JP2013104421A - Intake filter unit for gas turbine - Google Patents
Intake filter unit for gas turbine Download PDFInfo
- Publication number
- JP2013104421A JP2013104421A JP2011260955A JP2011260955A JP2013104421A JP 2013104421 A JP2013104421 A JP 2013104421A JP 2011260955 A JP2011260955 A JP 2011260955A JP 2011260955 A JP2011260955 A JP 2011260955A JP 2013104421 A JP2013104421 A JP 2013104421A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- filter medium
- gas turbine
- filters
- pressure loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Filtering Materials (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
本発明は、ガスタービン内部に吸入される空気を清浄化するための吸気用フィルタユニットに関するものである。 The present invention relates to an intake filter unit for purifying air taken into a gas turbine.
従来、発電機設備のガスタービンの吸気取り入れ口にはガスタービンの羽根の損傷を防ぐ目的でエアフィルタが設置されている。そして当初のエアフィルタは羽根の損傷防止のみに注目していたため、エアフィルタも大きなダストや虫、鳥の吸い込みを防止するような粗めのエアフィルタすなわちプレフィルタが取り付けられているのみであった。しかしその後種々の試験の結果エアフィルタを選定することによって羽根に付着したダストなどの清掃作業に手間がかからず好ましいこと、さらに、ガスタービン発電出力の低下防止にも役立つことが業界で認められるようになってきて、種々のエアフィルタが試されるようになった。このことからエアフィルタもプレフィルタと中高性能フィルタの2段組み合わせ式あるいはプレフィルタと中高性能フィルタおよびHEPAフィルタの3段組み合わせ式などのクリーン供給エアフィルタシステムが採用されるようになってきた。 Conventionally, an air filter is installed at the intake port of a gas turbine of a generator facility for the purpose of preventing damage to blades of the gas turbine. And since the original air filter focused only on preventing blade damage, the air filter was only equipped with a coarse air filter, that is, a pre-filter, that prevented the inhalation of large dust, insects and birds. . However, it has been recognized in the industry that selecting an air filter as a result of various tests is advantageous in that it does not require time and effort for cleaning dust and the like adhering to the blades, and also helps prevent a decrease in gas turbine power generation output. As a result, various air filters have been tried. For this reason, clean supply air filter systems such as a two-stage combination type of pre-filter and medium-high performance filter or a three-stage combination type of pre-filter, medium-high performance filter and HEPA filter have come to be adopted.
そして、これらに使用されるエアフィルタろ材は捕集効率を高め、目詰まりの減少あるいは長寿命化を図るため、低効率ろ材と高効率ろ材を密接して重ね、2枚のろ材シートを重ね合わせて気流方向の上流側に低効率ろ材を、下流側に高効率ろ材としたもの、また、1枚のろ材に接着材をろ材の上流側より下流側に向けて粗から密に含浸し低効率ろ材から高効率ろ材を階層的に形成したものが考えられている。 The air filter media used in these systems are designed to closely collect low-efficiency filter media and high-efficiency filter media in order to increase the collection efficiency and reduce clogging or extend the life of the filter media. Low-efficiency filter medium on the upstream side in the airflow direction and high-efficiency filter medium on the downstream side, and one filter medium with low-efficiency impregnation from the upstream side to the downstream side of the filter medium from coarse to dense A high-efficiency filter medium formed hierarchically from a filter medium is considered.
しかしながら、前者は2枚のろ材を重ね合わせてジグザグ状に折り畳んでひだ折り加工するため、非能率的であったり、ろ材全体の厚みが必要以上に大きくなってしまい、後者は上流側より下流側に向けてろ材の有効面積が減って圧損上昇を生じたりして十分満足できるものではなかった。 However, the former is inefficient because the two filter media are overlapped and folded in a zigzag shape, and the overall thickness of the filter media becomes larger than necessary, and the latter is more downstream than upstream. However, the effective area of the filter medium decreased toward the surface and pressure loss increased, which was not satisfactory.
