JP2013124674A - Sliding bearing and pump device using the same - Google Patents

Sliding bearing and pump device using the same Download PDF

Info

Publication number
JP2013124674A
JP2013124674A JP2011271887A JP2011271887A JP2013124674A JP 2013124674 A JP2013124674 A JP 2013124674A JP 2011271887 A JP2011271887 A JP 2011271887A JP 2011271887 A JP2011271887 A JP 2011271887A JP 2013124674 A JP2013124674 A JP 2013124674A
Authority
JP
Japan
Prior art keywords
static pressure
sleeve
pocket
shaft
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011271887A
Other languages
Japanese (ja)
Other versions
JP5602122B2 (en
Inventor
Tomonaga Oyamada
具永 小山田
Koji Aizawa
宏二 会沢
Masaaki Hayashi
正明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011271887A priority Critical patent/JP5602122B2/en
Priority to US13/709,641 priority patent/US20130149142A1/en
Publication of JP2013124674A publication Critical patent/JP2013124674A/en
Application granted granted Critical
Publication of JP5602122B2 publication Critical patent/JP5602122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0476Bearings hydrostatic; hydrodynamic for axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2210/00Fluids
    • F16C2210/08Fluids molten metals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a load carrying capacity and bearing rigidity of a bearing without increasing the size of the bearing and the pressure of a fluid externally supplied, in a journal bearing type sliding bearing having a hydrostatic bearing structure that supports rotational motion of a shaft by externally supplying a high-pressure fluid to a gap between the outer periphery of the shaft and the inner periphery of a substantially cylindrical bearing.SOLUTION: The sliding bearing comprises: a substantially cylindrical sleeve the inner periphery of which slides via a fluid on a rotatable shaft outer periphery; a hydrostatic pressure supply passage penetrating the sleeve and supplying a high-pressure fluid from an external pressure source into the inner periphery of the sleeve; and a hydrostatic pressure pocket which has a recessed shape in a radial direction on the inner periphery of the sleeve, and where the hydrostatic pressure supply passage is open via an orifice. At least one row of hydrostatic pressure pockets where a plurality of hydrostatic pressure pockets are circumferentially arranged, is formed in the vicinity of each of both ends of the sleeve inner periphery in the axial direction of the shaft. A cylindrical inner peripheral region having no hydrostatic pressure pocket is formed in the center part of the sleeve, while being interposed by the hydrostatic pressure pocket rows, with a broader width in the shaft axial direction than the sum of widths of the hydrostatic pressure pocket rows.

Description

本発明は、シャフト外周と略円筒形状のスリーブ内周との隙間に外部から高圧の流体を供給してシャフトの回転運動を支持する静圧軸受構造を備えたすべり軸受と、そのすべり軸受によりインペラに接続したシャフトの回転運動を支持する機構を備えたポンプ装置に関する。   The present invention relates to a slide bearing having a hydrostatic bearing structure that supplies a high-pressure fluid from the outside to a gap between a shaft outer periphery and a substantially cylindrical sleeve inner periphery to support the rotational motion of the shaft, and an impeller by the slide bearing. It is related with the pump apparatus provided with the mechanism which supports the rotational motion of the shaft connected to.

高速増殖炉の循環冷却系などに使用される大型のポンプ装置には、一般に、長尺のシャフトに取り付けられたインペラをケーシング内で回転運動させることにより冷却媒体である流体金属等の流体を移送する機械式の縦軸ポンプ装置が用いられる。このポンプ装置においては、振れ回りや地震などによるインペラのケーシング等への衝突防止、ならびにシャフトの振動抑制を目的として、シャフトのインペラ近傍にジャーナル軸受が設けられる。このジャーナル軸受にはすべり軸受が用いられることが多く、シャフト外周がすべり軸受の略円筒形状のスリーブ内周と流体を介して潤滑されながらしゅう動することにより、シャフトの回転運動が支持される。   For large pump devices used for circulating cooling systems in fast breeder reactors, fluids such as fluid metal that is a cooling medium are generally transferred by rotating an impeller attached to a long shaft in a casing. A mechanical longitudinal pump device is used. In this pump device, a journal bearing is provided in the vicinity of the impeller of the shaft for the purpose of preventing the impeller from colliding with the casing or the like due to a swing or an earthquake and suppressing the vibration of the shaft. A slide bearing is often used as the journal bearing, and the rotational movement of the shaft is supported by sliding the outer circumference of the shaft while being lubricated with the inner circumference of the substantially cylindrical sleeve of the slide bearing through the fluid.

このようなポンプ装置に用いられるすべり軸受においては、シャフトやケーシングの熱変形および製作誤差を許容する目的で、シャフト外周と軸受内周との隙間を通常のすべり軸受よりも大き目に確保することが求められる。また、異物質の混入を防止する目的で、すべり軸受の潤滑に使用可能な流体はポンプで移送する流体と同種に限られ、高速増殖炉用のポンプ装置では低粘度な流体金属等の使用が求められる。   In a slide bearing used in such a pump device, the clearance between the outer periphery of the shaft and the inner periphery of the bearing can be secured larger than that of a normal slide bearing in order to allow thermal deformation and manufacturing errors of the shaft and casing. Desired. Also, the fluid that can be used for sliding bearing lubrication is limited to the same type of fluid that is transported by a pump for the purpose of preventing foreign substances from being mixed in. The pump device for fast breeder reactors uses low-viscosity fluid metals, etc. Desired.

これらの事情により、前記のポンプ装置に用いられるすべり軸受は、そのままでは、一般の機械装置に用いられる油潤滑のすべり軸受と比較して大きな動圧を得にくい条件にある。よって、こうした条件においても、高い荷重に対してシャフトを安定して支持するために、軸受の外部から高圧流体をしゅう動面に導入して荷重の支持に利用する静圧軸受構造が多く採用されている。   Due to these circumstances, the plain bearing used in the pump device is in a condition in which it is difficult to obtain a large dynamic pressure as it is as compared with an oil-lubricated plain bearing used in a general mechanical device. Therefore, even under these conditions, in order to stably support the shaft against a high load, a hydrostatic bearing structure in which high-pressure fluid is introduced into the sliding surface from the outside of the bearing and used to support the load is often employed. ing.

一般に、静圧軸受構造を有するジャーナル軸受タイプのすべり軸受では、略円筒形状のスリーブ内周に静圧ポケットと称される凹部が周方向あるいはシャフト軸方向に複数備えられ、スリーブ内周の大半の領域が静圧ポケットにより占められている。各々の静圧ポケットには、外部の圧力源から連通する通路が開口している。外部の圧力源から通路を通じて静圧ポケットに導入された高圧の流体は、静圧ポケット内部および軸受とシャフトとの隙間を満たし、その隙間の開放端部から低圧の外部へと流出する。荷重によりシャフトが径方向に押されて軸受内で偏心すると、部分的に隙間に偏りが生じるため、偏心方向にある隙間の流出量が減ってその部分の圧力が上昇するのに対し、偏心方向と反対側にある隙間の流出量は増加してその部分の圧力が低下する。この両者の圧力差によりシャフトを軸受の中心に戻そうとする復元力が生じ、これによりシャフトの荷重が支持される。   In general, in a journal bearing type slide bearing having a hydrostatic bearing structure, a plurality of concave portions called hydrostatic pockets are provided in the circumferential direction or shaft axial direction on the inner circumference of a substantially cylindrical sleeve, and most of the inner circumference of the sleeve is provided. The area is occupied by a static pressure pocket. In each static pressure pocket, a passage communicating from an external pressure source is opened. The high-pressure fluid introduced into the static pressure pocket from the external pressure source through the passage fills the gap between the bearing and the shaft inside the static pressure pocket and flows out from the open end of the gap to the outside of the low pressure. When the shaft is pushed in the radial direction by the load and is eccentric in the bearing, the gap is partially biased, so the outflow of the gap in the eccentric direction decreases and the pressure in that part rises. The amount of outflow in the gap on the opposite side increases and the pressure in that part decreases. Due to the pressure difference between them, a restoring force is generated to return the shaft to the center of the bearing, thereby supporting the shaft load.

近年、ポンプ装置の大容量化に伴い、すべり軸受の支持可能荷重である負荷容量、およびシャフト偏心による最小隙間変化に対する負荷能力変化である軸受剛性の向上が課題となっている。   In recent years, with an increase in capacity of a pump device, improvement in bearing capacity, which is a load capacity that can be supported by a slide bearing, and a change in load capacity with respect to a minimum gap change due to shaft eccentricity has been an issue.

本技術分野の背景技術として特許文献1には、軸受内周面にポケットを有し、このポケットと回転軸の外周面との間に高圧油が供給される静圧軸受において、前記ポケットを円周方向に複数形成したポケット列を軸方向に複数列形成すると共に各列間のポケットの位相を前記周方向にずらした静圧軸受が記載されている。   As a background art of this technical field, Patent Document 1 discloses that in a hydrostatic bearing having a pocket on the inner peripheral surface of the bearing and high pressure oil is supplied between the pocket and the outer peripheral surface of the rotary shaft, the pocket is circular. There is described a hydrostatic bearing in which a plurality of pocket rows formed in the circumferential direction are formed in a plurality of rows in the axial direction and the phases of the pockets between the rows are shifted in the circumferential direction.

