JP2013114796A - Bipolar battery - Google Patents

Bipolar battery Download PDF

Info

Publication number
JP2013114796A
JP2013114796A JP2011257673A JP2011257673A JP2013114796A JP 2013114796 A JP2013114796 A JP 2013114796A JP 2011257673 A JP2011257673 A JP 2011257673A JP 2011257673 A JP2011257673 A JP 2011257673A JP 2013114796 A JP2013114796 A JP 2013114796A
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
negative electrode
electrode
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011257673A
Other languages
Japanese (ja)
Inventor
Noriaki Nishino
典明 西野
Yoshitaka Minamida
善隆 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011257673A priority Critical patent/JP2013114796A/en
Publication of JP2013114796A publication Critical patent/JP2013114796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bipolar battery capable of restraining malfunction of an entire battery.SOLUTION: The bipolar battery comprises: plural electrode bodies having positive electrodes and negative electrodes, and electrolyte layers arranged between the positive electrodes and the negative electrodes; a positive electrode collector connected to the positive electrodes; a negative electrode collector connected to the negative electrodes; and a series collector arranged between the two laminated electrode bodies and connected to the positive electrodes constituting one electrode body and the negative electrodes constituting the other electrode body. A conductive deformation material deformed according to a temperature is connected to ends of at least one or more collectors selected from a group of the positive electrode collector, the negative electrode collector and the series collector. The conductive deformation material is arranged so that it extends in an outer peripheral direction of the collector, and that the deformed deformation material is in contact with the adjacent other collectors in a lamination direction and the conductive deformation material connected to the other collectors.

Description

本発明は、一方の面側に正極活物質が他方の面側に負極活物質がそれぞれ配置された集電体を有する、バイポーラ電池に関する。   The present invention relates to a bipolar battery having a current collector in which a positive electrode active material is disposed on one surface side and a negative electrode active material is disposed on the other surface side.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   A lithium ion secondary battery has the characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極及び負極と、これらの間に配置される電解質層とが備えられ、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質等が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極や負極の内部へと浸透しやすい。そのため、正極や負極に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池の開発が進められている。   A lithium ion secondary battery includes a positive electrode and a negative electrode, and an electrolyte layer disposed between them. Examples of the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. It has been. When a liquid electrolyte (hereinafter referred to as “electrolytic solution”) is used, the electrolytic solution easily penetrates into the positive electrode and the negative electrode. Therefore, an interface between the active material contained in the positive electrode or the negative electrode and the electrolytic solution is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, when a solid electrolyte that is flame retardant (hereinafter referred to as “solid electrolyte”) is used, the above system can be simplified. Therefore, development of a lithium ion secondary battery in a form provided with a layer containing a solid electrolyte (hereinafter referred to as a “solid electrolyte layer”) is in progress.

このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、集電体の表面に正極活物質層が形成されてなる正極、セパレータ、及び集電体の表面に負極活物質層が形成されてなる負極がこの順で積層されてなる電池要素を有し、少なくとも一の正極活物質層及びセパレータが耐熱性材料を含む、バイポーラ型リチウムイオン二次電池が開示されている。   As a technique related to such a lithium ion secondary battery, for example, in Patent Document 1, a positive electrode in which a positive electrode active material layer is formed on the surface of a current collector, a separator, and a negative electrode active material layer on the surface of the current collector are disclosed. There is disclosed a bipolar lithium ion secondary battery having a battery element in which a formed negative electrode is laminated in this order, and at least one positive electrode active material layer and a separator including a heat-resistant material.

特開2007−335294号公報JP 2007-335294 A

特許文献1に開示されているようなバイポーラ電池では、正極及び負極、並びに、正極と負極との間に配置された電解質層を有する複数の電極体が、導電材を介して電気的に直列に接続されている。そのため、複数の電極体のうち、例えば1つの電極体が破壊された場合であっても、電流が流れなくなってバイポーラ電池全体が使用できなくなる虞があった。   In a bipolar battery as disclosed in Patent Document 1, a plurality of electrode bodies having a positive electrode and a negative electrode and an electrolyte layer disposed between the positive electrode and the negative electrode are electrically connected in series via a conductive material. It is connected. Therefore, even if, for example, one electrode body among the plurality of electrode bodies is destroyed, there is a possibility that the current does not flow and the entire bipolar battery cannot be used.

そこで本発明は、電池全体の機能不全を抑制することが可能な、バイポーラ電池を提供することを課題とする。   Then, this invention makes it a subject to provide the bipolar battery which can suppress the malfunction of the whole battery.

本発明者らは、鋭意検討の結果、集電体を介して電気的に直列に接続された複数の電極体を有するバイポーラ電池の集電体に、温度に応じて変形する導電性変形材を接続しておき、何れかの電極体が異常発熱をした場合に、導電性変形材を変形させて短絡させ、異常発熱した電極体を迂回して電流を流すことにより、何れかの電極体に異常が生じた場合であっても、バイポーラ電池全体の機能不全を防止することが可能になることを知見した。本発明は、当該知見に基づいて完成させた。   As a result of intensive studies, the present inventors have developed a conductive deformable material that deforms depending on temperature on a current collector of a bipolar battery having a plurality of electrode bodies electrically connected in series via the current collector. If any of the electrode bodies is abnormally heated, the conductive deformable material is deformed and short-circuited, and the current is bypassed to the abnormally heated electrode body, so that any electrode body It has been found that even when abnormality occurs, it is possible to prevent malfunction of the entire bipolar battery. The present invention has been completed based on this finding.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、正極及び負極、並びに、正極及び負極の間に配置された電解質層を有する複数の電極体と、正極に接続された正極集電体と、負極に接続された負極集電体と、積層された2つの電極体の間に配置され、一方の電極体を構成する正極、及び、他方の電極体を構成する負極に接続された直列集電体と、を備え、正極集電体、負極集電体、及び、直列集電体からなる群より選択された少なくとも1以上の集電体の端部に、温度に応じて変形する導電性変形材が接続され、導電性変形材は、集電体の外周方向へ延びるように、且つ、変形した導電性変形材が積層方向に隣り合う他の集電体又は当該他の集電体に接続された導電性変形材と接触するように、配置されている、バイポーラ電池である。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention includes a positive electrode and a negative electrode, a plurality of electrode bodies having an electrolyte layer disposed between the positive electrode and the negative electrode, a positive electrode current collector connected to the positive electrode, and a negative electrode current collector connected to the negative electrode. A positive electrode current collector comprising: a positive electrode that is disposed between two stacked electrode bodies, and that is connected to a positive electrode that constitutes one electrode body; and a negative electrode that constitutes the other electrode body. A conductive deformable material that deforms according to temperature is connected to an end of at least one current collector selected from the group consisting of a negative electrode current collector and a series current collector, The conductive deformable material that extends in the outer peripheral direction of the current collector is in contact with another current collector adjacent to the stacking direction or the conductive deformable material connected to the other current collector. In other words, the bipolar battery is arranged.

