WO2015098896A1 - Bearing device and pump - Google Patents

Bearing device and pump Download PDF

Info

Publication number
WO2015098896A1
WO2015098896A1 PCT/JP2014/084007 JP2014084007W WO2015098896A1 WO 2015098896 A1 WO2015098896 A1 WO 2015098896A1 JP 2014084007 W JP2014084007 W JP 2014084007W WO 2015098896 A1 WO2015098896 A1 WO 2015098896A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil
bearing
disk
rotating shaft
Prior art date
Application number
PCT/JP2014/084007
Other languages
French (fr)
Japanese (ja)
Inventor
成 吉川
栄作 兼村
平田 和也
山中 隆司
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to JP2015554908A priority Critical patent/JPWO2015098896A1/en
Publication of WO2015098896A1 publication Critical patent/WO2015098896A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/049Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0462Bearing cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/061Lubrication especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6666Details of supply of the liquid to the bearing, e.g. passages or nozzles from an oil bath in the bearing housing, e.g. by an oil ring or centrifugal disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/14Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means
    • F16N7/16Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means the oil being carried up by a lifting device
    • F16N7/18Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means the oil being carried up by a lifting device with one or more feed members fixed on a shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement

Definitions

  • the present invention relates to a bearing device used for a horizontal shaft pump or the like, and more particularly, to a bearing device capable of appropriately supplying lubricating oil to a bearing even when the diameter of a rotating shaft is increased or the rotational speed is increased. .
  • the present invention also relates to a pump provided with such a bearing device.
  • a bearing device is disposed in the vicinity of the end of the rotary shaft in order to rotatably support the rotary shaft.
  • a lubricating oil storage tank in which lubricating oil for lubricating and cooling the bearing is stored is provided inside or outside the bearing device. Examples of means for supplying lubricating oil from the lubricating oil storage tank to the bearing include a forced oil supply device using external power or a self-lubricating device that does not use external power.
  • the forced oil supply device supplies lubricating oil to a bearing arranged inside the bearing device using external power from a lubricating oil storage tank arranged outside the bearing device.
  • the lubricating oil is pumped up from the lubricating oil storage tank disposed below the rotating shaft inside the bearing device by using the rotational force of the rotating shaft and supplied to the bearing.
  • FIG. 11 is a cross-sectional view showing a bearing device when a forced oil supply device is used.
  • FIG. 12 is a piping and instrument system diagram of the forced oiling device.
  • FIG. 13A and FIG. 13B are a schematic side view and a schematic plan view showing the arrangement of the pump when the forced oil supply device is used.
  • the rotary shaft 1 of the horizontal shaft pump 100 extends horizontally, and the end of the rotary shaft 1 is rotatably supported by bearings 9A and 9B.
  • a forced oil supply device 26 is disposed outside the horizontal shaft pump 100. Lubricating oil is forcibly supplied from the forced oil supply device 26 to the bearings 9A and 9B.
  • the forced oil supply device 26 includes a plurality of components such as a lubricating oil pump 21, a filter 24, a lubricating oil cooler 23, a plurality of hydraulic pressure monitoring instruments 25, and a lubricating oil tank 22. Therefore, the cost of the forced oil supply device 26 is increased.
  • the installation space of the forced oil supply device 26 is required.
  • the installation space for the forced oil supply apparatus 26 since the volume of each component which comprises the forced oil supply apparatus 26 is large, the installation space for the forced oil supply apparatus 26 also becomes large. As a result, the installation space required for the entire pump system becomes large, which may cause a reduction in product competitiveness in the market as a rotating machine.
  • FIG. 14 shows an example of a conventional bearing device using a self-lubricating device.
  • the edge part of the rotating shaft 1 is rotatably supported by bearing 9A, 9B.
  • the lubricating oil storage tank 10 in which the lubricating oil is stored is disposed below the bearings 9A and 9B.
  • An oil ring 20 is provided as a self-lubricating device for scooping up the lubricating oil in the lubricating oil storage tank 10.
  • the oil ring 20 is disposed so as to surround the outer peripheral surface of the rotating shaft 1 and rotates with the rotation of the rotating shaft 1.
  • the lubricating oil is supplied to the bearings 9 ⁇ / b> A and 9 ⁇ / b> B by scooping up the lubricating oil in the lubricating oil storage tank 10 by the rotating oil ring 20.
  • Such a self-lubricating device using the oil ring 20 is conventionally known as an oil ring self-lubricating device.
  • the circumferential speed (hereinafter simply referred to as the circumferential speed) of the outer peripheral surface of the rotating shaft 1 due to the increase in the diameter of the rotating shaft 1 or the speeding up of the rotating shaft 1 or the like. )
  • the rotation of the oil ring 20 cannot follow the rotation of the rotary shaft 1. That is, the rotational speed of the oil ring 20 with respect to the rotating shaft 1 is greatly reduced, and the oil ring 20 cannot properly scoop up the lubricating oil. As a result, desired lubrication performance and cooling performance cannot be obtained.
  • the lubricating oil overflows and scatters from the outer circumferential arc surface, or the lubricating oil scatters from a portion other than the outer circumferential arc surface.
  • the lubricating oil is lifted above the outer periphery of the disk through the flexible tube using the pressure of the lubricating oil gathered at the outer edge of the disk by centrifugal force, and further provided outside the flexible tube. Supplied to the journal bearing through the introduced hole. For this reason, the entire bearing device is large in the radial direction, and the processing of the introduction hole is complicated and takes time.
  • Patent Document 3 discloses a technique for guiding oil pumped up by an oil ring to a bearing.
  • the amount of lubricating oil supplied to the bearing when this technology is used varies depending on operating conditions. Further, the above-described problem that the oil ring does not follow the rotation shaft as the rotation shaft rotates at high speed is not taken into consideration. Further, it is predicted that the amount of lubricating oil flying from the oil surface due to the rotation of the oil ring increases as the peripheral speed of the rotating shaft increases.
  • no consideration is given to the loss of lubricating oil in the axial direction of the rotating shaft, and there is a concern about oil leakage from the shaft seal portion or the like of the bearing device.
  • the above-described conventional self-lubricating bearing device provides an appropriate self-lubricating technique considering the rotational speed, the diameter of the rotating shaft, the viscosity of the lubricating oil to be used, and the oil viscosity change due to the ambient temperature and operating time. It's hard to say. Further, in other related literatures and prior arts, there is no technique related to suppressing an excessive amount of lubricating oil supplied and optimizing the amount of lubricating oil supplied.
  • the present invention has been made in view of the above-described conventional problems, and even when the peripheral speed of the rotating shaft is increased, the lubricating oil can be stably supplied to the bearing in an appropriate amount. And it aims at providing the bearing apparatus which is compact compared with the past, and does not require a complicated process. Moreover, an object of this invention is to provide the pump provided with such a bearing apparatus.
  • One aspect of the present invention for solving the above-described problems is a bearing that receives a load of a rotating shaft, a lubricating oil storage tank that is disposed below the bearing, and is fixed to the rotating shaft so as to be integrated with the rotating shaft.
  • An oil disk that pumps up the lubricating oil stored in the lubricating oil storage tank by rotating, a lubricating oil passage that extends to the bearing, and a guide casing that guides the lubricating oil pumped up by the oil disk to the lubricating oil passage
  • the guide casing has an inner surface facing a side surface and an outer peripheral surface of the oil disk.
  • a lubricating oil introduction groove connected to the lubricating oil passage is formed on an inner surface of the guide casing, and the lubricating oil introduction groove is adjacent to a side surface of the oil disk. It is characterized by that.
  • the lubricating oil passage extends from the inner surface of the guide casing in the axial direction of the rotating shaft, and further extends in a direction perpendicular to the axial direction to reach the bearing. .
  • an annular groove is provided on the outer peripheral surface of the oil disk.
  • a plurality of depressions are provided on the outer peripheral surface of the oil disk.
  • a plurality of radial grooves are provided on a side surface of the oil disk.
  • a key is provided on the outer peripheral surface of the rotating shaft, and a key groove is formed on an inner peripheral surface of a through hole formed at the center of the oil disk.
  • the oil disk is fixed to the rotating shaft in a state in which the groove is engaged.
  • the bearing is one of at least two bearings arranged in series on the rotating shaft, and an annular spacer is arranged between the at least two bearings. It is characterized by that.
  • the spacer has an oil supply hole extending from an outer peripheral surface to an inner peripheral surface, and the oil supply hole is connected to the lubricating oil passage.
  • the bearing is a thrust bearing that receives an axial load of the rotating shaft.
  • the thrust bearing is configured to receive both an axial load and a radial load of the rotating shaft.
  • Another aspect of the present invention is a pump including a rotating shaft, an impeller fixed to the rotating shaft, and the bearing device that rotatably supports the rotating shaft.
  • the oil disk always rotates at the same rotational speed as the rotational shaft, even if the rotational speed of the rotational shaft increases, slippage does not occur and the follow-up performance does not decrease as in the conventional oil ring. . Therefore, according to the present invention, it is possible to stably supply the lubricating oil to the bearing even under the high peripheral speed condition of the rotating shaft, which is difficult to supply with conventional technology such as an oil ring. As a result, the forced oiling device is not required, the installation area of the pump is reduced, and the cost is reduced, so that the product competitiveness in the market can be increased.
  • the oil disk is surrounded by a guide casing disposed opposite to and in close proximity to the oil disk, it is possible to prevent wasteful splashing of the lubricating oil scooped up by the oil disk. As a result, an amount of lubricating oil more than necessary and sufficient can be led to the lubricating oil passage leading to the bearing. Since the lubricating oil passage extends in the axial direction at a position close to the rotating shaft, a compact bearing device can be provided as compared with the conventional one without requiring complicated processing.
  • the amount of lubricating oil supplied to the bearing is determined by the circumferential position of the lubricating oil passage port and the shape of the passage (cross-sectional area, length, passage direction with respect to the oil disk rotation direction, flow resistance factors such as surface roughness, Alternatively, the amount is limited to a suitable amount by an excessive lubricating oil discharge hole provided in the course of the passage. Therefore, an increase in rotation loss due to the excessive supply of lubricating oil and the accompanying heat generation are prevented.
  • FIG. 1 is a cross-sectional view showing an example of a horizontal shaft single-stage pump provided with a bearing device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a horizontal shaft multi-stage pump provided with a bearing device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the structure of a self-lubricating bearing device according to an embodiment of the present invention.
  • FIG. 4A is a longitudinal sectional view of the oil disk.
  • FIG. 4B is a partial plan view of the oil disk shown in FIG. 4A as viewed from the axial direction.
  • FIG. 4C is a perspective view of the oil disc shown in FIG. 4A.
  • FIG. 5A is a longitudinal sectional view of another example oil disk.
  • FIG. 5B is a partial plan view of the oil disk shown in FIG. 5A as viewed from the axial direction.
  • FIG. 5C is a perspective view of the oil disk shown in FIG. 5A.
  • FIG. 6A is a longitudinal sectional view of still another example of an oil disk.
  • FIG. 6B is a partial plan view of the oil disk shown in FIG. 6A as viewed from the axial direction.
  • 6C is a perspective view of the oil disk shown in FIG. 6A.
  • FIG. 7 is an enlarged sectional view showing the oil disk and the guide casing.
  • FIG. 8 is a view showing an inner side surface of a guide casing provided with a plurality of lubricating oil introduction grooves.
  • FIG. 9 is a view showing the inner surface of the guide disk that is not provided with the lubricating oil introduction groove and that faces the side surface of the oil disk.
  • FIG. 10A is a cross-sectional view showing a part of the bearing device along the longitudinal direction of the rotating shaft.
  • FIG. 10B is a diagram showing a cross section of the bearing device as viewed from the longitudinal direction of the rotating shaft.
  • FIG. 11 is a cross-sectional view showing a bearing device when a forced oil supply device is used.
  • FIG. 12 is a piping and instrument system diagram of the forced oiling device.
  • FIG. 13A is a schematic side view showing the arrangement of pumps when a forced oiling device is used.
  • FIG. 13B is a schematic plan view showing the arrangement of the pumps when the forced oiling device is used.
  • FIG. 14 is a cross-sectional view showing an example of a conventional bearing device using a self-lubricating device.
  • FIG. 1 is a cross-sectional view showing an example of a horizontal shaft single-stage pump provided with a bearing device according to an embodiment of the present invention.
  • a horizontal axis single-stage pump 100 as a rotating machine shown in FIG. 1 has an impeller 2 and a rotating shaft 1 to which the impeller 2 is fixed.
  • the rotating shaft 1 extends horizontally.
  • One end of the rotary shaft 1 is connected to a drive machine such as an electric motor (not shown), and the rotary shaft 1 and the impeller 2 are rotated by this drive machine.
  • the rotating shaft 1 is rotatably supported by bearing devices 9 and 9 provided in the vicinity of both ends thereof.
  • the impeller 2 is disposed in the pump casing 5.
  • the pump casing 5 shown in FIG. 1 has a spiral chamber 5a therein, and the impeller 2 is disposed in the spiral chamber 5a.
  • a liquid such as water is sucked from the suction port 3
  • the pressure of the liquid is increased by the action of the impeller 2 and the spiral chamber 5 a, and the liquid is discharged from the discharge port 4. It is.
  • the impeller 2 in the illustrated example has a double suction structure for sucking liquid from both sides.
  • the caps 2A and 2B are attached to the liquid inlet of the impeller 2, respectively.
  • a thrust force due to a pressure difference can be applied in one direction of the rotating shaft 1 and the rotating shaft 1 can be rotated in a stable state.
  • This thrust force is supported by a thrust bearing unit 9A of the bearing device 9. Since a thrust force acts on the thrust bearing unit 9A as a load, it is necessary to supply an appropriate amount of lubricating oil to the thrust bearing unit 9A and cool the thrust bearing unit 9A while lubricating it.
  • two radial bearing units 9B and 9B are disposed in the vicinity of both end portions of the rotary shaft 1.
  • the rotary shaft 1 is supported by a total of three bearings including these two radial bearing units 9B and 9B and one thrust bearing unit 9A.
  • sleeve-type bearings are used for the radial bearing units 9B and 9B, and a conventional self-lubricating oil supply device having an oil ring 20 is provided in the sleeve-type radial bearing units 9B and 9B. It has been adopted.
  • the configuration of the present invention described later is applied to the thrust bearing unit 9A.
  • FIG. 2 is a cross-sectional view showing an example of a horizontal multistage pump provided with a bearing device according to an embodiment of the present invention.
  • a horizontal axis multistage pump 100 as a rotating machine shown in FIG. 2 includes a plurality of impellers 2 and a rotary shaft 1 to which the impellers 2 are fixed.
  • the rotating shaft 1 extends horizontally.
  • the plurality of impellers 2 are arranged in series on the rotary shaft 1, and a plurality of guide vanes 6 are arranged so as to surround each of the impellers 2.
  • One end of the rotary shaft 1 is connected to a drive machine such as an electric motor (not shown), and the rotary shaft 1 and the impeller 2 are rotated by this drive machine.
  • the rotating shaft 1 is rotatably supported by bearing devices 9 and 9 provided in the vicinity of both ends thereof.
  • the impeller 2 is disposed in the pump casing 5.
  • liquid such as water is sucked from the suction port 3, and the pressure of the liquid is increased by the action of the impeller 2 and the guide vane 6, and the liquid is discharged from the discharge port. 4 is spit out.
  • the plurality of impellers 2 are arranged in the same direction, the thrust force generated by the pressure difference between the adjacent impellers 2 is overlapped by the number of impellers 2, and a large thrust force is generated.
  • This thrust force is offset by the balance device 7 provided in the horizontal multistage pump 100, but a certain amount of thrust force remains during transient operation.
  • This residual thrust force is supported by the thrust bearing unit 9A of the bearing device 9. Since the residual thrust force acts on the thrust bearing unit 9A as a load, it is necessary to supply an appropriate amount of lubricating oil to the thrust bearing unit 9A and cool the thrust bearing unit 9A while lubricating it.
