JPH10227312A - Fluid bearing device - Google Patents

Fluid bearing device

Info

Publication number
JPH10227312A
JPH10227312A JP2988397A JP2988397A JPH10227312A JP H10227312 A JPH10227312 A JP H10227312A JP 2988397 A JP2988397 A JP 2988397A JP 2988397 A JP2988397 A JP 2988397A JP H10227312 A JPH10227312 A JP H10227312A
Authority
JP
Japan
Prior art keywords
bearing
static pressure
rotating shaft
dynamic pressure
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2988397A
Other languages
Japanese (ja)
Inventor
Kazuhisa Sugiyama
和久 杉山
Hisashi Nakamura
久 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2988397A priority Critical patent/JPH10227312A/en
Publication of JPH10227312A publication Critical patent/JPH10227312A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem in a fluid bearing device by which a rotary shaft is journaled by fluid pressure, that the bearing clearance of a land part for supporting the rotary shaft by dynamic pressure is narrow, thereby exothermic action occurs at the time of high speed rotation, the rotary shaft and a bearing member are locally thermally expanded in this land part, and finally seizure occurs. SOLUTION: Bearing clearances d1, d2 are so arranged that the bearing clearance d1 between a dynamic pressure generating land part 14 and a rotary shaft 20 is set larger than the bearing clearance d2 leading from static pressure pockets 6, 7 to a drain groove 10. Preferably, the bearing clearance d1 is set to be from 1.3 to twice the bearing clearance d2. Hereby, an exothermic action amount in the land part 14 can be suppressed even at high speed rotation, therefore seizure can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の主軸などの
回転軸、特に高速回転される回転軸を軸受油等の加圧流
体を介して軸受する流体軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid bearing device for bearing a rotating shaft such as a main shaft of a machine tool, particularly a rotating shaft rotated at high speed, through a pressurized fluid such as bearing oil.

【0002】[0002]

【従来の技術】一般に流体軸受は、回転軸との間に一定
の軸受隙間を有した軸受部材の内周面に軸受ポケットと
ランド部を設け、この軸受ポケットおよびランド部と回
転軸との間の軸受隙間に供給される加圧流体の流体圧
(静圧,動圧)により回転軸が支持されている。
2. Description of the Related Art Generally, a fluid bearing is provided with a bearing pocket and a land on an inner peripheral surface of a bearing member having a certain bearing clearance between the bearing and a rotating shaft. The rotating shaft is supported by the fluid pressure (static pressure, dynamic pressure) of the pressurized fluid supplied to the bearing gap of the motor.

【0003】このような流体軸受としては、軸受部材の
内周面に軸方向に離間して周方向に長く設けた一対の凹
溝と、この一対の凹溝を連通するように軸方向に設けた
凹溝とによりU字状を呈する軸受ポケットを複数組設け
たものがある。このものは、U字状の軸受ポケットによ
り静圧を発生させ、このU字状の軸受ポケットに囲まれ
たランド部では、回転軸が変位接近することにより回転
軸との微小な隙間に動圧を発生させることで回転軸を支
持する。
[0003] Such a fluid bearing is provided with a pair of concave grooves provided in the inner peripheral surface of the bearing member and extending in the axial direction so as to be spaced apart in the axial direction, and provided in the axial direction so as to communicate with the pair of concave grooves. There is a case in which a plurality of sets of U-shaped bearing pockets are provided by concave grooves. In this device, a static pressure is generated by a U-shaped bearing pocket, and in a land portion surrounded by the U-shaped bearing pocket, a dynamic pressure is applied to a minute gap between the rotating shaft and the rotating shaft as the rotating shaft approaches and displaces. Is generated to support the rotating shaft.

【0004】上記のようなU字状の軸受ポケットを有す
るものとしては、特公昭60−37329号に開示され
たものがある。このものは、ランド部17の軸受隙間を
軸受ポケット15,16,18の軸受隙間より狭くする
ことで動剛性を向上させている。
[0004] One having a U-shaped bearing pocket as described above is disclosed in JP-B-60-37329. In this case, the dynamic rigidity is improved by making the bearing gap of the land 17 narrower than the bearing gap of the bearing pockets 15, 16, 18.

