深度的粉末金属齿轮及其方法
US7364803B1 (en) High density dual helical gear and method for manufacture thereof
JP5936838B2 (ja) 転がり軸受用軌道輪の製造方法
US11137021B2 (en) Rolling bearing ring by metal injection molding process
JP5687101B2 (ja) 等速自在継手
JP2013124762A (ja) 等速自在継手
JP6093737B2 (ja) 等速ジョイント及びその製造方法
KR101540036B1 (ko) 이중 구조의 환형 소결체 및 그 소결체를 제조하는 방법
JP2024076033A (ja) ハブユニット軸受及び、ハブ輪の製造方法
JP2013043496A (ja) ラックアンドピニオン式ステアリングギヤユニットの製造方法
JP6625333B2 (ja) 焼結軸受の製造方法および焼結軸受
US11781604B2 (en) Actuator with powdered metal ball ramp and method of selective surface densification of powdered metal ball ramp
CN106168254B (zh) 一种电机轴承
CN111231195A (zh) 镶嵌式自润滑空气环轴承及其制造方法
JP2022045034A (ja) 車輪用軸受装置
JP5796841B2 (ja) 動力伝達装置、及び動力伝達装置用の転動体の製造方法
KR101047888B1 (ko) 원웨이 클러치용 아웃터레이스의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151228