  • two radial bearing units 9B and 9B are disposed in the vicinity of both end portions of the rotary shaft 1.
  • the rotary shaft 1 is supported by a total of three bearings including these two radial bearing units 9B and 9B and one thrust bearing unit 9A.
  • sleeve-type bearings are used for the radial bearing units 9B and 9B, and a conventional self-lubricating oil supply device having an oil ring 20 is provided in the sleeve-type radial bearing units 9B and 9B. It has been adopted.
  • the configuration of the present invention described later is applied to the thrust bearing unit 9A.
  • the configuration of the bearing devices 9 and 9 disposed in the vicinity of both ends of the rotary shaft 1 is the same as that of the horizontal axis single-stage pump shown in FIG.
  • the rotary shaft 1 extends through the pump casing 5 in both cases of the horizontal shaft pump 100 shown in FIGS.
  • a gap between the rotary shaft 1 and the pump casing 5 is sealed by shaft sealing devices 8 and 8 such as mechanical seals. Therefore, the liquid pressurized by the impeller 2 does not enter the bearing devices 9 and 9.
  • FIG. 3 is a cross-sectional view showing the structure of a self-lubricating bearing device according to an embodiment of the present invention.
  • the bearing device 9 includes a thrust bearing unit 9 ⁇ / b> A that receives the axial load and the radial load of the rotating shaft 1 that extends horizontally, and a radial bearing unit 9 ⁇ / b> B that receives the radial load of the rotating shaft 1.
  • a thrust bearing unit 9 ⁇ / b> A that receives the axial load and the radial load of the rotating shaft 1 that extends horizontally
  • a radial bearing unit 9 ⁇ / b> B that receives the radial load of the rotating shaft 1.
  • a plurality of angular ball bearings are used for the thrust bearing unit 9A.
  • a lubricating oil storage tank 10 is disposed below the thrust bearing unit 9A and the radial bearing unit 9B, and the oil level of the lubricating oil stored in the lubricating oil storage tank 10 is indicated by a dotted line with a reference numeral 10A. ing.
  • the amount of lubricating oil is controlled so that the oil level 10A in the lubricating oil storage tank 10 is constant.
  • a cooling jacket 27 is provided below the lubricating oil storage tank 10, and the lubricating oil in the lubricating oil storage tank 10 is cooled by the coolant flowing through the cooling jacket 27.
  • an air cooling structure with fins may be employed. Or it is good also as a structure which inserts a cooling liquid tube with a fin in the lubricating oil storage tank 10, and cools lubricating oil directly.
  • the bearing device 9 further includes a lubricating oil pumping means 11 that is fixed to the rotating shaft 1 and rotates together with the rotating shaft 1 to pump up the lubricating oil stored in the lubricating oil storage tank 10.
  • the lubricating oil lifting means 11 is configured as a circular oil disk.
  • the oil disk 11 is fixed to the rotary shaft 1 so as to rotate integrally with the rotary shaft 1.
  • a key 1 a is provided on the outer peripheral surface of the rotating shaft 1
  • a key groove 11 a is formed on the inner peripheral surface of a through hole formed at the center of the oil disk 11.
  • the rotary shaft 1 is inserted into the through hole of the oil disk 11 so that the key 1a is inserted into the key groove 11a.
  • the torque of the rotary shaft 1 is transmitted to the oil disc 11, and the oil disc 11 rotates integrally with the rotary shaft 1. Therefore, the oil disk 11 always rotates at the same rotational speed as the rotary shaft 1.
  • the lower part of the oil disk 11 is immersed in the lubricating oil in the lubricating oil storage tank 10, and the rotating oil disk 11 scoops up the lubricating oil stored in the lubricating oil storage tank 10.
  • various undulating shapes may be provided on the peripheral edge of the oil disk 11.
  • FIGS. 4A to 4C are diagrams showing an example in which an annular groove 12 is provided on the outer peripheral surface of the oil disk 11.
  • FIG. As shown in FIGS. 4A to 4C, an annular groove 12 extending in the circumferential direction is provided on the outer peripheral surface of the oil disk 11. A part of the outer peripheral surface of the oil disk 11 is always immersed in the lubricating oil in the lubricating oil storage tank 10. When the oil disk 11 rotates, the lubricating oil is held in the annular groove 12 formed on the outer peripheral surface thereof, so that it is possible to increase the amount of lubricating oil that the oil disk 11 scoops up.
  • FIGS. 5A to 5C are views showing an example in which a plurality of depressions 13 are provided on the outer peripheral surface of the oil disk 11. As shown in FIGS. 5A to 5C, a plurality of depressions 13 are provided on the outer peripheral surface of the oil disk 11. These recesses 13 are arranged at equal intervals along the circumferential direction of the oil disk 11. When the oil disk 11 rotates, the lubricating oil is held in the plurality of recesses 13 formed on the outer peripheral surface thereof, so that the amount of lubricating oil that the oil disk 11 scoops up can be increased.
  • the recess 13 of the present embodiment is conical, but may have other shapes such as a cylindrical shape.
  • FIGS. 6A to 6C are views showing an example in which a plurality of radial grooves 14 are provided on both side surfaces of the oil disk 11.
  • a plurality of radial grooves 14 extending in the radial direction of the oil disk 11 are provided on both side surfaces of the oil disk 11.
  • the plurality of radial grooves 14 are arranged at equal intervals around the center of the oil disk 11. These radial grooves 14 extend to the outer peripheral surface of the oil disk 11, and the outer end of each radial groove 14 is on the outer peripheral surface of the oil disk 11.
  • the lubricating oil is held in the radial grooves 14 formed on both side surfaces thereof, so that the amount of lubricating oil that the oil disk 11 scoops up can be increased.
  • the radial groove 14 of the illustrated embodiment extends in the radial direction of the oil disk 11, the radial groove 14 may be inclined from the radial direction. The radial groove in this case also extends to the outer peripheral surface of the oil disk 11. The radial groove may be inclined toward the rotation direction of the oil disk 11 or may be inclined toward a direction opposite to the rotation direction. The amount of lubricating oil that the oil disk 11 scoops up can be adjusted by the inclination direction and the inclination angle of the radial groove.
  • FIG. 7 is an enlarged cross-sectional view showing the oil disk 11 and the guide casing 15. As shown in FIG. 7, the guide casing 15 is disposed in the vicinity of the oil disk 11.
  • the guide casing 15 is composed of two annular guide disks 15A and 15B arranged to face both side surfaces (two side surfaces aligned in the axial direction) of the oil disk 11. In the example illustrated in FIG.
  • the guide casing 15 includes two guide disks 15 ⁇ / b> A and 15 ⁇ / b> B that are arranged so as to sandwich both side surfaces of the oil disk 11. Further, the guide casing 15 is disposed in the vicinity of the outer peripheral surface of the oil disk 11. The outer peripheral surface of the oil disk 11 is the outermost peripheral surface located between both side surfaces of the oil disk 11.
  • the inner surface of the guide casing 15 is disposed close to both side surfaces and the outer peripheral surface of the oil disk 11 and faces both side surfaces and the outer peripheral surface of the oil disk 11. More specifically, in the example shown in FIG. 7, annular guide disks 15 ⁇ / b> A and 15 ⁇ / b> B are arranged so as to face both side surfaces of the oil disk 11, and the outer peripheral surface of the oil disk 11 is also surrounded by the guide casing 15. ing. Between the oil disk 11 and the guide casing 15, an axial gap W1 and a radial gap W2 are formed.
  • the axial gap W ⁇ b> 1 is a gap between the side surface of the oil disk 11 and the guide casing
  • the radial gap W ⁇ b> 2 is a gap between the outer peripheral surface of the oil disk 11 and the guide casing 15.
  • gaps W1 and W2 are set to appropriate values so that the lubricating oil pumped up on the oil disk 11 does not scatter or fall based on the pump operating conditions such as the viscosity of the lubricating oil used and the rotational speed of the rotary shaft 1.
  • the axial gap W1 is 2 mm to 4 mm
  • the radial gap W2 is 3 mm to 6 mm.
  • the guide casing 15 surrounding the oil disk 11 is disposed close to the oil disk 11 at a suitable distance.
  • the lubricating oil pumped up on the oil disk 11 is scattered from the oil disk 11, the lubricating oil accompanies the rotation direction due to the rotation of the oil disk 11, and the oil disk 11 and the guide casing 15
  • the gaps W1 and W2 are held. Accordingly, the amount of lubricating oil held in the gaps W1 and W2 is appropriately adjusted according to the dimensions of the gaps W1 and W2 between the oil disk 11 and the guide casing 15.
  • the lubricating oil pumped up by the oil disk 11 is directly guided to the lubricating oil passage 17 (described later) and the communication passage 28 extending in the axial direction and directly communicating with the bearing 32 constituting the thrust bearing unit 9A.
  • the supply amount of the lubricating oil can be adjusted. Therefore, the amount of lubricating oil supplied to the thrust bearing unit 9A is appropriately maintained. Furthermore, since the splashing range of the lubricating oil scooped up from the oil disk 11 by the guide casing 15 is limited, leakage of the lubricating oil from the shaft seal device 8 can be prevented.
  • the axial gap W1 and the radial gap W2 are appropriately set according to the pump type and / or pump operating conditions (for example, the viscosity of the lubricating oil and the rotational speed of the rotary shaft 1).
  • a plurality of lubricating oil introduction grooves 16 are provided on the inner surface (inner side surface) of the guide casing 15 that faces the side surface of the oil disk 11. More specifically, as shown in FIG. 7, a plurality of lubricating oil introduction grooves 16 are provided on the inner surface of the guide disk 15A disposed closer to the thrust bearing unit 9A than the guide disk 15B. These lubricating oil introduction grooves 16 are disposed close to the side surface of the oil disk 11 and extend from the vicinity of the rotating shaft 1 in the radially outward direction of the oil disk 11. The outer end of the lubricating oil introduction groove 16 is connected to an inlet 17a of a lubricating oil passage 17 that sends the lubricating oil to the thrust bearing unit 9A.
  • FIG. 8 is a view showing an inner side surface of the guide casing 15 provided with a plurality of lubricating oil introduction grooves 16.
  • three lubricating oil introduction grooves 16 are provided, and these lubricating oil introduction grooves 16 are located in the upper half of the guide casing 15.
  • the lubricating oil introduction groove 16 is connected to a lubricating oil passage 17 for supplying the lubricating oil pumped up by the oil disk 11 to the thrust bearing unit 9A.
  • the guide casing 15 surrounds the oil disk 11 with the limited gaps W1 and W2 so that the lubricating oil pumped up by the oil disk 11 is not scattered unnecessarily.
  • the lubricating oil accompanying the rotation direction in the gaps W1 and W2 between the oil disks 11 flows along the lubricating oil introduction groove 16, and is guided to the inlet 17a of the lubricating oil passage 17.
  • the lubricant introduction groove 16 is provided to guide the lubricant from the gaps W1 and W2 between the guide casing 15 and the oil disk 11 to the lubricant passage 17. Therefore, the lubricating oil passage 17 is formed in the bearing casing 35 that accommodates the thrust bearing unit 9A and the radial bearing unit 9B.
  • the cooling jacket 27 described above is also formed in the bearing casing 35.
  • the direction in which the lubricating oil introduction groove 16 extends from the inlet 17 a of the lubricating oil passage 17 is inclined toward the upstream side in the rotational direction of the oil disk 11 with respect to the radial direction of the oil disk 11.
  • the lubricating oil introduction groove 16 is inclined toward the upstream side in the rotation direction of the oil disk 11, so that the lubricating oil scooped up by the rotating oil disk 11 easily enters the lubricating oil introduction groove 16.
  • the angle of the lubricating oil introduction groove 16 with respect to the radial direction of the oil disk 11 is, for example, in the range of 30 degrees to 60 degrees.
  • the inclination angle of the lubricating oil introduction groove 16 is appropriately set in consideration of operating conditions such as the rotational speed of the rotating shaft 1, physical properties such as the viscosity of the lubricating oil, and the amount of lubricating oil supplied to the thrust bearing unit 9A.
  • the lubricating oil introduction groove 16 may be an arcuate groove having an appropriate curvature radius according to specifications such as operating conditions and physical properties of the lubricating oil.
  • the lubricant introduction groove 16 may be a spiral groove.
  • FIG. 9 is a view showing the inner surface of the guide disk 15B facing the oil disk 11. As shown in FIG. As shown in FIG. 9, the lubricating oil introduction groove 16 is not provided on the inner surface of the guide disk 15B.
  • the lubricating oil that has entered the lubricating oil introduction groove 16 is guided to the lubricating oil passage 17 that communicates with the lubricating oil introduction groove 16.
  • the lubricating oil passage 17 extends to the thrust bearing unit 9A. More specifically, the lubricating oil passage 17 extends from the inner surface of the guide casing 15 in the axial direction of the rotary shaft 1 and further extends in a direction perpendicular to the axial direction of the rotary shaft 1 to reach the thrust bearing unit 9A. Yes.
  • the lubricating oil is supplied to the thrust bearing unit 9A through the lubricating oil passage 17.
  • Circumferential position of the lubricating oil passage 17 and the form of the lubricating oil passage 17 (for example, cross-sectional area, length, passage direction relative to the oil disk rotation direction, flow resistance factors such as surface roughness, or excess provided in the passage
  • the amount of lubricating oil supplied to the thrust bearing unit 9A can be limited to a suitable amount.
  • the lubricating oil passage 17 may be disposed at a position near the rotating shaft 1 that is equal to or smaller than the outer diameter of the oil disk 11.
  • the thrust bearing unit 9 ⁇ / b> A includes two bearings 31 and 32 arranged in series on the rotary shaft 1, and an annular shape arranged between the bearings 31 and 32. And a spacer (spacer) 19.
  • the bearings 31 and 32 angular ball bearings that can receive both the axial load and the radial load of the rotary shaft 1 are used. This angular ball bearing functions as a radial bearing and a thrust bearing.
  • the spacer 19 also functions as a lubricant guide for supplying lubricant to the bearings 31 and 32 evenly. Three or more bearings may be provided. Also in this case, the spacer 19 is disposed between two adjacent bearings.
  • FIG. 10A is a sectional view showing a part of the bearing device along the longitudinal direction of the rotating shaft 1
  • FIG. 10B is a diagram showing a section of the bearing device seen from the longitudinal direction of the rotating shaft 1.
  • a plurality of oil supply holes 18 for efficiently distributing the lubricant supplied from the lubricant passage 17 to the bearings 31 and 32 are provided on the outer periphery of the spacer 19. Each oil supply hole 18 extends from the outer peripheral surface of the spacer 19 to the inner peripheral surface.
  • the diameter and number of the oil supply holes 18 are appropriately set in consideration of operating conditions such as the rotational speed of the rotating shaft 1, physical properties such as the viscosity of the lubricating oil, and the amount of lubricating oil supplied to the thrust bearing unit 9A.
  • the lubricating oil pumped up by the rotation of the oil disk 11 is properly supplied to the thrust bearing unit 9A, a highly reliable self-lubricating bearing device can be configured even at a high peripheral speed. It becomes possible. Specifically, in the past, a peripheral speed of about 14 m / s was the limit of a self-lubricating bearing device. However, according to the present invention, the peripheral speed limit applicable to self-lubrication is 16 to 18 m / s, or It becomes possible to increase to the above peripheral speed.
  • the present invention it is possible to stably supply the lubricating oil to the thrust bearing unit 9A even under high peripheral speed conditions of the rotary shaft 1, which has been difficult to supply by conventional techniques such as an oil ring.
  • the forced oiling device is not required, the installation area of the pump is reduced, and the cost is reduced, so that the product competitiveness in the market can be increased.
  • the oil disk 11 is surrounded by the guide casing 15 disposed opposite to and close to the oil disk 11, it is possible to prevent useless scattering of the lubricating oil pumped up by the oil disk 11. .
  • an amount of lubricating oil more than necessary and sufficient can be guided to the lubricating oil passage 17 that leads to the bearings 31 and 32. Since the lubricating oil passage 17 extends in the axial direction from the inner surface of the oil disk 15, it is possible to provide a bearing device that is more compact than the conventional one without requiring complicated processing.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.
  • the oil disk 11 and the guide casing 15 are provided for supplying the lubricating oil to the thrust bearing unit 9A.
  • the oil disk and the guide for supplying the lubricating oil to the radial bearing unit 9B are provided.
  • a casing may be provided.
  • the axial gap W1 and radial gap W2 between them, the circumferential position and inclination of the lubricant introduction groove 16, the cross-sectional area of the lubricant passage 17, the shape of the spacer 19 disposed between the bearings, and the like are appropriately designed and By selecting, the present invention can be applied to various types of pumps.
  • the present invention relates to a bearing device used for a horizontal shaft pump or the like, and more particularly, to a bearing device capable of appropriately supplying lubricating oil to a bearing even when the diameter of a rotating shaft is increased or the rotational speed is increased. Is available. Further, the present invention can be used for a pump provided with such a bearing device.

