JP2013120010A - Cooling device, electronic device equipped with the same, and electric vehicle - Google Patents

Cooling device, electronic device equipped with the same, and electric vehicle Download PDF

Info

Publication number
JP2013120010A
JP2013120010A JP2011267977A JP2011267977A JP2013120010A JP 2013120010 A JP2013120010 A JP 2013120010A JP 2011267977 A JP2011267977 A JP 2011267977A JP 2011267977 A JP2011267977 A JP 2011267977A JP 2013120010 A JP2013120010 A JP 2013120010A
Authority
JP
Japan
Prior art keywords
heat
heat receiving
working fluid
valve
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011267977A
Other languages
Japanese (ja)
Inventor
Iku Sato
郁 佐藤
Makoto Sugiyama
誠 杉山
Wakana Nogami
若菜 野上
Shunji Miyake
俊司 三宅
Ayaka Suzuki
彩加 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011267977A priority Critical patent/JP2013120010A/en
Publication of JP2013120010A publication Critical patent/JP2013120010A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for efficiently circulating a refrigerant and enhancing cooling performance.SOLUTION: The cooling device 3 is composed of a heat receiving part 4 equipped with a heat receiving plate 11 for transferring heat to a working fluid 12, a radiation part 5 for radiating the heat of the working fluid 12, a radiating path 6, and a return path 7 in which both the paths are used to connect the heat receiving part 4 to the radiation part 5 and the working fluid 12 is circulated to the heat receiving part 4, the radiating path 6, the radiation part 5, the return path 7, and the heat receiving part 4 so as to transfer the heat. In the vicinity of the heat receiving part 4 of the return path 7 or in the heat receiving part 4, a check valve 18 for controlling a flow of the working fluid 12 is arranged and in a box composed of a valve cover 24 with an inlet and a valve holder 27 with a concave part 25 and an introducing port 26, the check valve 18 is equipped with a first valve element 21 moving in the concave part 25 of the valve holder 27 and a pressure balancing means arranged in the box to balance pressures in the front and rear of the check valve 18.

Description

本発明は、冷却装置およびこれを搭載した電子機器、および電気自動車に関するものである。   The present invention relates to a cooling device, an electronic device equipped with the cooling device, and an electric vehicle.

従来この種の冷却装置は、電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため半導体スイッチング素子は、僅かな損失分でも大きく発熱し冷却することが必要であった。   Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. For this reason, the semiconductor switching element generates a large amount of heat even with a small loss and needs to be cooled.

そこで、従来は、例えば特許文献1のように、上下に冷媒放熱器と冷媒タンクを備えた沸騰冷却装置にて、下部に配したインバータ回路の冷却を行っていた。   Therefore, conventionally, as in Patent Document 1, for example, a boil cooling device having a refrigerant radiator and a refrigerant tank at the top and bottom has cooled an inverter circuit arranged at the bottom.

特開平8−126125号公報JP-A-8-126125

このような従来の冷却装置においては、半導体スイッチング素子に接触して冷媒タンクを配置し、冷媒タンク内の液化冷媒を、スイッチング素子からの熱を奪わせて気化させる。   In such a conventional cooling device, the refrigerant tank is disposed in contact with the semiconductor switching element, and the liquefied refrigerant in the refrigerant tank is vaporized by taking heat from the switching element.

そして、気化した冷媒を、上部に配置した冷媒放熱器に上昇させ、冷却し、液化させて再び下部に滴下されるサイクルを繰り返している。いわば自然対流によって冷媒が循環するのである。   And the cycle which raises the vaporized refrigerant | coolant to the refrigerant | coolant heat radiator arrange | positioned at the upper part, cools, liquefies, and is dripped again at the lower part is repeated. In other words, the refrigerant circulates by natural convection.

しかしながら、このような自然対流式のものでは、スイッチング素子の熱を、冷媒タンク内に溜められた液化冷媒に、冷媒タンクの壁面(伝熱面)を介し、単純な対流熱伝達を用いていただけであるため、伝熱面における熱伝達率を高めることができず、その結果として、スイッチング素子等の冷却効果を高めることが出来なかった。   However, in such a natural convection type, simple convection heat transfer can be used for the liquefied refrigerant stored in the refrigerant tank through the wall (heat transfer surface) of the refrigerant tank. Therefore, the heat transfer rate on the heat transfer surface could not be increased, and as a result, the cooling effect of the switching elements and the like could not be increased.

そこで、本発明は、伝熱面における熱伝達率を高めることで、冷却効果を高めることを目的とするものである。   Then, this invention aims at improving a cooling effect by raising the heat transfer rate in a heat-transfer surface.

そして、この目的を達成するために、本発明は、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路の前記受熱部近傍または前記受熱部内に、前記作動流体の流れを制御する逆止弁を設け、この逆止弁は、前記帰還経路に連結される流入口を有する弁カバーと、前記受熱部に連結される流出口を有するとともに前記弁カバーとにより箱体を構成する弁ホルダーと、前記弁ホルダーの凹部内を可動自在に設けた第1弁体と、前記箱体内に設けた、前記逆止弁前後の圧力をバランスさせる圧力バランス手段とを備え、前記受熱部内の圧力の上昇時で、前記第1弁体の非作動時に、前記圧力バランス手段により、前記逆止弁前後の圧力をバランスさせる構成とし、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a heat receiving portion including a heat receiving plate that transfers heat from the heating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, the heat receiving portion, and the heat receiving portion. A heat dissipation path connecting the heat dissipation part and a return path are configured, and the working fluid is circulated to the heat receiving part, the heat dissipation path, the heat dissipation part, the return path, and the heat receiving part to transfer heat. A cooling device is provided with a check valve that controls the flow of the working fluid in the vicinity of or in the heat receiving portion of the return path, and the check valve has an inlet connected to the return path. A valve holder having an outlet connected to the heat receiving portion and forming a box by the valve cover, a first valve body movably provided in a recess of the valve holder, The pressure before and after the check valve provided in the box A pressure balance means for lance, and the pressure balance means balances the pressure before and after the check valve when the pressure in the heat receiving portion increases and when the first valve body is inoperative. It achieves the intended purpose.

