JP2013111572A - Filter medium for gas removal - Google Patents

Filter medium for gas removal Download PDF

Info

Publication number
JP2013111572A
JP2013111572A JP2011273847A JP2011273847A JP2013111572A JP 2013111572 A JP2013111572 A JP 2013111572A JP 2011273847 A JP2011273847 A JP 2011273847A JP 2011273847 A JP2011273847 A JP 2011273847A JP 2013111572 A JP2013111572 A JP 2013111572A
Authority
JP
Japan
Prior art keywords
fiber
filter medium
filter
gas removal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011273847A
Other languages
Japanese (ja)
Inventor
Masayuki Okamoto
正行 岡本
Kazuhiro Okuyama
一博 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AIR FILTER KK
Original Assignee
NIPPON AIR FILTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AIR FILTER KK filed Critical NIPPON AIR FILTER KK
Priority to JP2011273847A priority Critical patent/JP2013111572A/en
Publication of JP2013111572A publication Critical patent/JP2013111572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a requirement for removing a pollutant gas such as an alkaline gas or an acidic gas contained in the atmosphere in addition to conventional removal of dust particles in building air conditioning, and air conditioning systems in hospital facilities and clean rooms along with recent environmental change.SOLUTION: A filter medium for gas removal is made by attaching an ion-exchange group and a reaction group with a method such as graft polymerization, a chemical liquid impregnation method and the like to a laminated filter base material which is prepared by attaching an adhesive medium of a binder, a fused fiber or adhesive powder to nonwoven or woven fabric constituted of a synthetic fiber or a glass fiber and a natural fiber of 0.3-50 μm in fiber diameter and 0.1-1.0 mm in thickness to laminate a micro-fine fiber layer of 0.01-0.5 μm in fiber diameter, and to unite the nonwoven or woven fabric with the micro-fine fiber.

Description

本発明は工場空調、大気中に含まれる粉じん粒子と、アルカリ性ガスや酸性ガスなどの汚染ガスとを同時に除去できるようにしたエアフィルタのガス除去フィルタろ材に関するものである。  The present invention relates to an air filter gas removal filter medium capable of simultaneously removing dust particles contained in the air-conditioning air and atmospheric air and pollutant gases such as alkaline gas and acid gas.

近年の環境変化と共にビル空調、病院施設やクリーンルームなどへの空調システムに於いては、従来の粉じん粒子の除去に加え、大気中に含まれる、アルカリ性ガスあるいは酸性ガスなどの汚染ガスの除去が要求されるようになってきた。  Along with recent environmental changes, air conditioning systems for building air conditioning, hospital facilities, clean rooms, etc. require removal of pollutant gases such as alkaline gas or acid gas contained in the atmosphere in addition to conventional dust particle removal. It has come to be.

一般的にエアフィルタに於いてはフィルタろ材の繊維密度を高くして、より高い捕集効率を維持しょうとしている。一方フィルタろ材の繊維密度を高くすると、ろ過材の圧損が高くなり通過風量が少なくなるという現象が生じる。  In general, in an air filter, the fiber density of a filter medium is increased to maintain a higher collection efficiency. On the other hand, when the fiber density of the filter medium is increased, a phenomenon occurs in which the pressure loss of the filter medium increases and the passing air volume decreases.

そこで、通過風量の増大及び圧損の低減を図る手法として、フィルタろ材を折り畳んでひだ形状にし、セパレータなどを介在してフィルタろ材の面積を広くする方法が採用されている。そして粉じん粒子の除去機能だけでなく、ガス除去機能を持たせようと下記の方法が試みられている。  Therefore, as a method for increasing the amount of passing air and reducing the pressure loss, a method is adopted in which the filter medium is folded into a pleated shape and the area of the filter medium is widened by using a separator or the like. The following methods have been tried to provide not only the function of removing dust particles but also the function of removing gas.

(1)フィルタろ材に脱臭材を付着または含浸させる事によって脱臭機能を持たせる方法。
(2)フィルタユニットの前または後に脱臭作用を有するフィルタを設置して、除去機能と脱臭機能を持たせるようにした方法。
(1) A method of providing a deodorizing function by attaching or impregnating a deodorizing material to a filter medium.
(2) A method in which a filter having a deodorizing action is installed before or after the filter unit so as to have a removing function and a deodorizing function.

しかしながら、前述した方法にあっては、(1)の場合にはフィルタろ材自身の圧力損失が高くなり、通過風量が少なくなる問題があり、(2)の場合には取り付ける設置スペースが必要となる問題があった。更には、いずれも加工、組み立てが煩雑となる上、コストが高くなるといった問題があった。  However, in the method described above, in the case of (1), there is a problem that the pressure loss of the filter medium itself becomes high and the amount of passing air is reduced, and in the case of (2), an installation space for installation is required. There was a problem. In addition, there are problems that both processing and assembly are complicated and the cost is high.

本発明は前記事情に鑑みてなされたもので、その目的はビル、病院施設やクリーンルームなどの空調取り入れ口に、粉じん粒子除去機能とガス除去機能とを備えたガス除去フィルタろ材からなるエアフィルタユニットを設け、このエアフィルタユニットを通して、快適室内環境を維持しょうとしたものである。  The present invention has been made in view of the above circumstances, and an object thereof is an air filter unit comprising a gas removal filter medium having a dust particle removal function and a gas removal function at an air conditioning intake of a building, hospital facility, clean room or the like. Through this air filter unit, we tried to maintain a comfortable indoor environment.

次に、本発明の目的は、従来のフィルタろ材と同等以上の除じん効率を維持しつつ、圧力損失を大幅に低減したガス除去フィルタろ材を使用して、省エネルギー化を可能にすると共にフィルタの寿命が長寿命となるようにしたものである。  Next, an object of the present invention is to enable energy saving while using a gas removal filter medium having a greatly reduced pressure loss while maintaining a dust removal efficiency equivalent to or higher than that of a conventional filter medium, and to save energy. The service life is long.