Abstract

The present invention pertains to a bearing device which is more compact than the prior art and does not require complicated machining, and with which lubricating oil can be supplied in an appropriate amount and in a stable manner to a bearing, even when the peripheral speed of a rotary shaft is increased to a high speed. In addition, the present invention pertains to a pump equipped with such a bearing device. The bearing device is equipped with: a bearing (32) that receives the load of a rotary shaft (1); a lubricating oil reservoir (10) arranged below the bearing (32); an oil disk (11) that is affixed to and rotates integrally with the rotary shaft (1), thereby scooping up the lubricating oil stored in the lubricating oil reservoir (10); a lubricating oil passage (17) extending to the bearing (32); and a guide casing (15) that guides the lubricating oil scooped up by the oil disk (11) to the lubricating oil passage (17). The guide casing (15) has an inner surface that faces the side surface and the outer peripheral surface of the oil disk (11).

Description

軸受装置およびポンプBearing device and pump
 本発明は、横軸ポンプ等に用いられる軸受装置に係り、特に、回転軸が大径化したり、または回転速度が高速化しても、適切に潤滑油を軸受に供給することができる軸受装置に関する。また、本発明はこのような軸受装置を備えたポンプに関する。 The present invention relates to a bearing device used for a horizontal shaft pump or the like, and more particularly, to a bearing device capable of appropriately supplying lubricating oil to a bearing even when the diameter of a rotating shaft is increased or the rotational speed is increased. . The present invention also relates to a pump provided with such a bearing device.
 回転軸が水平に設置された横軸式の回転機械(例えば、横軸ポンプ)には、回転軸を回転自在に支持するために、回転軸の端部近傍に軸受装置が配置される。さらに、軸受を潤滑および冷却するための潤滑油が貯留される潤滑油貯槽が、軸受装置の内部または外部に設けられる。潤滑油貯槽から軸受へ潤滑油を供給する手段としては、外部動力を用いた強制給油装置、または外部動力を用いない自己潤滑装置が挙げられる。強制給油装置は、軸受装置の外部に配置された潤滑油貯槽から外部動力を用いて、軸受装置内部に配置された軸受に潤滑油を供給する。自己潤滑装置では、軸受装置内部で回転軸の下部に配置された潤滑油貯槽から回転軸の回転力を利用して潤滑油をかき上げて潤滑油を軸受へ供給する。 In a horizontal axis type rotary machine (for example, a horizontal axis pump) in which a rotary shaft is installed horizontally, a bearing device is disposed in the vicinity of the end of the rotary shaft in order to rotatably support the rotary shaft. Further, a lubricating oil storage tank in which lubricating oil for lubricating and cooling the bearing is stored is provided inside or outside the bearing device. Examples of means for supplying lubricating oil from the lubricating oil storage tank to the bearing include a forced oil supply device using external power or a self-lubricating device that does not use external power. The forced oil supply device supplies lubricating oil to a bearing arranged inside the bearing device using external power from a lubricating oil storage tank arranged outside the bearing device. In the self-lubricating device, the lubricating oil is pumped up from the lubricating oil storage tank disposed below the rotating shaft inside the bearing device by using the rotational force of the rotating shaft and supplied to the bearing.
 強制給油装置の一例が、図11乃至図13に示される。図11は、強制給油装置を用いる場合における軸受装置を示す断面図である。図12は、強制給油装置の配管及び計器系統図である。図13Aおよび図13Bは、強制給油装置を用いた場合におけるポンプの配置を示す概略側面図および概略平面図である。 An example of the forced oiling device is shown in FIGS. FIG. 11 is a cross-sectional view showing a bearing device when a forced oil supply device is used. FIG. 12 is a piping and instrument system diagram of the forced oiling device. FIG. 13A and FIG. 13B are a schematic side view and a schematic plan view showing the arrangement of the pump when the forced oil supply device is used.
 図11に示すように、横軸ポンプ100の回転軸1は水平に延びており、回転軸1の端部は軸受9A,9Bに回転自在に支持される。図12に示すように、横軸ポンプ100の外部には強制給油装置26が配置されている。軸受9A,9Bには、強制給油装置26から潤滑油が強制的に供給される。強制給油装置26は、潤滑油ポンプ21、フィルター24、潤滑油冷却器23、複数の油圧監視計器25、および潤滑油タンク22等の複数の構成機器を備えている。そのため、強制給油装置26のコストが高くなってしまう。 As shown in FIG. 11, the rotary shaft 1 of the horizontal shaft pump 100 extends horizontally, and the end of the rotary shaft 1 is rotatably supported by bearings 9A and 9B. As shown in FIG. 12, a forced oil supply device 26 is disposed outside the horizontal shaft pump 100. Lubricating oil is forcibly supplied from the forced oil supply device 26 to the bearings 9A and 9B. The forced oil supply device 26 includes a plurality of components such as a lubricating oil pump 21, a filter 24, a lubricating oil cooler 23, a plurality of hydraulic pressure monitoring instruments 25, and a lubricating oil tank 22. Therefore, the cost of the forced oil supply device 26 is increased.
 さらに、図13Aおよび図13Bに示すように、横軸ポンプ100やこの横軸ポンプ100を駆動するための電動機200の設置スペースに加えて、強制給油装置26の設置スペースが必要となる。この場合、強制給油装置26を構成する各構成要素の体積が大きいため、強制給油装置26用の設置スペースも大きくなる。結果として、ポンプシステム全体で必要とされる設置スペースが大型化し、回転機械としての市場における製品競争力を低下させる原因となりうる。 Furthermore, as shown in FIG. 13A and FIG. 13B, in addition to the installation space of the horizontal axis pump 100 and the electric motor 200 for driving the horizontal axis pump 100, the installation space of the forced oil supply device 26 is required. In this case, since the volume of each component which comprises the forced oil supply apparatus 26 is large, the installation space for the forced oil supply apparatus 26 also becomes large. As a result, the installation space required for the entire pump system becomes large, which may cause a reduction in product competitiveness in the market as a rotating machine.
 次に、自己潤滑装置を用いた従来の軸受装置の一例を図14に示す。図14に示されるように、回転軸1の端部は軸受9A,9Bに回転自在に支持される。潤滑油が貯留される潤滑油貯槽10は、軸受9A,9Bの下方に配置されている。この潤滑油貯槽10内の潤滑油をかき上げるための自己潤滑装置として、オイルリング20が設けられている。オイルリング20は回転軸1の外周面を囲むように配置されており、回転軸1の回転に伴って回転する。そして、回転するオイルリング20によって潤滑油貯槽10内の潤滑油をかき上げることで、潤滑油を軸受9A,9Bに供給する。このようなオイルリング20を用いた自己潤滑装置は、オイルリング式自己潤滑装置として従来から知られている。 Next, FIG. 14 shows an example of a conventional bearing device using a self-lubricating device. As FIG. 14 shows, the edge part of the rotating shaft 1 is rotatably supported by bearing 9A, 9B. The lubricating oil storage tank 10 in which the lubricating oil is stored is disposed below the bearings 9A and 9B. An oil ring 20 is provided as a self-lubricating device for scooping up the lubricating oil in the lubricating oil storage tank 10. The oil ring 20 is disposed so as to surround the outer peripheral surface of the rotating shaft 1 and rotates with the rotation of the rotating shaft 1. Then, the lubricating oil is supplied to the bearings 9 </ b> A and 9 </ b> B by scooping up the lubricating oil in the lubricating oil storage tank 10 by the rotating oil ring 20. Such a self-lubricating device using the oil ring 20 is conventionally known as an oil ring self-lubricating device.
 しかしながら、このような従来のオイルリング式自己潤滑装置では、回転軸1の大径化または回転軸1の高速化などに起因して回転軸1の外周面の周方向速度(以下、単に周速という)が上昇すると、オイルリング20の回転が回転軸1の回転に追随できなくなる。すなわち、回転軸1に対するオイルリング20の回転速度が大きく低下し、オイルリング20は潤滑油を適切にかき上げられなくなる。結果として、所望の潤滑性能や冷却性能が得られなくなってしまう。 However, in such a conventional oil ring self-lubricating device, the circumferential speed (hereinafter simply referred to as the circumferential speed) of the outer peripheral surface of the rotating shaft 1 due to the increase in the diameter of the rotating shaft 1 or the speeding up of the rotating shaft 1 or the like. ) Rises, the rotation of the oil ring 20 cannot follow the rotation of the rotary shaft 1. That is, the rotational speed of the oil ring 20 with respect to the rotating shaft 1 is greatly reduced, and the oil ring 20 cannot properly scoop up the lubricating oil. As a result, desired lubrication performance and cooling performance cannot be obtained.
 このような理由から、オイルリング式の自己潤滑装置が採用された横軸ポンプには、回転軸1の周速の上限が必然的に存在する。そのため、上限を超えた周速がポンプに要求される場合は、強制給油装置の採用を余儀なくされていた。しかしながら、強制給油装置が採用される横軸ポンプは、上述したように、大型の設備となることから、市場における競争力が低下するおそれがある。 For this reason, an upper limit of the peripheral speed of the rotary shaft 1 inevitably exists in a horizontal shaft pump employing an oil ring type self-lubricating device. For this reason, when the pump is required to have a peripheral speed exceeding the upper limit, a forced oiling device has been employed. However, as described above, the horizontal shaft pump in which the forced oil supply device is employed is a large-sized facility, which may reduce the competitiveness in the market.
 さらに、軸受への潤滑油の供給量が過剰であった場合には、軸受部における摩擦損失が増大するため、軸受部温度上昇の一因となる。従来の自己潤滑方式では、オイルリング20から軸受への潤滑油の供給量を制御することが極めて困難である。このため、過度な量の潤滑油が軸受に供給されると、本来冷却作用を期待している潤滑油が摩擦増大による発熱原因となってしまい、期待した作用とは逆効果が生じてしまう。 Furthermore, when the amount of lubricating oil supplied to the bearing is excessive, friction loss in the bearing portion increases, which contributes to an increase in the temperature of the bearing portion. In the conventional self-lubricating method, it is extremely difficult to control the supply amount of the lubricating oil from the oil ring 20 to the bearing. For this reason, when an excessive amount of lubricating oil is supplied to the bearing, the lubricating oil that is originally expected to have a cooling action causes heat generation due to increased friction, resulting in an opposite effect to the expected action.
 特許文献1に開示される自己潤滑式軸受装置では、別置の強制給油装置を設置する必要はない。しかしながら、潤滑油を循環させるための配管を、軸受装置の外部または内部に配置する必要があり、また、起動時の補助給油手段としてオイルリングを必要とする。 In the self-lubricating bearing device disclosed in Patent Document 1, it is not necessary to install a separate forced oil supply device. However, piping for circulating the lubricating oil needs to be arranged outside or inside the bearing device, and an oil ring is required as auxiliary oil supply means at the time of startup.
 特許文献2に開示される軸受装置においては、回転軸に固定されたディスクに対向する樹脂製のオイルケースが設けられる。このオイルケースは樹脂製であるため、当該オイルケースが磨耗してディスクとの隙間が広がった場合に、潤滑油の吸い上げ能力が低下して、軸受への給油量が不足するという問題がある。また、この軸受装置では、ディスクに付着した潤滑油を、ディスクの回転による遠心力でディスク外縁に集め、ディスクの外周円弧面でオイルケースによる回収を行う。しかしながら、潤滑油が外周円弧面からあふれて飛散したり、外周円弧面以外の部分から潤滑油が飛散したりしてしまう。また、潤滑油は、遠心力でディスク外縁に集まる潤滑油の圧力を利用して、可撓性管を介してディスクの外周よりも上方に持ち上げられ、さらに可撓性管よりも外側に設けられた導入孔を通してジャーナル軸受に供給される。そのため、軸受装置全体として径方向に大型であり、導入孔の加工も複雑であり、手間がかかる。 In the bearing device disclosed in Patent Document 2, a resin oil case facing the disk fixed to the rotating shaft is provided. Since this oil case is made of resin, there is a problem that when the oil case is worn out and the gap with the disk is widened, the ability to suck up the lubricating oil is lowered and the amount of oil supplied to the bearing is insufficient. Further, in this bearing device, the lubricating oil adhering to the disk is collected on the outer edge of the disk by centrifugal force caused by the rotation of the disk, and is collected by the oil case on the outer peripheral arc surface of the disk. However, the lubricating oil overflows and scatters from the outer circumferential arc surface, or the lubricating oil scatters from a portion other than the outer circumferential arc surface. In addition, the lubricating oil is lifted above the outer periphery of the disk through the flexible tube using the pressure of the lubricating oil gathered at the outer edge of the disk by centrifugal force, and further provided outside the flexible tube. Supplied to the journal bearing through the introduced hole. For this reason, the entire bearing device is large in the radial direction, and the processing of the introduction hole is complicated and takes time.
 特許文献3には、オイルリングによりかき上げられたオイルを軸受へ導く技術が開示されている。しかしながら、この技術を用いた場合の軸受への潤滑油供給量は運転条件に依存して変化する。また、回転軸の高速回転に伴ってオイルリングが回転軸に追随しなくなる上述の問題に関しては考慮されていない。さらに、オイルリングの回転により油面から飛翔する潤滑油の量は、回転軸の周速の増大と共に増加することが予測される。特許文献3に開示される発明では、回転軸の軸方向への潤滑油の散失に関して何ら考慮されていないため、軸受装置の軸封部等からの油漏れが懸念される。 Patent Document 3 discloses a technique for guiding oil pumped up by an oil ring to a bearing. However, the amount of lubricating oil supplied to the bearing when this technology is used varies depending on operating conditions. Further, the above-described problem that the oil ring does not follow the rotation shaft as the rotation shaft rotates at high speed is not taken into consideration. Further, it is predicted that the amount of lubricating oil flying from the oil surface due to the rotation of the oil ring increases as the peripheral speed of the rotating shaft increases. In the invention disclosed in Patent Document 3, no consideration is given to the loss of lubricating oil in the axial direction of the rotating shaft, and there is a concern about oil leakage from the shaft seal portion or the like of the bearing device.
 また、上記したいずれの特許文献に開示された従来の自己潤滑型軸受装置においても、軸受への過度の潤滑油供給が転がり軸受、およびすべり軸受のいずれに対しても及ぼす影響、すなわち回転損失の増大とそれに伴う発熱に対する対策については全く言及されていない。したがって、上述した従来の自己潤滑型軸受装置は、回転速度、回転軸径、使用する潤滑油粘度、および周辺温度や作動時間による油粘度変化等を考慮した適切な自己潤滑技術を提供しているとは言い難い。さらに他の関係文献、先行技術においても、過度な潤滑油供給量を抑制し、潤滑油供給量を好適化することに関する技術は見当たらない。 Further, in any of the conventional self-lubricating bearing devices disclosed in any of the above-mentioned patent documents, the influence of excessive lubrication oil supply to the bearing on both the rolling bearing and the sliding bearing, that is, the rotation loss No mention is made of measures against the increase and the associated fever. Therefore, the above-described conventional self-lubricating bearing device provides an appropriate self-lubricating technique considering the rotational speed, the diameter of the rotating shaft, the viscosity of the lubricating oil to be used, and the oil viscosity change due to the ambient temperature and operating time. It's hard to say. Further, in other related literatures and prior arts, there is no technique related to suppressing an excessive amount of lubricating oil supplied and optimizing the amount of lubricating oil supplied.
特許第3637269号公報Japanese Patent No. 3637269 特開2002-188637号公報Japanese Patent Laid-Open No. 2002-188637 特開昭58-63050号公報JP 58-63050 A
 本発明は、上述した従来の問題点に鑑みてなされたもので、回転軸の周速が高速化した場合であっても、潤滑油を適切な量で軸受へ安定的に供給することができ、かつ従来に比べてコンパクトで、複雑な加工を必要としない軸受装置を提供することを目的とする。また、本発明はこのような軸受装置を備えたポンプを提供することを目的とする。 The present invention has been made in view of the above-described conventional problems, and even when the peripheral speed of the rotating shaft is increased, the lubricating oil can be stably supplied to the bearing in an appropriate amount. And it aims at providing the bearing apparatus which is compact compared with the past, and does not require a complicated process. Moreover, an object of this invention is to provide the pump provided with such a bearing apparatus.
 上述した課題を解決するための本発明の一態様は、回転軸の荷重を受ける軸受と、前記軸受の下方に配置される潤滑油貯槽と、前記回転軸に固定されて当該回転軸と一体に回転することで、前記潤滑油貯槽に貯留される潤滑油をかき上げるオイルディスクと、前記軸受まで延びる潤滑油通路と、前記オイルディスクによってかき上げられた潤滑油を前記潤滑油通路に導くガイドケーシングと、を備え、前記ガイドケーシングは、前記オイルディスクの側面および外周面に対向する内面を有することを特徴とする軸受装置である。 One aspect of the present invention for solving the above-described problems is a bearing that receives a load of a rotating shaft, a lubricating oil storage tank that is disposed below the bearing, and is fixed to the rotating shaft so as to be integrated with the rotating shaft. An oil disk that pumps up the lubricating oil stored in the lubricating oil storage tank by rotating, a lubricating oil passage that extends to the bearing, and a guide casing that guides the lubricating oil pumped up by the oil disk to the lubricating oil passage And the guide casing has an inner surface facing a side surface and an outer peripheral surface of the oil disk.