本発明によれば、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、放熱経路、放熱部、帰還経路、受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路の前記受熱部近傍または前記受熱部内に、前記作動流体の流れを制御する逆止弁を設け、この逆止弁は、前記帰還経路に連結される流入口を有する弁カバーと、前記受熱部に連結される流出口を有するとともに前記弁カバーとにより箱体を構成する弁ホルダーと、前記弁ホルダーの凹部内を可動自在に設けた第1弁体と、前記箱体内に設けた、前記逆止弁前後の圧力をバランスさせる圧力バランス手段とを備え、前記受熱部内の圧力の上昇時で、前記第1弁体の非作動時に、前記圧力バランス手段により、前記逆止弁前後の圧力をバランスさせる構成としたものであるので、冷却効果を高めることが出来る。   According to the present invention, a heat receiving portion including a heat receiving plate that transfers heat from the heat generating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, and a heat radiating path that connects the heat receiving portion and the heat radiating portion. And a return path, and the working fluid is circulated to the heat receiving part, the heat dissipation path, the heat dissipation part, the return path, and the heat receiving part to transfer heat, and the heat receiving part of the return path A check valve for controlling the flow of the working fluid is provided in the vicinity of or in the heat receiving part, and the check valve is connected to the heat receiving part and a valve cover having an inlet connected to the return path. A valve holder having a flow outlet and forming a box with the valve cover; a first valve body movably provided in a recess of the valve holder; and a front and rear of the check valve provided in the box Pressure balancing means for balancing pressure, and Since the pressure balance means balances the pressure before and after the check valve when the pressure in the hot part rises and the first valve body is not in operation, the cooling effect can be enhanced. .

すなわち、本発明においては、冷媒となる作動流体の循環経路を、受熱部、放熱経路、放熱部、帰還経路、前記受熱部とすることで、作動流体の循環方向を一方向とすると共に、前記帰還経路の受熱部側に、前記受熱部内に前記作動流体を供給する流入管を接続し、前記流入管の先端に前記作動流体の流れを制御する逆止弁を設けている。   That is, in the present invention, the circulation path of the working fluid serving as a refrigerant is a heat receiving portion, a heat radiating route, a heat radiating portion, a return route, and the heat receiving portion. An inflow pipe that supplies the working fluid into the heat receiving section is connected to the heat receiving section side of the return path, and a check valve that controls the flow of the working fluid is provided at the tip of the inflow pipe.

この逆止弁の弁本体の可動部が弁ホルダー内で、弁本体がこの上に溜まった作動流体の水頭による圧力によって開くこと、つまり弁本体の可動部は弁ホルダー内で可動させる構成としたので、過剰な開口状態とはならず、その結果として、受熱部内へ作動流体を過剰供給せず、作動流体の供給を適量に制御できることになる。また、導入管から受熱板へ滴下した作動流体は、直後に気化し沸騰に伴う急激な体積膨張によって、蒸気が導入管と受熱板との隙間から高速気流として受熱板面上を移動することになり、導入管出口周辺の受熱板全面に広く作動流体が薄い膜として形成されることになる。そして、この膜状作動流体が、受熱板からの熱を受けて一瞬にして加熱気化することで高熱伝達率の除熱が可能となり、極めて高い冷却効果を得ることができるのである。   The movable part of the valve body of the check valve is opened in the valve holder, and the valve body is opened by the pressure of the working fluid accumulated on the valve body, that is, the movable part of the valve body is movable in the valve holder. Therefore, the opening state is not excessive, and as a result, the working fluid is not supplied excessively into the heat receiving portion, and the supply of the working fluid can be controlled to an appropriate amount. In addition, the working fluid dropped from the introduction pipe to the heat receiving plate is vaporized immediately thereafter, and the vapor moves on the surface of the heat receiving plate as a high-speed air stream from the gap between the introduction pipe and the heat receiving plate due to rapid volume expansion accompanying boiling. Thus, the working fluid is formed as a thin film over the entire surface of the heat receiving plate around the outlet of the introduction pipe. Then, this membrane-like working fluid receives heat from the heat receiving plate and instantly heats and evaporates, whereby heat removal with a high heat transfer rate is possible, and an extremely high cooling effect can be obtained.

さらに、受熱部内での作動流体は、気化分を除いた残りはすべて液相であり、受熱部にそのまま残留すると、気化の妨げとなるため、速やかに受熱部から移動させることが必要である。これに対して本発明では、気化による急激な体積膨張が、作動流体の気相分だけでなく、受熱部内に残存する液相分も同時に放熱部へ高速移動させるだけの駆動力を発生できるため、結果として冷却対象物の除熱エネルギーのみを使い、受熱部から凝縮部へ作動流体の無動力搬送を実現することを可能としている。   Further, the working fluid in the heat receiving part is all in the liquid phase except for the vaporized part, and if left in the heat receiving part as it is, it becomes an obstacle to vaporization, so it is necessary to move it quickly from the heat receiving part. In contrast, in the present invention, rapid volume expansion due to vaporization can generate not only the gas phase component of the working fluid but also the liquid phase component remaining in the heat receiving portion at the same time to generate a driving force that can move to the heat radiating portion at high speed. As a result, it is possible to realize non-powered conveyance of the working fluid from the heat receiving unit to the condensing unit using only the heat removal energy of the object to be cooled.

また、投入熱量の増加に伴う受熱部内圧力の圧力上昇により、第1弁体が開かない状態に陥った場合でも、圧力バランス手段である第2弁体により、導入管側の過剰な圧力を流入管側へ逃がして逆止弁前後の圧力をバランスさせることで、第1弁体が開き作動流体が受熱部内へ供給され、作動流体を安定的に循環させることができる。   In addition, even when the first valve body is not opened due to an increase in the pressure in the heat receiving portion due to an increase in the input heat amount, excessive pressure on the introduction pipe side is caused to flow in by the second valve body which is a pressure balance means. By escaping to the pipe side and balancing the pressure before and after the check valve, the first valve body is opened, and the working fluid is supplied into the heat receiving portion, so that the working fluid can be circulated stably.

本発明の実施の形態1の電気自動車の概略図Schematic of the electric vehicle according to the first embodiment of the present invention. 同冷却装置を示す概略図Schematic showing the cooling system 同逆止弁を示す分解斜視図Exploded perspective view showing the check valve 同逆止弁を示す一部切断斜視図Partially cut perspective view showing the check valve (a)同逆止弁が閉じた状態を示す構成図、(b)同逆止弁の第1弁体が開いた状態を示す構成図、(c)同逆止弁の第2弁体が開いた状態を示す構成図(A) The block diagram which shows the state which the check valve closed, (b) The block diagram which shows the state which the 1st valve body of the check valve opened, (c) The 2nd valve body of the check valve Configuration diagram showing the open state (a)本発明の実施の形態2の逆止弁が閉じた状態を示す構成図、(b)同逆止弁の第1弁体が開いた状態を示す構成図、(c)(a)のA−A断面を示す構成図(A) The block diagram which shows the state which the check valve of Embodiment 2 of this invention closed, (b) The block diagram which shows the state which the 1st valve body of the check valve opened, (c) (a) The block diagram which shows the AA cross section of (a)メニスカス形成状態における、微細孔近傍の作動流体の状態を示す図、(b)メニスカス破壊状態における、微細孔近傍の作動流体の状態を示す図、(c)本発明の実施の形態2の逆止弁が閉じた状態を示す構成図(A) The figure which shows the state of the working fluid near a micropore in a meniscus formation state, (b) The figure which shows the state of the working fluid near a micropore in a meniscus destruction state, (c) Embodiment 2 of this invention The block diagram which shows the state where the non-return valve is closed (a)本発明の実施の形態3の逆止弁が閉じた状態を示す構成図、(b)同逆止弁の第1弁体が開いた状態を示す構成図、(c)(a)のB−B断面を示す構成図(A) The block diagram which shows the state which the check valve of Embodiment 3 of this invention closed, (b) The block diagram which shows the state which the 1st valve body of the check valve opened, (c) (a) The block diagram which shows the BB cross section of