【0005】[0005]

【発明が解決しようとする課題】最近では、例えば砥石
周速180m/secといった高周速での高速研削の要
求に伴い、砥石軸を支持する軸受の高速対応化が図られ
ている。上記従来技術の当時の技術水準においては、4
5〜60m/sec程度の砥石周速が限度であり、現在
の技術水準からみると、かなりの低周速であった。
Recently, with the demand for high-speed grinding at a high peripheral speed, for example, a peripheral speed of the grinding wheel of 180 m / sec, a bearing supporting the grinding wheel shaft has been adapted to a high speed. In the state of the art at the time of the above prior art, 4
The peripheral speed of the grindstone is about 5 to 60 m / sec, which is a very low peripheral speed in view of the current technical level.

【0006】本願発明者の実験により、この従来の技術
のものを使用して高速研削(周速180m/sec)を
行うと、軸受部での発熱量が過大となり、この発熱によ
り回転軸および軸受が熱膨張して軸受隙間が小さくなっ
て、目的とする軸受性能が得られないことが分かった。
特に、動圧を発生させるランド部分での発熱量が大きく
なり、局所的に軸受隙間が小さくなることが分かった。
According to experiments by the inventor of the present invention, when high-speed grinding (peripheral speed: 180 m / sec) is performed using this conventional technique, the amount of heat generated in the bearing portion becomes excessive. It was found that due to thermal expansion, the bearing gap became small and the desired bearing performance could not be obtained.
In particular, it has been found that the amount of heat generated at the lands where the dynamic pressure is generated increases, and the bearing clearance locally decreases.

【0007】この問題を解決するために、軸受隙間を大
きくすることが考えられるが、このような解決手段を採
用したとすると、要求される軸受剛性を達成することが
出来ず、さらには軸受隙間の3乗に比例して供給油の消
費量が増加するために、油供給装置が大型化し、動力損
失も大きくなってしまう。また、排出油を回収するタン
クも大型化してしまうため実用化は困難である。
To solve this problem, it is conceivable to increase the bearing clearance. However, if such a solution is adopted, the required bearing rigidity cannot be achieved, and further, the bearing clearance cannot be achieved. Since the consumption of the supplied oil increases in proportion to the cube of, the oil supply device increases in size and the power loss also increases. In addition, it is difficult to put the tank to practical use because the tank for collecting the discharged oil also becomes large.

【0008】[0008]

【課題を解決するための手段】本発明は上述した目的を
達成するためになされたものであり、請求項1に記載の
手段は、回転軸と、この回転軸を回転可能に軸承する軸
受部材と、前記軸受部材の内周面に複数個設けた静圧ポ
ケットと、前記静圧ポケットに囲まれ動圧を発生する動
圧ランド部と、前記静圧ポケットに流体を供給する供給
孔と、前記軸受部材の内周面に形成され、前記静圧ポケ
ットに供給された流体を前記回転軸と軸受部材との軸受
隙間を介して排出する環状のドレン溝とを有した流体軸
受装置において、軸受隙間を静圧ポケットからドレン溝
に至る部分の隙間より前記動圧ランド部と回転軸との間
の隙間の方を大きくしたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and a means according to a first aspect of the present invention comprises a rotating shaft and a bearing member for rotatably supporting the rotating shaft. A plurality of static pressure pockets provided on the inner peripheral surface of the bearing member, a dynamic pressure land portion surrounded by the static pressure pockets to generate dynamic pressure, and a supply hole for supplying a fluid to the static pressure pockets; A fluid bearing device having an annular drain groove formed on an inner peripheral surface of the bearing member and configured to discharge a fluid supplied to the static pressure pocket through a bearing gap between the rotating shaft and the bearing member. The gap between the dynamic pressure land and the rotary shaft is larger than the gap between the static pressure pocket and the drain groove.

【0009】また、請求項2に記載の手段は、上記請求
項1に記載の手段に加えて、静圧ポケットからドレン溝
に至る部分の軸受隙間に対し、動圧ランド部と回転軸と
の間の軸受隙間を1.3倍から2倍としたことを特徴と
するものである。
According to a second aspect of the present invention, in addition to the first aspect, the dynamic pressure land portion and the rotating shaft are disposed between the static pressure pocket and the drain groove in a bearing gap between the static pressure pocket and the drain groove. It is characterized in that the bearing gap between them is increased from 1.3 times to 2 times.