 本発明の好ましい態様は、前記ガイドケーシングの内面には、前記潤滑油通路に接続された潤滑油導入溝が形成されており、前記潤滑油導入溝は、前記オイルディスクの側面に隣接していることを特徴とする。
 本発明の好ましい態様は、前記潤滑油通路は、前記ガイドケーシングの内面から前記回転軸の軸方向に延び、さらに、前記軸方向に垂直な方向に延びて、前記軸受に達することを特徴とする。
 本発明の好ましい態様は、前記オイルディスクの外周面に環状溝を設けたことを特徴とする。
 本発明の好ましい態様は、前記オイルディスクの外周面に複数の窪みを設けたことを特徴とする。
 本発明の好ましい態様は、前記オイルディスクの側面に複数のラジアル溝を設けたことを特徴とする。
In a preferred aspect of the present invention, a lubricating oil introduction groove connected to the lubricating oil passage is formed on an inner surface of the guide casing, and the lubricating oil introduction groove is adjacent to a side surface of the oil disk. It is characterized by that.
In a preferred aspect of the present invention, the lubricating oil passage extends from the inner surface of the guide casing in the axial direction of the rotating shaft, and further extends in a direction perpendicular to the axial direction to reach the bearing. .
In a preferred aspect of the present invention, an annular groove is provided on the outer peripheral surface of the oil disk.
In a preferred aspect of the present invention, a plurality of depressions are provided on the outer peripheral surface of the oil disk.
In a preferred aspect of the present invention, a plurality of radial grooves are provided on a side surface of the oil disk.
 本発明の好ましい態様は、前記回転軸の外周面にはキーが設けられ、前記オイルディスクの中心に形成された貫通孔の内周面にはキー溝が形成されており、前記キーと前記キー溝とが係合した状態で前記オイルディスクは前記回転軸に固定されていることを特徴とする。
 本発明の好ましい態様は、前記軸受は、前記回転軸上に直列に配置された少なくとも2つの軸受のうちの一つであり、前記少なくとも2つの軸受の間には、環状の間座が配置されることを特徴とする。
 本発明の好ましい態様は、前記間座は、その外周面から内周面まで延びる給油孔を有しており、前記給油孔は前記潤滑油通路に接続されていることを特徴とする。
In a preferred aspect of the present invention, a key is provided on the outer peripheral surface of the rotating shaft, and a key groove is formed on an inner peripheral surface of a through hole formed at the center of the oil disk. The oil disk is fixed to the rotating shaft in a state in which the groove is engaged.
In a preferred aspect of the present invention, the bearing is one of at least two bearings arranged in series on the rotating shaft, and an annular spacer is arranged between the at least two bearings. It is characterized by that.
In a preferred aspect of the present invention, the spacer has an oil supply hole extending from an outer peripheral surface to an inner peripheral surface, and the oil supply hole is connected to the lubricating oil passage.
 本発明の好ましい態様は、前記軸受は、前記回転軸の軸方向荷重を受けるスラスト軸受であることを特徴とする。
 本発明の好ましい態様は、前記スラスト軸受は、前記回転軸の軸方向荷重および半径方向荷重の両方を受けることができるように構成されていることを特徴とする。
In a preferred aspect of the present invention, the bearing is a thrust bearing that receives an axial load of the rotating shaft.
In a preferred aspect of the present invention, the thrust bearing is configured to receive both an axial load and a radial load of the rotating shaft.
 本発明の他の態様は、回転軸と、前記回転軸に固定された羽根車と、前記回転軸を回転自在に支持する上記軸受装置とを備えたことを特徴とするポンプである。 Another aspect of the present invention is a pump including a rotating shaft, an impeller fixed to the rotating shaft, and the bearing device that rotatably supports the rotating shaft.
 オイルディスクは、常に回転軸と同一回転速度で回転するため、回転軸の回転速度が高くなったとしても、従来用いられてきたオイルリングのように滑りが生じて追従性が低下することがない。したがって、本発明によれば、オイルリングなどの従来技術では給油が困難であった回転軸の高周速条件においても、軸受に安定して潤滑油を供給することが可能となる。その結果、強制給油装置が不要となり、ポンプの設置面積が縮小され、かつコストダウンが図られるため、市場における製品競争力を増すことが可能となる。
 さらに、オイルディスクが、該オイルディスクに対向しかつ近接して配置されたガイドケーシングによって囲まれているため、オイルディスクによってかき上げられた潤滑油の無駄な飛散を防止することができる。その結果、必要十分以上の潤滑油量を、軸受に通じる潤滑油通路へと導くことができる。潤滑油通路は、回転軸に近い位置で軸方向に延びているので、複雑な加工を必要とせずに、従来に比べてコンパクトな軸受装置を提供することができる。
 そして、軸受への潤滑油の供給量は、潤滑油通路口の周方向位置,および通路の形態(断面積,長さ,オイルディスク回転方向に対する通路方向、および表面粗さ等の流動抵抗因子、または通路途上に設けた過剰潤滑油の排出孔等)により好適な量に制限される。したがって、過剰な潤滑油の供給に起因する回転損失の増大とそれに伴う発熱が防止される。
Since the oil disk always rotates at the same rotational speed as the rotational shaft, even if the rotational speed of the rotational shaft increases, slippage does not occur and the follow-up performance does not decrease as in the conventional oil ring. . Therefore, according to the present invention, it is possible to stably supply the lubricating oil to the bearing even under the high peripheral speed condition of the rotating shaft, which is difficult to supply with conventional technology such as an oil ring. As a result, the forced oiling device is not required, the installation area of the pump is reduced, and the cost is reduced, so that the product competitiveness in the market can be increased.
Furthermore, since the oil disk is surrounded by a guide casing disposed opposite to and in close proximity to the oil disk, it is possible to prevent wasteful splashing of the lubricating oil scooped up by the oil disk. As a result, an amount of lubricating oil more than necessary and sufficient can be led to the lubricating oil passage leading to the bearing. Since the lubricating oil passage extends in the axial direction at a position close to the rotating shaft, a compact bearing device can be provided as compared with the conventional one without requiring complicated processing.
The amount of lubricating oil supplied to the bearing is determined by the circumferential position of the lubricating oil passage port and the shape of the passage (cross-sectional area, length, passage direction with respect to the oil disk rotation direction, flow resistance factors such as surface roughness, Alternatively, the amount is limited to a suitable amount by an excessive lubricating oil discharge hole provided in the course of the passage. Therefore, an increase in rotation loss due to the excessive supply of lubricating oil and the accompanying heat generation are prevented.
図1は、本発明の一実施形態に係る軸受装置を備えた横軸単段ポンプの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a horizontal shaft single-stage pump provided with a bearing device according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る軸受装置を備えた横軸多段ポンプの一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a horizontal shaft multi-stage pump provided with a bearing device according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る自己潤滑式軸受装置の構造を示した断面図である。FIG. 3 is a cross-sectional view showing the structure of a self-lubricating bearing device according to an embodiment of the present invention. 図4Aは、オイルディスクの縦断面図である。FIG. 4A is a longitudinal sectional view of the oil disk. 図4Bは、図4Aに示されるオイルディスクを軸方向から眺めた部分平面図である。FIG. 4B is a partial plan view of the oil disk shown in FIG. 4A as viewed from the axial direction. 図4Cは、図4Aに示されるオイルディスクの斜視図である。FIG. 4C is a perspective view of the oil disc shown in FIG. 4A. 図5Aは、他の例のオイルディスクの縦断面図である。FIG. 5A is a longitudinal sectional view of another example oil disk. 図5Bは、図5Aに示されるオイルディスクを軸方向から眺めた部分平面図である。FIG. 5B is a partial plan view of the oil disk shown in FIG. 5A as viewed from the axial direction. 図5Cは、図5Aに示されるオイルディスクの斜視図である。FIG. 5C is a perspective view of the oil disk shown in FIG. 5A. 図6Aは、さらに他の例のオイルディスクの縦断面図である。FIG. 6A is a longitudinal sectional view of still another example of an oil disk. 図6Bは、図6Aに示されるオイルディスクを軸方向から眺めた部分平面図である。FIG. 6B is a partial plan view of the oil disk shown in FIG. 6A as viewed from the axial direction. 図6Cは、図6Aに示されるオイルディスクの斜視図である。6C is a perspective view of the oil disk shown in FIG. 6A. 図7は、オイルディスクとガイドケーシングを示す拡大断面図である。FIG. 7 is an enlarged sectional view showing the oil disk and the guide casing. 図8は、複数の潤滑油導入溝が設けられたガイドケーシングの内側の側面を示す図である。FIG. 8 is a view showing an inner side surface of a guide casing provided with a plurality of lubricating oil introduction grooves. 図9は、潤滑油導入溝が設けられないガイドディスクの、オイルディスクの側面に対向する内面を示す図である。FIG. 9 is a view showing the inner surface of the guide disk that is not provided with the lubricating oil introduction groove and that faces the side surface of the oil disk. 図10Aは、回転軸の長手方向に沿った軸受装置の一部を示す断面図である。FIG. 10A is a cross-sectional view showing a part of the bearing device along the longitudinal direction of the rotating shaft. 図10Bは、回転軸の長手方向から見た軸受装置の断面を示す図である。FIG. 10B is a diagram showing a cross section of the bearing device as viewed from the longitudinal direction of the rotating shaft. 図11は、強制給油装置を用いる場合における軸受装置を示す断面図である。FIG. 11 is a cross-sectional view showing a bearing device when a forced oil supply device is used. 図12は、強制給油装置の配管及び計器系統図である。FIG. 12 is a piping and instrument system diagram of the forced oiling device. 図13Aは、強制給油装置を用いた場合におけるポンプの配置を示す概略側面図である。FIG. 13A is a schematic side view showing the arrangement of pumps when a forced oiling device is used. 図13Bは、強制給油装置を用いた場合におけるポンプの配置を示す概略平面図である。FIG. 13B is a schematic plan view showing the arrangement of the pumps when the forced oiling device is used. 図14は、自己潤滑装置を用いた従来の軸受装置の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a conventional bearing device using a self-lubricating device.
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る軸受装置を備えた横軸単段ポンプの一例を示す断面図である。図1に示される回転機械としての横軸単段ポンプ100は、羽根車2と、この羽根車2が固定される回転軸1とを有している。回転軸1は水平に延びている。回転軸1の一端は図示しない電動機などの駆動機に連結されており、この駆動機によって回転軸1および羽根車2が回転されるようになっている。また、回転軸1は、その両端部近傍に設けられた軸受装置9,9に回転自在に支持されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a horizontal shaft single-stage pump provided with a bearing device according to an embodiment of the present invention. A horizontal axis single-stage pump 100 as a rotating machine shown in FIG. 1 has an impeller 2 and a rotating shaft 1 to which the impeller 2 is fixed. The rotating shaft 1 extends horizontally. One end of the rotary shaft 1 is connected to a drive machine such as an electric motor (not shown), and the rotary shaft 1 and the impeller 2 are rotated by this drive machine. Moreover, the rotating shaft 1 is rotatably supported by bearing devices 9 and 9 provided in the vicinity of both ends thereof.
 羽根車2はポンプケーシング5内に配置されている。図1に示すポンプケーシング5はその内部に渦巻き室5aを有しており、羽根車2は渦巻き室5aの内部に配置されている。回転軸1の回転とともに羽根車2が回転すると、吸込口3から水などの液体が吸い込まれ、羽根車2と渦巻き室5aの作用により液体の圧力が上昇されて、液体が吐出口4から吐き出される。 The impeller 2 is disposed in the pump casing 5. The pump casing 5 shown in FIG. 1 has a spiral chamber 5a therein, and the impeller 2 is disposed in the spiral chamber 5a. When the impeller 2 rotates with the rotation of the rotating shaft 1, a liquid such as water is sucked from the suction port 3, the pressure of the liquid is increased by the action of the impeller 2 and the spiral chamber 5 a, and the liquid is discharged from the discharge port 4. It is.
 図示した例における羽根車2は、その両側から液体を吸い込む両吸込構造を有している。羽根車2の液体入口には、口金2A,2Bがそれぞれ取り付けられている。これら口金2A,2Bの直径を互いに異なるように設計することで、圧力差によるスラスト力を回転軸1の一方向に作用させ、回転軸1を安定させた状態で回転させることができる。このスラスト力は、軸受装置9のスラスト軸受ユニット9Aで支持されるようになっている。このスラスト軸受ユニット9Aにはスラスト力が負荷として作用するので、適正な量の潤滑油をスラスト軸受ユニット9Aに供給して、スラスト軸受ユニット9Aを潤滑しながら冷却する必要がある。 The impeller 2 in the illustrated example has a double suction structure for sucking liquid from both sides. The caps 2A and 2B are attached to the liquid inlet of the impeller 2, respectively. By designing the diameters of the caps 2A and 2B to be different from each other, a thrust force due to a pressure difference can be applied in one direction of the rotating shaft 1 and the rotating shaft 1 can be rotated in a stable state. This thrust force is supported by a thrust bearing unit 9A of the bearing device 9. Since a thrust force acts on the thrust bearing unit 9A as a load, it is necessary to supply an appropriate amount of lubricating oil to the thrust bearing unit 9A and cool the thrust bearing unit 9A while lubricating it.
 このスラスト軸受ユニット9Aに加えて、回転軸1の両側端部近傍には2つのラジアル軸受ユニット9B,9Bが配置されている。これら2つのラジアル軸受ユニット9B,9Bと、1つのスラスト軸受ユニット9Aの合計3つの軸受で回転軸1は支持される。本実施形態では、ラジアル軸受ユニット9B,9Bにはスリーブ型の軸受が用いられており、このスリーブ型のラジアル軸受ユニット9B,9Bには、オイルリング20を備えた従来型の自己潤滑給油装置が採用されている。スラスト軸受ユニット9Aには、後述する本発明の構成が適用される。 In addition to the thrust bearing unit 9A, two radial bearing units 9B and 9B are disposed in the vicinity of both end portions of the rotary shaft 1. The rotary shaft 1 is supported by a total of three bearings including these two radial bearing units 9B and 9B and one thrust bearing unit 9A. In the present embodiment, sleeve-type bearings are used for the radial bearing units 9B and 9B, and a conventional self-lubricating oil supply device having an oil ring 20 is provided in the sleeve-type radial bearing units 9B and 9B. It has been adopted. The configuration of the present invention described later is applied to the thrust bearing unit 9A.
 図2は、本発明の一実施形態に係る軸受装置を備えた横軸多段ポンプの一例を示す断面図である。図2に示される回転機械としての横軸多段ポンプ100は、複数の羽根車2と、これら羽根車2が固定される回転軸1を有している。回転軸1は水平に延びている。複数の羽根車2は、回転軸1上に直列に配列されていて、これら羽根車2のそれぞれを囲むように複数のガイドベーン6が配置される。回転軸1の一端は図示しない電動機などの駆動機に連結されており、この駆動機によって回転軸1および羽根車2が回転されるようになっている。また、回転軸1は、その両端部近傍に設けられた軸受装置9,9に回転自在に支持されている。 FIG. 2 is a cross-sectional view showing an example of a horizontal multistage pump provided with a bearing device according to an embodiment of the present invention. A horizontal axis multistage pump 100 as a rotating machine shown in FIG. 2 includes a plurality of impellers 2 and a rotary shaft 1 to which the impellers 2 are fixed. The rotating shaft 1 extends horizontally. The plurality of impellers 2 are arranged in series on the rotary shaft 1, and a plurality of guide vanes 6 are arranged so as to surround each of the impellers 2. One end of the rotary shaft 1 is connected to a drive machine such as an electric motor (not shown), and the rotary shaft 1 and the impeller 2 are rotated by this drive machine. Moreover, the rotating shaft 1 is rotatably supported by bearing devices 9 and 9 provided in the vicinity of both ends thereof.
 羽根車2はポンプケーシング5内に配置されている。回転軸1の回転とともに複数の羽根車2が回転すると、吸込口3から水などの液体が吸込まれ、羽根車2とガイドベーン6との作用により、液体の圧力が上昇されて液体が吐出口4から吐き出される。複数の羽根車2は同じ方向を向いて配列されているため、隣り合う羽根車2間の圧力差により生じるスラスト力が羽根車2の枚数分重なりあい、大きなスラスト力が発生する。このスラスト力は、横軸多段ポンプ100内に設けられたバランス装置7により相殺されるが、過渡運転時などにはある程度のスラスト力が残留する。この残留スラスト力は、軸受装置9のスラスト軸受ユニット9Aで支持される。このスラスト軸受ユニット9Aには、残留スラスト力が負荷として作用するので、適正な量の潤滑油をスラスト軸受ユニット9Aに供給して、スラスト軸受ユニット9Aを潤滑しながら冷却する必要がある。 The impeller 2 is disposed in the pump casing 5. When the plurality of impellers 2 rotate with the rotation of the rotating shaft 1, liquid such as water is sucked from the suction port 3, and the pressure of the liquid is increased by the action of the impeller 2 and the guide vane 6, and the liquid is discharged from the discharge port. 4 is spit out. Since the plurality of impellers 2 are arranged in the same direction, the thrust force generated by the pressure difference between the adjacent impellers 2 is overlapped by the number of impellers 2, and a large thrust force is generated. This thrust force is offset by the balance device 7 provided in the horizontal multistage pump 100, but a certain amount of thrust force remains during transient operation. This residual thrust force is supported by the thrust bearing unit 9A of the bearing device 9. Since the residual thrust force acts on the thrust bearing unit 9A as a load, it is necessary to supply an appropriate amount of lubricating oil to the thrust bearing unit 9A and cool the thrust bearing unit 9A while lubricating it.