特許文献1によれば、静圧ポケットを円周方向に複数形成したポケット列を軸方向に複数形成し、各列間のポケットの位相を周方向にずらすことにより、ある径方向に軸が偏心した時にこれと直角な径方向に作用する力が相殺されて高速回転時の軸受の安定性の向上が期待されるとされている。   According to Patent Document 1, a plurality of pocket rows formed with a plurality of static pressure pockets in the circumferential direction are formed in the axial direction, and the shaft is eccentric in a certain radial direction by shifting the phase of the pockets between the rows in the circumferential direction. When this occurs, the force acting in the radial direction perpendicular thereto is offset, and it is expected that the stability of the bearing will be improved during high-speed rotation.

しかしながら、特許文献1のように静圧ポケットの位相を周方向にずらし軸方向に単に複数列形成しても、軸受の負荷容量や軸受剛性にはほとんど影響が無く、外部から供給する油の圧力を増加させ、あるいは軸受のサイズを増加させること無しに、負荷容量を増加させることは困難であった。   However, even if the phases of the static pressure pockets are shifted in the circumferential direction and only a plurality of rows are formed in the axial direction as in Patent Document 1, there is almost no effect on the load capacity and bearing rigidity of the bearing, and the pressure of the oil supplied from the outside It has been difficult to increase the load capacity without increasing the load or increasing the size of the bearing.

また、特許文献2には、ケーシング内吸入口と吐出口との間に設けたインペラの直近にインペラ軸の軸受を備え、軸受内面に複数個のポケットを周方向に配設して、インペラで圧出される流体金属の一部をポケット内に導入するポンプにおいて、ポケットを軸方向に挟んで液封性を持って相対回転するように設けた環状帯部に、流体金属を内包存在させる周方向の凹溝を設けた流体金属用ポンプが記載されている。また、インペラを支持する静圧軸受を構成するポケットを軸方向に挟んで設けた液封性を有する環状帯部に、流体金属を常に内包させた周方向のリング状空腔を添設したものが記載されている。   Further, in Patent Document 2, an impeller shaft bearing is provided in the immediate vicinity of an impeller provided between a suction port and a discharge port in a casing, and a plurality of pockets are arranged in the circumferential direction on the inner surface of the bearing. In the pump that introduces a part of the fluid metal to be pumped into the pocket, the circumferential direction in which the fluid metal is contained in the annular band provided so as to rotate relative to the pocket in the axial direction with a liquid sealing property A fluid metal pump provided with a concave groove is described. In addition, a ring-shaped cavity in the circumferential direction always containing fluid metal is attached to an annular band portion having a liquid sealing property provided with pockets constituting an hydrostatic bearing supporting the impeller in the axial direction. Is described.

特許文献2によれば、外部から高圧の流体金属が供給される静圧ポケットを軸方向に挟むように設けた環状帯部に周方向の凹溝を設けた構造により、軸と軸受との金属接触が生じた際にも流体金属が接触部分周辺に供給されやすくなり、潤滑および冷却の効果によりかじり等による損傷の軽減が期待されるとされている。   According to Patent Document 2, the metal between the shaft and the bearing is formed by the structure in which the circumferential groove is provided in the annular belt portion provided so as to sandwich the static pressure pocket supplied with the high-pressure fluid metal from the outside in the axial direction. Even when contact occurs, fluid metal is easily supplied to the periphery of the contact portion, and reduction of damage due to galling or the like is expected due to the effect of lubrication and cooling.

しかしながら、特許文献2のように環状帯部に周方向の凹溝を設けても、軸受内周の圧力分布の変化は小さく、軸受の負荷能力や軸受剛性を向上させる効果はほとんど期待できない。このため、外部から供給する油の圧力を増加させ、あるいは軸受のサイズを増加させること無しに、負荷容量を増加させることは困難であった。   However, even if the circumferential groove is provided in the annular belt portion as in Patent Document 2, the change in the pressure distribution on the inner periphery of the bearing is small, and the effect of improving the load capacity and bearing rigidity of the bearing can hardly be expected. For this reason, it is difficult to increase the load capacity without increasing the pressure of oil supplied from the outside or increasing the size of the bearing.

また、特許文献3には、回転可能な軸部材に対し固定された軸受部材に設けた軸荷重を支持する軸受面の円周方向に複数個の圧力発生帯域を形成し、この圧力発生帯域のそれぞれは、軸方向に離間して形成され排出機構を有する一対のポケットよりなる静圧発生部と、両ポケットの中間に形成されたランド部よりなる動圧発生部と、両ポケットの軸線に平行な一辺に沿ってランド部に刻設され両ポケットを互に接続すると共に絞りを介して両ポケットに圧力流体を供給する供給溝とを有し、静圧発生部の軸受隙間よりも動圧発生部の軸受隙間を小さくした流体軸受装置が記載されている。   In Patent Document 3, a plurality of pressure generation zones are formed in the circumferential direction of the bearing surface that supports the axial load provided on the bearing member fixed to the rotatable shaft member. Each of them is separated from each other in the axial direction and formed with a static pressure generating part consisting of a pair of pockets having a discharge mechanism, a dynamic pressure generating part consisting of a land part formed between both pockets, and parallel to the axis of both pockets. And has a supply groove that connects both pockets to each other and supplies pressure fluid to both pockets via a restriction, and generates dynamic pressure more than the bearing clearance of the static pressure generator. Describes a hydrodynamic bearing device in which the bearing clearance of the part is reduced.

特許文献3によれば、外部の供給溝に導入された圧力流体をポケットにも供給することによる静圧に加え、さらにポケットと供給溝に囲まれた動圧発生部における動圧の発生も期待できる。   According to Patent Document 3, in addition to the static pressure generated by supplying the pressure fluid introduced into the external supply groove to the pocket, generation of dynamic pressure is also expected in the dynamic pressure generating portion surrounded by the pocket and the supply groove. it can.

しかしながら、特許文献3においては、動圧発生部において外部からの圧力流体よりも高い動圧が発生したとしても、供給溝を通じて圧力が逃げやすく動圧による支持は限定的である。このため、負荷能力は静圧に依存するところが大きい。また、シャフトの変形や傾斜により、ある部分の隙間が広くなってそこからの流体の流出量が増大すると、連通するポケットおよび供給溝全体の圧力が減少して負荷能力が低下しやすい。前記の縦型のポンプ装置では、ほとんどの場合にシャフトは軸受内周に対して傾斜した姿勢で回転する。このため、特許文献の構成は、縦型ポンプ等への適用は困難であった。   However, in Patent Document 3, even if a dynamic pressure higher than that of the external pressure fluid is generated in the dynamic pressure generating portion, the pressure easily escapes through the supply groove, and support by the dynamic pressure is limited. For this reason, the load capacity largely depends on the static pressure. Further, when a gap in a certain portion becomes wide due to deformation or inclination of the shaft and the amount of fluid flowing out from the portion increases, the pressure in the communicating pocket and the entire supply groove decreases, and the load capacity tends to decrease. In the above vertical pump device, in most cases, the shaft rotates in an inclined posture with respect to the inner periphery of the bearing. For this reason, the configuration of the patent document is difficult to apply to a vertical pump or the like.

特開昭61−236921号公報JP-A-61-236921 特開昭57−200699号公報Japanese Unexamined Patent Publication No. 57-200699 特開昭60−37329号公報JP-A-60-37329

本発明は、上記実情に鑑みてなされたものであり、シャフト外周と略円筒形状の軸受の内周との隙間に外部から高圧の流体を供給してシャフトの回転運動を支持する静圧軸受構造を備えたジャーナル軸受タイプのすべり軸受とそれを内包したポンプ装置において、シャフトの回転時に隙間に発生する動圧を増加させ、かつ最大限に利用することにより、軸受のサイズおよび外部から供給する流体の圧力を増加させること無く軸受の負荷容量および軸受剛性を増加させることを解決すべき技術課題とするものである。   The present invention has been made in view of the above circumstances, and a hydrostatic bearing structure that supplies a high-pressure fluid from the outside to the gap between the outer periphery of the shaft and the inner periphery of the substantially cylindrical bearing to support the rotational movement of the shaft. This is a journal bearing type slide bearing equipped with a pump and a pump device containing the same, increasing the dynamic pressure generated in the clearance when the shaft rotates, and making the best use of the bearing size and fluid supplied from the outside It is a technical problem to be solved to increase the load capacity and bearing rigidity of the bearing without increasing the pressure of the bearing.

本発明は、回転可能なシャフトに対しその内周で流体を介してしゅう動支持する略円筒形状のスリーブと、スリーブを貫通して外部の圧力源からスリーブ内周に高圧流体を供給する静圧供給通路と、スリーブ内周に設けられるとともに半径方向に凹形状を有し静圧供給通路が開口する静圧ポケットとを備えたすべり軸受において、静圧ポケットが周方向に複数並んだ静圧ポケット列がスリーブ内周のシャフト軸方向の両端部近傍にそれぞれ少なくとも1列形成され、かつ、スリーブ中央部には静圧ポケット列に挟まれて静圧ポケットの存在しない円筒内周面領域が設けられていることを特徴とする。   The present invention relates to a substantially cylindrical sleeve that is slidably supported on a rotatable shaft through a fluid at its inner periphery, and a static pressure that passes through the sleeve and supplies a high-pressure fluid from an external pressure source to the sleeve inner periphery. A static pressure pocket in which a plurality of static pressure pockets are arranged in the circumferential direction in a slide bearing having a supply passage and a static pressure pocket provided in the inner periphery of the sleeve and having a concave shape in the radial direction and opening the static pressure supply passage. At least one row is formed in the vicinity of both ends in the shaft axial direction of the inner circumference of the sleeve, and a cylindrical inner circumferential surface area is formed in the center portion of the sleeve and is sandwiched between the static pressure pocket rows and has no static pressure pockets. It is characterized by.