また、近年の環境変化と共に発電機設備のガスタービンの吸気取り入れ口の空気も従来の粉じん粒子の除去に加え、空気中に含まれるアルカリ性ガスあるいは酸性ガス、これらの付着固形粒子や腐食性を有する汚染ガスの除去が要求されるようになってきた。しかしながら、従来の汚染ガス除去フィルタは活性炭が用いられており、トレイ形状のフィルタケーシングに充填して使用されることから、寿命が短く、寸法が長大となってかさばり、質量が重く扱いづらいものであった。 In addition to the recent changes in the environment, the air at the intake port of the gas turbine of the generator equipment also has an alkaline or acidic gas contained in the air, these adhering solid particles and corrosiveness in addition to the conventional removal of dust particles Removal of polluted gases has been required. However, activated carbon is used in the conventional pollutant gas removal filter, and it is used by filling a tray-shaped filter casing. Therefore, the lifetime is short, the dimensions are long, bulky, heavy and difficult to handle. there were.
そこで、近年超極細繊維の製造方法が開発され、超極細繊維の集合体からなるシートは、従来の繊維からなるシートに比べて比表面積が高く、均一で小さい細孔径を有していることが確認でき、超極細繊維を利用したエアフィルタろ材が開発されるようになってきた。 Therefore, in recent years, a method for producing ultrafine fibers has been developed, and a sheet made of an aggregate of ultrafine fibers has a higher specific surface area than a sheet made of conventional fibers, and has a uniform and small pore diameter. It can be confirmed that air filter media using ultrafine fibers have been developed.
そこで本発明はこれらの課題を解決しょうとしたもので、本発明の目的は、ガスタービンの出力低下を防ぐようにしたよりクリーンな環境を創出できるガスタービン用吸気フィルタを提供しょうとしたものである。 Accordingly, the present invention is intended to solve these problems, and the object of the present invention is to provide an intake filter for a gas turbine that can create a cleaner environment that prevents a decrease in the output of the gas turbine. is there.
次に、本発明の目的は、従来のろ材と同等以上の除じん捕集効率を維持しつつ、圧力損失を大幅に低減した機能性フィルタを使用して、省エネルギー化を可能にすると共にフィルタの寿命が長寿命となるようにしたものである。 Next, an object of the present invention is to enable energy saving by using a functional filter that greatly reduces pressure loss while maintaining a dust collection efficiency equal to or higher than that of a conventional filter medium. The service life is long.
さらに、本発明の目的は、従来のろ材と同等以上の除じん捕集効率を維持しつつ、吸着機能を有した機能性フィルタを使用して、空気中に含まれるアルカリ性ガスあるいは酸性ガス、これらの固形粒子や放射性ヨウ素などの汚染ガスの除去を可能にしたものである。 Furthermore, the object of the present invention is to use an alkaline gas or acidic gas contained in the air, using a functional filter having an adsorption function while maintaining a dust collection efficiency equal to or higher than that of a conventional filter medium. This makes it possible to remove pollutant gases such as solid particles and radioactive iodine.
さらに、本発明の目的は、ガスタービンの吸気環境の粉塵濃度および大気塵粒径分布に応じて構成するフィルタを選択して後段の寿命が目標通り発揮できるようにし、コスト低減ができるガスタービン用吸気フィルタを提供しょうとしたものである。 Furthermore, an object of the present invention is to select a filter configured according to the dust concentration and atmospheric dust particle size distribution in the intake environment of the gas turbine so that the life of the latter stage can be exhibited as intended, and the cost can be reduced. An attempt was made to provide an intake filter.
本発明の第1の解決手段は、ガスタービン吸気装置の空気取入口のチャンバ内フィルタ取付枠に複数の種類のフィルタを組み合わせて構成したガスタービン吸気用フィルタユニットにおいて、すくなくとも1種類のフィルタを低い圧力損失でありながら高効率の粉じん捕集機能を発揮する機能性フィルタあるいは低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮する機能性フィルタとし、他の種類のフィルタは捕集率の異なる粉じん捕集機能を有するフィルタとしたものである。 According to a first aspect of the present invention, in a gas turbine intake filter unit configured by combining a plurality of types of filters with an in-chamber filter mounting frame of an air intake port of a gas turbine intake device, at least one type of filter is reduced. A functional filter that exhibits a high-efficiency dust collection function despite pressure loss, or a functional filter that exhibits a high-efficiency dust collection function while exhibiting low-pressure loss and a pollutant gas adsorption function. This type of filter is a filter having a dust collection function with different collection rates.