 このスラスト軸受ユニット9Aに加えて、回転軸1の両側端部近傍には2つのラジアル軸受ユニット9B,9Bが配置されている。これら2つのラジアル軸受ユニット9B,9Bと、1つのスラスト軸受ユニット9Aの合計3つの軸受で回転軸1は支持される。本実施形態では、ラジアル軸受ユニット9B,9Bにはスリーブ型の軸受が用いられており、このスリーブ型のラジアル軸受ユニット9B,9Bには、オイルリング20を備えた従来型の自己潤滑給油装置が採用されている。スラスト軸受ユニット9Aには、後述する本発明の構成が適用される。これらの回転軸1の両端部近傍に配置される軸受装置9,9の構成は、図1に示した横軸単段ポンプと同様である。 In addition to the thrust bearing unit 9A, two radial bearing units 9B and 9B are disposed in the vicinity of both end portions of the rotary shaft 1. The rotary shaft 1 is supported by a total of three bearings including these two radial bearing units 9B and 9B and one thrust bearing unit 9A. In the present embodiment, sleeve-type bearings are used for the radial bearing units 9B and 9B, and a conventional self-lubricating oil supply device having an oil ring 20 is provided in the sleeve-type radial bearing units 9B and 9B. It has been adopted. The configuration of the present invention described later is applied to the thrust bearing unit 9A. The configuration of the bearing devices 9 and 9 disposed in the vicinity of both ends of the rotary shaft 1 is the same as that of the horizontal axis single-stage pump shown in FIG.
 図1および図2に示した横軸ポンプ100いずれの場合も、回転軸1はポンプケーシング5を貫通して延びている。回転軸1とポンプケーシング5との間の隙間は、メカニカルシールなどの軸封装置8,8によってシールされている。したがって、羽根車2によって昇圧された液体が軸受装置9,9に浸入することはない。 1 and 2, the rotary shaft 1 extends through the pump casing 5 in both cases of the horizontal shaft pump 100 shown in FIGS. A gap between the rotary shaft 1 and the pump casing 5 is sealed by shaft sealing devices 8 and 8 such as mechanical seals. Therefore, the liquid pressurized by the impeller 2 does not enter the bearing devices 9 and 9.
 図3は、本発明の一実施形態に係る自己潤滑式軸受装置の構造を示した断面図である。図3に示されるように、この軸受装置9は、水平に延びる回転軸1の軸方向荷重および半径方向荷重を受けるスラスト軸受ユニット9Aと、回転軸1の半径方向荷重を受けるラジアル軸受ユニット9Bと、を有する。スラスト軸受ユニット9Aには複数のアンギュラ玉軸受が使用される。 FIG. 3 is a cross-sectional view showing the structure of a self-lubricating bearing device according to an embodiment of the present invention. As shown in FIG. 3, the bearing device 9 includes a thrust bearing unit 9 </ b> A that receives the axial load and the radial load of the rotating shaft 1 that extends horizontally, and a radial bearing unit 9 </ b> B that receives the radial load of the rotating shaft 1. Have. A plurality of angular ball bearings are used for the thrust bearing unit 9A.
 スラスト軸受ユニット9Aおよびラジアル軸受ユニット9Bの下方には、潤滑油貯槽10が配置されており、この潤滑油貯槽10に貯留される潤滑油の油面が、符号10Aが付された点線で示されている。なお、潤滑油貯槽10内の油面10Aが一定になるように、潤滑油量は管理されている。潤滑油貯槽10の下方には冷却ジャケット27が設けられており、冷却ジャケット27を流れる冷却液によって潤滑油貯槽10内の潤滑油が冷却される。冷却ジャケット27の代わりにフィンつきの空冷構造を採用してもよい。あるいは、潤滑油貯槽10内に、フィン付冷却液チューブを挿入して潤滑油を直接冷やす構造としてもよい。 A lubricating oil storage tank 10 is disposed below the thrust bearing unit 9A and the radial bearing unit 9B, and the oil level of the lubricating oil stored in the lubricating oil storage tank 10 is indicated by a dotted line with a reference numeral 10A. ing. The amount of lubricating oil is controlled so that the oil level 10A in the lubricating oil storage tank 10 is constant. A cooling jacket 27 is provided below the lubricating oil storage tank 10, and the lubricating oil in the lubricating oil storage tank 10 is cooled by the coolant flowing through the cooling jacket 27. Instead of the cooling jacket 27, an air cooling structure with fins may be employed. Or it is good also as a structure which inserts a cooling liquid tube with a fin in the lubricating oil storage tank 10, and cools lubricating oil directly.
 軸受装置9は、回転軸1に固定されて当該回転軸1と共に回転することで、潤滑油貯槽10に貯留される潤滑油をかき上げる潤滑油かき上げ手段11をさらに有する。潤滑油かき上げ手段11は、円形のオイルディスクとして構成されている。このオイルディスク11は、回転軸1と一体に回転するように回転軸1に固定される。具体的には、回転軸1の外周面にはキー1aが設けられ、オイルディスク11の中心に形成された貫通孔の内周面にはキー溝11aが形成されている。このキー1aがキー溝11aに差し込まれるように、回転軸1がオイルディスク11の貫通孔に挿入される。これらキー1aとキー溝11aとの係合により、回転軸1のトルクはオイルディスク11に伝達され、オイルディスク11は回転軸1と一体に回転する。したがって、オイルディスク11は回転軸1と常に同じ回転速度で回転する。 The bearing device 9 further includes a lubricating oil pumping means 11 that is fixed to the rotating shaft 1 and rotates together with the rotating shaft 1 to pump up the lubricating oil stored in the lubricating oil storage tank 10. The lubricating oil lifting means 11 is configured as a circular oil disk. The oil disk 11 is fixed to the rotary shaft 1 so as to rotate integrally with the rotary shaft 1. Specifically, a key 1 a is provided on the outer peripheral surface of the rotating shaft 1, and a key groove 11 a is formed on the inner peripheral surface of a through hole formed at the center of the oil disk 11. The rotary shaft 1 is inserted into the through hole of the oil disk 11 so that the key 1a is inserted into the key groove 11a. Due to the engagement between the key 1a and the key groove 11a, the torque of the rotary shaft 1 is transmitted to the oil disc 11, and the oil disc 11 rotates integrally with the rotary shaft 1. Therefore, the oil disk 11 always rotates at the same rotational speed as the rotary shaft 1.
 オイルディスク11の下部は、潤滑油貯槽10内の潤滑油に浸漬されており、回転するオイルディスク11が、潤滑油貯槽10に貯留される潤滑油をかき上げるようになっている。オイルディスク11がかき上げる潤滑油量を増加させるために、オイルディスク11の周縁部には、様々な起伏形状を設けてもよい。 The lower part of the oil disk 11 is immersed in the lubricating oil in the lubricating oil storage tank 10, and the rotating oil disk 11 scoops up the lubricating oil stored in the lubricating oil storage tank 10. In order to increase the amount of lubricating oil that the oil disk 11 scoops up, various undulating shapes may be provided on the peripheral edge of the oil disk 11.
 図4A乃至図4Cは、オイルディスク11の外周面に、環状溝12が設けられた例を示す図である。図4A乃至図4Cに示されるように、オイルディスク11の外周面には、その周方向に延びる環状溝12が設けられている。オイルディスク11の外周面の一部は常に潤滑油貯槽10内の潤滑油に浸漬されている。オイルディスク11が回転すると、その外周面に形成された環状溝12に潤滑油が保持されるので、オイルディスク11がかき上げる潤滑油量を増加させることができる。 4A to 4C are diagrams showing an example in which an annular groove 12 is provided on the outer peripheral surface of the oil disk 11. FIG. As shown in FIGS. 4A to 4C, an annular groove 12 extending in the circumferential direction is provided on the outer peripheral surface of the oil disk 11. A part of the outer peripheral surface of the oil disk 11 is always immersed in the lubricating oil in the lubricating oil storage tank 10. When the oil disk 11 rotates, the lubricating oil is held in the annular groove 12 formed on the outer peripheral surface thereof, so that it is possible to increase the amount of lubricating oil that the oil disk 11 scoops up.
 図5A乃至図5Cは、オイルディスク11の外周面に複数の窪み13が設けられた例を示す図である。図5A乃至図5Cに示されるように、オイルディスク11の外周面には、複数の窪み13が設けられている。これら窪み13は、オイルディスク11の周方向に沿って等間隔に配列されている。オイルディスク11が回転すると、その外周面に形成された複数の窪み13に潤滑油が保持されるので、オイルディスク11がかき上げる潤滑油量を増加させることができる。本実施形態の窪み13は円錐状であるが、円柱状など他の形状を有してもよい。 FIGS. 5A to 5C are views showing an example in which a plurality of depressions 13 are provided on the outer peripheral surface of the oil disk 11. As shown in FIGS. 5A to 5C, a plurality of depressions 13 are provided on the outer peripheral surface of the oil disk 11. These recesses 13 are arranged at equal intervals along the circumferential direction of the oil disk 11. When the oil disk 11 rotates, the lubricating oil is held in the plurality of recesses 13 formed on the outer peripheral surface thereof, so that the amount of lubricating oil that the oil disk 11 scoops up can be increased. The recess 13 of the present embodiment is conical, but may have other shapes such as a cylindrical shape.
 図6A乃至図6Cは、オイルディスク11の両側面に複数のラジアル溝14が設けられた例を示す図である。図6A乃至図6Cに示されるように、オイルディスク11の両側面には、当該オイルディスク11の半径方向に延びる複数のラジアル溝14が設けられる。複数のラジアル溝14は、オイルディスク11の中心周りに等間隔で配列されている。これらラジアル溝14はオイルディスク11の外周面まで延びており、各ラジアル溝14の外側端部はオイルディスク11の外周面上にある。オイルディスク11が回転すると、その両側面に形成されたラジアル溝14に潤滑油が保持されるので、オイルディスク11がかき上げる潤滑油量を増加させることができる。なお、図示した実施形態のラジアル溝14はオイルディスク11の半径方向に延びているが、ラジアル溝14を半径方向から傾けてもよい。この場合のラジアル溝もオイルディスク11の外周面まで延びている。ラジアル溝は、オイルディスク11の回転方向に向かって傾けられていてもよいし、回転方向とは逆の方向に向かって傾けられていてもよい。ラジアル溝の傾き方向および傾き角度により、オイルディスク11がかき上げる潤滑油の量を調整することができる。 FIGS. 6A to 6C are views showing an example in which a plurality of radial grooves 14 are provided on both side surfaces of the oil disk 11. As shown in FIGS. 6A to 6C, a plurality of radial grooves 14 extending in the radial direction of the oil disk 11 are provided on both side surfaces of the oil disk 11. The plurality of radial grooves 14 are arranged at equal intervals around the center of the oil disk 11. These radial grooves 14 extend to the outer peripheral surface of the oil disk 11, and the outer end of each radial groove 14 is on the outer peripheral surface of the oil disk 11. When the oil disk 11 rotates, the lubricating oil is held in the radial grooves 14 formed on both side surfaces thereof, so that the amount of lubricating oil that the oil disk 11 scoops up can be increased. In addition, although the radial groove 14 of the illustrated embodiment extends in the radial direction of the oil disk 11, the radial groove 14 may be inclined from the radial direction. The radial groove in this case also extends to the outer peripheral surface of the oil disk 11. The radial groove may be inclined toward the rotation direction of the oil disk 11 or may be inclined toward a direction opposite to the rotation direction. The amount of lubricating oil that the oil disk 11 scoops up can be adjusted by the inclination direction and the inclination angle of the radial groove.
 図3に示すように、軸受装置9は、オイルディスク11によりかき上げられた潤滑油が周囲に飛散することを防止するため、および潤滑油がオイルディスク11の両側から落下することを防止するためのガイドケーシング15を有する。図7は、オイルディスク11とガイドケーシング15を示す拡大断面図である。図7に示されるように、ガイドケーシング15は、オイルディスク11に近接して配置される。ガイドケーシング15は、オイルディスク11の両側面(軸方向に沿って並ぶ2つの側面)に対向して配置された2つの環状のガイドディスク15A,15Bにより構成されている。図7に示した例では、ガイドケーシング15は、オイルディスク11の両側面を挟み込むように配置された2つのガイドディスク15A,15Bにより構成されている。さらに、ガイドケーシング15は、オイルディスク11の外周面に近接して配置されている。オイルディスク11の外周面は、オイルディスク11の両側面の間に位置する最外周面である。 As shown in FIG. 3, the bearing device 9 prevents the lubricating oil pumped up by the oil disk 11 from scattering around and prevents the lubricating oil from dropping from both sides of the oil disk 11. The guide casing 15 is provided. FIG. 7 is an enlarged cross-sectional view showing the oil disk 11 and the guide casing 15. As shown in FIG. 7, the guide casing 15 is disposed in the vicinity of the oil disk 11. The guide casing 15 is composed of two annular guide disks 15A and 15B arranged to face both side surfaces (two side surfaces aligned in the axial direction) of the oil disk 11. In the example illustrated in FIG. 7, the guide casing 15 includes two guide disks 15 </ b> A and 15 </ b> B that are arranged so as to sandwich both side surfaces of the oil disk 11. Further, the guide casing 15 is disposed in the vicinity of the outer peripheral surface of the oil disk 11. The outer peripheral surface of the oil disk 11 is the outermost peripheral surface located between both side surfaces of the oil disk 11.
 ガイドケーシング15の内面は、オイルディスク11の両側面および外周面に近接して配置され、これらオイルディスク11の両側面および外周面に対向している。より具体的には、図7に示した例では、オイルディスク11の両側面に対向するように、環状のガイドディスク15A,15Bが配置され、オイルディスク11の外周面もガイドケーシング15に囲まれている。オイルディスク11とガイドケーシング15との間には軸方向の隙間W1と半径方向の隙間W2が形成されている。軸方向の隙間W1は、オイルディスク11の側面とガイドケーシング15との間の隙間であり、半径方向の隙間W2は、オイルディスク11の外周面とガイドケーシング15との間の隙間である。 The inner surface of the guide casing 15 is disposed close to both side surfaces and the outer peripheral surface of the oil disk 11 and faces both side surfaces and the outer peripheral surface of the oil disk 11. More specifically, in the example shown in FIG. 7, annular guide disks 15 </ b> A and 15 </ b> B are arranged so as to face both side surfaces of the oil disk 11, and the outer peripheral surface of the oil disk 11 is also surrounded by the guide casing 15. ing. Between the oil disk 11 and the guide casing 15, an axial gap W1 and a radial gap W2 are formed. The axial gap W <b> 1 is a gap between the side surface of the oil disk 11 and the guide casing 15, and the radial gap W <b> 2 is a gap between the outer peripheral surface of the oil disk 11 and the guide casing 15.
 これら隙間W1,W2は、用いられる潤滑油の粘度や回転軸1の回転速度などのポンプ運転条件に基づいて、オイルディスク11にかき上げられる潤滑油が飛散または落下しないように、適正な値に設定されている。例えば、軸方向の隙間W1は2mm~4mmであり、半径方向の隙間W2は、3mm~6mmである。また、これら隙間W1,W2を適正な値に設定することで、オイルディスク11を囲むガイドケーシング15が該オイルディスク11に対して好適な距離で近接して配置される。したがって、オイルディスク11にかき上げられた潤滑油がオイルディスク11から飛散しようとしても、該潤滑油は、オイルディスク11の回転の作用により回転方向に随伴し、オイルディスク11とガイドケーシング15との間の隙間W1,W2に保持される。したがって、隙間W1,W2に保持される潤滑油量は、オイルディスク11とガイドケーシング15との間の隙間W1,W2の寸法により適切に調整される。その結果、オイルディスク11がかき上げた潤滑油は、後述する潤滑油通路17、およびスラスト軸受ユニット9Aを構成する軸受32に直接連通し軸方向に延びる連通路28へ潤沢に導かれ、潤滑油通路17および連通路28の寸法を好適に設計することにより、潤滑油の供給量を調整できる。したがって、スラスト軸受ユニット9Aに供給される潤滑油の量が適切に維持される。さらに、ガイドケーシング15によってオイルディスク11からかき上げられる潤滑油の飛散範囲が限定されるため、軸封装置8からの潤滑油漏洩を防止することもできる。 These gaps W1 and W2 are set to appropriate values so that the lubricating oil pumped up on the oil disk 11 does not scatter or fall based on the pump operating conditions such as the viscosity of the lubricating oil used and the rotational speed of the rotary shaft 1. Is set. For example, the axial gap W1 is 2 mm to 4 mm, and the radial gap W2 is 3 mm to 6 mm. Further, by setting these gaps W1 and W2 to appropriate values, the guide casing 15 surrounding the oil disk 11 is disposed close to the oil disk 11 at a suitable distance. Therefore, even if the lubricating oil pumped up on the oil disk 11 is scattered from the oil disk 11, the lubricating oil accompanies the rotation direction due to the rotation of the oil disk 11, and the oil disk 11 and the guide casing 15 The gaps W1 and W2 are held. Accordingly, the amount of lubricating oil held in the gaps W1 and W2 is appropriately adjusted according to the dimensions of the gaps W1 and W2 between the oil disk 11 and the guide casing 15. As a result, the lubricating oil pumped up by the oil disk 11 is directly guided to the lubricating oil passage 17 (described later) and the communication passage 28 extending in the axial direction and directly communicating with the bearing 32 constituting the thrust bearing unit 9A. By suitably designing the dimensions of the passage 17 and the communication passage 28, the supply amount of the lubricating oil can be adjusted. Therefore, the amount of lubricating oil supplied to the thrust bearing unit 9A is appropriately maintained. Furthermore, since the splashing range of the lubricating oil scooped up from the oil disk 11 by the guide casing 15 is limited, leakage of the lubricating oil from the shaft seal device 8 can be prevented.
 また、軸方向の隙間W1および半径方向の隙間W2を適正に設定することにより、潤滑油の摩擦と攪拌とによる発熱を抑制することが可能である。例えば、図2に示す多段ポンプの運転条件下では、軸方向の隙間W1は4mmであり、半径方向の隙間W2は5mmである。このように、軸方向の隙間W1および半径方向の隙間W2は、ポンプのタイプおよび/またはポンプの運転条件(例えば、潤滑油の粘度や回転軸1の回転速度)に従って適正に設定される。 Also, by appropriately setting the axial gap W1 and the radial gap W2, it is possible to suppress heat generation due to friction and stirring of the lubricating oil. For example, under the operating conditions of the multistage pump shown in FIG. 2, the axial gap W1 is 4 mm, and the radial gap W2 is 5 mm. Thus, the axial gap W1 and the radial gap W2 are appropriately set according to the pump type and / or pump operating conditions (for example, the viscosity of the lubricating oil and the rotational speed of the rotary shaft 1).