【0010】[0010]

【実施例】本発明の実施例について図面を参照して説明
する。図1および図2に示すように、好適には研削盤の
砥石台を構成する軸受ハウジング1の下部に排出路2,
3が設けられており、この軸受ハウジング1内には内周
面に軸受面4を有する円筒状の軸受部材5が嵌着されて
いる。軸受部材5には図2に示すように回転軸20が流
体圧により回転可能に軸承されている。
Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1 and FIG. 2, a discharge passage 2 is provided at a lower portion of a bearing housing 1 which preferably forms a grindstone base of a grinding machine.
A cylindrical bearing member 5 having a bearing surface 4 on the inner peripheral surface is fitted in the bearing housing 1. As shown in FIG. 2, a rotary shaft 20 is rotatably supported on the bearing member 5 by fluid pressure.

【0011】この軸受部材5の内周の軸受面4には、軸
方向に離間した一対の静圧ポケット6,7が円周方向に
複数組凹設されており、各対の静圧ポケット6,7は円
周方向の一端側において軸方向に延設した供給溝8によ
り接続され、この供給溝8と共に略U字形状の静圧ポケ
ットを形成している。静圧ポケット6,7、供給溝8の
形成により、U字状に囲まれた部分に軸受面4と同一内
周面高さを有した動圧を発生させる動圧ランド部14形
成される。
A plurality of pairs of a pair of axially spaced static pressure pockets 6 and 7 are recessed in the circumferential direction on an inner peripheral bearing surface 4 of the bearing member 5. , 7 are connected by an axially extending supply groove 8 at one end in the circumferential direction, and together with the supply groove 8, form a substantially U-shaped static pressure pocket. Due to the formation of the static pressure pockets 6, 7 and the supply groove 8, a dynamic pressure land portion 14 for generating a dynamic pressure having the same inner peripheral surface height as the bearing surface 4 is formed in a portion surrounded by a U-shape.

【0012】供給溝8には、供給溝8および静圧ポケッ
ト6,7内に油を供給する供給口9が開口されており、
軸受部材5の外周に設けた環状溝12と絞り作用をなす
連通孔15を介して連通している。(図3参照) 軸受ハウジング1には前記環状溝12に対応した位置に
油供給路13が形成されており、図略の油供給ポンプか
ら圧油が供給されると環状溝12、連通孔15、供給口
9を介して供給溝8、静圧ポケット6,7内に圧油が供
給される。
A supply port 9 for supplying oil to the supply groove 8 and the static pressure pockets 6 and 7 is opened in the supply groove 8.
It communicates with an annular groove 12 provided on the outer periphery of the bearing member 5 through a communication hole 15 which acts as a throttle. (See FIG. 3) An oil supply passage 13 is formed in the bearing housing 1 at a position corresponding to the annular groove 12, and when pressure oil is supplied from an oil supply pump (not shown), the annular groove 12, the communication hole 15 are formed. The pressure oil is supplied into the supply groove 8 and the static pressure pockets 6 and 7 through the supply port 9.

【0013】これら静圧ポケット6,7、供給溝8およ
び動圧ランド部14の形成状態を判りやすくするため、
図3の斜視図を加えて以下に説明する。軸受部材5に
は、静圧ポケット6,7の軸方向の両端に環状のドレン
溝10が凹設されている。このドレン溝10は、軸受部
材5に形成された排出路11を介して軸受ハウジング1
の排出路2,3に連通しており、ドレン溝10に流入し
た油を図略の油槽に回収するようにしている。
In order to make the formation state of the static pressure pockets 6 and 7, the supply groove 8 and the dynamic pressure land portion 14 easy to understand,
This will be described below with reference to the perspective view of FIG. In the bearing member 5, annular drain grooves 10 are recessed at both axial ends of the static pressure pockets 6,7. The drain groove 10 is connected to the bearing housing 1 via a discharge passage 11 formed in the bearing member 5.
The oil flowing into the drain groove 10 is collected in an oil tank (not shown).