ここに、「導電性変形材が集電体の外周方向へ延びるように配置されている」とは、変形した導電性変形材が正極や負極に接触しないように、例えば図2に示したように、正極、電解質層、及び、負極の積層方向から見た時に、正極や負極よりも外側に、導電性変形材5a、5bが配置されていることをいう。また、「積層方向」とは、正極集電体、電極体、直列集電体、及び、負極集電体を積層する方向をいう。また、「積層方向に隣り合う他の集電体」とは、変形した導電性変形材が接続されている集電体と、積層方向に隣り合う集電体をいう。   Here, “the conductive deformable material is arranged so as to extend in the outer peripheral direction of the current collector” means that the deformed conductive deformable material does not come into contact with the positive electrode or the negative electrode, for example, as shown in FIG. In addition, it means that the conductive deformation materials 5a and 5b are disposed outside the positive electrode and the negative electrode when viewed from the stacking direction of the positive electrode, the electrolyte layer, and the negative electrode. The “stacking direction” refers to a direction in which the positive electrode current collector, the electrode body, the series current collector, and the negative electrode current collector are stacked. Further, “another current collector adjacent in the stacking direction” refers to a current collector connected to the deformed conductive deformable material and a current collector adjacent to the stacking direction.

温度に応じて変形する導電性変形材が、変形時に、他の集電体や他の集電体に接続された導電性変形材と接触するように配置されていることにより、バイポーラ電池に備えられている電極体が異常発熱した際に、異常発熱した電極体のみを迂回して電流を流し(異常発熱した電極体を直列回路から外し)、異常発熱していない部位を流れる電流の流通経路は維持することが可能になる。かかる形態とすることにより、異常発熱した電極体が破壊に至る事態、異常のない他の電極体へと熱が伝播する事態、及び、異常のない他の電極体も破壊される事態を回避することが可能になるので、何れかの電極体に異常が生じた場合であってもバイポーラ電池全体の機能不全を防止することが可能になる。   The conductive deformable material that deforms depending on the temperature is arranged so as to be in contact with another current collector or the conductive deformable material connected to the other current collector at the time of deformation. When an abnormally heated electrode body heats up, current is routed around only the electrode body that has heated up abnormally (the electrode body that has heated up abnormally is removed from the series circuit), and the current flow path that flows through the part that does not heat up abnormally Can be maintained. By adopting such a configuration, a situation in which an abnormally heated electrode body is destroyed, a situation in which heat is propagated to another electrode body having no abnormality, and a situation in which another electrode body having no abnormality is also destroyed are avoided. Therefore, even if an abnormality occurs in any of the electrode bodies, it is possible to prevent malfunction of the entire bipolar battery.

また、上記本発明において、正極集電体には、正極集電体に接続された正極側へ曲がる導電性変形材が接続され、負極集電体には、負極集電体に接続された負極側へ曲がる導電性変形材が接続され、直列集電体には、直列集電体に接続された正極側へ曲がる導電性変形材、及び、直列集電体に接続された負極側へ曲がる導電性変形材が接続されることが好ましい。かかる形態とすることにより、複数の電極体に含まれるどの電極体に異常が生じた場合であっても、異常が生じた電極体のみを迂回して電流を流せるように導電性変形材を変形させることが可能になるので、バイポーラ電池全体の機能不全を防止しやすくなる。   In the present invention, the positive electrode current collector is connected to a conductive deformable material that bends toward the positive electrode connected to the positive electrode current collector, and the negative electrode current collector is connected to the negative electrode current collector. A conductive deformation material that bends to the side is connected, and the series current collector includes a conductive deformation material that bends to the positive electrode side connected to the series current collector, and a conductive property that bends to the negative electrode side connected to the series current collector. It is preferable that the sexually deformable material is connected. By adopting such a configuration, even if any of the electrode bodies included in the plurality of electrode bodies has an abnormality, the conductive deformable material is deformed so that only the electrode body in which the abnormality has occurred can be bypassed and a current can flow. Therefore, it becomes easy to prevent malfunction of the entire bipolar battery.

本発明によれば、電池全体の機能不全を抑制することが可能な、バイポーラ電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the bipolar battery which can suppress the malfunction of the whole battery can be provided.

バイポーラ電池10を説明する側面図である。1 is a side view illustrating a bipolar battery 10. バイポーラ電池10を説明する上面図である。1 is a top view illustrating a bipolar battery 10. FIG. バイポーラ電池10’を説明する側面図である。It is a side view explaining bipolar battery 10 '.

以下、図面を参照しつつ、本発明について説明する。以下の図面では、外装体等の記載を省略しており、繰り返される符号の一部を省略することがある。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。なお、以下の説明において、「%」は、特に断らない限り、質量%を意味する。   The present invention will be described below with reference to the drawings. In the following drawings, description of an exterior body etc. is abbreviate | omitted and a part of repeated code | symbol may be abbreviate | omitted. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below. In the following description, “%” means mass% unless otherwise specified.

図1は、本発明のバイポーラ電池10を説明する側面図である。また、図2は、バイポーラ電池10を説明する上面図である。図1では、バイポーラ電池10の一部のみを抽出して示している。   FIG. 1 is a side view illustrating a bipolar battery 10 of the present invention. FIG. 2 is a top view illustrating the bipolar battery 10. In FIG. 1, only a part of the bipolar battery 10 is extracted and shown.