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動機(図示せず)は、電気自動車1の内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of an electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1.

インバータ回路2は、電動機に電力を供給するもので、複数の半導体スイッチング素子(図2の10)を備えおり、この半導体スイッチング素子(図2の10)が動作中に発熱する。   The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements (10 in FIG. 2). The semiconductor switching elements (10 in FIG. 2) generate heat during operation.

このため、この半導体スイッチング素子(図2の10)を冷却するために、冷却装置3を備えている。冷却装置3は、受熱部4と、この受熱部4で吸収した熱を放熱する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体(図2の12で、例えば水)を循環させる放熱経路6、帰還経路7を設けることで、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4となる循環経路を構成している。   For this reason, in order to cool this semiconductor switching element (10 in FIG. 2), a cooling device 3 is provided. The cooling device 3 includes a heat receiving portion 4 and a heat radiating portion 5 that radiates heat absorbed by the heat receiving portion 4, and a working fluid (12 in FIG. 2) serving as a heat medium between the heat receiving portion 4 and the heat radiating portion 5. For example, by providing the heat radiation path 6 and the return path 7 for circulating water), the heat receiving section 4, the heat radiation path 6, the heat radiation section 5, the feedback path 7, and the circulation path serving as the heat receiving section 4 are configured.

つまり、この循環経路においては、作動流体(図2の12)が、気体(水の場合水蒸気)や液体及びその混合状態で、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4と一方向に、循環するようになっている。   That is, in this circulation path, the working fluid (12 in FIG. 2) is a gas (water vapor in the case of water) or a liquid and a mixed state thereof, the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7, It circulates in one direction with the heat receiving part 4.

前記放熱部5は、図2に示すように、外気に熱を放出する放熱体8を備えている。   As shown in FIG. 2, the heat radiating section 5 includes a heat radiating body 8 that releases heat to the outside air.

この放熱体8は、アルミニウムを短冊状に薄く形成したフィンを所定の間隔をあけて積層したブロック体(図示せず)と、積層したフィンを貫通する放熱経路6とで構成されている。   The heat dissipating body 8 includes a block body (not shown) in which fins formed by thinly forming aluminum in a strip shape are stacked at a predetermined interval, and a heat dissipating path 6 penetrating the stacked fins.

そして、この放熱体8の界面に送風機9から外気を送風することで、放熱をさせている。なお、この放熱体8の界面からの放熱は、電気自動車1車内の暖房に活用することも出来る。   Then, heat is radiated by blowing outside air from the blower 9 to the interface of the radiator 8. The heat radiation from the interface of the radiator 8 can also be utilized for heating in the electric vehicle 1.

また、受熱部4は、図2に示すように、半導体スイッチング素子10に接触させて熱を吸収する受熱板11と、この受熱板11の界面を覆い、流れ込んだ作動流体12を蒸発させる受熱空間13を形成する受熱板カバー14とを備えている。   Further, as shown in FIG. 2, the heat receiving portion 4 is in contact with the semiconductor switching element 10 to absorb heat and a heat receiving space that covers the interface of the heat receiving plate 11 and evaporates the flowing working fluid 12. And a heat-receiving plate cover 14 that forms 13.

さらに、受熱板カバー14には、受熱空間13に液化した作動流体12を流し込む流入口15と、受熱空間13から作動流体12を気体にして排出する排出口16が設けられている。   Furthermore, the heat receiving plate cover 14 is provided with an inlet 15 for flowing the liquefied working fluid 12 into the heat receiving space 13 and an outlet 16 for discharging the working fluid 12 from the heat receiving space 13 as a gas.

すなわち、受熱板カバー14の上面に流入口15、受熱板カバー14の側面に排出口16を設けており、流入口15には帰還経路7を接続し、また排出口16には放熱経路6を接続している。   That is, the inlet 15 is provided on the upper surface of the heat receiving plate cover 14, and the outlet 16 is provided on the side surface of the heat receiving plate cover 14. The return path 7 is connected to the inlet 15, and the heat dissipation path 6 is connected to the outlet 16. Connected.

さらに、前記帰還経路7の受熱部4側には、前記受熱部4内に前記作動流体12を供給する流入管19と逆止弁18を有し、逆止弁18に接続した導入管17を受熱空間13内に突入させている。   Further, on the heat receiving part 4 side of the return path 7, an introduction pipe 17 having an inflow pipe 19 for supplying the working fluid 12 into the heat receiving part 4 and a check valve 18 and connected to the check valve 18 is provided. The heat receiving space 13 is plunged.

このような構成による冷却装置3の作用について説明する。   The operation of the cooling device 3 having such a configuration will be described.

上記構成において、インバータ回路2の半導体スイッチング素子10が動作を開始すると電動機に電力が供給されて、電気自動車1は、動き出すこととなる。   In the above configuration, when the semiconductor switching element 10 of the inverter circuit 2 starts to operate, electric power is supplied to the electric motor, and the electric vehicle 1 starts to move.

このとき、半導体スイッチング素子10には大電流が流れることにより、少なくとも全電力の数%が損失となって大きく発熱する。   At this time, when a large current flows through the semiconductor switching element 10, at least several percent of the total power is lost and a large amount of heat is generated.

一方で、半導体スイッチング素子10から発される熱は、受熱空間13の受熱板11上に供給された液状の作動流体12に、半導体スイッチング素子10から熱が移動されると、この液状の作動流体12は一瞬にして気化することになり、排出口16から放熱経路6へと流れ、放熱部5で熱を外気に放出する。   On the other hand, when the heat generated from the semiconductor switching element 10 is transferred from the semiconductor switching element 10 to the liquid working fluid 12 supplied onto the heat receiving plate 11 of the heat receiving space 13, the liquid working fluid is heated. 12 is vaporized in an instant, flows from the discharge port 16 to the heat radiation path 6, and releases heat to the outside air by the heat radiation portion 5.