また、すべり軸受において、静圧ポケットの存在しない円筒内周面領域のシャフト軸方向の幅が、静圧ポケット列のシャフト軸方向の幅の合計よりも大きく設けられていることを特徴とする。   Further, the slide bearing is characterized in that the width in the shaft axial direction of the cylindrical inner peripheral surface region where no static pressure pocket exists is provided larger than the total width in the shaft axial direction of the static pressure pocket row.

また、すべり軸受において、同一の静圧ポケット列に属する静圧ポケットに通ずる静圧供給通路と、これと異なる静圧ポケット列に属する静圧ポケットに通ずる静圧供給通路は、互いに独立して高圧流体を供給する圧力源に通じていることを特徴とする。   In a plain bearing, a static pressure supply passage that communicates with a static pressure pocket belonging to the same static pressure pocket row and a static pressure supply passage that communicates with a static pressure pocket belonging to a different static pressure pocket row are independent of each other. It is characterized in that it communicates with a pressure source that supplies fluid.

また、すべり軸受において、周方向に延伸する静圧ポケットの設置角度範囲が隣接する他の静圧ポケットの設置角度範囲と重なり合う形状であることを特徴とする。   Further, the slide bearing is characterized in that the installation angle range of the static pressure pocket extending in the circumferential direction overlaps with the installation angle range of another adjacent static pressure pocket.

また、すべり軸受において、周方向に延伸する静圧ポケットの設置角度範囲が隣接する他の静圧ポケットの設置角度範囲と重なり合う配置であることを特徴とする。   Further, the slide bearing is characterized in that the installation angle range of the static pressure pockets extending in the circumferential direction overlaps with the installation angle range of other adjacent static pressure pockets.

また、すべり軸受において、静圧ポケットは、スリーブ端部に近い外側がスリーブ端部から遠い内側よりもシャフトの回転方向について上流側に延伸し、かつ、スリーブ端部から遠い内側がスリーブ端部に近い外側よりもシャフト回転方向の下流側に延伸した形状を有することを特徴とする。   Further, in the slide bearing, the static pressure pocket extends to the upstream side in the rotation direction of the shaft from the outside near the sleeve end to the sleeve end, and from the inside far from the sleeve end to the sleeve end. It has the shape extended | stretched in the downstream of the shaft rotation direction rather than the near outer side.

また、すべり軸受において、スリーブ内周の静圧ポケットが存在しない領域に、静圧供給通路が開口しない溝が設けられていることを特徴とする。   Further, the slide bearing is characterized in that a groove where the static pressure supply passage does not open is provided in a region where no static pressure pocket exists on the inner periphery of the sleeve.

さらに、流体流路の途中に配置されて回転運動により流体を移送するインペラと、回転動力源に接続してインペラを回転駆動するシャフトと、シャフト外周面を流体を介してしゅう動支持する略円筒形状のスリーブと、スリーブを貫通して流体流路の吐出側からスリーブ内周に高圧流体を供給する静圧供給通路と、スリーブ内周に設けられるとともに半径方向に凹形状を有し静圧供給通路が開口する静圧ポケットを備えた滑り軸受を有するポンプ装置において、さらに、静圧ポケットが周方向に複数並んだ静圧ポケット列がスリーブ内周のシャフト軸方向の両端部近傍に少なくとも1列形成され、かつ、スリーブ中央部には静圧ポケット列に挟まれて静圧ポケットの存在しない円筒内周面領域が設けられていることを特徴とする。   Furthermore, an impeller that is arranged in the middle of the fluid flow path and transfers the fluid by rotational movement, a shaft that is connected to a rotational power source and rotationally drives the impeller, and a substantially cylinder that supports the outer peripheral surface of the shaft by sliding through the fluid. A sleeve having a shape, a static pressure supply passage that passes through the sleeve and supplies high-pressure fluid from the discharge side of the fluid flow path to the inner periphery of the sleeve, and a static pressure supply that is provided on the inner periphery of the sleeve and has a concave shape in the radial direction. In the pump apparatus having a slide bearing having a static pressure pocket having an open passage, at least one row of static pressure pockets in which a plurality of static pressure pockets are arranged in the circumferential direction is provided in the vicinity of both ends of the sleeve inner circumference in the shaft axial direction. A cylindrical inner peripheral surface region that is formed and that is sandwiched between the static pressure pocket rows and does not have a static pressure pocket is provided at the center of the sleeve.

さらに、ポンプ装置において、円筒内周面領域のシャフト軸方向の幅が、静圧ポケットのシャフト軸方向の幅の合計より大きく設けられていることを特徴とする。   Further, the pump device is characterized in that the width in the shaft axial direction of the cylindrical inner peripheral surface region is larger than the total width of the static pressure pockets in the shaft axial direction.

さらに、ポンプ装置において、1つの静圧ポケット列に属する静圧ポケットに通ずる静圧供給通路と、他の静圧ポケット列に属する静圧ポケットに通ずる静圧供給通路は、互いに独立して流体流路の吐出側に通じていることを特徴とする。   Furthermore, in the pump device, the static pressure supply passage that communicates with the static pressure pocket belonging to one static pressure pocket row and the static pressure supply passage that communicates with the static pressure pocket belonging to the other static pressure pocket row are independent of each other. It leads to the discharge side of the road.

さらに、ポンプ装置において、流体流路に流れる流体は流体金属であることを特徴とする。   Furthermore, in the pump device, the fluid flowing in the fluid flow path is a fluid metal.

本発明は、回転可能なシャフトに対しその内周で流体を介してしゅう動支持する略円筒形状のスリーブと、スリーブを貫通して外部の圧力源からスリーブ内周に高圧流体を供給する静圧供給通路と、スリーブ内周に設けられるとともに半径方向に凹形状を有し静圧供給通路が開口する静圧ポケットとを備えたすべり軸受において、静圧ポケットが周方向に複数並んだ静圧ポケット列がスリーブ内周のシャフト軸方向の両端部近傍にそれぞれ少なくとも1列形成され、かつ、スリーブ中央部には静圧ポケット列に挟まれて静圧ポケットの存在しない円筒内周面領域が設けられていることにより、スリーブ内周で回転するシャフトは静圧ポケットに外部から供給される静圧と円筒内周面領域との間に生ずる動圧とにより支持され、動圧が発生した際に従来例と比較して大きな圧力を得られ、すべり軸受全体としての負荷能力および軸受剛性を増加することが可能となる。   The present invention relates to a substantially cylindrical sleeve that is slidably supported on a rotatable shaft through a fluid at its inner periphery, and a static pressure that passes through the sleeve and supplies a high-pressure fluid from an external pressure source to the sleeve inner periphery. A static pressure pocket in which a plurality of static pressure pockets are arranged in the circumferential direction in a slide bearing having a supply passage and a static pressure pocket provided in the inner periphery of the sleeve and having a concave shape in the radial direction and opening the static pressure supply passage. At least one row is formed in the vicinity of both ends in the shaft axial direction of the inner circumference of the sleeve, and a cylindrical inner circumferential surface area is formed in the center portion of the sleeve and is sandwiched between the static pressure pocket rows and has no static pressure pockets. As a result, the shaft rotating on the inner circumference of the sleeve is supported by the static pressure supplied from the outside to the static pressure pocket and the dynamic pressure generated between the cylindrical inner peripheral surface area, and dynamic pressure is generated. Obtained great pressure as compared with the conventional example, it is possible to increase the load capacity and bearing rigidity of the entire plain bearing.

本発明の実施例1の縦型ポンプ装置の構成図である。It is a block diagram of the vertical pump apparatus of Example 1 of this invention. 本発明の実施例1の縦型ポンプ装置におけるすべり軸受周辺の拡大図である。It is an enlarged view of a slide bearing periphery in the vertical pump device according to the first embodiment of the present invention. 本発明の実施例1のすべり軸受におけるスリーブの斜視図である。It is a perspective view of the sleeve in the slide bearing of Example 1 of this invention. 本発明の実施例1のすべり軸受における負荷能力を示すグラフである。It is a graph which shows the load capability in the slide bearing of Example 1 of this invention. 本発明の実施例1のすべり軸受における軸受剛性を示すグラフである。It is a graph which shows the bearing rigidity in the slide bearing of Example 1 of this invention. 本発明の実施例2のすべり軸受実施例の断面図である。It is sectional drawing of the slide bearing Example of Example 2 of this invention. 本発明の実施例3のすべり軸受の断面図である。It is sectional drawing of the plain bearing of Example 3 of this invention. 本発明の実施例4のすべり軸受の断面図である。It is sectional drawing of the plain bearing of Example 4 of this invention. 本発明の実施例5のすべり軸受の断面図である。It is sectional drawing of the plain bearing of Example 5 of this invention. 本発明の実施例6のすべり軸受の断面図である。It is sectional drawing of the plain bearing of Example 6 of this invention.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

実施例1では、本発明によるジャーナル軸受タイプのすべり軸受を組み込んだ縦型のポンプ装置100について説明する。   In the first embodiment, a vertical pump device 100 incorporating a journal bearing type slide bearing according to the present invention will be described.

図1は、本実施例の縦型のポンプ装置100の構成図である。ケーシング101内部に吸入口102から吐出口103に通ずる流路104が形成されている。流路104の途中には外部の回転動力源107に接続されたシャフト106先端にインペラ105が設けられている。   FIG. 1 is a configuration diagram of a vertical pump device 100 according to the present embodiment. A flow path 104 communicating from the suction port 102 to the discharge port 103 is formed in the casing 101. An impeller 105 is provided in the middle of the flow path 104 at the tip of a shaft 106 connected to an external rotational power source 107.