図1に示したように、バイポーラ電池10は、複数の電極体1、1、…を有しており、正極集電体2、負極集電体3、又は、直列集電体4、4、…と、電極体1、1、…とが交互に積層されている。電極体1は、正極1a及び負極1cと、正極1a及び負極1cの間に配置された電解質層1bを有している。バイポーラ電池10では、正極1aが図1の紙面上側に、負極1cが図1の紙面下側に位置するように配置されており、積層方向の一番上に配置された電極体1の正極1aに正極集電体2が、積層方向の一番下に配置された電極体1の負極1cに負極集電体3が、それぞれ接続されている。図1及び図2に示したように、正極集電体2の端部には、高温時に、正極集電体2に接続された正極1a側へ湾曲する導電性変形材5aが接続されており、負極集電体3の端部には、高温時に、負極集電体3に接続された負極1c側へ湾曲する導電性変形材5bが接続されている。また、直列集電体4、4、…の端部には、高温時に、直列集電体4、4、…にそれぞれ接続された正極1a、1a、…側へ湾曲する導電性変形材5a、5a、…、及び、高温時に、直列集電体4、4、…にそれぞれ接続された負極1c、1c、…側へ湾曲する導電性変形材5b、5b、…が、それぞれ接続されている。   As shown in FIG. 1, the bipolar battery 10 includes a plurality of electrode bodies 1, 1,..., And the positive electrode current collector 2, the negative electrode current collector 3, or the series current collectors 4, 4, ... and electrode bodies 1, 1, ... are alternately laminated. The electrode body 1 includes a positive electrode 1a and a negative electrode 1c, and an electrolyte layer 1b disposed between the positive electrode 1a and the negative electrode 1c. In the bipolar battery 10, the positive electrode 1 a is arranged on the upper side in the drawing of FIG. 1, and the negative electrode 1 c is arranged on the lower side of the drawing in FIG. 1, and the positive electrode 1 a of the electrode body 1 arranged at the top in the stacking direction. The positive electrode current collector 2 is connected to the negative electrode 1c of the electrode body 1 arranged at the bottom in the stacking direction, and the negative electrode current collector 3 is connected to the negative electrode current collector 3 respectively. As shown in FIGS. 1 and 2, a conductive deformation material 5a that is curved toward the positive electrode 1a connected to the positive electrode current collector 2 is connected to the end of the positive electrode current collector 2 at a high temperature. A conductive deformation material 5b that is curved toward the negative electrode 1c connected to the negative electrode current collector 3 is connected to the end of the negative electrode current collector 3 at a high temperature. Further, at the end of the series current collectors 4, 4,..., The conductive deformation material 5 a that curves toward the positive electrodes 1 a, 1 a,... Connected to the series current collectors 4, 4,. Are connected to the negative electrodes 1c, 1c,... Connected to the series current collectors 4, 4,..., Respectively, at high temperatures.

図3は、1つの電極体1のみに異常が生じ、異常が生じている電極体1(以下において、「電極体1x」という。)が発熱した状態のバイポーラ電池10’を説明する側面図である。図3は、図1の紙面左側から、バイポーラ電池10’を見た図に相当する。   FIG. 3 is a side view for explaining the bipolar battery 10 ′ in which the abnormality occurs in only one electrode body 1 and the electrode body 1 in which the abnormality has occurred (hereinafter referred to as “electrode body 1 x”) generates heat. is there. FIG. 3 corresponds to a view of the bipolar battery 10 ′ viewed from the left side of FIG. 1.

バイポーラ電池10を構成する電極体1に異常が生じて発熱し、バイポーラ電池10が、発熱した電極体1xを備えたバイポーラ電池10’の状態になると、電極体1xに接続されている直列集電体4、4の温度が上昇する。電極体1xの正極1aに接続されている直列集電体4の温度が上昇すると、この直列集電体4に接続されている導電性変形材5aが電極体1xの正極1a側(図3の紙面下側)へと湾曲して、導電性変形材5a’になり、電極体1xの負極1cに接続されている直列集電体4の温度が上昇すると、この直列集電体4に接続されている導電性変形材5bが電極体1xの負極1c側(図3の紙面上側)へと湾曲して、導電性変形材5b’になる。そして、バイポーラ電池10’では、導電性変形材5a’と導電性変形材5b’とが接触する。湾曲した導電性変形材5a’及び湾曲した導電性変形材5b’を接触させると、電極体1xを迂回して、接触した導電性変形材5a’及び導電性変形材5b’に電流を流すことができる。このようにして電流を流すと、電極体1xには電流が流れないため、バイポーラ電池10’の電圧はバイポーラ電池10の電圧よりも低下する。しかしながら、直列接続された複数の電極体に含まれる電極体が破壊されると電流を流せなかった従来のバイポーラ電池とは異なり、バイポーラ電池10は、電極体1xが破壊されても電流を継続して流すことができるので、電池全体の機能不全を回避することができる。また、バイポーラ電池10によれば、電極体1xに電流を流さないようにすることが可能になるので、電極体1xが破壊に至る事態、及び、他の電極体1、1、…に破壊が伝播する事態を回避することも可能になる。したがって、本発明によれば、電池全体の機能不全を抑制することが可能な、バイポーラ電池10を提供することができる。なお、導電性変形材が備えられていない従来のバイポーラ電池において、セルに異常が生じた場合であっても電池全体が機能不全に至る事態を防止するために、各電極体の状態を監視する監視回路を設けようとすると、すべての集電体に配線が必要になる等、構造が複雑になるのに加えて、エネルギー密度の低下やコスト増加等が懸念される。これに対し、バイポーラ電池10によれば、集電体(正極集電体2、負極集電体、及び、直列集電体4、4、…)に導電性変形材5a、5bを接続するのみなので、構造の複雑化、エネルギー密度の低下、及び、コストの増加を抑制することが可能になる。   When an abnormality occurs in the electrode body 1 constituting the bipolar battery 10 and heat is generated, and the bipolar battery 10 is in a state of a bipolar battery 10 ′ having the heated electrode body 1 x, the series current collector connected to the electrode body 1 x The temperature of the bodies 4 and 4 rises. When the temperature of the series current collector 4 connected to the positive electrode 1a of the electrode body 1x rises, the conductive deformation material 5a connected to the series current collector 4 becomes the positive electrode 1a side of the electrode body 1x (in FIG. 3). When the temperature of the series current collector 4 that is curved to the lower side of the paper and becomes the conductive deformable material 5a ′ and connected to the negative electrode 1c of the electrode body 1x rises, it is connected to the series current collector 4 The conductive deformable material 5b is curved toward the negative electrode 1c side (upper side of the drawing in FIG. 3) of the electrode body 1x to become a conductive deformable material 5b ′. In the bipolar battery 10 ′, the conductive deformable material 5 a ′ and the conductive deformable material 5 b ′ are in contact with each other. When the curved conductive deformable material 5a ′ and the curved conductive deformable material 5b ′ are brought into contact, the electrode body 1x is bypassed, and an electric current is passed through the contacted conductive deformable material 5a ′ and the conductive deformable material 5b ′. Can do. When a current is passed in this way, no current flows through the electrode body 1x, so the voltage of the bipolar battery 10 'is lower than the voltage of the bipolar battery 10. However, unlike the conventional bipolar battery in which the current cannot flow when the electrode bodies included in the plurality of electrode bodies connected in series are destroyed, the bipolar battery 10 continues the current even if the electrode body 1x is destroyed. Malfunction of the entire battery can be avoided. Further, according to the bipolar battery 10, since it is possible to prevent the current from flowing through the electrode body 1x, the situation in which the electrode body 1x is destroyed and the other electrode bodies 1, 1,. It is also possible to avoid the situation of propagation. Therefore, according to the present invention, it is possible to provide the bipolar battery 10 capable of suppressing the malfunction of the entire battery. In a conventional bipolar battery not provided with a conductive deformable material, the state of each electrode body is monitored in order to prevent a situation in which the entire battery becomes malfunctioning even when an abnormality occurs in the cell. If an attempt is made to provide a monitoring circuit, the structure becomes complicated, for example, wiring is required for all the current collectors, and there is a concern about a decrease in energy density and an increase in cost. On the other hand, according to the bipolar battery 10, only the conductive deformation materials 5a and 5b are connected to the current collectors (the positive electrode current collector 2, the negative electrode current collector, and the series current collectors 4, 4,...). Therefore, it is possible to suppress the complexity of the structure, the decrease in energy density, and the increase in cost.