放熱部5の作用によって熱を放出した作動流体12は、液化して帰還経路7へと流れ、導入管17内の逆止弁18上に溜まることとなる。   The working fluid 12 that has released heat by the action of the heat radiating unit 5 is liquefied and flows to the return path 7 and accumulates on the check valve 18 in the introduction pipe 17.

液化した作動流体12は、徐々に帰還経路7内で増加する一方、受熱空間13内での作動流体12の気化量が減少し、受熱空間13内の圧力も減少し、逆止弁18上に溜まった作動流体12の水頭圧によって逆止弁18を押し下げると、再び受熱空間13内の受熱板11上に供給される。   While the liquefied working fluid 12 gradually increases in the return path 7, the vaporization amount of the working fluid 12 in the heat receiving space 13 decreases, the pressure in the heat receiving space 13 also decreases, and the pressure on the check valve 18 is increased. When the check valve 18 is pushed down by the water head pressure of the accumulated working fluid 12, it is supplied again onto the heat receiving plate 11 in the heat receiving space 13.

このようにして作動流体12が冷却装置3内を循環することで、半導体スイッチング素子10の冷却を行なうことになる。   In this way, the working fluid 12 circulates in the cooling device 3 to cool the semiconductor switching element 10.

ここで、受熱空間13内の冷却のメカニズムについて説明を加える。   Here, the cooling mechanism in the heat receiving space 13 will be described.

受熱空間13内では、帰還経路7からの作動流体12は、逆止弁18から受熱板11上に液滴となって滴下される。   In the heat receiving space 13, the working fluid 12 from the return path 7 is dropped as droplets from the check valve 18 onto the heat receiving plate 11.

このとき受熱板11の界面を放射状に流路が拡大する形状にしており、後述する逆止弁18の作用により作動流体12を適量供給できる。そして、次に、供給された作動流体12は、前記した通り沸騰時の体積膨張による高速気流で薄い膜状冷媒として受熱板11上に広がる。受熱板11の裏面側は、半導体スイッチング素子10に接触しているので、受熱板上の薄い膜状冷媒となった作動流体12は、一瞬にして加熱気化することで高い冷却効果を生むことになる。   At this time, the interface of the heat receiving plate 11 has a shape in which the flow path expands radially, and an appropriate amount of the working fluid 12 can be supplied by the action of the check valve 18 described later. Then, the supplied working fluid 12 spreads on the heat receiving plate 11 as a thin film-like refrigerant with a high-speed air flow due to volume expansion at the time of boiling as described above. Since the back surface side of the heat receiving plate 11 is in contact with the semiconductor switching element 10, the working fluid 12 that has become a thin film-like refrigerant on the heat receiving plate is instantly heated and vaporized to produce a high cooling effect. Become.

受熱空間13を含む循環経路内の気圧は、大気圧よりも低く設定しているので、作動流体12は、水を使用しても大気圧中の水の沸騰に比べて低い温度で気化させることができる。   Since the atmospheric pressure in the circulation path including the heat receiving space 13 is set lower than the atmospheric pressure, the working fluid 12 is vaporized at a temperature lower than the boiling of water in the atmospheric pressure even if water is used. Can do.

本実施の形態では、内圧を−97KPaに減圧して、循環経路内を飽和蒸気圧状態にしておくことで、外気温に応じた沸騰温度が決定され容易に水を気化させることができ、このときに半導体スイッチング素子10の熱を効率的に奪い、冷却することができる。   In the present embodiment, the internal pressure is reduced to -97 KPa and the inside of the circulation path is set to a saturated vapor pressure state, so that the boiling temperature corresponding to the outside air temperature is determined and water can be easily vaporized. Sometimes the semiconductor switching element 10 can be efficiently deprived of heat and cooled.

また、作動流体12が気化するときに受熱空間13内の圧力が増加するが、逆止弁18の作用により作動流体12は、逆流して帰還経路7側へ戻ることはなく、確実に排出口16から放熱経路6へ放出されることになる。   Further, when the working fluid 12 is vaporized, the pressure in the heat receiving space 13 increases. However, the working fluid 12 does not flow back to the return path 7 due to the action of the check valve 18, and the discharge port is surely discharged. 16 is discharged to the heat radiation path 6.

このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体12を受熱空間13内で気化させて半導体スイッチング素子10の冷却を行なうことができ、大きな冷却効果を得ることができる。   By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 12 can be continuously vaporized in the heat receiving space 13 to cool the semiconductor switching element 10. A large cooling effect can be obtained.

ここで、本発明の最も特徴的な部分について説明する。   Here, the most characteristic part of the present invention will be described.

逆止弁18は図3の分解図に示すように、開口20を有する第1弁体21と、第1弁体21の上面に開口20を覆うように設けた、第1弁体21より小さい第2弁体22と、凹部23(図5)と流入口15を有する弁カバー24と、凹部25と導入口26を有する弁ホルダー27とで構成され、第1弁体21は弁ホルダー27の凹部25内を可動し、第2弁体22は弁カバー24の凹部23内を可動する構成としている。   As shown in the exploded view of FIG. 3, the check valve 18 is smaller than the first valve body 21 provided to cover the opening 20 on the upper surface of the first valve body 21 and the first valve body 21. The second valve body 22 includes a valve cover 24 having a recess 23 (FIG. 5) and an inflow port 15, and a valve holder 27 having a recess 25 and an inlet 26. The inside of the recess 25 is movable, and the second valve element 22 is configured to move within the recess 23 of the valve cover 24.

本実施の形態において、圧力バランス手段は、第1弁体21に設けた開口20と、この開口を覆うように第1弁体21の上面に設けた第2弁体22とで構成しており、開口20は円孔で、その大きさは流入管19の内径より小さくしている。   In the present embodiment, the pressure balance means includes an opening 20 provided in the first valve body 21 and a second valve body 22 provided on the upper surface of the first valve body 21 so as to cover the opening. The opening 20 is a circular hole whose size is smaller than the inner diameter of the inflow pipe 19.

第1弁体21および第2弁体22の材質は、銅や黄銅またはSUS等である。   The material of the first valve body 21 and the second valve body 22 is copper, brass, SUS, or the like.

図4の組立図に示すように、第1弁体21はその可動部が弁ホルダー27の凹部25に収まるように弁ホルダー27と弁カバー24とで挟み込んで固定され、弁ホルダー27、弁カバー24は、ネジ等(図示せず)で固定している。   As shown in the assembly diagram of FIG. 4, the first valve body 21 is fixed by being sandwiched between the valve holder 27 and the valve cover 24 so that the movable portion thereof is accommodated in the concave portion 25 of the valve holder 27. 24 is fixed by screws or the like (not shown).