さらに、本発明の目的は、従来のフィルタろ材と同等以上の除じん効率を維持しつつ、吸着機能を有したガス除去フィルタろ材を使用して、空気中に含まれるアルカリ性ガスあるいは酸性ガス、これらの固形粒子や放射性ヨウ素などの汚染ガスの除去を可能にしたものである。  Furthermore, the object of the present invention is to use a gas removal filter medium having an adsorption function while maintaining a dust removal efficiency equivalent to or higher than that of a conventional filter medium. This makes it possible to remove pollutant gases such as solid particles and radioactive iodine.

さらに、本発明の目的は、有害物質捕集、除去機能とろ過機能の寿命がほぼ同時に来るようにしたガス除去フィルタろ材を提供しょうとしたものである。  Furthermore, an object of the present invention is to provide a gas removal filter medium in which the lifetime of the harmful substance collection / removal function and the filtration function is almost the same.

本発明の第1の解決手段は、繊維径が0.3〜50μm、厚みが0.1〜1.0mmの合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタ基材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与したガス除去フィルタろ材を提供するものである。  The first solving means of the present invention is that the fiber diameter is 0.3 to 50 μm and the thickness is 0.1 to 1.0 mm of synthetic fiber, nonwoven fabric or woven fabric made of glass fiber, natural fiber, etc., binder, molten fiber or Adhesive powder adhesive medium is attached, a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm is laminated, and graft polymerization or chemical solution is applied to the laminated filter base material in which the nonwoven fabric or woven fabric and the superfine fiber are integrated. It is an object of the present invention to provide a gas removal filter medium to which an ion exchange group or a reactive group is added by a technique such as an attachment method.

本発明の第2の解決手段は、前記解決手段1の積層フィルタ基材の超極細繊維の薄い層の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜1.5mmの不織布あるいは織布を乾燥固着して一体にした積層フィルタ基材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与したガス除去フィルタろ材を提供するものである。  The second solving means of the present invention is such that a binder, a molten fiber or an adhesive powder adhesive medium is attached to the surface of the thin layer of the ultrafine fiber of the multilayer filter substrate of the solving means 1, and the fiber diameter is 1 to 100 μm, A gas removal filter medium in which a non-woven fabric or a woven fabric having a thickness of 0.05 to 1.5 mm is dry-fixed and integrated with a laminated filter base material to which an ion exchange group or a reactive group is added by a technique such as graft polymerization or chemical solution deposition. Is to provide.

ここで、積層フィルタ基材の不織布あるいは織布はポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、レーヨン、ポリプロピレン繊維などの有機繊維やガラス繊維、パルプ繊維が使用可能である。これらを単独で用いてもよいし2種類以上を併用しても良い。  Here, the nonwoven fabric or woven fabric of the laminated filter substrate can be organic fibers such as polyester fibers, polyamide fibers, polyethylene fibers, rayon, polypropylene fibers, glass fibers, and pulp fibers. These may be used alone or in combination of two or more.

これらの不織布あるいは織布の形成方法としては湿式抄紙法を用いる方法や乾式法、スパンボンド法、メルトブロー法、電界紡糸法などが用いられる。  As a method for forming these nonwoven fabrics or woven fabrics, a method using a wet papermaking method, a dry method, a spunbond method, a melt blow method, an electrospinning method, or the like is used.

積層フィルタ基材の接着媒体はバインダ、溶融繊維あるいは接着パウダーなどが使用される。そしてバインダは有機系バインダ、無機系バインダ又は混合して加えて得られる混合バインダが使用される。なお、好ましくはアクリル樹脂が使用される。溶融繊維は芯鞘構造の繊維などが使用される。さらに接着パウダーとしては軟化点の低い樹脂の粉末などが使用される。  As an adhesive medium for the laminated filter substrate, a binder, molten fiber, adhesive powder, or the like is used. As the binder, an organic binder, an inorganic binder, or a mixed binder obtained by mixing is used. An acrylic resin is preferably used. As the molten fiber, a fiber having a core-sheath structure is used. Further, resin powder having a low softening point is used as the adhesive powder.

積層フィルタ基材の超極細繊維は単繊維直径が0.01〜0.5μmの範囲内にあるものであるものを指し、その形態は繊維状の形態であればよく、長さや断面形状にはこだわらないものである。そして超極細繊維を構成する材料は特に限定されるものではないが、例えばポリエステルやポリアミド、ポリオレフイン、ポリフェニレンスルフイド(PPS)などが挙げられる。ポリエステルとしてはポリエチレンテレフタレート(PET)、ポリトリメチレンテレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。また、ポリアミドとしてはナイロン6(N6)、ナイロン66(N66)、ナイロン11(N11)などが挙げられる。ポリオレフインとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)などが挙げられる。上記材料以外にもフェノール樹脂やポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリエーテルサルフォン(PES)、ポリスルホン、フッ素系高分子やそれらの誘導体を用いることももちろん可能である。  The ultrafine fiber of the laminated filter substrate refers to a fiber having a single fiber diameter in the range of 0.01 to 0.5 μm, and the form may be a fibrous form, It is not particular. The material constituting the ultrafine fiber is not particularly limited, and examples thereof include polyester, polyamide, polyolefin, polyphenylene sulfide (PPS), and the like. Examples of the polyester include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polylactic acid (PLA). Examples of polyamide include nylon 6 (N6), nylon 66 (N66), nylon 11 (N11), and the like. Examples of the polyolefin include polyethylene (PE), polypropylene (PP), and polystyrene (PS). In addition to the above materials, it is of course possible to use phenol resins, polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyethersulfone (PES), polysulfone, fluorine-based polymers and their derivatives.

本発明に使用される超極細繊維層は上述のような超極細繊維から構成されているが、超極細繊維は束状になく超極細繊維が分散した状態にあるのが好ましい。これは超極細繊維がスリップフロー効果で流体の流れが良くなり低圧力損失になるためである。  The super extra fine fiber layer used in the present invention is composed of the super extra fine fibers as described above, but the super extra fine fibers are preferably not in a bundle but in a state in which the extra extra fine fibers are dispersed. This is because the ultrafine fiber has a slip flow effect that improves the fluid flow and lowers the pressure loss.