シャフト106は一方の回転動力源107側で軸受108により回転可能に支持され、他方のインペラ105側ですべり軸受109により回転可能に支持されている。回転動力源107からの動力供給によりシャフト106を回転させ、インペラ105を回転運動させることにより、吸入口102からポンプ装置100の内部に流入した流体金属等の流体が流路104を通じて移送され、吐出口103から外部に吐出される。流路104のインペラ105より下流側はその上流側と比較して圧力ヘッドを生じ、下流側の圧力が高くなる。   The shaft 106 is rotatably supported by a bearing 108 on one rotational power source 107 side, and is rotatably supported by a sliding bearing 109 on the other impeller 105 side. When the shaft 106 is rotated by the power supply from the rotational power source 107 and the impeller 105 is rotated, fluid such as fluid metal that has flowed into the pump device 100 from the suction port 102 is transferred through the flow path 104 and discharged. It is discharged to the outside from the outlet 103. A pressure head is generated on the downstream side of the impeller 105 of the flow path 104 as compared with the upstream side, and the pressure on the downstream side becomes higher.

2つの軸受のうち、軸受108はシャフト106を回転可能に支持し、かつ、図1の上下方向、すなわちシャフト106の軸方向についての荷重も支持する。一方、すべり軸受109は支持部110に固定され、シャフト106の半径方向への振れ回りを抑制してインペラ105の流路104の壁面やケーシング101等への衝突を防止するほか、シャフト106やインペラ105の回転運動に伴い生じる振動を抑制する。   Of the two bearings, the bearing 108 rotatably supports the shaft 106, and also supports a load in the vertical direction of FIG. 1, that is, the axial direction of the shaft 106. On the other hand, the sliding bearing 109 is fixed to the support portion 110 to prevent the shaft 106 from swinging in the radial direction to prevent the impeller 105 from colliding with the wall surface of the flow path 104, the casing 101, and the like. The vibration caused by the rotational movement 105 is suppressed.

図2は、すべり軸受109周辺の拡大図である。すべり軸受109においては、略円筒形状のスリーブ111Aの内周に、半径方向に凹形状を持つ静圧ポケット112Aが複数形成されている。各々の静圧ポケット112Aには、流路104の吐出側から支持部110およびスリーブ111Aを貫通する静圧供給通路113がオリフィス114を介して開口している。これにより、インペラ105の回転により流路104の下流側に移送された高圧流体の一部が、静圧供給路113およびオリフィス114を通過して静圧ポケット112Aに導入され、シャフト106外周とスリーブ111A内周の隙間を満たす。   FIG. 2 is an enlarged view around the slide bearing 109. In the slide bearing 109, a plurality of static pressure pockets 112A having a concave shape in the radial direction are formed on the inner periphery of a substantially cylindrical sleeve 111A. In each static pressure pocket 112 </ b> A, a static pressure supply passage 113 penetrating the support portion 110 and the sleeve 111 </ b> A from the discharge side of the flow path 104 is opened through an orifice 114. As a result, a part of the high-pressure fluid transferred to the downstream side of the flow path 104 by the rotation of the impeller 105 is introduced into the static pressure pocket 112A through the static pressure supply path 113 and the orifice 114, and the outer periphery of the shaft 106 and the sleeve The gap on the inner periphery of 111A is filled.

静圧ポケット112Aは、スリーブ111A内周において、複数の静圧ポケット112Aが周方向に配列し静圧ポケット列を形成している。スリーブ111A内周のシャフト106軸方向における両端部近傍に、静圧ポケット列がそれぞれ1列ずつ設けられている。また、スリーブ111A内周の中央部には、静圧ポケット列の存在しない円筒内周面領域115が静圧ポケット列に挟まれて設けられている。   The static pressure pocket 112A has a plurality of static pressure pockets 112A arranged in the circumferential direction on the inner periphery of the sleeve 111A to form a static pressure pocket row. One row of static pressure pockets is provided in the vicinity of both end portions in the axial direction of the shaft 106 on the inner periphery of the sleeve 111A. In addition, a cylindrical inner peripheral surface region 115 where no static pressure pocket row exists is provided between the static pressure pocket rows at the center of the inner periphery of the sleeve 111A.

図3はスリーブ111Aの詳細を示す斜視図である。スリーブ111A内周に、静圧ポケット112Aが周方向に複数並んだ静圧ポケット列116がスリーブ111Aの両端部近傍に1列ずつ設けられているのに対し、スリーブ111A外周には静圧供給通路113が設けられている。一方の静圧ポケット列116に連通した静圧供給通路113と他方の静圧ポケット列に連通した静圧供給通路113は独立して設けられ、図2にも示されるように、それぞれが個別に流路104の下流側に連通している。   FIG. 3 is a perspective view showing details of the sleeve 111A. On the inner periphery of the sleeve 111A, a row of static pressure pockets 116 in which a plurality of static pressure pockets 112A are arranged in the circumferential direction is provided in the vicinity of both ends of the sleeve 111A, whereas the outer periphery of the sleeve 111A has a static pressure supply passage. 113 is provided. The static pressure supply passage 113 communicated with one of the static pressure pocket rows 116 and the static pressure supply passage 113 communicated with the other static pressure pocket row are provided independently, and each is individually provided as shown in FIG. It communicates with the downstream side of the flow path 104.

発明者は、本発明によるすべり軸受を構成して負荷能力と軸受剛性の評価を行い、本発明の適用による負荷能力および軸受剛性の向上効果を検証するとともに、効果的に負荷低減および軸受剛性の向上が可能となる静圧ポケット112Aと、それによる静圧ポケット列116に挟まれた円筒内周面領域115との関係を検討した。その結果を図4から図5を用いて次に説明する。   The inventor constituted the plain bearing according to the present invention, evaluated the load capacity and the bearing rigidity, verified the effect of improving the load capacity and the bearing rigidity by applying the present invention, and effectively reduced the load and reduced the bearing rigidity. The relationship between the static pressure pockets 112 </ b> A that can be improved and the cylindrical inner peripheral surface region 115 sandwiched between the static pressure pocket rows 116 is examined. The results will be described next with reference to FIGS.

図4は、静圧ポケット112Aに供給する流体の圧力を一定とし、スリーブ111Aの内周における静圧ポケット112Aの幅と円筒内周面領域115の幅を変えた際の軸受の負荷能力を示す。円筒内周面領域115の幅が、円筒内周面領域115を挟んで両側に設けられた静圧ポケット列116の幅の合計よりも大きくなると、それ以下の場合と比較して軸受の負荷能力増加率が特に向上する結果となった。   FIG. 4 shows the load capacity of the bearing when the pressure of the fluid supplied to the static pressure pocket 112A is constant and the width of the static pressure pocket 112A and the width of the cylindrical inner peripheral surface region 115 are changed in the inner periphery of the sleeve 111A. . When the width of the cylindrical inner peripheral surface region 115 is larger than the total width of the static pressure pocket rows 116 provided on both sides of the cylindrical inner peripheral surface region 115, the load capacity of the bearing is smaller than that in the case of less than that. The increase rate was particularly improved.

図5は、静圧ポケット112Aに供給する流体の圧力を一定とし、スリーブ111Aの内周における静圧ポケット112Aの幅と円筒内周面領域115の幅を変えた際の軸受剛性の例である。円筒内周面領域115の幅が、円筒内周面領域115を挟んで両側に設けられた静圧ポケット列116の幅の合計よりも大きくなると、それ以下の場合と比較して軸受剛性増加率が特に向上する結果となった。   FIG. 5 shows an example of bearing rigidity when the pressure of the fluid supplied to the static pressure pocket 112A is constant and the width of the static pressure pocket 112A and the width of the cylindrical inner peripheral surface region 115 in the inner periphery of the sleeve 111A are changed. . When the width of the cylindrical inner peripheral surface region 115 becomes larger than the sum of the widths of the static pressure pocket rows 116 provided on both sides of the cylindrical inner peripheral surface region 115, the bearing rigidity increase rate is smaller than that in the case where the width is smaller than that. Was particularly improved.

このように、スリーブ111A内周の両端部近傍に設ける静圧ポケット列116と、それに挟まれた円筒内周面領域115を形成するにあたっては、シャフト106の軸方向について円筒内周面領域115の幅を、それを挟む静圧ポケット列116の幅の合計よりも大きくすることにより、なお一層効果的に負荷容量および軸受剛性を増加できることが検証された。   As described above, in forming the static pressure pocket row 116 provided in the vicinity of both ends of the inner periphery of the sleeve 111A and the cylindrical inner peripheral surface region 115 sandwiched between the rows, the cylindrical inner peripheral surface region 115 in the axial direction of the shaft 106 is formed. It has been verified that the load capacity and the bearing rigidity can be increased even more effectively by making the width larger than the total width of the static pressure pocket rows 116 sandwiching the width.

静圧ポケット列をスリーブ内周の両端部近傍に設ける主目的は、静圧ポケット列に挟まれて位置する円筒内周面領域の両端の圧力を高い状態に保持し、円筒内周面領域に発生する動圧レベルを維持することにある。   The main purpose of providing the static pressure pocket row in the vicinity of both ends of the sleeve inner periphery is to maintain a high pressure at both ends of the cylindrical inner surface region located between the static pressure pocket rows and The purpose is to maintain the generated dynamic pressure level.