これにより、第1弁体21の可動部は、弁ホルダー27の凹部25内のみ可動し、この凹部25の深さは1〜2mm程度で、逆止弁18が開いても受熱部4内へ作動流体12を過剰供給せず、作動流体12の供給を適量に制御できる。   As a result, the movable portion of the first valve body 21 is movable only in the recess 25 of the valve holder 27. The depth of the recess 25 is about 1 to 2 mm, and even if the check valve 18 is opened, it enters the heat receiving portion 4. The supply of the working fluid 12 can be controlled to an appropriate amount without excessively supplying the working fluid 12.

また、図2の受熱板11上へ滴下した作動流体12は、前述したように受熱板11の界面を周囲に拡散するように薄い膜として受熱板11上に広がり、熱くなった受熱板11の熱を受けて、一瞬にして加熱され気化することとなり、伝熱面における熱伝達率が向上し、冷却効果を高めることができる。   Further, as described above, the working fluid 12 dripped onto the heat receiving plate 11 in FIG. 2 spreads on the heat receiving plate 11 as a thin film so as to diffuse the interface of the heat receiving plate 11 to the surroundings. Upon receiving heat, it is heated and vaporized instantly, the heat transfer rate on the heat transfer surface is improved, and the cooling effect can be enhanced.

さらに、この気化による体積膨張により、その受熱部内部の作動流体を高速流として排出口16まで移動させることができ、この時、気化した作動流体以外の余剰作動流体も同時に受熱板11上から排除され、気化に必要な作動流体膜が常に形成されるため、その結果としても伝熱面における熱伝達率が上昇し、冷却効果を高めることができることになる。   Furthermore, by the volume expansion due to the vaporization, the working fluid inside the heat receiving portion can be moved to the discharge port 16 as a high-speed flow. At this time, surplus working fluid other than the vaporized working fluid is simultaneously removed from the heat receiving plate 11. Since the working fluid film necessary for vaporization is always formed, the heat transfer coefficient on the heat transfer surface is increased as a result, and the cooling effect can be enhanced.

また、第2弁体22は第1弁体21より小さいため、弁カバー24に設けた凹部23の大きさ、深さは弁ホルダー27の凹部25と同等以下で、第2弁体22が可動して、受熱部4内の圧力を逃がすことができればよい。   Further, since the second valve body 22 is smaller than the first valve body 21, the size and depth of the recess 23 provided in the valve cover 24 is equal to or less than the recess 25 of the valve holder 27, and the second valve body 22 is movable. And what is necessary is just to be able to release the pressure in the heat receiving part 4. FIG.

次に、圧力バランス手段の作用について図5を用いて説明する。   Next, the operation of the pressure balance means will be described with reference to FIG.

図5(a)は、作動流体12が受熱板11の熱を受けて気化が始まり、受熱空間13内の圧力が上昇した場合の第1弁体21が閉じた状態。図5(b)は、受熱部4内の作動流体12の量が気化にともなって減少し、受熱空間13内の圧力が下降するため、第1弁体21が開き、作動流体12が受熱部4内へ供給される状態。5(c)は、逆止弁18前後の圧力バランスが崩れ、受熱空間13内の圧力が過度に上昇し、第2弁体22が開いた状態である。   FIG. 5A shows a state in which the first valve body 21 is closed when the working fluid 12 receives heat from the heat receiving plate 11 and vaporization starts and the pressure in the heat receiving space 13 increases. FIG. 5B shows that the amount of the working fluid 12 in the heat receiving portion 4 decreases with vaporization, and the pressure in the heat receiving space 13 decreases, so that the first valve body 21 is opened and the working fluid 12 is moved to the heat receiving portion. 4 is supplied to the inside. 5 (c) is a state in which the pressure balance around the check valve 18 is lost, the pressure in the heat receiving space 13 is excessively increased, and the second valve body 22 is opened.

すなわち、通常の作動流体12の循環では、図5(a)、(b)の状態を繰り返すが、半導体スイッチング素子10から発される熱が変動し、通常より多量の熱を発した場合、図5(a)の第1弁体21、第2弁体22が閉じた状態で、受熱部4内の気化する作動流体12の量が通常より増加し、受熱空間13内の圧力が通常より急上昇する場合がある。   That is, in the normal circulation of the working fluid 12, the states shown in FIGS. 5A and 5B are repeated. However, when the heat generated from the semiconductor switching element 10 fluctuates and generates more heat than usual, When the first valve body 21 and the second valve body 22 of 5 (a) are closed, the amount of the working fluid 12 to be vaporized in the heat receiving section 4 is increased than usual, and the pressure in the heat receiving space 13 is rapidly increased than usual. There is a case.

このとき、図5(c)のように受熱空間13内の圧力上昇により、第1弁体21が閉鎖状態となるが、ある一定の圧力に到達すると第2弁体22が開き、逆止弁18前後の圧力バランスを通常の状態に戻すことになる。その結果、次の瞬間、第1弁体21が開き図5(b)の状態となるため、作動流体12が受熱板11への供給が再開されることになり、また、しばらく図5(a)、図5(b)の状態を繰り返すことになる。   At this time, as shown in FIG. 5 (c), the first valve body 21 is closed due to the pressure increase in the heat receiving space 13, but when the pressure reaches a certain pressure, the second valve body 22 is opened and the check valve is opened. The pressure balance around 18 will be returned to the normal state. As a result, the first valve body 21 opens at the next moment, and the state shown in FIG. 5B is resumed, so that the supply of the working fluid 12 to the heat receiving plate 11 is resumed. ), The state of FIG. 5B is repeated.

このように、圧力バランス手段として、第1弁体21に開口20と、この開口20を覆うように第1弁体21の上面に第2弁体22を設けることにより、受熱部4内の過剰な圧力上昇により第1弁体21が開かない状態に陥ったと場合でも、第2弁体22がその圧力を逃がすように上方に可動し開くため、次の瞬間、圧力のアンバランスの緩和がおこり、開口20から作動流体12が受熱部4内へ供給され、作動流体12を継続的に循環させることができることになる。   As described above, by providing the opening 20 in the first valve body 21 and the second valve body 22 on the upper surface of the first valve body 21 so as to cover the opening 20 as pressure balancing means, Even if the first valve body 21 is not opened due to a rise in pressure, the second valve body 22 moves upward to release the pressure, so that the pressure imbalance is reduced at the next moment. Then, the working fluid 12 is supplied from the opening 20 into the heat receiving portion 4, and the working fluid 12 can be continuously circulated.