 ガイドケーシング15の、オイルディスク11の側面に対向する内面(内側の側面)には、複数の潤滑油導入溝16が設けられている。より具体的には、図7に示されるように、ガイドディスク15Bよりもスラスト軸受ユニット9Aの近くに配置されているガイドディスク15Aの内面に、複数の潤滑油導入溝16が設けられている。これら潤滑油導入溝16は、オイルディスク11の側面に近接して配置され、回転軸1の近傍からオイルディスク11の半径方向外方向に延びる溝である。潤滑油導入溝16の外側端部は、スラスト軸受ユニット9Aに潤滑油を送る潤滑油通路17の入口17aに接続される。 A plurality of lubricating oil introduction grooves 16 are provided on the inner surface (inner side surface) of the guide casing 15 that faces the side surface of the oil disk 11. More specifically, as shown in FIG. 7, a plurality of lubricating oil introduction grooves 16 are provided on the inner surface of the guide disk 15A disposed closer to the thrust bearing unit 9A than the guide disk 15B. These lubricating oil introduction grooves 16 are disposed close to the side surface of the oil disk 11 and extend from the vicinity of the rotating shaft 1 in the radially outward direction of the oil disk 11. The outer end of the lubricating oil introduction groove 16 is connected to an inlet 17a of a lubricating oil passage 17 that sends the lubricating oil to the thrust bearing unit 9A.
 図8は、複数の潤滑油導入溝16が設けられたガイドケーシング15の内側の側面を示す図である。図示した例では、3つの潤滑油導入溝16が設けられており、これらの潤滑油導入溝16はガイドケーシング15の上側半分に位置している。潤滑油導入溝16は、オイルディスク11によってかき上げられた潤滑油をスラスト軸受ユニット9Aに供給するための潤滑油通路17に接続されている。オイルディスク11がかき上げた潤滑油が無駄に飛散しないように、ガイドケーシング15がオイルディスク11を限られた隙間W1,W2で囲んでいるので、オイルディスク11にかき上げられ、ガイドケーシング15とオイルディスク11の間の隙間W1,W2で回転方向に随伴する潤滑油は、潤滑油導入溝16に沿って流動し、潤滑油通路17の入口17aへ導かれる。潤滑油導入溝16は、潤滑油を、ガイドケーシング15とオイルディスク11の間の隙間W1,W2から潤滑油通路17に導くために設けられている。よって、潤滑油通路17は、スラスト軸受ユニット9Aおよびラジアル軸受ユニット9Bを収容する軸受ケーシング35内に形成されている。上述した冷却ジャケット27も軸受ケーシング35内に形成されている。 FIG. 8 is a view showing an inner side surface of the guide casing 15 provided with a plurality of lubricating oil introduction grooves 16. In the illustrated example, three lubricating oil introduction grooves 16 are provided, and these lubricating oil introduction grooves 16 are located in the upper half of the guide casing 15. The lubricating oil introduction groove 16 is connected to a lubricating oil passage 17 for supplying the lubricating oil pumped up by the oil disk 11 to the thrust bearing unit 9A. The guide casing 15 surrounds the oil disk 11 with the limited gaps W1 and W2 so that the lubricating oil pumped up by the oil disk 11 is not scattered unnecessarily. The lubricating oil accompanying the rotation direction in the gaps W1 and W2 between the oil disks 11 flows along the lubricating oil introduction groove 16, and is guided to the inlet 17a of the lubricating oil passage 17. The lubricant introduction groove 16 is provided to guide the lubricant from the gaps W1 and W2 between the guide casing 15 and the oil disk 11 to the lubricant passage 17. Therefore, the lubricating oil passage 17 is formed in the bearing casing 35 that accommodates the thrust bearing unit 9A and the radial bearing unit 9B. The cooling jacket 27 described above is also formed in the bearing casing 35.
 潤滑油通路17の入口17aから潤滑油導入溝16が延びる方向は、オイルディスク11の半径方向に対して、オイルディスク11の回転方向の上流側に向かって傾いている。このように潤滑油導入溝16がオイルディスク11の回転方向の上流側に向かって傾いているので、回転するオイルディスク11がかき上げた潤滑油は、潤滑油導入溝16に進入しやすくなる。オイルディスク11の半径方向に対する潤滑油導入溝16の角度は、例えば、30度~60度の範囲である。潤滑油導入溝16の傾き角度は、回転軸1の回転速度などの運転条件、潤滑油の粘度などの物性値、およびスラスト軸受ユニット9Aに必要な潤滑油供給量などを考慮して適宜設定される。潤滑油導入溝16を、運転条件、潤滑油の物性値などの諸元に応じた適切な曲率半径を有する円弧状の溝としてもよい。例えば、潤滑油導入溝16を螺旋溝としてもよい。 The direction in which the lubricating oil introduction groove 16 extends from the inlet 17 a of the lubricating oil passage 17 is inclined toward the upstream side in the rotational direction of the oil disk 11 with respect to the radial direction of the oil disk 11. As described above, the lubricating oil introduction groove 16 is inclined toward the upstream side in the rotation direction of the oil disk 11, so that the lubricating oil scooped up by the rotating oil disk 11 easily enters the lubricating oil introduction groove 16. The angle of the lubricating oil introduction groove 16 with respect to the radial direction of the oil disk 11 is, for example, in the range of 30 degrees to 60 degrees. The inclination angle of the lubricating oil introduction groove 16 is appropriately set in consideration of operating conditions such as the rotational speed of the rotating shaft 1, physical properties such as the viscosity of the lubricating oil, and the amount of lubricating oil supplied to the thrust bearing unit 9A. The The lubricating oil introduction groove 16 may be an arcuate groove having an appropriate curvature radius according to specifications such as operating conditions and physical properties of the lubricating oil. For example, the lubricant introduction groove 16 may be a spiral groove.
 図9は、ガイドディスク15Bの、オイルディスク11に対向する内面を示す図である。図9に示されるように、ガイドディスク15Bの内面には、潤滑油導入溝16は設けられない。 FIG. 9 is a view showing the inner surface of the guide disk 15B facing the oil disk 11. As shown in FIG. As shown in FIG. 9, the lubricating oil introduction groove 16 is not provided on the inner surface of the guide disk 15B.
 図3に示されるように、潤滑油導入溝16に進入した潤滑油は、この潤滑油導入溝16に連通する潤滑油通路17に導かれる。潤滑油通路17は、スラスト軸受ユニット9Aにまで延びている。より具体的には、潤滑油通路17は、ガイドケーシング15の内面から回転軸1の軸方向に延び、さらに、回転軸1の軸方向に垂直な方向に延びて、スラスト軸受ユニット9Aに達している。潤滑油は、潤滑油通路17を通じてスラスト軸受ユニット9Aに供給される。潤滑油通路17の周方向位置、および潤滑油通路17の形態(例えば、断面積,長さ,オイルディスク回転方向に対する通路方向、および表面粗さ等の流動抵抗因子、または通路途上に設けた過剰潤滑油の排出孔等)を適切に設計することにより、スラスト軸受ユニット9Aへの潤滑油供給量を、好適な量に制限することができる。潤滑油通路17は、オイルディスク11の外径程度以下の、回転軸1に近い位置に配置されてもよい。 As shown in FIG. 3, the lubricating oil that has entered the lubricating oil introduction groove 16 is guided to the lubricating oil passage 17 that communicates with the lubricating oil introduction groove 16. The lubricating oil passage 17 extends to the thrust bearing unit 9A. More specifically, the lubricating oil passage 17 extends from the inner surface of the guide casing 15 in the axial direction of the rotary shaft 1 and further extends in a direction perpendicular to the axial direction of the rotary shaft 1 to reach the thrust bearing unit 9A. Yes. The lubricating oil is supplied to the thrust bearing unit 9A through the lubricating oil passage 17. Circumferential position of the lubricating oil passage 17 and the form of the lubricating oil passage 17 (for example, cross-sectional area, length, passage direction relative to the oil disk rotation direction, flow resistance factors such as surface roughness, or excess provided in the passage By appropriately designing the lubricating oil discharge hole and the like, the amount of lubricating oil supplied to the thrust bearing unit 9A can be limited to a suitable amount. The lubricating oil passage 17 may be disposed at a position near the rotating shaft 1 that is equal to or smaller than the outer diameter of the oil disk 11.
 図3に示されるように、この実施形態のスラスト軸受ユニット9Aは、回転軸1上に直列に配置された2つの軸受31,32と、これらの軸受31,32の間に配置された環状の間座(スペーサ)19とを有している。軸受31,32としては、回転軸1の軸方向荷重および半径方向荷重の両方を受けることができるアンギュラ玉軸受が使用される。このアンギュラ玉軸受は、ラジアル軸受およびスラスト軸受として機能する。間座19は、軸受31,32へ潤滑油を均等に供給するための潤滑油ガイドとしても機能する。3つ以上の軸受を設けてもよい。この場合も、隣接する2つの軸受の間に間座19が配置される。 As shown in FIG. 3, the thrust bearing unit 9 </ b> A according to this embodiment includes two bearings 31 and 32 arranged in series on the rotary shaft 1, and an annular shape arranged between the bearings 31 and 32. And a spacer (spacer) 19. As the bearings 31 and 32, angular ball bearings that can receive both the axial load and the radial load of the rotary shaft 1 are used. This angular ball bearing functions as a radial bearing and a thrust bearing. The spacer 19 also functions as a lubricant guide for supplying lubricant to the bearings 31 and 32 evenly. Three or more bearings may be provided. Also in this case, the spacer 19 is disposed between two adjacent bearings.
 図10Aは回転軸1の長手方向に沿った軸受装置の一部を示す断面図であり、図10Bは回転軸1の長手方向から見た軸受装置の断面を示す図である。間座19の外周部には、潤滑油通路17から供給された潤滑油を軸受31,32へ効率的に分配するための複数の給油孔18が設けられている。各給油孔18は、間座19の外周面から内周面まで延びている。給油孔18の径や個数は、回転軸1の回転速度などの運転条件、潤滑油の粘度などの物性値、およびスラスト軸受ユニット9Aに必要な潤滑油供給量などを考慮して、適宜設定される。 FIG. 10A is a sectional view showing a part of the bearing device along the longitudinal direction of the rotating shaft 1, and FIG. 10B is a diagram showing a section of the bearing device seen from the longitudinal direction of the rotating shaft 1. A plurality of oil supply holes 18 for efficiently distributing the lubricant supplied from the lubricant passage 17 to the bearings 31 and 32 are provided on the outer periphery of the spacer 19. Each oil supply hole 18 extends from the outer peripheral surface of the spacer 19 to the inner peripheral surface. The diameter and number of the oil supply holes 18 are appropriately set in consideration of operating conditions such as the rotational speed of the rotating shaft 1, physical properties such as the viscosity of the lubricating oil, and the amount of lubricating oil supplied to the thrust bearing unit 9A. The
 以上説明した構成によれば、オイルディスク11の回転によってかき上げられた潤滑油は適正にスラスト軸受ユニット9Aに供給されるので、高周速でも信頼性の高い自己潤滑軸受装置を構成することが可能となる。具体的には、従来は周速14m/s程度が自己潤滑方式の軸受装置の限界とされていたが、本発明によれば、自己潤滑適用可能周速限界を16~18m/s、あるいはそれ以上の周速まで上げることが可能となる。 According to the configuration described above, since the lubricating oil pumped up by the rotation of the oil disk 11 is properly supplied to the thrust bearing unit 9A, a highly reliable self-lubricating bearing device can be configured even at a high peripheral speed. It becomes possible. Specifically, in the past, a peripheral speed of about 14 m / s was the limit of a self-lubricating bearing device. However, according to the present invention, the peripheral speed limit applicable to self-lubrication is 16 to 18 m / s, or It becomes possible to increase to the above peripheral speed.
 本発明によれば、オイルリングなどの従来技術では給油が困難であった回転軸1の高周速条件においても、スラスト軸受ユニット9Aに安定して潤滑油を供給することが可能となる。その結果、強制給油装置が不要となり、ポンプの設置面積が縮小され、かつコストダウンが図られるため、市場における製品競争力を増すことが可能となる。さらに、オイルディスク11が、該オイルディスク11に対向かつ近接して配置されたガイドケーシング15によって囲まれているため、オイルディスク11によってかき上げられた潤滑油の無駄な飛散を防止することができる。その結果、必要十分以上の潤滑油量を、軸受31,32に通じる潤滑油通路17へと導くことができる。潤滑油通路17は、オイルディスク15の内面から軸方向に延びているので、複雑な加工を必要とせずに、従来に比べてコンパクトな軸受装置を提供することができる。 According to the present invention, it is possible to stably supply the lubricating oil to the thrust bearing unit 9A even under high peripheral speed conditions of the rotary shaft 1, which has been difficult to supply by conventional techniques such as an oil ring. As a result, the forced oiling device is not required, the installation area of the pump is reduced, and the cost is reduced, so that the product competitiveness in the market can be increased. Further, since the oil disk 11 is surrounded by the guide casing 15 disposed opposite to and close to the oil disk 11, it is possible to prevent useless scattering of the lubricating oil pumped up by the oil disk 11. . As a result, an amount of lubricating oil more than necessary and sufficient can be guided to the lubricating oil passage 17 that leads to the bearings 31 and 32. Since the lubricating oil passage 17 extends in the axial direction from the inner surface of the oil disk 15, it is possible to provide a bearing device that is more compact than the conventional one without requiring complicated processing.
 以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、潤滑油導入溝16を潤滑油通路17からオイルディスク11の回転方向の下流側に向かって延ばすことにより、容易に潤滑油供給量の抑制が可能となり、過度な潤滑油供給による不要な発熱を防止することが可能となる。また、上述した実施形態では、スラスト軸受ユニット9Aに潤滑油を供給するためにオイルディスク11やガイドケーシング15が設けられているが、ラジアル軸受ユニット9Bに潤滑油を供給するためのオイルディスクおよびガイドケーシングを設けてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, by extending the lubricating oil introduction groove 16 from the lubricating oil passage 17 toward the downstream side in the rotation direction of the oil disk 11, it becomes possible to easily suppress the lubricating oil supply amount, and unnecessary heat generation due to excessive lubricating oil supply. Can be prevented. In the above-described embodiment, the oil disk 11 and the guide casing 15 are provided for supplying the lubricating oil to the thrust bearing unit 9A. However, the oil disk and the guide for supplying the lubricating oil to the radial bearing unit 9B are provided. A casing may be provided.
 さらに、ポンプの運転条件、潤滑油粘度等の物性値などの各種条件に応じて、オイルディスク11の直径や表面形状、潤滑油貯槽10の油面高さ、ガイドケーシング15とオイルディスク11との間の軸方向の隙間W1や半径方向の隙間W2、潤滑油導入溝16の周方向位置や傾き、潤滑油通路17の断面積、軸受間に配置される間座19の形状などを適宜設計および選択することにより、様々なタイプのポンプに本発明を適用することが可能となる。 Furthermore, the diameter and surface shape of the oil disk 11, the oil surface height of the lubricating oil storage tank 10, the guide casing 15 and the oil disk 11, depending on various conditions such as pump operating conditions and physical properties such as the viscosity of the lubricating oil. The axial gap W1 and radial gap W2 between them, the circumferential position and inclination of the lubricant introduction groove 16, the cross-sectional area of the lubricant passage 17, the shape of the spacer 19 disposed between the bearings, and the like are appropriately designed and By selecting, the present invention can be applied to various types of pumps.
 本発明は、横軸ポンプ等に用いられる軸受装置に係り、特に、回転軸が大径化したり、または回転速度が高速化しても、適切に潤滑油を軸受に供給することができる軸受装置に利用可能である。また、本発明はこのような軸受装置を備えたポンプに利用可能である。 The present invention relates to a bearing device used for a horizontal shaft pump or the like, and more particularly, to a bearing device capable of appropriately supplying lubricating oil to a bearing even when the diameter of a rotating shaft is increased or the rotational speed is increased. Is available. Further, the present invention can be used for a pump provided with such a bearing device.
   1  回転軸
   1a  キー
   2  羽根車
   3  吸込口
   4  吐出口
   5  ポンプケーシング
   6  ガイドベーン
   7  バランス装置
   8  軸封装置(メカニカルシール)
   9  軸受装置
   9A スラスト軸受ユニット
   9B ラジアル軸受ユニット
  10  潤滑油貯槽
  10A 潤滑油面
  11  オイルディスク
  11a キー溝
  12  環状溝
  13  窪み
  14  ラジアル溝
  15  ガイドケーシング
  16  潤滑油導入溝
  17  潤滑油通路
  17a 入口
  18  給油孔
  19  間座
  20  オイルリング
  21  油ポンプ
  22  油タンク
  23  油冷却器
  24  フィルター
  25  監視計器
  26  強制給油装置
  27  冷却ジャケット
  28  連通路
  31,32  軸受
  35  軸受ケーシング
 100  横軸ポンプ(回転機械)
 200  電動機
DESCRIPTION OF SYMBOLS 1 Rotating shaft 1a Key 2 Impeller 3 Suction port 4 Discharge port 5 Pump casing 6 Guide vane 7 Balance device 8 Shaft seal device (mechanical seal)
DESCRIPTION OF SYMBOLS 9 Bearing apparatus 9A Thrust bearing unit 9B Radial bearing unit 10 Lubricating oil storage tank 10A Lubricating oil surface 11 Oil disk 11a Key groove 12 Annular groove 13 Indentation 14 Radial groove 15 Guide casing 16 Lubricating oil introduction groove 17 Lubricating oil passage 17a Inlet 18 Oil supply hole 19 spacer 20 oil ring 21 oil pump 22 oil tank 23 oil cooler 24 filter 25 monitoring instrument 26 forced oil supply device 27 cooling jacket 28 communication passage 31, 32 bearing 35 bearing casing 100 horizontal shaft pump (rotary machine)
200 electric motor