【0014】軸受部材5には図2に示すように回転軸2
0が軸受面4と僅かな隙間(軸受隙間)を有して軸承さ
れており、この回転軸20の動圧ランド部14に対向す
る部分の径D1は、ドレン溝10に対向した部分の径D
2よりも小さく形成されている。これにより、静圧ポケ
ット6,7からドレン溝10に至る軸受隙間d2よりも
動圧ランド部14と回転軸20との軸受隙間d1の方が
大きく設定されることとなる。好ましくは、この軸受隙
間d1はd2の1.3倍から2倍となるように設定され
る。また、軸受隙間d2は従来通りの間隔に設定されて
いる。
The bearing member 5 has a rotating shaft 2 as shown in FIG.
0 has a slight clearance (bearing clearance) with the bearing surface 4, and the diameter D 1 of the portion of the rotating shaft 20 facing the dynamic pressure land portion 14 is the diameter of the portion facing the drain groove 10. D
It is formed smaller than 2. As a result, the bearing gap d1 between the dynamic pressure land 14 and the rotary shaft 20 is set to be larger than the bearing gap d2 from the static pressure pockets 6, 7 to the drain groove 10. Preferably, the bearing gap d1 is set to be 1.3 to 2 times d2. Further, the bearing gap d2 is set to a conventional interval.

【0015】上記構成の実施例について、以下にその作
用を説明する。図略の供給ポンプから軸受ハウジング1
の油供給路13に圧油が供給されると、軸受部材5の外
周の環状溝12から絞り作用をなす連通孔15を経て軸
受面4の供給溝8に圧油が供給される。この供給溝8を
介して静圧ポケット6,7に圧油が充満されると、軸受
隙間d1およびd2を介して動圧ランド部14およびド
レン溝10に圧油が流出される。この時、軸受隙間に応
じて流出抵抗が働くことにより、主に静圧ポケット6,
7、供給溝8に静圧力が発生され、この静圧力にて回転
軸20が静圧支持される。
The operation of the embodiment having the above configuration will be described below. From supply pump (not shown) to bearing housing 1
When the pressure oil is supplied to the oil supply path 13, the pressure oil is supplied from the annular groove 12 on the outer periphery of the bearing member 5 to the supply groove 8 of the bearing surface 4 through the communication hole 15 which performs a throttle action. When the pressure oil is filled in the static pressure pockets 6 and 7 through the supply groove 8, the pressure oil flows out to the dynamic pressure land portion 14 and the drain groove 10 through the bearing gaps d1 and d2. At this time, the outflow resistance works in accordance with the bearing gap, so that the
7. A static pressure is generated in the supply groove 8, and the rotating shaft 20 is statically supported by the static pressure.

【0016】また、中央部の動圧ランド部14と回転軸
20との間の軸受隙間d1では、静圧ポケット6,7、
供給溝8から流入される圧油により、この静圧ポケット
6,7、供給溝8と同一の静圧力が発生する。回転軸2
0に負荷がかかり中心軸が偏心されると、図4に示すよ
うに回転軸20の径D1と動圧ランド部14の内径との
相異により軸受隙間が偏心した側に次第に狭くなる楔状
すきまPが作られる。この楔状すきまPに圧油が回転軸
20の表面につれ廻りを起こして引き込まれることによ
り動圧が発生し、この動圧により回転軸20が動圧支持
される。
In the bearing gap d1 between the dynamic pressure land 14 at the center and the rotating shaft 20, static pressure pockets 6, 7,.
The pressure oil flowing from the supply groove 8 generates the same static pressure as the static pressure pockets 6 and 7 and the supply groove 8. Rotary axis 2
When a load is applied to the shaft and the center shaft is eccentric, as shown in FIG. 4, a wedge-shaped clearance in which the bearing gap gradually narrows toward the eccentric side due to the difference between the diameter D1 of the rotating shaft 20 and the inner diameter of the dynamic pressure land portion. P is made. The pressure oil is swept around the surface of the rotary shaft 20 and is drawn into the wedge-shaped clearance P to generate a dynamic pressure, and the rotary shaft 20 is supported by the dynamic pressure.

【0017】この時、従来の技術に比べて軸受隙間d2
よりも動圧ランド部14の軸受隙間d1が充分に広くと
ってあるので回転軸20が高速回転しても発熱量を抑え
ることができる。この実験結果を表す温度上昇グラフを
図5に示す。ここで、細破線は全ての軸受隙間が一定で
ある従来の流体軸受装置での排出油の温度を示してお
り、約45°Cであるのに対し、太実線で示した本発明
の流体軸受装置(軸受隙間d1をd2の1.4倍とした
もの)によれば、約33°Cを示しており、10°C以
上発熱量を抑えることができた。また、軸受隙間d1を
d2の1.6倍とすると太破線に示すようになり、より
一層、発熱量を抑えることができた。
At this time, as compared with the prior art, the bearing clearance d2
Since the bearing gap d1 of the dynamic pressure land portion 14 is sufficiently large, the amount of heat generated can be suppressed even when the rotating shaft 20 rotates at high speed. FIG. 5 shows a temperature rise graph showing the results of this experiment. Here, the thin broken line indicates the temperature of the discharged oil in the conventional hydrodynamic bearing device in which all the bearing gaps are constant, and is about 45 ° C., whereas the fluid bearing of the present invention shown by the bold solid line According to the device (the bearing clearance d1 was set to 1.4 times d2), the temperature was about 33 ° C, and the calorific value could be suppressed by 10 ° C or more. Further, when the bearing gap d1 is 1.6 times d2, it becomes as indicated by a thick broken line, and the amount of generated heat can be further suppressed.