なお、本実施の形態では、逆止弁18、すなわち第1弁体21を略水平に設置したが、作動流体12の水頭による圧力によって第1弁体21を可動できれば設置方向は斜めや略垂直でもよい。ただし、応答性(作動流体12の量と水頭による圧力の関係)を考慮すれば、略水平が好ましい。   In the present embodiment, the check valve 18, that is, the first valve body 21 is installed substantially horizontally. However, if the first valve body 21 can be moved by the pressure of the hydraulic head of the working fluid 12, the installation direction is oblique or substantially vertical. But you can. However, considering the responsiveness (relationship between the amount of the working fluid 12 and the pressure due to the water head), substantially horizontal is preferable.

(実施の形態2)
図6に、圧力バランス手段として第1弁体31に微細孔32を設けた構成を示す。実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 6 shows a configuration in which fine holes 32 are provided in the first valve body 31 as pressure balance means. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6(a)は、実施の形態1の図5(a)に相当し、作動流体12が受熱板11の熱を受けて気化が始まり、受熱空間13内の圧力が上昇し、第1弁体21が閉じた状態である。図6(b)は、実施の形態1の図5(b)に相当し、受熱部4内の気化する作動流体12の量が減少し、受熱空間13内の圧力が下降し、第1弁体21が開いた、作動流体12が受熱部4内へ供給される状態である。   FIG. 6A corresponds to FIG. 5A of the first embodiment, and the working fluid 12 receives the heat of the heat receiving plate 11 to start vaporization, the pressure in the heat receiving space 13 rises, and the first valve The body 21 is in a closed state. FIG. 6B corresponds to FIG. 5B of the first embodiment, and the amount of the working fluid 12 to be vaporized in the heat receiving portion 4 is reduced, the pressure in the heat receiving space 13 is lowered, and the first valve In this state, the working fluid 12 is supplied into the heat receiving part 4 with the body 21 opened.

図6(c)は、図6(a)のA−A矢視断面であり、第1弁体31の可動部の略中央部に微細孔32を設けている。   FIG. 6C is a cross-sectional view taken along the line AA in FIG. 6A, and a fine hole 32 is provided at a substantially central portion of the movable portion of the first valve body 31.

弁カバー33は、実施の形態1の弁カバー24に設けられた凹部23が設けられておらず、流入口15のみ設けられている。   The valve cover 33 is not provided with the recess 23 provided in the valve cover 24 of the first embodiment, and only the inlet 15 is provided.

次に図7を用いて、第1弁体31に設けた微細孔32の圧力バランス作用について説明する。   Next, the pressure balance action of the fine holes 32 provided in the first valve body 31 will be described with reference to FIG.

図7(a)は図6(a)の第1弁体21が閉じた状態における、微細孔32近傍の作動流体12の状態を示している。図7(c)は図6(a)と同じ第1弁体21が閉じた状態を示している。   FIG. 7A shows the state of the working fluid 12 in the vicinity of the fine hole 32 when the first valve body 21 of FIG. 6A is closed. FIG. 7C shows a state in which the same first valve body 21 as that in FIG. 6A is closed.

逆止弁18前後の圧力バランスとしては、受熱部4側の圧力が高く、微細孔32は図7(a)に示す作動流体12のメニスカス(界面張力によって細管内の液体の界面がつくる凸状または凹状の曲面)によって、液封され、逆止弁18前後の圧力差を保持している。   As the pressure balance before and after the check valve 18, the pressure on the heat receiving portion 4 side is high, and the fine hole 32 is a meniscus of the working fluid 12 shown in FIG. 7A (a convex shape created by the liquid interface in the narrow tube by the interfacial tension). Or a concave curved surface), which is liquid-sealed and holds the pressure difference across the check valve 18.

図7(b)は半導体スイッチング素子10から発される熱が変動し、通常より多量の熱を発した場合のメニスカス状態を示したものである。すなわち、加熱量が増加した場合、図6(a)から図6(b)へ移行せず、第1弁体21が閉じた状態を継続し、受熱部4内の気化量増加に伴う受熱空間13内の圧力上昇により、微細孔32のメニスカスが破壊され、受熱部4内の蒸気が微細孔32から気泡として流入管19(逆止弁18前)側に移動した状態を示している。この移動により、受熱空間13内(逆止弁18後)の圧力を下げると共に流入管19(逆止弁18前)側の圧力を上げるため、逆止弁18前後の圧力バランスを通常の状態に戻すことができる。   FIG. 7B shows a meniscus state when the heat generated from the semiconductor switching element 10 fluctuates and generates a larger amount of heat than usual. That is, when the heating amount increases, the state does not shift from FIG. 6A to FIG. 6B, and the first valve body 21 continues to be closed, and the heat receiving space accompanying the increase in the amount of vaporization in the heat receiving unit 4. 13 shows a state in which the meniscus of the fine hole 32 is broken due to the pressure increase in the inside 13, and the steam in the heat receiving part 4 moves from the fine hole 32 to the inflow pipe 19 (in front of the check valve 18) as a bubble. This movement reduces the pressure in the heat receiving space 13 (after the check valve 18) and increases the pressure on the inflow pipe 19 (before the check valve 18), so that the pressure balance before and after the check valve 18 is returned to the normal state. Can be returned.

ここで、微細孔32の大きさは、作動流体12の界面張力によるメニスカス形成の可否で決定され、作動流体12が水の場合、例えば1mm前後が好ましい。   Here, the size of the fine hole 32 is determined by whether or not a meniscus can be formed by the interfacial tension of the working fluid 12, and when the working fluid 12 is water, for example, about 1 mm is preferable.

このように、圧力バランス手段として、第1弁体31に微細孔32を設けることにより、受熱部4内の過剰な圧力上昇に伴い第1弁体31が開かない状態に仮に陥ったとしても、微細孔32から圧力を逃がすため、逆止弁18前後の圧力バランスを通常の状態に戻すことができるので、第1弁体31の開閉が再開され、受熱部内へ作動流体12を安定的に循環させることができることになる。   Thus, as a pressure balance means, by providing the fine hole 32 in the first valve body 31, even if the first valve body 31 is not opened due to excessive pressure rise in the heat receiving portion 4, Since the pressure is relieved from the fine holes 32, the pressure balance before and after the check valve 18 can be returned to the normal state, so that the opening and closing of the first valve body 31 is resumed and the working fluid 12 is stably circulated into the heat receiving portion. Will be able to.