Claims (12)

  1.  回転軸の荷重を受ける軸受と、
     前記軸受の下方に配置される潤滑油貯槽と、
     前記回転軸に固定されて当該回転軸と一体に回転することで、前記潤滑油貯槽に貯留される潤滑油をかき上げるオイルディスクと、
     前記軸受まで延びる潤滑油通路と、
     前記オイルディスクによってかき上げられた潤滑油を前記潤滑油通路に導くガイドケーシングと、を備え、
     前記ガイドケーシングは、前記オイルディスクの側面および外周面に対向する内面を有することを特徴とする軸受装置。
    A bearing that receives the load of the rotating shaft;
    A lubricating oil reservoir disposed below the bearing;
    An oil disk that is fixed to the rotating shaft and rotates integrally with the rotating shaft, thereby scooping up the lubricating oil stored in the lubricating oil storage tank;
    A lubricating oil passage extending to the bearing;
    A guide casing that guides the lubricating oil pumped up by the oil disk to the lubricating oil passage,
    The guide casing has an inner surface facing a side surface and an outer peripheral surface of the oil disk.
  2.  前記ガイドケーシングの内面には、前記潤滑油通路に接続された潤滑油導入溝が形成されており、前記潤滑油導入溝は、前記オイルディスクの側面に隣接していることを特徴とする請求項1に記載の軸受装置。 The lubricating oil introduction groove connected to the lubricating oil passage is formed on the inner surface of the guide casing, and the lubricating oil introduction groove is adjacent to a side surface of the oil disk. The bearing device according to 1.
  3.  前記潤滑油通路は、前記ガイドケーシングの内面から前記回転軸の軸方向に延び、さらに、前記軸方向に垂直な方向に延びて、前記軸受に達することを特徴とする請求項1に記載の軸受装置。 2. The bearing according to claim 1, wherein the lubricating oil passage extends in an axial direction of the rotating shaft from an inner surface of the guide casing and further extends in a direction perpendicular to the axial direction to reach the bearing. apparatus.
  4.  前記オイルディスクの外周面に環状溝を設けたことを特徴とする請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein an annular groove is provided on an outer peripheral surface of the oil disk.
  5.  前記オイルディスクの外周面に複数の窪みを設けたことを特徴とする請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein a plurality of depressions are provided on an outer peripheral surface of the oil disk.
  6.  前記オイルディスクの側面に複数のラジアル溝を設けたことを特徴とする請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein a plurality of radial grooves are provided on a side surface of the oil disk.
  7.  前記回転軸の外周面にはキーが設けられ、前記オイルディスクの中心に形成された貫通孔の内周面にはキー溝が形成されており、前記キーと前記キー溝とが係合した状態で前記オイルディスクは前記回転軸に固定されていることを特徴とする請求項1乃至6のいずれか一項に記載の軸受装置。 A key is provided on the outer peripheral surface of the rotating shaft, and a key groove is formed on an inner peripheral surface of a through hole formed in the center of the oil disk, and the key and the key groove are engaged with each other. The bearing device according to claim 1, wherein the oil disk is fixed to the rotating shaft.
  8.  前記軸受は、前記回転軸上に直列に配置された少なくとも2つの軸受のうちの一つであり、前記少なくとも2つの軸受の間には、環状の間座が配置されることを特徴とする請求項1乃至7のいずれか一項に記載の軸受装置。 The bearing is one of at least two bearings arranged in series on the rotating shaft, and an annular spacer is arranged between the at least two bearings. Item 8. The bearing device according to any one of Items 1 to 7.
  9.  前記間座は、その外周面から内周面まで延びる給油孔を有しており、前記給油孔は前記潤滑油通路に接続されていることを特徴とする請求項8に記載の軸受装置。 The bearing device according to claim 8, wherein the spacer has an oil supply hole extending from an outer peripheral surface to an inner peripheral surface, and the oil supply hole is connected to the lubricating oil passage.
  10.  前記軸受は、前記回転軸の軸方向荷重を受けるスラスト軸受であることを特徴とする請求項1乃至9のいずれか一項に記載の軸受装置。 The bearing device according to any one of claims 1 to 9, wherein the bearing is a thrust bearing that receives an axial load of the rotating shaft.
  11.  前記スラスト軸受は、前記回転軸の軸方向荷重および半径方向荷重の両方を受けることができるように構成されていることを特徴とする請求項10に記載の軸受装置。 The bearing device according to claim 10, wherein the thrust bearing is configured to receive both an axial load and a radial load of the rotary shaft.
  12.  回転軸と、
     前記回転軸に固定された羽根車と、
     前記回転軸を回転自在に支持する請求項1乃至11のいずれか一項に記載の軸受装置とを備えたことを特徴とするポンプ。
    A rotation axis;
    An impeller fixed to the rotating shaft;
    A pump comprising: the bearing device according to claim 1, which rotatably supports the rotating shaft.
PCT/JP2014/084007 2013-12-26 2014-12-23 Bearing device and pump WO2015098896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554908A JPWO2015098896A1 (en) 2013-12-26 2014-12-23 Bearing device and pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013269746 2013-12-26
JP2013-269746 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098896A1 true WO2015098896A1 (en) 2015-07-02