【0018】ここで、細実線は従来および本発明の実験
結果(実験1,実験2)で共通した供給油の温度を表し
ている。なお、実験結果から、上述のように、好ましく
は軸受隙間d1はd2の1.3倍から2倍の大きさとす
ることが望ましい。そうすることにより最適な動圧効果
および静圧効果を得られるだけでなく、大幅に発熱量を
抑えることができる。
Here, the thin solid line represents the temperature of the supplied oil which is common to the experimental results of the prior art and the present invention (Experiment 1 and Experiment 2). From the experimental results, as described above, it is desirable that the bearing gap d1 is preferably 1.3 to 2 times as large as d2. By doing so, not only the optimal dynamic pressure effect and static pressure effect can be obtained, but also the amount of heat generation can be greatly reduced.

【0019】上記実施例においては、回転軸20の径を
小さくすることにより動圧ランド部14部分の軸受隙間
d1を大きくしたが、軸受面4の内径を変化させて対応
しても良い。例えば図6に示すように、回転軸20は均
一な径として、軸受部材5の動圧ランド部14の内径C
1と静圧ポケット6,7からドレン溝10に至る部分の
内径C2とを変化させて、好適には軸受隙間c1をc2
の1.3倍から2倍となるようにする。これにより上記
実施例と同様な効果を得ることができる。
In the above embodiment, the diameter of the rotary shaft 20 is reduced to increase the bearing gap d1 at the dynamic pressure land portion 14. However, the inner diameter of the bearing surface 4 may be changed. For example, as shown in FIG. 6, the rotating shaft 20 has a uniform diameter and the inner diameter C of the dynamic pressure land portion 14 of the bearing member 5.
1 and the inner diameter C2 of the portion from the static pressure pockets 6 and 7 to the drain groove 10 are changed so that the bearing clearance c1 is preferably c2
1.3 times to 2 times. Thereby, the same effect as in the above embodiment can be obtained.

【0020】また、応用例として図7および図8に第3
の実施例形態を示す。このものは、従来技術で示した特
公昭60−37329号公報と同様に、静圧ポケット
6,7内に凸部30を設け、この凸部30の中央に排出
路2,3と繋がる排出口31を設けたものである。この
際、上記第1および第2の実施例と同様な効果を得るた
めに、凸部30と回転軸20との軸受隙間d3はd2と
同じ隙間、すなわちd1はd3の1.3倍から2倍とす
る。
As an application example, FIGS. 7 and 8 show a third example.
An embodiment of the present invention will be described. In this device, a convex portion 30 is provided in each of the static pressure pockets 6 and 7, and a discharge port connected to the discharge passages 2 and 3 is provided at the center of the convex portion 30 similarly to Japanese Patent Publication No. 60-33729 shown in the prior art. 31 are provided. At this time, in order to obtain the same effect as in the first and second embodiments, the bearing gap d3 between the projection 30 and the rotating shaft 20 is the same as d2, that is, d1 is 1.3 to 2 times d3. Double it.

【0021】また、動圧ランド部14を図9に示すよう
なテーパー状や図10に示すような段差を付けたステッ
プ形状とすれば、回転軸20が偏心した際に楔状すきま
Pに流体が導入されやすくなるので、より一層、動圧剛
性の安定性や負荷能力を向上させることが可能となる。
If the dynamic pressure land portion 14 is tapered as shown in FIG. 9 or stepped with a step as shown in FIG. 10, fluid flows into the wedge-shaped clearance P when the rotating shaft 20 is eccentric. Since it is easily introduced, the stability of dynamic pressure rigidity and the load capacity can be further improved.