(実施の形態3)
図8に、圧力バランス手段として弁カバー34に圧力補正スリット35を設けた構成を示す。実施の形態1、2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 3)
FIG. 8 shows a configuration in which a pressure correction slit 35 is provided in the valve cover 34 as pressure balancing means. The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図8(a)は図6(a)、図8(b)は図6(b)に相当し、図8(c)は、図8(a)のB−B矢視断面であり、弁カバー34に断面が三角形状の圧力補正スリット35を複数(図8では7個)設けている。   8 (a) corresponds to FIG. 6 (a), FIG. 8 (b) corresponds to FIG. 6 (b), FIG. 8 (c) is a cross-sectional view taken along the line BB in FIG. The cover 34 is provided with a plurality (seven in FIG. 8) of pressure correction slits 35 having a triangular cross section.

この圧力補正スリット35は、図8(a)の状態では、内部が作動流体12で満たされており、図7(a)と同様に、受熱部4側のスリット開口部には、作動流体12の界面張力によるメニスカスが形成され、液封されている。   The pressure correction slit 35 is filled with the working fluid 12 in the state of FIG. 8A, and similarly to FIG. 7A, the working fluid 12 is provided in the slit opening on the heat receiving portion 4 side. A meniscus due to the interfacial tension is formed and sealed.

実施の形態2の微細孔32との違いは、スリット断面が三角形状であり、受熱部4内の蒸気がスリット開口部から気泡としてスリット内を移動するため、抵抗が大きい点である。   The difference from the microscopic hole 32 of the second embodiment is that the slit section has a triangular shape, and the steam in the heat receiving portion 4 moves from the slit opening to the inside of the slit as bubbles, so that the resistance is large.

そのため、図8(c)に示すように、7個の圧力補正スリット35を設けている。   Therefore, as shown in FIG. 8C, seven pressure correction slits 35 are provided.

圧力バランス手段としての作用は実施の形態2の微細孔32と同じであり、詳細な説明は省略する。   The action as the pressure balance means is the same as that of the fine hole 32 of the second embodiment, and detailed description thereof is omitted.

このように、圧力バランス手段として、弁カバー34に圧力補正スリット35を設けることにより、実施の形態2と同様に、受熱部4内の過剰な圧力上昇に伴い第1弁体31が開かない状態に陥っても、圧力補正スリット35から圧力を逃がすことができ、逆止弁18前後の圧力バランスを通常の状態に戻すことができるので、第1弁体31が開いて作動流体12が受熱部内へ供給され、作動流体12を安定的に循環させることができる。   As described above, by providing the pressure correction slit 35 in the valve cover 34 as the pressure balance means, the first valve body 31 is not opened due to excessive pressure rise in the heat receiving portion 4 as in the second embodiment. Even if it falls, the pressure can be released from the pressure correction slit 35, and the pressure balance before and after the check valve 18 can be returned to the normal state. Therefore, the first valve body 31 is opened and the working fluid 12 is moved into the heat receiving portion. The working fluid 12 can be circulated stably.

なお、上記実施形態においては、冷却装置3を電気自動車1に適用したものを説明したが、電力変換装置であるインバータ回路2は電子機器でもあり、電子機器に冷却装置3を適用することも出来る。   In the above embodiment, the cooling device 3 applied to the electric vehicle 1 has been described. However, the inverter circuit 2 that is a power conversion device is also an electronic device, and the cooling device 3 can be applied to the electronic device. .

本発明にかかる冷却装置は、冷媒となる作動流体の循環経路を、受熱部、放熱経路、放熱部、帰還経路、前記受熱部とすることで、作動流体の循環方向を一方向とすると共に、前記帰還経路の前記受熱部近傍または前記受熱部内に、前記作動流体の流れを制御する逆止弁を設け、この逆止弁は、前記帰還経路に連結される流入口を有する弁カバーと、前記受熱部に連結される流出口を有するとともに前記弁カバーとにより箱体を構成する弁ホルダーと、前記弁ホルダーの凹部内を可動自在に設けた第1弁体と、前記箱体内に設けた、前記逆止弁前後の圧力をバランスさせる圧力バランス手段とを備え、前記受熱部内の圧力の上昇時で、前記第1弁体の非作動時に、前記圧力バランス手段により、前記逆止弁前後の圧力をバランスさせることで、受熱部への作動流体を適量供給できるので、供給した作動流体を急激に気化させ、その受熱板部分において作動流体を高速流として移動させることができ、その結果として伝熱面における熱伝達率が向上し、冷却効果を高めることができる。   The cooling device according to the present invention has a circulation path of the working fluid as one direction by setting a circulation path of the working fluid serving as a refrigerant as a heat receiving section, a heat radiation path, a heat radiation section, a return path, and the heat receiving section. A check valve for controlling the flow of the working fluid is provided in the vicinity of the heat receiving portion of the return path or in the heat receiving section, and the check valve includes a valve cover having an inlet connected to the return path; A valve holder having an outlet connected to a heat receiving portion and forming a box with the valve cover; a first valve body movably provided in a recess of the valve holder; and provided in the box. Pressure balance means for balancing the pressure before and after the check valve, and when the pressure in the heat receiving portion rises and when the first valve body is inactive, the pressure balance means causes the pressure before and after the check valve. By balancing Since an appropriate amount of working fluid can be supplied to the heat receiving section, the supplied working fluid can be rapidly vaporized, and the working fluid can be moved as a high-speed flow in the heat receiving plate portion, resulting in a heat transfer coefficient on the heat transfer surface. The cooling effect can be enhanced.

さらに、受熱部内の過剰な圧力上昇に伴い第1弁体が開かない状態に陥っても、圧力バランス手段により、受熱部内の過剰な圧力を逃がして逆止弁前後の圧力をバランスさせるので、開口から作動流体が受熱部内へ供給され、作動流体を安定的に循環させることができる。   Furthermore, even if the first valve body is not opened due to an excessive pressure rise in the heat receiving portion, the pressure balance means releases the excessive pressure in the heat receiving portion and balances the pressure before and after the check valve. The working fluid is supplied into the heat receiving portion from the heat receiving portion so that the working fluid can be circulated stably.

このため、上述のごとく、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を高速流として移動させることができ、その結果として伝熱面における熱伝達率を高め、冷却効果を高めることができるとともに、作動流体を安定的に循環させることができる。   For this reason, as described above, the working fluid can be rapidly vaporized in the heat receiving portion, and the working fluid can be moved as a high-speed flow in the heat receiving plate portion. As a result, the heat transfer rate on the heat transfer surface is increased, and the cooling effect In addition, the working fluid can be circulated stably.

このため、電気自動車の駆動装置としての電力変換装置に使用されるパワー半導体、高い発熱量を有するCPUなどの冷却に有用である。   For this reason, it is useful for cooling power semiconductors used in power conversion devices as drive devices for electric vehicles, CPUs with high heat generation, and the like.