また、バイポーラ電池10では、正極集電体2に導電性変形材5aが、負極集電体3に導電性変形材5bが、それぞれ接続されており、すべての直列集電体4、4、…に、それぞれ、2つの導電性変形材(導電性変形材5a及び導電性変形材5b)が接続されている。かかる形態とすることにより、複数の電極体1、1、…に含まれるどの電極体1に異常が生じた場合であっても、異常が生じた電極体1のみを迂回して電流を流せるように導電性変形材5a、5bを変形させることが可能になるので、電池全体の機能不全を防止しやすいバイポーラ電池10を得ることができる。   In the bipolar battery 10, the conductive deformable material 5 a is connected to the positive electrode current collector 2, and the conductive deformable material 5 b is connected to the negative electrode current collector 3, and all the series current collectors 4, 4,. In addition, two conductive deformation materials (conductive deformation material 5a and conductive deformation material 5b) are connected to each other. By adopting such a configuration, even if an abnormality occurs in any of the electrode bodies 1 included in the plurality of electrode bodies 1, 1,... Since the conductive deformable members 5a and 5b can be deformed, it is possible to obtain the bipolar battery 10 that can easily prevent malfunction of the entire battery.

バイポーラ電池10において、正極1aに含有させる正極活物質は、正極1aと負極1cとの間を移動させる金属イオンに応じた正極活物質を適宜選択すれば良い。例えば、バイポーラ電池10がリチウムイオン電池である場合、正極活物質としては、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)等の層状活物質のほか、オリビン型リン酸鉄リチウム(LiFePO)等のオリビン型活物質や、スピネル型マンガン酸リチウム(LiMn)等のスピネル型活物質等、公知の正極活物質を適宜用いることができる。また、バイポーラ電池10がナトリウムイオン電池である場合、正極活物質としては、鉄酸ナトリウム(NaFeO)、フッ素化燐酸鉄ナトリウム(NaFePOF)等、公知の正極活物質を適宜用いることができる。このほか、バイポーラ電池10がカリウムイオン電池やマグネシウムイオン電池やカルシウムイオン電池である場合、正極活物質としては、それぞれの電池に使用可能な正極活物質を適宜用いることができる。 In the bipolar battery 10, the positive electrode active material contained in the positive electrode 1a may be appropriately selected according to the metal ions that move between the positive electrode 1a and the negative electrode 1c. For example, when the bipolar battery 10 is a lithium ion battery, examples of the positive electrode active material include layered active materials such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), and olivine-type lithium iron phosphate (LiFePO 4). 4 ) and other known positive electrode active materials such as spinel type active materials such as spinel type lithium manganate (LiMn 2 O 4 ) can be used as appropriate. When the bipolar battery 10 is a sodium ion battery, a known positive electrode active material such as sodium ferrate (NaFeO 2 ) or fluorinated sodium iron phosphate (Na 2 FePO 4 F) is appropriately used as the positive electrode active material. Can do. In addition, when the bipolar battery 10 is a potassium ion battery, a magnesium ion battery, or a calcium ion battery, a positive electrode active material that can be used for each battery can be appropriately used as the positive electrode active material.

正極活物質の形状は、例えば粒子状や薄膜状等にすることができる。正極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上50μm以下であることがより好ましい。また、正極1aにおける正極活物質の含有量は、特に限定されないが、例えば40%以上99%以下とすることが好ましい。   The shape of the positive electrode active material can be, for example, particulate or thin film. The average particle diameter (D50) of the positive electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 50 μm. Moreover, the content of the positive electrode active material in the positive electrode 1a is not particularly limited, but is preferably 40% or more and 99% or less, for example.