本発明の第2の解決手段は、低い圧力損失でありながら高効率の粉じん捕集機能を発揮する機能性フィルタを繊維径が0.3〜50μm、厚みが0.1〜1.0mmの合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタろ材から構成したものである。 The second solving means of the present invention is a synthetic filter having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm. A nonwoven fabric or woven fabric made of fiber, glass fiber, natural fiber, or the like is attached with an adhesive medium of binder, molten fiber or adhesive powder, and an ultrafine fiber layer having a fiber diameter of 0.01 to 0.5 μm is laminated, and the nonwoven fabric Or it comprises the laminated filter medium which integrated the woven fabric and the super extra fine fiber.
本発明の第3の解決手段は、低い圧力損失でありながら高効率の粉じん捕集機能を発揮する機能性フィルタのもう一つの形態を前記の積層フィルタろ材の超極細繊維の薄い層の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜1.5mmの不織布あるいは織布を乾燥固着して一体にした積層フィルタろ材から構成したものである。 The third solution of the present invention is to provide another form of a functional filter that exhibits a high-efficiency dust collecting function with low pressure loss on the surface of a thin layer of superfine fibers of the laminated filter medium. Constructed from a laminated filter media in which a non-woven fabric or woven fabric having a fiber diameter of 1 to 100 μm and a thickness of 0.05 to 1.5 mm is attached by drying and fixing with a binder, molten fiber or adhesive powder adhesive medium. It is.
本発明の第4の解決手段は、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮する機能性フィルタは前記の積層フィルタろ材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与したガス除去フィルタろ材から構成したものである。 A fourth solution of the present invention is a low-pressure-loss functional filter that has a high-efficiency dust collection function and that exhibits a pollutant gas adsorption function. It is composed of a gas removal filter medium to which ion exchange groups and reactive groups are added by a method such as a method.
本発明の第5の解決手段は、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮する機能性フィルタのもう一つの形態を前記[0013]の積層フィルタろ材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与したガス除去フィルタろ材から構成したものである。 The fifth solution of the present invention is a laminate of the above-mentioned [0013] as another form of a functional filter having a high-efficiency dust collection function with a low pressure loss and exhibiting a pollutant gas adsorption function. The filter medium is composed of a gas removal filter medium provided with an ion exchange group or a reactive group by a technique such as graft polymerization or chemical solution impregnation.
本発明の第6の解決手段は、積層フィルタろ材またはガス除去フィルタろ材をジグザグ状に折り畳んでひだ折り加工する時に、予めエンボスの頂部に塗布した樹脂ビード同士を固着し一体に連結するか波形のアルミセパレータあるいは、くし歯、リボンを入れた機能性フィルタを提供しょうとしたものである。 In the sixth solution of the present invention, when the laminated filter medium or the gas removal filter medium is folded in a zigzag shape, the resin beads previously applied to the tops of the embosses are fixed together and connected together or corrugated. It is an attempt to provide a functional filter with an aluminum separator, comb teeth, or ribbon.
本発明の第7の解決手段は、捕集効率の異なる粉じん捕集機能を有する他の種類のフィルタをプレフィルタおよび/または中高性能フィルタおよび/または準HEPAフィルタおよび/またはHEPAフィルタおよび/またはULPAフィルタとから選択できるようにしたことである。 The seventh solution of the present invention is to provide another type of filter having a dust collection function with different collection efficiency as a pre-filter and / or a medium-high performance filter and / or a quasi-HEPA filter and / or a HEPA filter and / or ULPA. It is now possible to select from filters.
ここで、積層フィルタろ材の基材である不織布あるいは織布はポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、レーヨン、ポリプロピレン繊維などの有機繊維やガラス繊維、パルプ繊維が使用可能である。これらを単独で用いてもよいし2種類以上を併用しても良い。 Here, the nonwoven fabric or woven fabric that is the base material of the laminated filter medium can be organic fibers such as polyester fibers, polyamide fibers, polyethylene fibers, rayon, polypropylene fibers, glass fibers, and pulp fibers. These may be used alone or in combination of two or more.
これらの不織布あるいは織布の形成方法としては湿式抄紙法を用いる方法や乾式法、スパンボンド法、メルトブロー法、電界紡糸法などが用いられる。 As a method for forming these nonwoven fabrics or woven fabrics, a method using a wet papermaking method, a dry method, a spunbond method, a melt blow method, an electrospinning method, or the like is used.