そして超極細繊維層は電界紡糸法により製造されたものである。このように電界紡糸法により製造された超極細繊維層は基材と併用することで十分な強度を有するため各種フィルタの加工性にすぐれている。この電界紡糸法とは従来公知の方法でありノズルなどから供給した紡糸溶液に対して電界を作用させることにより延伸して繊維化する方法である。  The ultrafine fiber layer is produced by an electrospinning method. Thus, since the super extra fine fiber layer manufactured by the electrospinning method has sufficient strength when used in combination with the base material, it is excellent in processability of various filters. The electrospinning method is a conventionally known method, and is a method of drawing and fiberizing by applying an electric field to a spinning solution supplied from a nozzle or the like.

次いで前記繊維化した超極細繊維を不織布あるいは織布上に積層させて超極細繊維層を形成できる。この不織布あるいは織布は超極細繊維を捕集でき且つ、フィルタの加工性および強度が保持できるものであれば良く特に限定されるものではない。  Subsequently, the ultrafine fibers layered can be formed by laminating the fiberized ultrafine fibers on a nonwoven fabric or a woven fabric. The nonwoven fabric or woven fabric is not particularly limited as long as it can collect ultra-fine fibers and can maintain the workability and strength of the filter.

低い圧力損失でありながら高効率の粉じん捕集機能を発揮する積層フィルタ基材の製作は、繊維径が0.3〜50μm、厚みが0.1〜1.0mmの合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に、ノズルなどから供給した紡糸材料に対して電界を作用させ延伸した超極細繊維を形成する電界紡糸法、溶融紡糸法により0.01〜0.5μmの超極細繊維層を積層させることで、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタ基材を形成する。  The production of a laminated filter substrate that exhibits a high-efficiency dust collection function with low pressure loss is made by synthetic fiber or glass fiber having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm, or natural fiber. An electric field that forms a stretched ultra-fine fiber by applying an electric field to the spinning material supplied from a nozzle or the like on a non-woven fabric or woven fabric made of fibers, etc. A laminated filter base material in which the non-woven fabric or woven fabric and the ultra-fine fiber are integrated is formed by laminating the ultra-fine fiber layer of 0.01 to 0.5 μm by a spinning method or a melt spinning method.

さらに、積層フィルタ基材のもう一つの形態は前記積層フィルタ基材の超極細繊維層の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜1.5mmの不織布あるいは織布を乾燥固着するか、単に物理的に重ねて一体にした積層フィルタろ材である。  Furthermore, another form of the multilayer filter base material is that a binder, molten fiber or adhesive powder adhesive medium is attached to the surface of the ultrafine fiber layer of the multilayer filter base material, the fiber diameter is 1 to 100 μm, and the thickness is 0.00. It is a laminated filter medium in which a non-woven fabric or woven fabric having a thickness of 05 to 1.5 mm is fixed by drying, or is simply physically stacked and integrated.

次に、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮するガス除去フィルタろ材の製作は、前記積層フィルタ基材にα線、β線、γ線、X線、電子線などの放射線を照射してラジカル(反応開始種)を生成させる。この照射後の積層フィルタ基材を重合性モノマー含有溶液に浸漬して重合性モノマーを積層フィルタ基材繊維にグラフト重合させる。その結果この重合性モノマーが繊維にグラフト重合側鎖として結合したものが生成する。この生成された重合性モノマーを側鎖として有する繊維をアニオン交換基又はカチオン交換基を有する化合物と接触反応させることにより、グラフト重合された側鎖の重合性モノマーにイオン交換基が導入されて最終生成物が得られる。また、ガスとの反応性を持った溶液や粒子状除去材を含浸、添着、乾燥させてガス除去フィルタろ材も製作できる。そこで、かかる生成物が空気中のアルカリ性ガス、酸性ガスなどの汚染ガスと接触した際には、表面積の多い超極細繊維がガスと接触して、効率よく接触するので、その汚染ガス除去率が優れたものとなる。  Next, the production of a gas removal filter medium that has a high-efficiency dust collection function while exhibiting a low pressure loss and that exhibits the function of adsorbing polluted gases is performed using α-rays, β-rays, and γ-rays on the laminated filter substrate. Radiation (reaction initiation species) is generated by irradiation with radiation such as X-rays and electron beams. The laminated filter substrate after the irradiation is immersed in a polymerizable monomer-containing solution, and the polymerizable monomer is graft-polymerized on the laminated filter substrate fiber. As a result, the polymerizable monomer is bound to the fiber as a graft polymerization side chain. The resulting fiber having a polymerizable monomer as a side chain is contact-reacted with a compound having an anion exchange group or a cation exchange group, whereby an ion exchange group is introduced into the polymerizable monomer of the graft polymerized side chain, and finally A product is obtained. Further, a gas removal filter medium can be produced by impregnating, attaching and drying a solution having a reactivity with a gas or a particulate removal material. Therefore, when such a product comes into contact with a pollutant gas such as an alkaline gas or an acid gas in the air, the ultrafine fiber having a large surface area comes into contact with the gas and efficiently comes into contact with the product. It will be excellent.

また重合性モノマーとして、ビニルスルホン酸、スチレンスルホン酸、ビニルピリジンアクリル酸、メタクリル酸、アリールアミン、クロロメチルスルホン酸などがあるが、カチオン交換基、アニオン交換基の必要性によって適宜選択されるものでありこれらの範囲に限定されるものではない。  Examples of the polymerizable monomer include vinyl sulfonic acid, styrene sulfonic acid, vinyl pyridine acrylic acid, methacrylic acid, arylamine, and chloromethyl sulfonic acid, which are appropriately selected depending on the necessity of a cation exchange group and an anion exchange group. And are not limited to these ranges.

また、含浸反応液としては水酸化カリウム、炭酸カリウム、硫酸、アミンなどが使用される。  As the impregnation reaction solution, potassium hydroxide, potassium carbonate, sulfuric acid, amine or the like is used.