正極活物質と固体電解質との界面に高抵抗層が形成され難くすることにより、電池抵抗の増加を防止しやすい形態にする観点から、本発明では、正極活物質が、イオン伝導性酸化物で被覆されていることが好ましい。正極活物質を被覆するリチウムイオン伝導性酸化物としては、例えば、一般式LiAO(ただし、Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta又はWであり、x及びyは正の数である。)で表される酸化物を挙げることができる。具体的には、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiWO等を例示することができる。また、リチウムイオン伝導性酸化物は、複合酸化物であっても良い。正極活物質を被覆する複合酸化物としては、上記リチウムイオン伝導性酸化物の任意の組み合わせを採用することができ、例えば、LiSiO−LiBO、LiSiO−LiPO等を挙げることができる。また、イオン伝導性酸化物は、正極活物質の少なくとも一部を被覆してれば良く、正極活物質全面を被覆していても良い。また、正極活物質を被覆するイオン伝導性酸化物の厚さは、例えば、0.1nm以上100nm以下であることが好ましく、1nm以上20nm以下であることがより好ましい。なお、イオン伝導性酸化物の厚さは、例えば、透過型電子顕微鏡(TEM)等を用いて測定することができる。 From the viewpoint of making it easy to prevent an increase in battery resistance by making it difficult to form a high resistance layer at the interface between the positive electrode active material and the solid electrolyte, in the present invention, the positive electrode active material is an ion conductive oxide. It is preferably coated. Examples of the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (where A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, and the like). Or W and x and y are positive numbers.) Specifically, Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like. The lithium ion conductive oxide may be a complex oxide. As the composite oxide covering the positive electrode active material, any combination of the above lithium ion conductive oxides can be employed. For example, Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned. Moreover, the ion conductive oxide should just coat | cover at least one part of a positive electrode active material, and may coat | cover the positive electrode active material whole surface. In addition, the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).

正極1aは、少なくとも正極活物質が含有されていれば良く、このほかに、公知の固体電解質や、正極活物質と他の物質とを結着させるバインダーや、導電性を向上させる導電材等が含有されていても良い。例えば、バイポーラ電池10がリチウムイオン電池である場合、正極1aに含有させることが可能な固体電解質としては、LiPSや、LiS及びPを混合して作製したLiS−P等の硫化物系固体電解質を例示することができる。正極1aに固体電解質を含有させる場合、その固体電解質の形態は特に限定されず、結晶質の固体電解質のほか、非晶質の固体電解質やガラスセラミックス、及び、ポリエチレンオキシド(PEO)やポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)等のポリマー電解質であっても良い。また、正極1aに含有させることが可能なバインダーとしては、スチレンブタジエンゴム(SBR)やポリフッ化ビニリデン(PVdF)等を例示することができ、正極1aに含有させることが可能な導電材としては、気相法炭素繊維やカーボンブラック等の炭素材料のほか、電池の使用時の環境に耐えることが可能な金属材料を例示することができる。正極1aにおける固体電解質の含有量は特に限定されないが、例えば10%以上90%以下とすることが好ましい。また、液体に上記正極活物質等を分散して調整したスラリー状の組成物を正極集電体2や直列集電体4等に塗布する過程を経て正極1aを作製する場合、正極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。正極1aの厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。 The positive electrode 1a only needs to contain at least a positive electrode active material. In addition, a known solid electrolyte, a binder that binds the positive electrode active material and another material, a conductive material that improves conductivity, and the like are included. It may be contained. For example, when the bipolar battery 10 is a lithium ion battery, as the solid electrolyte that can be contained in the positive electrode 1a, Li 3 PS 4 and, Li 2 S and P 2 S 5 mixture of Li 2 was produced S it can be exemplified -P 2 S sulfide-based solid electrolytes such as 5. When the positive electrode 1a contains a solid electrolyte, the form of the solid electrolyte is not particularly limited. In addition to a crystalline solid electrolyte, an amorphous solid electrolyte, glass ceramic, polyethylene oxide (PEO), or polyvinylidene fluoride is used. -A polymer electrolyte such as hexafluoropropylene copolymer (PVdF-HFP) may be used. Examples of the binder that can be contained in the positive electrode 1a include styrene butadiene rubber (SBR) and polyvinylidene fluoride (PVdF). As the conductive material that can be contained in the positive electrode 1a, In addition to carbon materials such as vapor grown carbon fiber and carbon black, metal materials that can withstand the environment when the battery is used can be exemplified. Although content of the solid electrolyte in the positive electrode 1a is not specifically limited, For example, it is preferable to set it as 10% or more and 90% or less. Further, when the positive electrode 1a is produced through a process in which the slurry-like composition prepared by dispersing the positive electrode active material or the like in a liquid is applied to the positive electrode current collector 2 or the series current collector 4 or the like, Examples of the liquid in which the liquid is dispersed include heptane and a nonpolar solvent can be preferably used. The thickness of the positive electrode 1a is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm.

また、電解質層1bに含有させる電解質としては、バイポーラ電池に使用可能な公知の電解質を適宜用いることができる。そのような電解質としては、正極1aに含有させることが可能な上記固体電解質等を例示することができる。このほか、電解質層1bには、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させることができる。そのようなバインダーとしては、スチレンブタジエンゴム(SBR)等を例示することができる。ただし、高出力化を図りやすくするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する電解質層1bを形成可能にする等の観点から、電解質層1bに含有させるバインダーは5%以下とすることが好ましい。また、液体に上記固体電解質等を分散して調整したスラリー状の組成物を正極1aや負極1c等に塗布する過程を経て電解質層1bを作製する場合、固体電解質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。電解質層1bにおける固体電解質材料の含有量は、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。電解質層1bの厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。   Moreover, as an electrolyte to be contained in the electrolyte layer 1b, a known electrolyte that can be used for a bipolar battery can be appropriately used. As such an electrolyte, the said solid electrolyte etc. which can be contained in the positive electrode 1a can be illustrated. In addition, the electrolyte layer 1b may contain a binder that binds the solid electrolytes from the viewpoint of developing plasticity. Examples of such a binder include styrene butadiene rubber (SBR). However, in order to easily increase the output, the electrolyte layer 1b is included from the viewpoint of preventing the excessive aggregation of the solid electrolyte and enabling the formation of the electrolyte layer 1b having a uniformly dispersed solid electrolyte. The binder is preferably 5% or less. In addition, when the electrolyte layer 1b is manufactured through a process of applying the slurry-like composition prepared by dispersing the solid electrolyte or the like in a liquid to the positive electrode 1a or the negative electrode 1c, as a liquid for dispersing the solid electrolyte or the like, A heptane etc. can be illustrated and a nonpolar solvent can be used preferably. The content of the solid electrolyte material in the electrolyte layer 1b is, for example, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. The thickness of the electrolyte layer 1b varies greatly depending on the configuration of the battery. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