【0022】[0022]

【発明の効果】請求項1の流体軸受装置においては、静
圧ポケットからドレン溝にいたる軸受隙間より動圧発生
用の動圧ランド部と回転軸との間の軸受隙間の方を大き
く設けたことにより、回転軸を高速回転させても動圧ラ
ンド部での発熱量を抑えることができる。よって、焼付
防止を図れる。また、静圧ポケットからドレン溝に至る
軸受隙間は従来通りの間隔であるので、供給油が増大す
ることがない。従って、油供給装置や回収タンクは従来
のものを使用すれば良い。
According to the first aspect of the present invention, the bearing clearance between the rotating shaft and the dynamic pressure land for generating the dynamic pressure is made larger than the bearing clearance from the static pressure pocket to the drain groove. Thus, the amount of heat generated at the dynamic pressure land can be suppressed even when the rotating shaft is rotated at a high speed. Therefore, seizure can be prevented. In addition, since the bearing gap from the static pressure pocket to the drain groove has a conventional interval, the supply oil does not increase. Therefore, conventional oil supply devices and recovery tanks may be used.

【0023】請求項2は、動圧ランド部と回転軸との間
の軸受隙間をドレン溝に至る軸受隙間の1.3倍から2
倍の大きさとすることにより、実験データのグラフに示
すように大幅に発熱量を抑えることができ、且つ、最適
な軸受剛性を得ることができる。
The bearing clearance between the dynamic pressure land portion and the rotary shaft is set to be 1.3 to 2 times the bearing clearance reaching the drain groove.
By making the size twice as large, the amount of heat generation can be greatly reduced as shown in the graph of the experimental data, and the optimum bearing rigidity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における流体軸受装置の断面図
である。
FIG. 1 is a sectional view of a hydrodynamic bearing device according to an embodiment of the present invention.

【図2】本実施例の軸受部の断面図である。FIG. 2 is a cross-sectional view of the bearing unit of the embodiment.

【図3】本実施例の軸受部の断面斜視図である。FIG. 3 is a sectional perspective view of a bearing unit according to the embodiment.

【図4】本実施例の円周方向からの断面図である。FIG. 4 is a sectional view of the present embodiment as viewed from the circumferential direction.

【図5】本実施例における油温の温度上昇を表す図であ
る。
FIG. 5 is a diagram illustrating a rise in oil temperature in the present embodiment.

【図6】第2の実施例を表す断面図である。FIG. 6 is a sectional view illustrating a second embodiment.

【図7】第3の実施例を表す断面図である。FIG. 7 is a sectional view illustrating a third embodiment.

【図8】第3の実施例を表す一部断面図である。FIG. 8 is a partial sectional view showing a third embodiment.

【図9】第4の実施例を表す一部断面図である。FIG. 9 is a partial sectional view illustrating a fourth embodiment.

【図10】第5の実施例を表す一部断面図である。FIG. 10 is a partial sectional view showing a fifth embodiment.

【符号の説明】[Explanation of symbols]

1 軸受ハウジング 2,3 排出路 4 軸受面 5 軸受部材 6,7 静圧ポケット 8 供給溝 9 供給口 10 ドレン溝 11 排出路 12 環状溝 13 油供給路 14 動圧ランド部 15 連通孔 20 回転軸 D1,D2,d1,d2,d3 軸受隙間 REFERENCE SIGNS LIST 1 bearing housing 2, 3 discharge path 4 bearing surface 5 bearing member 6, 7 static pressure pocket 8 supply groove 9 supply port 10 drain groove 11 discharge path 12 annular groove 13 oil supply path 14 dynamic pressure land 15 communication hole 20 rotary shaft D1, D2, d1, d2, d3 Bearing clearance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転軸と、この回転軸を回転可能に軸承
する軸受部材と、前記軸受部材の内周面に複数個設けた
静圧ポケットと、前記静圧ポケットに囲まれ動圧を発生
する動圧ランド部と、前記静圧ポケットに流体を供給す
る供給孔と、前記軸受部材の内周面に形成され、前記静
圧ポケットに供給された流体を前記回転軸と軸受部材と
の軸受隙間を介して排出する環状のドレン溝とを有した
流体軸受装置において、軸受隙間を静圧ポケットからド
レン溝に至る部分の隙間より前記動圧ランド部と回転軸
との間の隙間の方を大きくしたことを特徴とする流体軸
受装置。
1. A rotating shaft, a bearing member rotatably supporting the rotating shaft, a plurality of static pressure pockets provided on an inner peripheral surface of the bearing member, and a dynamic pressure generated by the static pressure pocket. A dynamic pressure land portion, a supply hole for supplying a fluid to the static pressure pocket, and a bearing formed on an inner peripheral surface of the bearing member, the bearing provided between the rotating shaft and the bearing member for supplying the fluid supplied to the static pressure pocket to the bearing. In a fluid dynamic bearing device having an annular drain groove that is discharged through a gap, the gap between the dynamic pressure land portion and the rotating shaft is larger than the gap between the static pressure pocket and the drain groove. A hydrodynamic bearing device characterized by being enlarged.
【請求項2】 請求項1における流体軸受装置におい
て、静圧ポケットからドレン溝に至る部分の軸受隙間に
対し、動圧ランド部と回転軸との間の軸受隙間を1.3
倍から2倍としたことを特徴とする流体軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein a bearing gap between the dynamic pressure land portion and the rotating shaft is set to 1.3 with respect to a bearing gap from a static pressure pocket to a drain groove.
A hydrodynamic bearing device characterized in that the number is doubled to doubled.
JP2988397A 1997-02-14 1997-02-14 Fluid bearing device Pending JPH10227312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2988397A JPH10227312A (en) 1997-02-14 1997-02-14 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2988397A JPH10227312A (en) 1997-02-14 1997-02-14 Fluid bearing device