なお、ガス除去フィルタろ材は、イオン交換基や薬品を付与した不織布あるいは織布に繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維とを組み合わせた構成でもよい。  The gas removal filter medium is formed by laminating a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm on a nonwoven fabric or woven fabric provided with an ion exchange group or a chemical, and the nonwoven fabric or woven fabric and the superfine fiber. The structure which combined these may be sufficient.

そして、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮する機能性フィルタの製作は、ガス除去フィルタろ材などをジグザグ状に折り畳んでひだ折り加工し、ひだ折り加工したろ材間にセパレータまたはビード状接着剤を挟み込んで外枠内に接着材で気密に取り付けて製作される。  And the production of a functional filter that has a high-efficiency dust collection function while exhibiting a low pressure loss and a function of adsorbing polluted gas, folds the gas removal filter medium in a zigzag shape, It is manufactured by sandwiching a separator or bead-like adhesive between pleated filter media and attaching it airtightly with an adhesive in the outer frame.

また、ガス除去フィルタろ材をフィルタパックとして使用する場合はガス除去フィルタろ材の超極細繊維の薄い層の表面にバインダを塗布し、不織布を乾燥固着して一体に配置するのが好ましい。しかしこれに限定される事なくどのような態様で使用しても良い。  When the gas removal filter medium is used as a filter pack, it is preferable that a binder is applied to the surface of the thin layer of the ultrafine fibers of the gas removal filter medium, and the non-woven fabric is dried and fixed, so that they are arranged integrally. However, the present invention is not limited to this and may be used in any manner.

そしてフィルタパックとして使用する場合は内側にシール材を取り付けたセル型のフィルタ枠に気密性をもたされた状態で取り付けられる。  And when using as a filter pack, it attaches in the state with the airtightness to the cell type filter frame which attached the sealing material inside.

また、もう一つの形態は、表面に突出するエンボスと裏面に突出するエンボスを幅方向に交互に形成したガス除去フィルタろ材などを、突出するエンボス同士が接触するようにジグザグ状に折り畳んでひだ折り加工し、外枠内に接着材で気密に取り付けて製作される。  In another form, a gas removal filter medium or the like in which the embosses protruding on the front surface and the embosses protruding on the back surface are alternately formed in the width direction is folded in a zigzag shape so that the protruding embosses are in contact with each other. It is manufactured and airtightly attached to the outer frame with an adhesive.

上記問題解決手段による作用は次の通りである。  The operation of the above problem solving means is as follows.

まず、エアフィルタの運転によりガス除去フィルタろ材に被処理ガスが吸気される。そして、ガス除去フィルタろ材を通過した被処理ガスは被処理ガス中に含まれるNOx、SOx、アンモニアガスなどが、固形粒子と共にガス除去フィルタに捕集吸着され、清浄エアーとして排出される。  First, the gas to be treated is sucked into the gas removal filter medium by the operation of the air filter. Then, NOx, SOx, ammonia gas and the like contained in the gas to be processed that have passed through the gas removal filter medium are collected and adsorbed by the gas removal filter together with the solid particles, and are discharged as clean air.

さらに、フィルタ基材表面に付着される除去材の層厚、量は、被処理ガス中に含まれる有害物質の性質、量に応じて付与量なども変更できるようにしたので、エアフィルタのガス除去機能とろ過機能がうまく作用し寿命もほぼ同時期になり、従来のようにどちらかの機能が早く失われ新規のガス除去フィルタろ材に取り替えなければならないといった問題が解決される。  Furthermore, the layer thickness and amount of the removal material attached to the filter substrate surface can be changed according to the nature and amount of harmful substances contained in the gas to be treated. The removal function and the filtration function work well and the service life is almost at the same time, which solves the problem that one of the functions is lost as soon as in the prior art and a new gas removal filter medium must be replaced.

また、これによりガス除去フィルタろ材の取り替え頻度が少なくなり、取替え作業に手間が掛からない上、長期に亘り安定した性能が得られ経費コストの削減も可能となる。  In addition, the replacement frequency of the gas removal filter medium is reduced, so that the replacement work is not time-consuming and stable performance can be obtained over a long period of time, thereby reducing cost.

さらに、粒子状除去材添着の場合、ガス除去フィルタろ材のじん埃捕集側の表面でバインダにより固着するため、清浄化空気排出側には粒子状除去材の付着が無い状態となる。このため、除去材がエアフィルタろ材から剥離して清浄化空気中に飛散することがない。したがって、清浄化空気が除去材によって汚染されることのないものである。  Furthermore, in the case of particulate removal material attachment, since the binder is fixed on the surface of the gas removal filter medium on the dust collecting side, the particulate removal material does not adhere to the cleaned air discharge side. For this reason, the removing material is not peeled off from the air filter medium and scattered in the purified air. Therefore, the cleaning air is not contaminated by the removing material.