また、負極1cは、負極活物質を含有していれば良く、このほかに、固体電解質や、負極活物質と他の物質とを結着させるバインダーや、導電性を向上させる導電材等が含有されていても良い。負極1cに含有させる負極活物質としては、例えば、金属イオンを吸蔵放出可能な公知の負極活物質を適宜用いることができる。そのような負極活物質としては、カーボン活物質、酸化物活物質、及び、金属活物質等を例示することができる。カーボン活物質は、炭素を含有していれば特に限定されず、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、Si、及び、Sn等を挙げることができる。また、負極活物質として、リチウム含有金属活物質を用いても良い。リチウム含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されず、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、Si、及び、Snの少なくとも一種とを含有する合金を挙げることができる。 The negative electrode 1c only needs to contain a negative electrode active material. In addition, the negative electrode 1c contains a solid electrolyte, a binder that binds the negative electrode active material and another material, a conductive material that improves conductivity, and the like. May be. As the negative electrode active material contained in the negative electrode 1c, for example, a known negative electrode active material capable of occluding and releasing metal ions can be used as appropriate. As such a negative electrode active material, a carbon active material, an oxide active material, a metal active material, etc. can be illustrated. The carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. Examples of the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO. Examples of the metal active material include In, Al, Si, and Sn. Further, a lithium-containing metal active material may be used as the negative electrode active material. The lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.

負極活物質の形状は、例えば粒子状、薄膜状等にすることができる。負極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、負極1cにおける負極活物質の含有量は、特に限定されないが、例えば40%以上99%以下とすることが好ましい。   The shape of the negative electrode active material can be, for example, particulate or thin film. The average particle diameter (D50) of the negative electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. Moreover, the content of the negative electrode active material in the negative electrode 1c is not particularly limited, but is preferably 40% or more and 99% or less, for example.

さらに、負極1cには、正極1aに含有させることが可能な上記固体電解質等を含有させることができる。このほか、負極1cには、負極活物質や固体電解質を結着させるバインダーや導電性を向上させる導電材が含有されていても良い。負極1cに含有させることが可能なバインダーや導電材としては、正極1aに含有させることが可能な上記バインダーや導電材等を例示することができる。負極1cに導電材を含有させる場合、導電材の添加量は、電子伝導性を向上させる効果を発揮しやすくする等の観点から、導電材を含む負極の重さの10%以上とし、容量の低下を抑制しやすくする等の観点から、導電材を含む負極の重さの80%以下とする。導電材の添加量は、導電材を含む負極の重さの20%以上60%以下とすることが好ましい。また、液体に上記負極活物質等を分散して調整したスラリー状の組成物を負極集電体3や直列集電体4等に塗布する過程を経て負極1cを作製する場合、負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極1cの厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、本発明において、正極1a及び負極1cの質量比は特に限定されないが、正極1aと負極1cとの間を移動するイオンを十分に受け入れられる形態にする観点から、負極1cの容量は正極1aの容量も多くすることが好ましい。   Furthermore, the negative electrode 1c can contain the solid electrolyte that can be contained in the positive electrode 1a. In addition, the negative electrode 1c may contain a binder for binding the negative electrode active material and the solid electrolyte, and a conductive material for improving conductivity. Examples of the binder and conductive material that can be contained in the negative electrode 1c include the binder and conductive material that can be contained in the positive electrode 1a. When the conductive material is contained in the negative electrode 1c, the amount of the conductive material is set to 10% or more of the weight of the negative electrode including the conductive material from the viewpoint of easily exerting the effect of improving the electronic conductivity, From the standpoint of facilitating the decrease, the weight of the negative electrode including the conductive material is 80% or less. The addition amount of the conductive material is preferably 20% to 60% of the weight of the negative electrode including the conductive material. In the case where the negative electrode 1c is manufactured through a process in which a slurry-like composition prepared by dispersing the negative electrode active material or the like in a liquid is applied to the negative electrode current collector 3 or the series current collector 4 or the like, Examples of the liquid in which the liquid is dispersed include heptane and a nonpolar solvent can be preferably used. Further, the thickness of the negative electrode 1c is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. In the present invention, the mass ratio of the positive electrode 1a and the negative electrode 1c is not particularly limited, but from the viewpoint of sufficiently accepting ions moving between the positive electrode 1a and the negative electrode 1c, the capacity of the negative electrode 1c is positive electrode 1a. It is preferable to increase the capacity.

また、正極集電体2、負極集電体3、及び、直列集電体4には、バイポーラ電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。体積エネルギー密度を高めやすくする等の観点から、バイポーラ電池10では、正極集電体2、負極集電体3、及び、直列集電体4の厚さは10μm以下とすることが好ましい。   The positive electrode current collector 2, the negative electrode current collector 3, and the series current collector 4 can be made of a known metal that can be used as a current collector of a bipolar battery. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified. From the viewpoint of easily increasing the volume energy density, etc., in the bipolar battery 10, the thickness of the positive electrode current collector 2, the negative electrode current collector 3, and the series current collector 4 is preferably 10 μm or less.