図6は、この目的をより確実に達成するための、すべり軸受のスリーブ部分の実施例2を示す。スリーブ111B内周の両端部近傍に静圧ポケット列116を2列ずつ設け、隣接する2つの静圧ポケット列116において、周方向に交互に静圧ポケット112Bが配置されている。   FIG. 6 shows a second embodiment of a sleeve portion of a plain bearing for more reliably achieving this object. Two static pressure pocket rows 116 are provided in the vicinity of both ends of the inner periphery of the sleeve 111B, and the static pressure pockets 112B are alternately arranged in the circumferential direction in two adjacent static pressure pocket rows 116.

スリーブ111Bの内周中央部には、静圧ポケット112Bの存在しない円筒内周面領域115が形成され、円筒内周面領域115におけるシャフト106軸方向の幅は、円筒内周面領域115を両側に挟んでいる合計4列の静圧ポケット列116の幅よりも大きい。   A cylindrical inner peripheral surface region 115 where the static pressure pocket 112B does not exist is formed at the inner peripheral central portion of the sleeve 111B. The width of the cylindrical inner peripheral surface region 115 in the axial direction of the shaft 106 is opposite to the cylindrical inner peripheral surface region 115. It is larger than the width of a total of four rows of static pressure pockets 116 sandwiched therebetween.

このような構成とすることにより、1つの静圧ポケット列116において静圧ポケットが存在していない周方向角度位置に、隣接する他の静圧ポケット列116に属する静圧ポケット112Bが位置するようになり、スリーブ111Bの両端部の全周において静圧ポケット112Bによる静圧の供給が連続的に満遍なく行われるようになる。これにより、円筒内周面領域115の圧力がより高い状態で保持され、すべり軸受として高い負荷容量および軸受剛性を得ることが可能となる。   By adopting such a configuration, the static pressure pockets 112B belonging to the other adjacent static pressure pocket rows 116 are positioned at circumferential angular positions where no static pressure pockets exist in one static pressure pocket row 116. Thus, the supply of static pressure by the static pressure pocket 112B is continuously and uniformly performed all around the both ends of the sleeve 111B. As a result, the pressure in the cylinder inner peripheral surface region 115 is maintained at a higher level, and a high load capacity and bearing rigidity can be obtained as a slide bearing.

また、図7は、スリーブ111C内周の両端部近傍、すなわち円筒内周面領域115の両端の圧力を増加させるための、すべり軸受のスリーブ部分の実施例3を示す。静圧ポケット112Cは、周方向およびシャフト106軸方向に非対称な形状となっており、静圧ポケット112Cの周方向端部には部分的に静圧ポケット延長部117が設けられている。静圧ポケット延長部117は、周方向に隣接する他の静圧ポケット112Cの静圧ポケット延長部117とは分離しているが、周方向の一定設置角度範囲では部分的に重なりあっている。   FIG. 7 shows a third embodiment of the sleeve portion of the plain bearing for increasing the pressure in the vicinity of both ends of the inner periphery of the sleeve 111C, that is, at both ends of the cylindrical inner peripheral surface region 115. The static pressure pocket 112C has an asymmetric shape in the circumferential direction and the axial direction of the shaft 106, and a static pressure pocket extension 117 is partially provided at the circumferential end of the static pressure pocket 112C. The static pressure pocket extension 117 is separated from the static pressure pocket extension 117 of the other static pressure pockets 112C adjacent in the circumferential direction, but partially overlaps in a constant installation angle range in the circumferential direction.

静圧ポケット112Cは、スリーブ111Cの端部に近い外側において、シャフト106の回転方向118の上流側に延びた静圧ポケット延長部117が形成され、スリーブ111Cの端部から遠い内側において、下流側に延びた静圧ポケット延長部117が形成されている。   The static pressure pocket 112C is formed with a static pressure pocket extension 117 extending upstream in the rotation direction 118 of the shaft 106 on the outer side near the end of the sleeve 111C, and on the inner side far from the end of the sleeve 111C, on the downstream side. A static pressure pocket extension 117 is formed extending in the vertical direction.

このような構成とすることにより、スリーブ111Cの両端部の全周において静圧ポケット112Cによる静圧の供給が連続的に満遍なく行われるようになる。これにより、円筒内周面領域115の圧力を高い状態に保持し、すべり軸受として高い負荷容量および軸受剛性を得ることが可能となる。   By adopting such a configuration, the supply of static pressure by the static pressure pocket 112C is continuously and uniformly performed on the entire circumference of both ends of the sleeve 111C. Thereby, it is possible to maintain a high pressure in the cylindrical inner peripheral surface region 115 and obtain a high load capacity and bearing rigidity as a slide bearing.

さらに、静圧ポケット112Cの周方向端部の小領域を加工して静圧ポケット延長部117を形成するだけでよいので、静圧ポケット列116を合計4列設ける図6の例と比較して、製造コストが低減される。   Furthermore, since it is only necessary to form a static pressure pocket extension 117 by processing a small region at the circumferential end of the static pressure pocket 112C, compared with the example of FIG. 6 in which a total of four static pressure pocket rows 116 are provided. Manufacturing costs are reduced.

また、静圧ポケットは112Cは、シャフト106の回転方向下流側でスリーブ111Cの内側が延長しているため、シャフト106の回転にしたがって、静圧ポケット112C内の流体をスリーブ111Cの中央側に引きこもうとする吸引力が作用し、円筒内周面領域115により高い圧力が保持されやすくなる。   In addition, since the inside of the sleeve 111C of the static pressure pocket 112C extends on the downstream side in the rotation direction of the shaft 106, the fluid in the static pressure pocket 112C is pulled toward the center of the sleeve 111C as the shaft 106 rotates. A suction force to be applied acts, and a high pressure is easily held in the cylindrical inner peripheral surface region 115.

また、同様に、図8は、スリーブ111D内周の両端部近傍、すなわち円筒内周面領域115の両端の圧力を増加させるための、すべり軸受のスリーブ部分の実施例4を示す。図7に示した例のように静圧ポケット112Dに静圧ポケット延長部117を形成する代わりに、静圧ポケット112Dがひし形状に形成されている。静圧ポケット112Dは、スリーブ111Dの端部に近い外側ほどシャフト106の回転方向118の上流側になめらかに延長され、スリーブ111Dの端部から遠い内側ほど静圧ポケット112Dが周方向の下流側になめらかに延長される。このような構造とすることにより、図7の例と比較し、シャフト106の回転にしたがって静圧ポケット112D内の流体をスリーブ111Dの中央側に引きこもうとする吸引力がより作用しやすくなるため、円筒内周面領域115により高い圧力が保持されやすくなる。   Similarly, FIG. 8 shows a fourth embodiment of the sleeve portion of the plain bearing for increasing the pressure in the vicinity of both ends of the inner periphery of the sleeve 111D, that is, at both ends of the cylindrical inner peripheral surface region 115. Instead of forming the static pressure pocket extension 117 in the static pressure pocket 112D as in the example shown in FIG. 7, the static pressure pocket 112D is formed in a diamond shape. The static pressure pocket 112D is smoothly extended toward the upstream side in the rotational direction 118 of the shaft 106 toward the outer side closer to the end of the sleeve 111D, and the static pressure pocket 112D is positioned downstream in the circumferential direction toward the inner side farther from the end of the sleeve 111D. It is extended smoothly. By adopting such a structure, as compared with the example of FIG. 7, a suction force that tends to draw the fluid in the static pressure pocket 112D toward the center of the sleeve 111D as the shaft 106 rotates is more likely to act. Therefore, high pressure is easily held in the cylindrical inner peripheral surface region 115.

また、図9は、スリーブ111Eの内周面における静圧ポケット112Eの存在しない部位に、異物排出溝119を形成した例である。異物排出溝119は、スリーブ111Eの中央部にある円筒内周面領域115およびスリーブ111Eの両端部において静圧ポケット112Eの存在しない部位に設ける。異物排出溝119は、静圧ポケット112Eとは別の半径方向に凹なる溝で、かつ、オリフィス114が開口しない溝である。   FIG. 9 shows an example in which a foreign matter discharge groove 119 is formed in a portion where the static pressure pocket 112E does not exist on the inner peripheral surface of the sleeve 111E. The foreign matter discharge groove 119 is provided at a portion where the static pressure pocket 112E does not exist at both ends of the cylindrical inner peripheral surface region 115 and the sleeve 111E at the center of the sleeve 111E. The foreign matter discharge groove 119 is a groove that is recessed in the radial direction, different from the static pressure pocket 112E, and is a groove that the orifice 114 does not open.

シャフト106の外周とスリーブ111Eの内周との隙間に異物や摩耗粒子等が流入してとどまると、シャフト106やスリーブ111Eを摩耗損傷させる恐れがある。図9のような構造とすることにより、シャフト106の外周とスリーブ111Eの内周との隙間に流入した異物や摩耗粒子等の排出が促進される。   If foreign matter, wear particles, or the like flow into the gap between the outer periphery of the shaft 106 and the inner periphery of the sleeve 111E, the shaft 106 and the sleeve 111E may be worn and damaged. By adopting the structure as shown in FIG. 9, the discharge of foreign matters, wear particles, and the like that have flowed into the gap between the outer periphery of the shaft 106 and the inner periphery of the sleeve 111E is promoted.