(1)超極細繊維を用いたガス除去フィルタろ材とすることにより、ろ材自身の圧力損失が低減でき、通過風量を確保できる。
(2)超極細繊維をフィルタ基材に用いることにより、比表面積を大きくでき、ガス除去性能を効果的に高めることができる。
(3)ガス除去フィルタろ材に除じん機能とガス除去機能を持たせたので、従来別々に製作していたフィルタを一つにすることができ、設置スペースや設置コストを削減することができる。
(4)種々の基材に超極細繊維を積層させることにより、様々な用途に応じたガス除去フィルタろ材を製作することができる。
(5)超極細繊維の薄い層の表面に不織布あるいは織布を一体にしたガス除去フィルタろ材としたので、超極細繊維層が損傷したり、剥がれて飛散したりすることがなく、また表面層を変更することで様々な形状に加工することができる。
(6)フィルタ基材にイオン交換基や反応性溶液を目的、量に応じて、表裏面に添着させることにより、ガス除去フィルタろ材に捕集された有害物質を長期間、安定的に捕らえることができる。したがって、ガス除去フィルタろ材に捕集された有害物質を効率よく捕集除去でき、安全性および性能の高いものである。
(7)イオン交換基や反応性溶液の層厚量を、被処理ガス中に含まれる有害物質の種類、性質、量に応じて変更できるようにしたので、有害物質などの除去機能と除じん機能の寿命がほぼ同時期になるため、ガス除去フィルタろ材の機能を十分活用できる。
(8)粒子状除去材の添着をローラの転写などによりガス除去フィルタろ材のじん埃捕集側の表面および裏基材に行うことから、ガス除去フィルタろ材を容易な手段により製造することができる。
(9)ガス除去フィルタろ材への除去材の添着を確実にすると共にコストの安いろ材を提供できる。
(10)ガス除去フィルタろ材表面に添着させる除去材の種類、性質、層の厚さを変化させたので、エアフィルタろ材の圧力損失を制御し、不要なろ材内部の目詰まりを軽減し、エアフィルタろ材の寿命を延ばすことができる。
(11)従来の粒子状除去材では粒子が大きくプリーツ加工には限界があったが、このガス除去フィルタろ材とすることでプレフィルタから中性能フィルタ、HEPAフィルタ、ULPAフィルタまでプリーツ加工することができる。
(1) By using a gas removal filter medium using ultrafine fibers, the pressure loss of the filter medium itself can be reduced, and the passing air volume can be secured.
(2) By using ultrafine fibers for the filter substrate, the specific surface area can be increased, and the gas removal performance can be effectively enhanced.
(3) Since the gas removal filter medium has a dust removal function and a gas removal function, it is possible to reduce the installation space and the installation cost by using one filter that has been manufactured separately.
(4) By laminating ultrafine fibers on various substrates, gas removal filter media suitable for various applications can be produced.
(5) Since a gas removal filter medium in which a nonwoven fabric or a woven fabric is integrated on the surface of a thin layer of superfine fibers, the superfine fiber layer is not damaged or peeled off and scattered. It can be processed into various shapes by changing.
(6) Capturing harmful substances collected on the gas removal filter medium stably over a long period of time by attaching ion exchange groups and reactive solutions to the filter base material on the front and back surfaces according to the purpose and amount. Can do. Therefore, harmful substances collected by the gas removal filter medium can be efficiently collected and removed, and the safety and performance are high.
(7) The layer thickness of ion exchange groups and reactive solutions can be changed according to the type, nature, and amount of harmful substances contained in the gas to be treated, so it can remove and remove harmful substances. Since the functional life is almost the same period, the function of the gas removal filter medium can be fully utilized.
(8) Since the particulate removal material is attached to the dust collecting surface and back substrate of the gas removal filter medium by transfer of a roller or the like, the gas removal filter medium can be manufactured by an easy means. .
(9) It is possible to reliably attach the removal material to the gas removal filter medium and provide a low-cost filter medium.
(10) Since the type, nature, and layer thickness of the removal material to be attached to the surface of the gas removal filter medium are changed, the pressure loss of the air filter medium is controlled, and unnecessary clogging inside the filter medium is reduced. The life of the filter media can be extended.
(11) Although the conventional particulate removal material has large particles and there is a limit to the pleating process, by using this gas removal filter medium, it is possible to pleat from the prefilter to the medium performance filter, the HEPA filter, and the ULPA filter. it can.

本発明のガス除去フィルタろ材を使用したパネル型プレフィルタを示す概略図。Schematic which shows the panel type pre filter using the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した自動更新型エアフィルタを示す概略図。Schematic which shows the automatic update type air filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した自動更新型エアフィルタのもう一つの実施例を示す概略図。Schematic which shows another Example of the automatic update type air filter using the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した吹き流し形エアフィルタを示す概略図を示す。The schematic diagram which shows the blow-off type air filter which uses the gas removal filter medium of this invention is shown. 本発明のガス除去フィルタろ材を使用した吹き流し形エアフィルタのもう一つの実施例を示す概略図。Schematic which shows another Example of the blow-off type air filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用したフランジ型中性能フィルタを示す概略図。Schematic which shows the flange type medium performance filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用したボックス型中性能フィルタを示す概略図。Schematic which shows the box type medium performance filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した両フランジ型準HEPAフィルタを示す概略図。Schematic which shows the double flange type | mold semi-HEPA filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した両フランジ型HEPAフィルタを示す概略図。Schematic which shows the double flange type HEPA filter using the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用したボックス型HEPAフィルタを示す機能性フィルタの概略図。The schematic diagram of the functional filter which shows the box type HEPA filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用したフランジ型ULPAフィルタを示す機能性フィルタの概略図。The schematic of the functional filter which shows the flange type ULPA filter which uses the gas removal filter medium of this invention. 本発明のガス除去フィルタろ材を使用した機能性フィルタパックの概略図。Schematic of the functional filter pack using the gas removal filter medium of the present invention.

以下、ガス除去フィルタろ材を使用した各種フィルタの形状について添付図1〜12に基づいて説明する。  Hereinafter, the shape of various filters using a gas removal filter medium will be described with reference to FIGS.

図1はパネル型プレフィルタでろ材1と外枠2の接合部分はすべて接着構造で耐久性に優れ、ろ材1の裏側に接着した金網とフィンガーによって均一なプリーツ間隙と山の高さが保持されてろ材1全体でまんべんなく粉塵が捕集できるため急激な圧損の上昇がなく、旧来にない長寿命の特長を持っている。しかも超軽量・コンパクトなため交換作業が容易で、さらに使用済みのフィルタは圧縮・減容して廃棄できる。そしてろ材1の材質はガス除去フィルタろ材からなり、外枠2の材質はカードボードとなっている。  FIG. 1 shows a panel type pre-filter, where the joining parts of the filter medium 1 and the outer frame 2 are all bonded and have excellent durability, and a uniform pleat gap and peak height are maintained by a wire mesh and fingers bonded to the back side of the filter medium 1. Since dust can be collected evenly by the entire filter medium 1, there is no sudden increase in pressure loss, and it has the characteristics of an unprecedented long life. Moreover, because it is ultralight and compact, replacement work is easy, and used filters can be discarded after being compressed and reduced in volume. The material of the filter medium 1 is a gas removal filter medium, and the material of the outer frame 2 is a card board.