Family

ID=53478749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084007 WO2015098896A1 (en) 2013-12-26 2014-12-23 Bearing device and pump

Country Status (2)

Country Link
JP (1) JPWO2015098896A1 (en)
WO (1) WO2015098896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032134A (en) * 2015-08-06 2017-02-09 株式会社荏原製作所 Bearing device and rotary machine
JP2017032115A (en) * 2015-08-05 2017-02-09 株式会社荏原製作所 Bearing device and rotary machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627930Y1 (en) * 1968-05-24 1971-09-28
JPS58102824U (en) * 1981-12-29 1983-07-13 株式会社熊商 Bearing spacer
JP2006345675A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Drive motor for rolling stock
JP2009166787A (en) * 2008-01-18 2009-07-30 Jtekt Corp Vehicular bearing device
JP2011043207A (en) * 2009-08-21 2011-03-03 Nsk Ltd Lubricating device for rolling bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK127759B (en) * 1971-08-13 1973-12-31 Helsingor Skibsvaerft Bearing housing for high-speed axles.
US5591020A (en) * 1994-05-19 1997-01-07 Environamics Corporation Pump oil mister

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627930Y1 (en) * 1968-05-24 1971-09-28
JPS58102824U (en) * 1981-12-29 1983-07-13 株式会社熊商 Bearing spacer
JP2006345675A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Drive motor for rolling stock
JP2009166787A (en) * 2008-01-18 2009-07-30 Jtekt Corp Vehicular bearing device
JP2011043207A (en) * 2009-08-21 2011-03-03 Nsk Ltd Lubricating device for rolling bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032115A (en) * 2015-08-05 2017-02-09 株式会社荏原製作所 Bearing device and rotary machine
WO2017022517A1 (en) * 2015-08-05 2017-02-09 株式会社 荏原製作所 Bearing device and rotary machine
JP2017032134A (en) * 2015-08-06 2017-02-09 株式会社荏原製作所 Bearing device and rotary machine

Also Published As

Publication number Publication date
JPWO2015098896A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
EP3309431B1 (en) Slide component
EP3299686B1 (en) Sliding component
KR101027459B1 (en) Axial friction bearing
CA2851452C (en) Apparatus, system and method for sealing submersible pump assemblies
CN110168240A (en) Slide unit
SE531613C2 (en) sealing device
WO2016059852A1 (en) Bearing device and pump
EP3147512A1 (en) Impeller structure with improved rotation stability
WO2015098896A1 (en) Bearing device and pump
CN105378306A (en) Tilting pad bearing and turbo compressor
JP2017009043A (en) Bearing device and pump
KR20200021943A (en) Flow machine with bearing housing and bearing housing for flow machine
JP5524778B2 (en) Vertical bearing device
US10240609B2 (en) Screw pump and impeller fan assemblies and method of operating
US20200355218A1 (en) Tilting pad bearing device and rotating machine
KR102078494B1 (en) Journal bearing and rolling machine
CN205401146U (en) Festival segmentation multistage centrifugal pump
JP2019039559A (en) Bearing device
US20140029877A1 (en) Shaft and bearing arrangement and hydrostatic spindle for high speed applications
US10519958B2 (en) Systems and methods to provide lubricant to a bearing
US20110073412A1 (en) Axial fan compact bearing viscous pump
WO2017022517A1 (en) Bearing device and rotary machine
JP2019044957A (en) Bearing device and rotary machine
JP5683282B2 (en) Water-sealed underwater electric motor
JP2017032134A (en) Bearing device and rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873848

Country of ref document: EP

Kind code of ref document: A1