また、導電性変形材5a、5bには、温度変化によって反り量が変化する、線膨張係数の異なる複数の金属が積層された板状の部材を用いることができる。具体的には、線膨張係数の異なる2種類の金属を積層させたバイメタルや、線膨張係数の異なる3種類の金属を積層させたトリメタル等を、導電性変形材5a、5bとして用いることができる。導電性変形材5a、5bを、変形させやすい形態にする観点からは、導電性変形材5a、5bを構成する複数の金属のうち、一の金属に、線膨張係数が小さい金属を用いることが好ましい。線膨張係数が小さい金属としては、アンバー鋼(Invar鋼)等を例示することができる。ここでいう「アンバー鋼」とは、Fe−Ni合金であるアンバー鋼、Fe−Ni−Co合金であるスーパーアンバー鋼、及びFe−Co−Cr合金であるステンレスアンバー鋼を含む概念であり、いずれを用いても良い。入手性やコストの観点からは、Fe−Ni合金であるアンバー鋼を用いることがより好ましい。また、腐食性を有する材料を真空蒸着する場合など、耐食性が要求される場面においては、ステンレスアンバー鋼が好ましいこともある。また、導電性変形材5a、5bを構成する上記一の金属と積層される第二金属としては、バイポーラ電池10の使用時の環境に耐えることができ、且つ、バイメタルの熱膨張率の大きい方の金属として利用可能な公知の金属材料を適宜用いることができる。そのような第二金属としては、ニッケル、Fe−Ni−Mn合金、Fe−Ni−Cr合金などを例示することができる。   In addition, as the conductive deformable members 5a and 5b, plate-like members in which a plurality of metals having different linear expansion coefficients, in which the amount of warpage changes with a temperature change, can be used. Specifically, a bimetal obtained by laminating two kinds of metals having different linear expansion coefficients, a trimetal obtained by laminating three kinds of metals having different linear expansion coefficients, and the like can be used as the conductive deformation materials 5a and 5b. . From the viewpoint of making the conductive deformable materials 5a and 5b easy to deform, it is preferable to use a metal having a small linear expansion coefficient as one metal among a plurality of metals constituting the conductive deformable materials 5a and 5b. preferable. Examples of the metal having a small linear expansion coefficient include amber steel (Invar steel). The term “amber steel” as used herein is a concept including an amber steel that is an Fe—Ni alloy, a super amber steel that is an Fe—Ni—Co alloy, and a stainless amber steel that is an Fe—Co—Cr alloy. May be used. From the viewpoint of availability and cost, it is more preferable to use amber steel that is an Fe—Ni alloy. Further, in a scene where corrosion resistance is required, such as when vacuum-depositing a corrosive material, stainless amber steel may be preferable. The second metal laminated with the one metal constituting the conductive deformation material 5a, 5b can withstand the environment when the bipolar battery 10 is used, and the bimetal has a higher coefficient of thermal expansion. A known metal material that can be used as the metal can be appropriately used. Examples of such second metal include nickel, Fe—Ni—Mn alloy, Fe—Ni—Cr alloy and the like.

バイポーラ電池10において、導電性変形材5a、5bには、同一の部材を用いることができる。導電性変形材5aとして用いる場合には、相対的に線膨張係数の小さい金属が図1の紙面下側を向くように配置すれば良く、導電性変形材5bとして用いる場合には、相対的に線膨張係数の小さい金属が図1の紙面上側を向くように配置すれば良い。   In the bipolar battery 10, the same member can be used for the conductive deformation members 5a and 5b. When used as the conductive deformable material 5a, the metal having a relatively small linear expansion coefficient may be disposed so as to face the lower side of the drawing in FIG. What is necessary is just to arrange | position so that a metal with a small coefficient of linear expansion may face the upper surface of the paper of FIG.

また、バイポーラ電池10において、導電性変形材5a、5bを、正極集電体2、負極集電体3、及び、直列集電体4に接続する方法は特に限定されない。溶接等に代表される公知の方法で接続しても良く、公知の接着剤等を用いて接続しても良い。   In the bipolar battery 10, the method of connecting the conductive deformable materials 5 a and 5 b to the positive electrode current collector 2, the negative electrode current collector 3, and the series current collector 4 is not particularly limited. The connection may be made by a known method typified by welding or the like, or may be made using a known adhesive or the like.

本発明に関する上記説明では、湾曲した導電性変形材5a’と湾曲した導電性変形材5b’とを接触させる形態を例示したが、本発明のバイポーラ電池は当該形態に限定されない。本発明のバイポーラ電池は、変形させた導電性変形体を、当該変形させた導電性変形体が接続されている集電体と積層方向に隣り合う他の集電体に接触させる形態とすることも可能である。   In the above description of the present invention, the form in which the curved conductive deformation material 5a 'and the curved conductive deformation material 5b' are brought into contact with each other has been exemplified. However, the bipolar battery of the present invention is not limited to this form. In the bipolar battery of the present invention, the deformed conductive deformation body is brought into contact with another current collector adjacent to the current collector to which the deformed conductive deformation body is connected in the stacking direction. Is also possible.

また、本発明に関する上記説明では、温度に応じて変形する導電性変形材5a、5bが集電体(正極集電体2、負極集電体3、直列集電体4、4、…)に接続されている形態を例示したが、本発明のバイポーラ電池は当該形態に限定されない。本発明のバイポーラ電池は、集電体に、集電体とは線膨張係数が異なる金属を接合することにより、集電体の一部を導電性変形材として機能させる形態とすることも可能である。このような形態とする場合には、例えば、積層方向を法線方向とする面(積層面)の大きさが正極及び負極よりも大きい集電体を用い、集電体の外縁に、集電体とは線膨張係数が異なる金属を接合すれば良い。そして、例えば、導電性変形材5a、5bに代えて、集電体よりも線膨張係数が小さい金属を集電体に接合する(正極集電体2の下面側、負極集電体3の上面側、並びに、直列集電体4、4、…の上面側及び下面側に接合する)ことにより、バイポーラ電池10と同様の効果を奏するバイポーラ電池を得ることができる。   In the above description of the present invention, the conductive deformable materials 5a and 5b that are deformed according to temperature are used as current collectors (positive electrode current collector 2, negative electrode current collector 3, serial current collectors 4, 4,...). Although the connected form was illustrated, the bipolar battery of the present invention is not limited to the form. The bipolar battery of the present invention can be configured such that a part of the current collector functions as a conductive deformable material by joining a metal having a coefficient of linear expansion different from that of the current collector to the current collector. is there. In the case of such a configuration, for example, a current collector having a surface in which the lamination direction is a normal direction (lamination surface) is larger than that of the positive electrode and the negative electrode, and the current collector is disposed on the outer edge of the current collector. What is necessary is just to join the metal from which a coefficient of linear expansion differs from a body. For example, instead of the conductive deformation materials 5a and 5b, a metal having a smaller linear expansion coefficient than the current collector is joined to the current collector (the lower surface side of the positive electrode current collector 2, the upper surface of the negative electrode current collector 3). Are joined to the upper surface side and the lower surface side of the current collectors 4, 4,...), A bipolar battery having the same effect as the bipolar battery 10 can be obtained.