図2は長尺寸法のガス除去フィルタろ材1をタイマにより間欠的に巻き取るかまたはろ材の圧力損失を検出して巻き取るようにした自動更新型エアフィルタである。ろ材1はマット状にしたもので非常に復元力が強く柔軟性を有したものである。しかも長さ20mものろ材1が直径30cmほどのコンパクトなロールになっているがろ過面では50cmの厚さに戻り表面濾過でなくその厚み全体で粉塵を捕集するので粉塵保持容量の極めて大きなものとなっている。  FIG. 2 shows an automatic renewal type air filter in which a long-sized gas removal filter medium 1 is intermittently wound by a timer or a pressure loss of the filter medium is detected. The filter medium 1 has a mat shape and has a very high restoring force and flexibility. Moreover, although the filter medium 1 having a length of 20 m is a compact roll having a diameter of about 30 cm, it returns to a thickness of 50 cm on the filtration surface and collects dust over the entire thickness instead of surface filtration, so that the dust holding capacity is extremely large. It has become.

図3は、図2に示す自動更新型エアフィルタの特長を生かし、更に前記ろ材1のろ過面をジグザグにすることによって、限られたスペースで大容量を処理できるようにしたものである。  FIG. 3 makes it possible to process a large volume in a limited space by taking advantage of the automatic update type air filter shown in FIG. 2 and further zigzag the filtration surface of the filter medium 1.

図4は、ガス除去フィルタろ材を袋状に縫製した袋状ろ材3で金属製のハニカム型ヘッダ枠4に取り付けてなる吹き流し形エアフィルタである。そして袋状ろ材3は奥行きが890mmある6個のフィルタポケットから構成されている。そして高い捕集率、低い圧力損失でダスト保持容量が極めて大きくそして非常にコンパクトなものとなっている。  FIG. 4 shows a blow-off type air filter that is attached to a metallic honeycomb header frame 4 with a bag-shaped filter medium 3 obtained by sewing a gas removal filter medium in a bag shape. The bag-shaped filter medium 3 is composed of six filter pockets having a depth of 890 mm. And with high collection rate and low pressure loss, the dust holding capacity is extremely large and very compact.

図5は金属製のスリット型ヘッダ枠5に袋状ろ材3を取り付けた吹き流し形エアフィルタで、低いろ過抵抗ですべてのポケットが膨らみろ材は隅々まで有効ろ過面となりダストはろ材全面で捕集されるようになるので、圧力損失の上昇が極めて緩やかになる効果を有している。  Fig. 5 shows a blow-off type air filter in which a bag-like filter medium 3 is attached to a slit-type header frame 5 made of metal. All the pockets swell with low filtration resistance. The filter medium becomes an effective filtration surface to every corner. Dust is collected over the entire filter medium. As a result, an increase in pressure loss is extremely slow.

図6はガス除去フィルタろ材1を金属製外枠6の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠6内周面とをシール材で気密性を持たせて一体化したフランジ型フィルタである。
そしてろ材1は繊維径が0.3〜50μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織布1Aにバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が1〜100μm、厚みが0.05〜1.繊維径が0.01〜0.5μmの超極細繊維層1Bを積層させ、不織布あるいは織布1Aと超極細繊維層1Bを一体化したガス除去フィルタろ材である。
6 shows that the gas removal filter medium 1 is zigzag-folded in a metal outer frame 6 and a corrugated aluminum separator 7 is inserted between the filter medium 1 so that the filter medium 1 and the outer peripheral surface of the outer frame 6 are sealed with a sealing material. This is a flange-type filter integrated with a certain characteristic.
The filter medium 1 is a non-woven fabric or woven fabric 1A made of glass fiber, synthetic fiber or natural fiber having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm, and an adhesive medium of binder, molten fiber or adhesive powder. The fiber diameter is 1 to 100 μm and the thickness is 0.05 to 1. This is a gas removal filter medium obtained by laminating ultrafine fiber layers 1B having a fiber diameter of 0.01 to 0.5 μm and integrating the nonwoven fabric or woven fabric 1A and the ultrafine fiber layer 1B.

図7は図6のフランジ型フィルタの変形例で金属製外枠6に代えて合板枠8にしたボックス型フィルタである。  FIG. 7 is a modification of the flange type filter of FIG. 6 and shows a box type filter in which a plywood frame 8 is used instead of the metal outer frame 6.

図8はガス除去フィルタろ材1を金属製外枠9の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠9内周面とを接着剤で塗布して気密性を持たせて一体化した両フランジ型準HEPAフィルタである。  FIG. 8 shows that the gas removal filter medium 1 is zigzag-folded in a metal outer frame 9, and a corrugated aluminum separator 7 is inserted between the filter media 1 to apply the filter medium 1 and the inner peripheral surface of the outer frame 9 with an adhesive. Thus, it is a double flange type quasi-HEPA filter integrated with airtightness.

図9はガス除去フィルタろ材1を金属製外枠10の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に、ろ材1と外枠9内周面とをシール材で気密性を持たせて一体化した両フランジ型HEPAフィルタである。そしてろ材1は繊維径が0.3〜50μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織布1Aにバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が1〜100μm、厚みが0.05〜1.繊維径が0.01〜0.5μmの超極細繊維層1Bを積層させた積層フィルタ基材をグラフト重合法などの手法によりイオン交換基を付与したガス除去フィルタろ材である。  FIG. 9 shows that the gas removal filter medium 1 is folded in a zigzag shape in a metal outer frame 10, the corrugated aluminum separator 7 is interposed between the filter medium 1, and the filter medium 1 and the inner peripheral surface of the outer frame 9 are sealed with a sealing material. Is a double flange type HEPA filter integrated with each other. The filter medium 1 is a non-woven fabric or woven fabric 1A made of glass fiber, synthetic fiber or natural fiber having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm, and an adhesive medium of binder, molten fiber or adhesive powder. The fiber diameter is 1 to 100 μm and the thickness is 0.05 to 1. This is a gas removal filter medium in which an ion exchange group is added to a laminated filter base material obtained by laminating ultrafine fiber layers 1B having a fiber diameter of 0.01 to 0.5 μm by a technique such as graft polymerization.