異物排出溝119は、オリフィス114が開口せず、静圧供給通路113とは直接連通していないので、円筒内周面領域115に発生した動圧が静圧供給通路113を通じて逃げることにより円筒内周面領域115の圧力を低減させる作用は小さい。   Since the orifice 114 does not open and the foreign matter discharge groove 119 is not in direct communication with the static pressure supply passage 113, the dynamic pressure generated in the cylindrical inner peripheral surface region 115 escapes through the static pressure supply passage 113 and is thus inside the cylinder. The effect of reducing the pressure in the peripheral surface region 115 is small.

また、シャフト106外周とスリーブ111E内周との隙間に流入する異物や摩耗粒子等の大きさは、最大でもその隙間と同等のサイズであるから、異物排出溝119の深さも隙間と同等程度で良い。このため、異物排出溝119の深さを隙間と同等程度とすれば、スリーブ111Eの端部まで設けられている場合においても、端部における隙間断面積の拡大は小さく、この経路を通じた圧力の逃げを小さくできる。これにより、すべり軸受に高い負荷能力と軸受剛性を確保しつつ、異物や摩耗粒子等によるシャフト106やスリーブ111Eの損傷の恐れの少ない信頼性の高いすべり軸受を構成できる。   In addition, since the size of foreign matter and wear particles flowing into the gap between the outer periphery of the shaft 106 and the inner circumference of the sleeve 111E is the same size as the gap at the maximum, the depth of the foreign matter discharge groove 119 is about the same as the gap. good. For this reason, if the depth of the foreign matter discharge groove 119 is set to be about the same as the gap, even when the sleeve 111E is provided up to the end, the gap cross-sectional area at the end is small, and the pressure through this path is small. The escape can be reduced. As a result, it is possible to configure a highly reliable slide bearing that is less likely to damage the shaft 106 or the sleeve 111E due to foreign matter, wear particles, or the like while ensuring high load capability and bearing rigidity.

また、図10は、円筒内周面領域115にオリフィス114が開口しない溝120を形成した例である。各々の溝120は、スリーブ111Fの端部により近い外側がシャフト106の回転方向118において上流側に延伸し、スリーブ111Fの端部より遠い内側がシャフト106の回転方向118において下流側に延伸している。このような構造とすることにより、円筒内周面領域115において流体の流れが乱流化しやすくなり、あるいは、シャフト106の回転にしたがって流体をスリーブ111Fの中央側に引きこもうとする吸引力がより作用しやすくなるため、動圧を発生させる効果が高まる。   FIG. 10 shows an example in which a groove 120 in which the orifice 114 does not open is formed in the cylindrical inner peripheral surface region 115. Each groove 120 has an outer side closer to the end of the sleeve 111F extending upstream in the rotation direction 118 of the shaft 106 and an inner side farther than the end of the sleeve 111F extending downstream in the rotation direction 118 of the shaft 106. Yes. With such a structure, the fluid flow is likely to be turbulent in the cylindrical inner peripheral surface region 115, or a suction force that tries to draw the fluid toward the center of the sleeve 111F as the shaft 106 rotates is generated. Since it becomes easier to act, the effect of generating dynamic pressure is enhanced.

また、異物や摩耗粒子等が溝120の内部に捕集されることにより、異物や摩耗粒子等によるシャフト106やスリーブ111Fの損傷の恐れの少ない信頼性の高いすべり軸受を構成できる。   Further, by collecting foreign matter, wear particles, or the like in the groove 120, a highly reliable slide bearing can be configured with less risk of damage to the shaft 106 or the sleeve 111F due to foreign matter, wear particles, or the like.

上記の実施例において明らかなように、本発明によるすべり軸受においては、スリーブ内周の中央に所定の円筒内周面領域を確保し、それを挟んでスリーブの両端部に静圧ポケット列を配置した構造により、シャフト回転時に動圧が生ずる円筒内周面領域での圧力を高め、円筒内周面領域により高い圧力を保持することにより負荷能力および軸受剛性の向上がなされる。   As is clear from the above embodiment, in the plain bearing according to the present invention, a predetermined cylindrical inner peripheral surface area is secured at the center of the sleeve inner periphery, and static pressure pocket rows are arranged at both ends of the sleeve across the sleeve. With this structure, the load capacity and bearing rigidity are improved by increasing the pressure in the cylinder inner peripheral surface region where dynamic pressure is generated when the shaft rotates and maintaining a higher pressure in the cylindrical inner surface region.

また、スリーブの両端部それぞれにおいて静圧供給通路を独立に設け、十分な量の高圧流体を供給可能な圧力源に個別に連通させることにより、特定の静圧ポケット列での圧力低下が他のポケット列に及ぼす影響が限定され、シャフトがスリーブ内周に対して傾斜あるいは変形した姿勢となっている場合においても、高い負荷能力と軸受剛性が確保される。   In addition, a static pressure supply passage is provided independently at each end of the sleeve, and the pressure drop in a specific static pressure pocket row is reduced by connecting the pressure source separately to a pressure source capable of supplying a sufficient amount of high-pressure fluid. Even when the influence on the pocket row is limited and the shaft is inclined or deformed with respect to the inner periphery of the sleeve, high load capacity and bearing rigidity are ensured.

また、スリーブ内周において円筒内周面領域をシャフト軸方向についてスリーブの開放端部よりも圧力の高い静圧ポケット列で挟んだ配置とし、この円筒内周面領域の幅をシャフト軸方向について静圧ポケット列の幅の合計よりも大きく設けることにより、シャフト回転時における円筒内周面領域の圧力が増加することに加え、すべり軸受の負荷容量は特にシャフト偏心時に円筒内周面領域に生じる圧力に依存する比率が大きくなる。このため、外部からの供給圧力を増加させずとも、あるいはシャフト外周とスリーブ内周との隙間を狭めずとも、あるいはスリーブの体格を拡大せずとも、すべり軸受全体としての負荷能力および軸受剛性を効果的に増加可能となる。   In addition, the cylindrical inner peripheral surface region is sandwiched between the static pressure pocket rows whose pressure is higher than the open end of the sleeve in the shaft axial direction on the inner periphery of the sleeve, and the width of the cylindrical inner peripheral region is static in the shaft axial direction. By providing a pressure larger than the total width of the pressure pocket row, in addition to increasing the pressure in the cylindrical inner surface area during shaft rotation, the load capacity of the slide bearing is the pressure generated in the cylindrical inner surface area, especially when the shaft is eccentric. The ratio that depends on becomes larger. For this reason, the load capacity and bearing rigidity of the entire slide bearing can be improved without increasing the supply pressure from the outside, without narrowing the gap between the outer periphery of the shaft and the inner periphery of the sleeve, or without expanding the size of the sleeve. It can be increased effectively.

また、静圧ポケット列をスリーブの両端部近傍それぞれに設け、それぞれに通ずる静圧供給通路を互いに独立させ、高圧流体を十分に供給可能な圧力源に接続した構造により、シャフトがスリーブ内で傾斜した際にも、シャフトの姿勢を押し戻すモーメント力が生じるほか、傾斜により特定部分の隙間が拡大してその周辺の静圧ポケットで圧力が低下しても、他の静圧ポケット列には影響を及ぼさないため、シャフト傾斜時にも高い負荷能力と軸受剛性を確保可能となる。   In addition, a structure in which static pressure pocket rows are provided near both ends of the sleeve, the static pressure supply passages that lead to the sleeves are made independent of each other, and connected to a pressure source that can sufficiently supply high-pressure fluid, the shaft tilts in the sleeve. In addition to the moment force that pushes back the posture of the shaft, even if the gap in the specific part expands due to the inclination and the pressure drops in the surrounding static pressure pockets, other static pressure pocket rows are affected. Therefore, high load capacity and bearing rigidity can be secured even when the shaft is tilted.

また、本発明のポンプ装置によれば、本発明のすべり軸受を内包し、さらにポンプ装置の吐出側から静圧ポケットに圧力流体を供給する構造を有するので、静圧ポケットに圧力流体を供給するための追加的なポンプ装置が不要となり、システムを小型に構成できる。   In addition, according to the pump device of the present invention, the pressure bearing is supplied to the static pressure pocket because it includes the slide bearing of the present invention and further supplies the pressure fluid to the static pressure pocket from the discharge side of the pump device. This eliminates the need for an additional pump device, and allows the system to be made compact.

また、シャフト外周とスリーブ内周との隙間をある程度広く確保しても、あるいはシャフトがスリーブ内である程度傾斜しても、ポンプ装置から静圧ポケットに供給する流体の圧力よりも高い動圧を円筒内周面領域に発生させて保持することが可能となる。これにより、高速増殖炉の循環冷却系に用いられる縦軸ポンプ装置のような、大きな熱変形や製造誤差等に対してもシャフトの回転運動を安定して支持する必要のある大型のポンプ装置においても、軸受が高い負荷能力と軸受剛性を確保可能となり、高い信頼性を確保できる。   In addition, even if the clearance between the outer periphery of the shaft and the inner periphery of the sleeve is secured to some extent, or even if the shaft is inclined to some extent within the sleeve, a dynamic pressure higher than the fluid pressure supplied from the pump device to the static pressure pocket is cylindrical. It can be generated and held in the inner peripheral surface area. As a result, in a large-scale pump device that needs to stably support the rotational movement of the shaft against large thermal deformation, manufacturing error, etc., such as a vertical pump device used in a circulating cooling system of a fast breeder reactor. However, the bearing can ensure high load capacity and bearing rigidity, and high reliability can be ensured.