1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
8 放熱体
9 送風機
10 半導体スイッチング素子
11 受熱板
12 作動流体
13 受熱空間
14 受熱板カバー
15 流入口
16 排出口
17 導入管
18 逆止弁
19 流入管
20 開口
21、31 第1弁体
22 第2弁体
23、25 凹部
24、33、34 弁カバー
26 導入口
27 弁ホルダー
32 微細孔
35 圧力補正スリット
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 8 Heat radiating body 9 Blower 10 Semiconductor switching element 11 Heat receiving plate 12 Working fluid 13 Heat receiving space 14 Heat receiving plate cover 15 Inlet 16 Outlet 17 Introduction pipe 18 Check valve 19 Inflow pipe 20 Opening 21, 31 First valve body 22 Second valve body 23, 25 Recess 24, 33, 34 Valve cover 26 Introduction port 27 Valve holder 32 Fine hole 35 Pressure correction slit

Claims (9)

発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、
前記作動流体の熱を放出する放熱部と、
前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、
前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、
前記帰還経路の前記受熱部近傍または前記受熱部内に、前記作動流体の流れを制御する逆止弁を設け、
この逆止弁は、
前記帰還経路に連結される流入口を有する弁カバーと、前記受熱部に連結される流出口を有するとともに前記弁カバーとにより箱体を構成する弁ホルダーと、
前記弁ホルダーの凹部内を可動自在に設けた第1弁体と、前記箱体内に設けた、前記逆止弁前後の圧力をバランスさせる圧力バランス手段とを備え、
前記受熱部内の圧力の上昇時で、前記第1弁体の非作動時に、前記圧力バランス手段により、前記逆止弁前後の圧力をバランスさせることを特徴とする冷却装置。
A heat receiving section having a heat receiving plate for transferring heat from the heating element to the working fluid;
A heat dissipating part for releasing the heat of the working fluid;
Consists of a heat dissipation path and a return path connecting the heat receiving section and the heat dissipation section,
A cooling device that circulates the working fluid to the heat receiving portion, the heat radiating path, the heat radiating portion, the return path, and the heat receiving portion to move heat;
A check valve for controlling the flow of the working fluid is provided in the vicinity of the heat receiving portion of the return path or in the heat receiving portion,
This check valve
A valve cover having an inlet connected to the return path; a valve holder having an outlet connected to the heat receiving portion and forming a box with the valve cover;
A first valve body provided movably in the recess of the valve holder; and a pressure balance means provided in the box for balancing the pressure before and after the check valve;
The cooling device according to claim 1, wherein the pressure balance means balances the pressure before and after the check valve when the pressure in the heat receiving portion increases and when the first valve body is not in operation.
圧力バランス手段は、
第1弁体に設けた開口と、この開口を覆うように第1弁体の弁カバー側に設けた第2弁体と、前記弁カバーに設けた凹部で構成することを特徴とする請求項1記載の冷却装置。
Pressure balance means
An opening provided in the first valve body, a second valve body provided on the valve cover side of the first valve body so as to cover the opening, and a recess provided in the valve cover, The cooling device according to 1.
第1弁体に設けた開口は、円孔であり、その大きさは帰還経路に連結される流入口より小さいことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the opening provided in the first valve body is a circular hole, and the size thereof is smaller than that of the inflow port connected to the return path. 圧力バランス手段は、
第1弁体に設けた、作動流体の界面張力によって閉口される微細孔であることを特徴とする請求項1記載の冷却装置。
Pressure balance means
The cooling device according to claim 1, wherein the cooling device is a fine hole provided in the first valve body and closed by an interfacial tension of the working fluid.
圧力バランス手段は、
弁カバーに設けた圧力補正スリットであることを特徴とする請求項1記載の冷却装置。
Pressure balance means
The cooling device according to claim 1, wherein the cooling device is a pressure correction slit provided in the valve cover.
第1弁体を略水平に設置することを特徴とする請求項1〜5いずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 5, wherein the first valve body is installed substantially horizontally. 第1弁体は、帰還経路側に溜まった作動流体の水頭による圧力によって開くことを特徴とする請求項1〜6いずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 6, wherein the first valve body is opened by the pressure of the hydraulic head of the working fluid accumulated on the return path side. 請求項1〜7いずれか一つに記載の冷却装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1. 請求項1〜7いずれか一つに記載の冷却装置を備えたことを特徴とする電気自動車。 An electric vehicle comprising the cooling device according to claim 1.
JP2011267977A 2011-12-07 2011-12-07 Cooling device, electronic device equipped with the same, and electric vehicle Pending JP2013120010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267977A JP2013120010A (en) 2011-12-07 2011-12-07 Cooling device, electronic device equipped with the same, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267977A JP2013120010A (en) 2011-12-07 2011-12-07 Cooling device, electronic device equipped with the same, and electric vehicle

Publications (1)

Publication Number Publication Date
JP2013120010A true JP2013120010A (en) 2013-06-17

Family

ID=48772724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267977A Pending JP2013120010A (en) 2011-12-07 2011-12-07 Cooling device, electronic device equipped with the same, and electric vehicle

Country Status (1)

Country Link
JP (1) JP2013120010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145069A (en) * 2012-01-13 2013-07-25 Panasonic Corp Cooling device, and electronic apparatus and electric vehicle equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145069A (en) * 2012-01-13 2013-07-25 Panasonic Corp Cooling device, and electronic apparatus and electric vehicle equipped with the same

Similar Documents

Publication Publication Date Title
JP4649359B2 (en) Cooler
US12057370B2 (en) Vacuum modulated two phase cooling loop efficiency and parallelism enhancement
US11976671B2 (en) Vacuum modulated two phase cooling loop performance enhancement
JP2003243590A (en) Loop thermosyphon using microchannel etched semiconductor as evaporator
JP2010094979A (en) Inkjet printer
JP5786132B2 (en) Electric car
JP2006242455A (en) Cooling method and device
JP4899997B2 (en) Thermal siphon boiling cooler
WO2013011682A1 (en) Cooling apparatus, electronic apparatus provided with same, and electric vehicle
JP5957686B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP5891349B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP5799205B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2013120010A (en) Cooling device, electronic device equipped with the same, and electric vehicle
JP6101936B2 (en) Cooling device and electric vehicle equipped with the same
JP2013019549A (en) Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
CN112533442B (en) Microelectronic high-efficiency heat dissipation device
JP5994103B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2011096983A (en) Cooling device
KR101172679B1 (en) Outdoor unit of air conditioner
JP5903548B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2014052117A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP2017067355A (en) Cooling device and electronic apparatus mounting the same and electric vehicle