図10はガス除去フィルタろ材1を合板製の外枠11の中にジグザグ状に折込み、ろ材間に糸状の樹脂12を挟んでろ材1の間隔を一定幅に保持して形成したフィルタパックを外枠11内周面にシール材で一体化したボックス型HEPAフィルタである。  FIG. 10 shows a filter pack formed by folding the gas removal filter medium 1 into a plywood outer frame 11 in a zigzag shape, and holding a thread-like resin 12 between the filter mediums to keep the distance of the filter medium 1 constant. This is a box-type HEPA filter integrated with a sealing material on the inner peripheral surface of the frame 11.

図11はガス除去フィルタろ材1を金属製外枠13の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠13内周面とをシール材で塗布して気密性を持たせて一体化したフランジ型ULPAフィルタである。  FIG. 11 shows that the gas removal filter medium 1 is zigzag-folded in a metal outer frame 13, and a corrugated aluminum separator 7 is inserted between the filter medium 1 and the filter medium 1 and the inner peripheral surface of the outer frame 13 are applied with a sealing material. Thus, the flange-type ULPA filter is integrated with airtightness.

図12はガス除去フィルタろ材1の表面に突出するエンボス14と裏面に突出するエンボス15を幅方向に交互に形成し突出するエンボス同士が接触するようにジグザグ状に折り畳んでひだ折り加工して形成したフィルタパックの斜視図を示したものである。  12 is formed by alternately forming embosses 14 projecting on the surface of the gas removal filter medium 1 and embosses 15 projecting on the back surface in the width direction and folding them in zigzags so that the projecting embosses are in contact with each other. 1 is a perspective view of a filter pack.

次に具体的実施例について述べる。  Next, specific examples will be described.

繊維径が0.3〜50μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織り布の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が0.01〜0.5μmの超極細繊維の薄い層を重ね乾燥固着して一体化したフィルタ基材に放射線照射した後、スチレンスルホン酸あるいはアクリル酸グリシジルの重合性単量体モノマーを接触させ、それぞれカチオン交換基あるいはアニオン交換基を形成する。これによりカチオン交換基すなわちアルカリガス吸着機能またはアニオン交換基すなわち酸性ガス吸着機能を有したガス除去フィルタろ材が形成される。  A binder, molten fiber or adhesive powder adhesive medium is attached to the surface of a nonwoven fabric or woven fabric made of glass fiber, synthetic fiber or natural fiber having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm. After irradiating the filter substrate on which a thin layer of ultrafine fibers having a fiber diameter of 0.01 to 0.5 μm is dried, fixed and integrated, and then irradiated with radiation, a polymerizable single polymer of styrene sulfonic acid or glycidyl acrylate is used. A monomer monomer is contacted to form a cation exchange group or an anion exchange group, respectively. Thereby, a gas removal filter medium having a cation exchange group, that is, an alkali gas adsorption function or an anion exchange group, that is, an acid gas adsorption function is formed.

前記ガス除去フィルタろ材をジグザグ状にひだ折りして、空気ろ過材を形成し、ひだの隔壁間に波形のアルミセパレータを挿入しエアフィルタユニットを形成する。そして前記を試験ダクトに取り付け、テストしたところ下記のような結果が得られた。  The gas removal filter medium is folded in a zigzag shape to form an air filter medium, and a corrugated aluminum separator is inserted between the partition walls of the pleats to form an air filter unit. When the above was mounted on a test duct and tested, the following results were obtained.

試験条件 温度条件 25℃
湿度条件 65%
試験ダスト JIS Z8901試験用粉体1の11種
試験ガス アンモニア 1000ppm
硫化水素 1000ppm
試験測定機器 検知管
Test condition Temperature condition 25 ℃
Humidity condition 65%
Test dust 11 kinds of JIS Z8901 test powder 1
Test gas Ammonia 1000ppm
Hydrogen sulfide 1000ppm
Test and measurement equipment Detector tube

試験結果
表1に示す

Figure 2013111572
Test results Shown in Table 1
Figure 2013111572

尚、本実施例では本発明の一実施例を述べたもので、これに限定されることなく、種々変更しても何ら本発明の要旨を変更するものではない。  In this embodiment, one embodiment of the present invention has been described. The present invention is not limited to this embodiment, and the gist of the present invention is not changed at all by various modifications.

空調用フィルタを扱っている業界においては、低い圧力損失で且つ高い捕集効率および長寿命の性能を持ったフィルタを従来から追い求めている。しかしこれらの性能は相反する性能を持ったものであることなどからなかなか理想とするものが生まれてこなかった。そこで近年繊維業界の技術開発により、超極細繊維などが開発されてきたのをきっかけにフィルタ業界でも理想の性能をもった空調用フィルタの開発が注目されている。そこで本発明はこれらの問題を解決し、超極細繊維効果を遺憾無く発揮し低圧損で高効率・長寿命の性能を持ったフィルタろ材でありながら、ガス除去機能を持ったガス除去フィルタを提供しょうとしたもので本発明は産業上極めて利用価値の高いものである。  In the industry that handles air conditioning filters, filters having low pressure loss, high collection efficiency, and long-life performance have been conventionally pursued. However, these performances have contradictory performances, making it difficult to create an ideal one. Therefore, the development of air conditioning filters having ideal performance in the filter industry has been attracting attention in recent years due to the development of ultra-fine fibers and the like due to technological development in the textile industry. Therefore, the present invention solves these problems and provides a gas removal filter having a gas removal function while exhibiting the ultrafine fiber effect without regret, having a low pressure loss and high efficiency and long life performance. The present invention is very useful in industry.