1、1x…電極体
1a…正極
1b…電解質層
1c…負極
2…正極集電体
3…負極集電体
4…直列集電体
5a、5b、5a’、5b’…導電性変形材
10、10’…バイポーラ電池
DESCRIPTION OF SYMBOLS 1, 1x ... Electrode body 1a ... Positive electrode 1b ... Electrolyte layer 1c ... Negative electrode 2 ... Positive electrode collector 3 ... Negative electrode collector 4 ... Series collector 5a, 5b, 5a ', 5b' ... Conductive deformation material 10, 10 '... bipolar battery

Claims (2)

正極及び負極、並びに、前記正極及び前記負極の間に配置された電解質層を有する複数の電極体と、
前記正極に接続された正極集電体と、
前記負極に接続された負極集電体と、
積層された2つの前記電極体の間に配置され、一方の電極体を構成する前記正極、及び、他方の電極体を構成する前記負極に接続された直列集電体と、を備え、
前記正極集電体、前記負極集電体、及び、前記直列集電体からなる群より選択された少なくとも1以上の集電体の端部に、温度に応じて変形する導電性変形材が接続され、
前記導電性変形材は、前記集電体の外周方向へ延びるように、且つ、変形した前記導電性変形材が積層方向に隣り合う他の集電体又は該他の集電体に接続された導電性変形材と接触するように、配置されている、バイポーラ電池。
A plurality of electrode bodies having a positive electrode and a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode;
A positive electrode current collector connected to the positive electrode;
A negative electrode current collector connected to the negative electrode;
Arranged between the two stacked electrode bodies, the positive electrode constituting one electrode body, and a series current collector connected to the negative electrode constituting the other electrode body,
A conductive deformable material that deforms according to temperature is connected to an end of at least one current collector selected from the group consisting of the positive electrode current collector, the negative electrode current collector, and the series current collector. And
The conductive deformable material extends in the outer peripheral direction of the current collector, and the deformed conductive deformable material is connected to another current collector adjacent to the stacking direction or the other current collector. A bipolar battery arranged to be in contact with the conductive deformation material.
前記正極集電体には、前記正極集電体に接続された前記正極側へ曲がる前記導電性変形材が接続され、
前記負極集電体には、前記負極集電体に接続された前記負極側へ曲がる前記導電性変形材が接続され、
前記直列集電体には、前記直列集電体に接続された前記正極側へ曲がる前記導電性変形材、及び、前記直列集電体に接続された前記負極側へ曲がる前記導電性変形材が接続される、請求項1に記載のバイポーラ電池。
The positive electrode current collector is connected to the conductive deformable material bent to the positive electrode side connected to the positive electrode current collector,
The negative electrode current collector is connected to the conductive deformable material bent to the negative electrode side connected to the negative electrode current collector,
The series current collector includes the conductive deformation material bent to the positive electrode side connected to the series current collector, and the conductive deformation material bent to the negative electrode side connected to the series current collector. The bipolar battery according to claim 1, which is connected.
JP2011257673A 2011-11-25 2011-11-25 Bipolar battery Pending JP2013114796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257673A JP2013114796A (en) 2011-11-25 2011-11-25 Bipolar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257673A JP2013114796A (en) 2011-11-25 2011-11-25 Bipolar battery

Publications (1)

Publication Number Publication Date
JP2013114796A true JP2013114796A (en) 2013-06-10

Family

ID=48710173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257673A Pending JP2013114796A (en) 2011-11-25 2011-11-25 Bipolar battery

Country Status (1)

Country Link
JP (1) JP2013114796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549129A (en) * 2015-09-16 2017-03-29 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
JP2019531573A (en) * 2017-02-23 2019-10-31 トヨタ モーター ヨーロッパ Solid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549129A (en) * 2015-09-16 2017-03-29 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
CN106549129B (en) * 2015-09-16 2022-06-28 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
JP2019531573A (en) * 2017-02-23 2019-10-31 トヨタ モーター ヨーロッパ Solid battery
US10991987B2 (en) 2017-02-23 2021-04-27 Toyota Motor Europe Solid state batteries

Similar Documents

Publication Publication Date Title
JP6319335B2 (en) Manufacturing method of all solid state battery
JP6729410B2 (en) All solid state battery
JP6149657B2 (en) All solid battery
JP7274300B2 (en) All-solid battery
JP5413129B2 (en) Solid battery manufacturing method
JP2013120717A (en) All-solid-state battery
JP5900281B2 (en) All-solid battery and method for manufacturing the same
JP2016207614A (en) Solid-state battery
JP2013243004A (en) Solid battery, and solid battery manufacturing method
JP2013093216A (en) Battery
JP2012226862A (en) Monopolar solid state battery, laminate solid state battery, and mobile entity
JP5605348B2 (en) battery
JP2014086226A (en) All-solid-state battery system
JP7169520B2 (en) All-solid battery
JP2018006330A (en) Battery
JP2018037247A (en) Laminated all-solid secondary battery
JP2015018670A (en) Bipolar battery
JP2019029339A (en) battery
JP2019192338A (en) All-solid battery
JP7386046B2 (en) All solid state battery
JP2013114796A (en) Bipolar battery
JP2013097907A (en) Solid state battery and manufacturing method thereof
JP7318672B2 (en) All-solid battery
JP7395289B2 (en) Electrodes and solid-state batteries applied to solid-state batteries
JP2014102982A (en) All-solid-state battery and manufacturing method for the same