Publications (1)

Publication Number Publication Date
JPH10227312A true JPH10227312A (en) 1998-08-25

Family

ID=12288385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2988397A Pending JPH10227312A (en) 1997-02-14 1997-02-14 Fluid bearing device

Country Status (1)

Country Link
JP (1) JPH10227312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547438B2 (en) 2000-09-25 2003-04-15 Toyoda Koki Kabushiki Kaisha Hydraulic bearing device
EP1298335A3 (en) * 2001-09-26 2004-04-14 Toyoda Koki Kabushiki Kaisha Hydraulic bearing
JP2010151236A (en) * 2008-12-25 2010-07-08 Jtekt Corp Method for manufacturing bearing member of fluid bearing device, and bearing member of fluid bearing device manufacturing by the method
JP2013124674A (en) * 2011-12-13 2013-06-24 Hitachi-Ge Nuclear Energy Ltd Sliding bearing and pump device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547438B2 (en) 2000-09-25 2003-04-15 Toyoda Koki Kabushiki Kaisha Hydraulic bearing device
EP1298335A3 (en) * 2001-09-26 2004-04-14 Toyoda Koki Kabushiki Kaisha Hydraulic bearing
US6935786B2 (en) 2001-09-26 2005-08-30 Toyoda Koki Kabushiki Kaisha Hydraulic bearing
JP2010151236A (en) * 2008-12-25 2010-07-08 Jtekt Corp Method for manufacturing bearing member of fluid bearing device, and bearing member of fluid bearing device manufacturing by the method
JP2013124674A (en) * 2011-12-13 2013-06-24 Hitachi-Ge Nuclear Energy Ltd Sliding bearing and pump device using the same

Similar Documents

Publication Publication Date Title
JP2516967B2 (en) Bearing device
JP4554583B2 (en) Thrust bearing device
JP2005048890A (en) Spindle motor
JP4639017B2 (en) Radial-axial composite sliding bearing
JP2015007463A (en) Tilting pad bearing
US4927326A (en) Turbomachinery rotor support with damping
JP2010151292A (en) Tilting-pad bearing
JPH10259823A (en) Fluid bearing device
JP3514958B2 (en) Fluid bearing device
JPH10227312A (en) Fluid bearing device
JPH08219148A (en) Floating bush bearing
JP3548330B2 (en) Spindle bearing cooling system
JP2008151239A (en) Tilting pad type bearing
KR100364406B1 (en) A hydrodynamic bearing of the spindle motor
JPH06280875A (en) Fluid bearing device
JP3842499B2 (en) Hydrodynamic bearing unit
JP3547844B2 (en) Fluid dynamic pressure bearing
JP2001218425A (en) Electric motor having rotor cooling function
CN114857273B (en) End face seal assembly
JPH0571535A (en) Static pressure fluid bearing
JP4392112B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE SAME
JP3593372B2 (en) Motor with hydrodynamic bearing means
JP2001078388A (en) Motor
CN220156332U (en) Motor with a motor housing
JPS63235723A (en) Fluid bearing