1・・・ろ材 1A・・・不織布あるいは織布 1B・・・超極細繊維層
2・・・外枠 3・・・袋状ろ材 4・・・ハニカム型ヘッダ枠
5・・・スリット型ヘッダ枠 6、9、10、13・・・金属製外枠
7・・・波形のアルミニウムセパレータ 8・・・合板枠
11・・・合板製の外枠 12・・・糸状の樹脂
14、15・・・エンボス
DESCRIPTION OF SYMBOLS 1 ... Filter medium 1A ... Nonwoven fabric or woven fabric 1B ... Super extra fine fiber layer 2 ... Outer frame 3 ... Bag-shaped filter medium 4 ... Honeycomb type header frame 5 ... Slit type header frame 6, 9, 10, 13 ... Metal outer frame 7 ... Corrugated aluminum separator 8 ... Plywood frame 11 ... Outer frame made of plywood 12 ... Yarn-like resin 14, 15 ... Embossed

Claims (2)

合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布に繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタ基材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与して構成したことを特徴とするガス除去フィルタろ材。  A laminated filter in which a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm is laminated on a nonwoven fabric or woven fabric made of synthetic fiber, glass fiber, natural fiber, etc., and the nonwoven fabric or woven fabric is integrated with the superfine fiber. A gas removal filter medium comprising an ion exchange group and a reactive group added to a base material by a technique such as graft polymerization or chemical solution deposition. 前記請求項1の積層フィルタ基材の超極細繊維の薄い層の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜1.5mmの不織布あるいは織布を乾燥固着して一体にした積層フィルタにグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与して構成したことを特徴とするガス除去フィルタろ材。  The fiber filter has a fiber diameter of 1 to 100 μm and a thickness of 0.05 to 1.5 mm by attaching an adhesive medium of a binder, molten fiber or adhesive powder to the surface of the thin layer of the ultrafine fiber of the multilayer filter substrate of claim 1. A gas removal filter medium comprising a laminated filter in which a nonwoven fabric or a woven fabric is dry-fixed and integrated with an ion exchange group or a reactive group by a technique such as graft polymerization or chemical solution deposition.
JP2011273847A 2011-11-29 2011-11-29 Filter medium for gas removal Pending JP2013111572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273847A JP2013111572A (en) 2011-11-29 2011-11-29 Filter medium for gas removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273847A JP2013111572A (en) 2011-11-29 2011-11-29 Filter medium for gas removal

Publications (1)

Publication Number Publication Date
JP2013111572A true JP2013111572A (en) 2013-06-10

Family

ID=48707695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273847A Pending JP2013111572A (en) 2011-11-29 2011-11-29 Filter medium for gas removal

Country Status (1)

Country Link
JP (1) JP2013111572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075251A (en) * 2018-09-28 2020-05-21 ダイキン工業株式会社 Air filter medium, filter pack, air filter unit, and method for manufacture thereof
JP2020110771A (en) * 2019-01-15 2020-07-27 株式会社豊田自動織機 Filter device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262532A (en) * 1990-03-14 1991-11-22 Ebara Corp Aldehyde collecting material
JP2001170423A (en) * 1999-12-17 2001-06-26 Shinwa Corp Filter unit
JP2007301436A (en) * 2006-05-08 2007-11-22 Kanai Juyo Kogyo Co Ltd Filter medium for air filter
JP2011194389A (en) * 2010-03-17 2011-10-06 Nippon Air Filter Kk Medium high performance filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262532A (en) * 1990-03-14 1991-11-22 Ebara Corp Aldehyde collecting material
JP2001170423A (en) * 1999-12-17 2001-06-26 Shinwa Corp Filter unit
JP2007301436A (en) * 2006-05-08 2007-11-22 Kanai Juyo Kogyo Co Ltd Filter medium for air filter
JP2011194389A (en) * 2010-03-17 2011-10-06 Nippon Air Filter Kk Medium high performance filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075251A (en) * 2018-09-28 2020-05-21 ダイキン工業株式会社 Air filter medium, filter pack, air filter unit, and method for manufacture thereof
EP3815768A4 (en) * 2018-09-28 2021-08-18 Daikin Industries, Ltd. Air filter filtration material, filter pack, air filter unit, and methods for manufacturing these
JP7014977B2 (en) 2018-09-28 2022-02-02 ダイキン工業株式会社 Air filter filter media, filter pack, air filter unit, and manufacturing method thereof
JP2020110771A (en) * 2019-01-15 2020-07-27 株式会社豊田自動織機 Filter device

Similar Documents

Publication Publication Date Title
JP4944540B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND USE METHOD
US10322363B2 (en) Filter media construction
JP5547062B2 (en) Method for forming a laminate of nanoweb and substrate and filter using the laminate
CA2786867A1 (en) Air filter with sorbent particles
WO2015125942A1 (en) Air-filtering filter medium and air filter unit
WO2003066193A1 (en) Fluid cleaning filter and filter device
CN112352129B (en) Air filter unit and air conditioner
JP2004089982A (en) Air cleaning filter
JP2013104421A (en) Intake filter unit for gas turbine
EP3283226A1 (en) Corrugated filtration media for polarizing air cleaner
JP2014144421A (en) Deodorization-gas removal filter
JP2753497B2 (en) Air purification filter element
CN1997437A (en) Chemical filtration unit incorporating air transportation device
JP2013111572A (en) Filter medium for gas removal
JP2011072911A (en) Air cleaning filter
JP2000153122A (en) Filter unit
JP2013193080A (en) Bag filter medium
JP2014176798A (en) Method for use of filter element, filter frame, and filtration device
JP2820730B2 (en) Laminated adsorbent and filter using the same
JP6318716B2 (en) Air filter unit
JPH11156124A (en) Honeycomb-shaped air cleaning filter
JPH0389913A (en) Laminated adsorptive body and filter using it
JP2014079731A (en) Bag filter material
JP2013022583A (en) Air filter medium
JPH04108511A (en) Air cleaning filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517