例えば、高速増殖炉の循環冷却系においては、冷却媒体として流体ナトリウム等の流体金属が多く使用される。流体金属を移送するためのポンプ装置においては、他の物質の混入を防止するため、同じ流体金属を潤滑に使用することが望まれる。一般に、流体金属は高温において粘度が一般機械用の潤滑油や水よりも小さくなる性質を有し、潤滑性には劣る。また、ポンプ装置においては、放射線の遮蔽部を設けるためにインペラを回転させるシャフトを長尺にする必要があるほか、高温の流体金属を取り扱うために熱変形や製造時の誤差によりある程度のシャフトの傾斜や変形が避け難い。   For example, in a circulating cooling system of a fast breeder reactor, a fluid metal such as fluid sodium is often used as a cooling medium. In a pump device for transferring a fluid metal, it is desirable to use the same fluid metal for lubrication in order to prevent contamination of other substances. In general, fluid metals have a property that their viscosity becomes lower than that of general machine lubricating oil and water at high temperatures, and are inferior in lubricity. In addition, in the pump device, it is necessary to make the shaft that rotates the impeller long in order to provide a radiation shielding part, and in order to handle high-temperature fluid metal, a certain degree of shaft is caused by thermal deformation and manufacturing errors. Inclination and deformation are difficult to avoid.

本発明によるポンプ装置においては、内包するすべり軸受の静圧ポケットに、ポンプ装置のインペラにより高圧となった流体を供給するため、ポンプ装置内で冷却媒体に他の物質が混入する心配が無い。また、すべり軸受におけるスリーブ内周の中央に所定の円筒内周面領域を確保し、それを挟んでスリーブの両端部に静圧ポケット列を配置した構造により、シャフト回転時に動圧が生ずる円筒内周面領域での圧力を高め、円筒内周面領域により高い圧力を保持することにより、潤滑性に劣る流体金属等の低粘度流体を用いた場合でも高い負荷容量と軸受剛性を確保可能となる。すべり軸受の負荷容量は、特にシャフト偏心時に動圧に依存するところが大きく、負荷能力確保のために外部で軸受に供給する流体の圧力を特別に増加させるための装置を設置する必要が無い。このため、ポンプ装置をシンプルかつ小型に構成可能となる。   In the pump device according to the present invention, since the fluid having a high pressure by the impeller of the pump device is supplied to the static pressure pocket of the internal sliding bearing, there is no fear that other substances are mixed into the cooling medium in the pump device. In addition, a predetermined cylindrical inner peripheral surface area is secured at the center of the inner periphery of the sleeve in the slide bearing, and a structure in which static pressure pocket rows are arranged at both ends of the sleeve across the sleeve has a structure in which dynamic pressure is generated when the shaft rotates. By increasing the pressure in the peripheral surface region and maintaining a higher pressure in the inner peripheral surface region of the cylinder, it is possible to ensure a high load capacity and bearing rigidity even when using low-viscosity fluids such as fluid metals that are inferior in lubricity. . The load capacity of the slide bearing is highly dependent on the dynamic pressure especially when the shaft is eccentric, and it is not necessary to install a device for specifically increasing the pressure of the fluid supplied to the bearing outside in order to secure the load capacity. For this reason, the pump device can be configured in a simple and small size.

また、シャフト外周とスリーブ内周との隙間を比較的広くしても、あるいは、シャフトがスリーブ内周に対して傾斜あるいは変形した姿勢となっている場合においても、高い負荷能力と軸受剛性が確保されるため、熱変形や製造時の誤差等を許容し、安定したシャフト回転の支持が行われる。また、スリーブ内周の端部近傍に静圧ポケットが設置されるため、万が一、シャフトに過大な荷重が作用してスリーブ内周の端部近傍に傾斜したシャフトが直接接触をした場合においても、その周辺に静圧ポケットからの流体が供給されて冷却及び潤滑がなされるため、摩耗やかじりによる損傷を軽減できる。   Even when the gap between the outer periphery of the shaft and the inner periphery of the sleeve is relatively wide, or when the shaft is inclined or deformed with respect to the inner periphery of the sleeve, high load capacity and bearing rigidity are ensured. Therefore, thermal deformation, manufacturing errors, etc. are allowed, and stable shaft rotation is supported. In addition, since a static pressure pocket is installed near the end of the sleeve inner circumference, even if an excessive load acts on the shaft and the shaft inclined near the end of the sleeve inner circumference makes direct contact, Since the fluid from the hydrostatic pocket is supplied to the periphery thereof to cool and lubricate, damage due to wear and galling can be reduced.

100:ポンプ装置
101:ケーシング
102:吸入口
103:吐出口
104:流路
105:インペラ
106:シャフト
107:回転動力源
108:軸受
109:すべり軸受
110:支持部
111A〜111F:スリーブ
112A〜112F:静圧ポケット
113:静圧供給通路
114:オリフィス
115:円筒内周面領域
116:静圧ポケット列
117:静圧ポケット延長部
118:シャフト回転方向
119:異物排出溝
120:溝
100: pump device 101: casing 102: suction port 103: discharge port 104: flow path 105: impeller 106: shaft 107: rotational power source 108: bearing 109: slide bearing 110: support portions 111A to 111F: sleeves 112A to 112F: Static pressure pocket 113: Static pressure supply passage 114: Orifice 115: Cylindrical inner peripheral surface region 116: Static pressure pocket row 117: Static pressure pocket extension 118: Shaft rotation direction 119: Foreign matter discharge groove 120: Groove

Claims (11)

回転可能なシャフトに対しその内周で流体を介してしゅう動支持する略円筒形状のスリーブと、前記スリーブを貫通して外部の圧力源から前記スリーブ内周に高圧流体を供給する静圧供給通路と、前記スリーブ内周に設けられるとともに半径方向に凹形状を有し前記静圧供給通路が開口する静圧ポケットとを備えたすべり軸受において、
前記静圧ポケットが周方向に複数並んだ静圧ポケット列が前記スリーブ内周のシャフト軸方向の両端部近傍にそれぞれ少なくとも1列形成され、かつ、前記スリーブ中央部には前記静圧ポケット列に挟まれて前記静圧ポケットの存在しない円筒内周面領域が設けられていることを特徴とするすべり軸受。
A substantially cylindrical sleeve that is slidably supported on the inner periphery of the rotatable shaft via a fluid, and a static pressure supply passage that passes through the sleeve and supplies high-pressure fluid from an external pressure source to the inner periphery of the sleeve. And a hydrostatic pocket provided on the inner periphery of the sleeve and having a concave shape in the radial direction and opening the hydrostatic supply passage,
At least one row of static pressure pockets in which a plurality of the static pressure pockets are arranged in the circumferential direction is formed in the vicinity of both end portions in the shaft axial direction of the inner periphery of the sleeve, and the static pressure pocket row is formed in the central portion of the sleeve. A plain bearing characterized in that a cylindrical inner peripheral surface region is provided which is sandwiched and does not have the static pressure pocket.
請求項1に記載されたすべり軸受において、前記静圧ポケットの存在しない円筒内周面領域の前記シャフト軸方向の幅が、前記静圧ポケット列の前記シャフト軸方向の幅の合計よりも大きく設けられていることを特徴とするすべり軸受。   2. The plain bearing according to claim 1, wherein a width of the cylindrical inner peripheral surface area in which the static pressure pocket does not exist is greater than a total width of the static pressure pocket row in the shaft axial direction. A plain bearing characterized by 請求項1または2に記載されたすべり軸受において、同一の前記静圧ポケット列に属する前記静圧ポケットに通ずる静圧供給通路と、これと異なる前記静圧ポケット列に属する前記静圧ポケットに通ずる静圧供給通路は、互いに独立して高圧流体を供給する圧力源に通じていることを特徴とするすべり軸受。   3. The slide bearing according to claim 1, wherein the static pressure supply passage communicates with the static pressure pocket belonging to the same static pressure pocket row and the static pressure pocket belonging to the different static pressure pocket row. The static pressure supply passage communicates with a pressure source that supplies a high-pressure fluid independently of each other, and the plain bearing is characterized in that 請求項1乃至3のいずれかに記載されたすべり軸受において、周方向に延伸する前記静圧ポケットの設置角度範囲が隣接する他の前記静圧ポケットの前記設置角度範囲と重なり合う形状であることを特徴とするすべり軸受。   4. The slide bearing according to claim 1, wherein an installation angle range of the static pressure pocket extending in a circumferential direction overlaps with the installation angle range of another adjacent static pressure pocket. 5. A plain bearing. 請求項1乃至3のいずれかに記載されたすべり軸受において、周方向に延伸する前記静圧ポケットの設置角度範囲が隣接する他の前記静圧ポケットの前記設置角度範囲と重なり合う配置であることを特徴とするすべり軸受。   4. The slide bearing according to claim 1, wherein an installation angle range of the static pressure pocket extending in a circumferential direction overlaps with an installation angle range of another adjacent static pressure pocket. 5. A plain bearing. 請求項1乃至5のいずれかに記載されたすべり軸受において、前記静圧ポケットは、前記スリーブ端部に近い外側が前記スリーブ端部から遠い内側よりも前記シャフトの回転方向について上流側に延伸し、かつ、前記スリーブ端部から遠い内側が前記スリーブ端部に近い外側よりも前記シャフト回転方向の下流側に延伸した形状を有することを特徴とするすべり軸受。   The slide bearing according to any one of claims 1 to 5, wherein the hydrostatic pocket extends on the upstream side in the rotation direction of the shaft at the outer side near the sleeve end portion than at the inner side far from the sleeve end portion. And a slide bearing having a shape in which an inner side far from the sleeve end extends to a downstream side in the shaft rotation direction than an outer side close to the sleeve end. 請求項1乃至6のいずれかに記載されたすべり軸受において、前記スリーブ内周の前記静圧ポケットが存在しない領域に、前記静圧供給通路が開口しない溝が設けられていることを特徴とするすべり軸受。   7. The plain bearing according to claim 1, wherein a groove where the static pressure supply passage does not open is provided in a region where the static pressure pocket does not exist on the inner periphery of the sleeve. Slide bearing. 流体流路の途中に配置されて回転運動により流体を移送するインペラと、回転動力源に接続して前記インペラを回転駆動するシャフトと、前記シャフト外周面を流体を介してしゅう動支持する略円筒形状のスリーブと、前記スリーブを貫通して前記流体流路の吐出側から前記スリーブ内周に高圧流体を供給する静圧供給通路と、前記スリーブ内周に設けられるとともに半径方向に凹形状を有し前記静圧供給通路が開口する静圧ポケットを備えた滑り軸受を有するポンプ装置において、
前記静圧ポケットが周方向に複数並んだ静圧ポケット列が前記スリーブ内周のシャフト軸方向の両端部近傍に少なくとも1列形成され、かつ、前記スリーブ中央部には前記静圧ポケット列に挟まれて前記静圧ポケットの存在しない円筒内周面領域が設けられていることを特徴とするポンプ装置。
An impeller that is arranged in the middle of the fluid flow path to transfer fluid by rotational movement, a shaft that is connected to a rotational power source and rotationally drives the impeller, and a substantially cylinder that slidably supports the outer peripheral surface of the shaft via fluid. A sleeve having a shape, a static pressure supply passage that passes through the sleeve and supplies a high-pressure fluid from the discharge side of the fluid flow path to the inner periphery of the sleeve, and is provided in the inner periphery of the sleeve and has a concave shape in the radial direction. In the pump apparatus having a sliding bearing having a static pressure pocket in which the static pressure supply passage is opened,
At least one row of static pressure pockets in which a plurality of the static pressure pockets are arranged in the circumferential direction is formed in the vicinity of both ends in the shaft axial direction of the inner periphery of the sleeve, and the sleeve is sandwiched between the static pressure pocket rows at the center. A cylinder device is provided with a cylindrical inner peripheral surface area in which the static pressure pocket does not exist.
請求項8に記載されたポンプ装置において、前記円筒内周面領域の前記シャフト軸方向の幅が、前記静圧ポケットの前記シャフト軸方向の幅の合計より大きく設けられていることを特徴とするポンプ装置。   9. The pump device according to claim 8, wherein a width of the cylindrical inner peripheral surface region in the shaft axial direction is larger than a total width of the static pressure pockets in the shaft axial direction. Pump device. 請求項8または9に記載されたポンプ装置において、1つの前記静圧ポケット列に属する前記静圧ポケットに通ずる静圧供給通路と、他の前記静圧ポケット列に属する前記静圧ポケットに通ずる静圧供給通路は、互いに独立して前記流体流路の吐出側に通じていることを特徴とするポンプ装置。   The pump device according to claim 8 or 9, wherein a static pressure supply passage communicating with the static pressure pocket belonging to one of the static pressure pocket rows and a static pressure communicating with the static pressure pocket belonging to the other static pressure pocket row. The pump device characterized in that the pressure supply passages communicate with the discharge side of the fluid flow path independently of each other. 請求項8乃至10のいずれかに記載されたポンプ装置において、前記流体流路に流れる流体は流体金属であることを特徴とするポンプ装置。 11. The pump device according to claim 8, wherein the fluid flowing in the fluid flow path is a fluid metal.
JP2011271887A 2011-12-13 2011-12-13 Slide bearing and pump device using the same Active JP5602122B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011271887A JP5602122B2 (en) 2011-12-13 2011-12-13 Slide bearing and pump device using the same
US13/709,641 US20130149142A1 (en) 2011-12-13 2012-12-10 Sliding Bearing and Pump Device Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271887A JP5602122B2 (en) 2011-12-13 2011-12-13 Slide bearing and pump device using the same

Publications (2)

Publication Number Publication Date
JP2013124674A true JP2013124674A (en) 2013-06-24
JP5602122B2 JP5602122B2 (en) 2014-10-08

Family

ID=48572132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271887A Active JP5602122B2 (en) 2011-12-13 2011-12-13 Slide bearing and pump device using the same

Country Status (2)

Country Link
US (1) US20130149142A1 (en)
JP (1) JP5602122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727813B1 (en) * 2015-08-12 2017-04-17 현대위아 주식회사 Hydrostatic bearing and machine tool having the same
DE102017119241A1 (en) * 2017-08-23 2019-02-28 Voith Patent Gmbh Pipe-axial pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200699A (en) * 1981-06-04 1982-12-08 Toshiba Corp Pump for handling liquid metal
JPS60222617A (en) * 1984-04-20 1985-11-07 Hitachi Ltd Bearing for rotor
JPS61119814A (en) * 1984-11-16 1986-06-07 Hitachi Seiko Ltd Static pressure bearing
JPS61236921A (en) * 1985-04-12 1986-10-22 Mitsubishi Heavy Ind Ltd Static pressure bearing
JPS6479416A (en) * 1987-09-18 1989-03-24 Nippon Denso Co Hydrostatic bearing device
JPH10227312A (en) * 1997-02-14 1998-08-25 Toyoda Mach Works Ltd Fluid bearing device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB888155A (en) * 1958-11-07 1962-01-24 Atomic Energy Authority Uk Improvements in or relating to journal and journal bearing assemblies
FR1366075A (en) * 1963-05-21 1964-07-10 Commissariat Energie Atomique Device for reducing friction between two bodies in relative motion
CA1096431A (en) * 1978-07-03 1981-02-24 Kunio Shibata Fluid bearing
JPS60168917A (en) * 1984-02-10 1985-09-02 Nissan Motor Co Ltd Gas bearing device
JP2902262B2 (en) * 1993-03-29 1999-06-07 光洋精工株式会社 Hydrodynamic bearing
US5466071A (en) * 1994-03-10 1995-11-14 Advanced Engineering Systems, Operations & Products, Inc. High speed hydrostatic spindle design
DE69529432T2 (en) * 1994-09-08 2003-10-30 Hitachi Zosen Corp., Osaka Counter-rotating bearing for counter-rotating propellers
AU1614597A (en) * 1996-02-08 1997-08-28 Aesop Inc Combined hydrostatic/hydrodynamic bearing
JP3613309B2 (en) * 1997-03-19 2005-01-26 豊田工機株式会社 Hydrodynamic bearing device
JP4134541B2 (en) * 2000-09-25 2008-08-20 株式会社ジェイテクト Fluid bearing
JP4161651B2 (en) * 2001-09-26 2008-10-08 株式会社ジェイテクト Fluid bearing
US8453665B2 (en) * 2007-03-15 2013-06-04 The University Of Akron Self-acting self-circulating fluid system without external pressure source and use in bearing system
US9222511B2 (en) * 2008-12-05 2015-12-29 Doosan Infracore Co., Ltd. Sliding bearing and sliding bearing assembly
US8734105B2 (en) * 2010-09-16 2014-05-27 Vestas Wind Systems A/S Control system for a wind turbine and method of operating a wind turbine based on monitoring a bearing
TWI407023B (en) * 2010-12-03 2013-09-01 Ind Tech Res Inst Self-compensating hydrostatic journal bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200699A (en) * 1981-06-04 1982-12-08 Toshiba Corp Pump for handling liquid metal
JPS60222617A (en) * 1984-04-20 1985-11-07 Hitachi Ltd Bearing for rotor
JPS61119814A (en) * 1984-11-16 1986-06-07 Hitachi Seiko Ltd Static pressure bearing
JPS61236921A (en) * 1985-04-12 1986-10-22 Mitsubishi Heavy Ind Ltd Static pressure bearing
JPS6479416A (en) * 1987-09-18 1989-03-24 Nippon Denso Co Hydrostatic bearing device
JPH10227312A (en) * 1997-02-14 1998-08-25 Toyoda Mach Works Ltd Fluid bearing device

Also Published As

Publication number Publication date
JP5602122B2 (en) 2014-10-08
US20130149142A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
WO2016047159A1 (en) Bearing and bearing pad
JP4930290B2 (en) Tilting pad type journal bearing
KR101901081B1 (en) Journal bearing and rotary machine
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
JP4604099B2 (en) Journal bearing device
US20060165325A1 (en) Axial friction bearing
EP3032123B1 (en) Tilting pad type journal bearing
JP2009257445A (en) Tilting pad thrust bearing
JP6325915B2 (en) Tilting pad type journal bearing
JP2015007463A (en) Tilting pad bearing
US10415635B2 (en) Tilting pad journal bearing
US9377051B2 (en) Duplex bearing device
CN108884860B (en) Bearing device and rotary machine
JP5602122B2 (en) Slide bearing and pump device using the same
CN108700111B (en) Journal bearing and rotary machine
JP6818668B2 (en) Tilting pad journal bearing and centrifugal compressor using it
US20160047421A1 (en) Reverse Bypass Cooling for Tilted Pad Journal and Tilting Pad Thrust Bearings
JPWO2016063340A1 (en) Thrust bearing and rotating machine
CN108700115B (en) Journal bearing and rotary machine
JP2019124277A (en) Tilting pad bearing device and rotary machine
JP5524778B2 (en) Vertical bearing device
WO2015098896A1 (en) Bearing device and pump
JP2004197890A (en) Tilting pad bearing device
CN108884861B (en) Bearing device and rotary machine
JP2012122535A (en) Thrust bearing device of electric rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150