積層フィルタろ材の接着媒体はバインダ、溶融繊維あるいは接着パウダーなどが使用される。そしてバインダは有機系バインダ、無機系バインダ又は混合して加えて得られる混合バインダが使用される。なお、好ましくはアクリル樹脂が使用される。溶融繊維は芯鞘構造の繊維などが使用される。さらに接着パウダーとしては軟化点の低い樹脂の粉末などが使用される。 As an adhesive medium for the laminated filter medium, a binder, molten fiber, adhesive powder, or the like is used. As the binder, an organic binder, an inorganic binder, or a mixed binder obtained by mixing is used. An acrylic resin is preferably used. As the molten fiber, a fiber having a core-sheath structure is used. Further, resin powder having a low softening point is used as the adhesive powder.
積層フィルタろ材の超極細繊維は単繊維直径が0.01〜0.5μmの範囲内にあるものであるものを指し、その形態は繊維状の形態であればよく、長さや断面形状にはこだわらないものである。そして超極細繊維を構成する材料は特に限定されるものではないが、例えばポリエステルやポリアミド、ポリオレフイン、ポリフェニレンスルフイド(PPS)などが挙げられる。ポリエステルとしてはポリエチレンテレフタレート(PET)、ポリトリメチレンテレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。また、ポリアミドとしてはナイロン6(N6)、ナイロン66(N66)、ナイロン11(N11)などが挙げられる。ポリオレフインとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)などが挙げられる。上記材料以外にもフェノール樹脂やポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリエーテルサルフォン(PES)、ポリスルホン、フッ素系高分子やそれらの誘導体を用いることももちろん可能である。 The ultra-fine fibers of the laminated filter medium refer to those having a single fiber diameter in the range of 0.01 to 0.5 μm, and the form thereof may be a fibrous form, and the length and cross-sectional shape are particular. There is nothing. The material constituting the ultrafine fiber is not particularly limited, and examples thereof include polyester, polyamide, polyolefin, polyphenylene sulfide (PPS), and the like. Examples of the polyester include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polylactic acid (PLA). Examples of polyamide include nylon 6 (N6), nylon 66 (N66), nylon 11 (N11), and the like. Examples of the polyolefin include polyethylene (PE), polypropylene (PP), and polystyrene (PS). In addition to the above materials, it is of course possible to use phenol resins, polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyethersulfone (PES), polysulfone, fluorine-based polymers and their derivatives.
本発明に使用される超極細繊維層は上述のような超極細繊維から構成されているが、超極細繊維は束状になく超極細繊維が分散した状態にあるのが好ましい。これは超極細繊維がスリップフロー効果で流体の流れが良くなり低圧力損失になるためである。 The super extra fine fiber layer used in the present invention is composed of the super extra fine fibers as described above, but the super extra fine fibers are preferably not in a bundle but in a state in which the extra extra fine fibers are dispersed. This is because the ultrafine fiber has a slip flow effect that improves the fluid flow and lowers the pressure loss.
そして超極細繊維層は電界紡糸法により製造されたものである。このように電界紡糸法により製造された超極細繊維層は基材と併用することで十分な強度を有するため各種フィルタの加工性にすぐれている。この電界紡糸法とは従来公知の方法でありノズルなどから供給した紡糸溶液に対して電界を作用させることにより延伸して繊維化する方法である。 The ultrafine fiber layer is produced by an electrospinning method. Thus, since the super extra fine fiber layer manufactured by the electrospinning method has sufficient strength when used in combination with the base material, it is excellent in processability of various filters. The electrospinning method is a conventionally known method, and is a method of drawing and fiberizing by applying an electric field to a spinning solution supplied from a nozzle or the like.
次いで前記繊維化した超極細繊維を不織布あるいは織布上に積層させて超極細繊維層を形成できる。この不織布あるいは織布は超極細繊維を捕集でき且つ、フィルタの加工性および強度が保持できるものであれば良く形状は特に限定されるものではない。 Subsequently, the ultrafine fibers layered can be formed by laminating the fiberized ultrafine fibers on a nonwoven fabric or a woven fabric. The shape of the nonwoven fabric or woven fabric is not particularly limited as long as it can collect ultra-fine fibers and can maintain the workability and strength of the filter.
低い圧力損失でありながら高効率の粉じん捕集機能を発揮する積層フィルタろ材の製作は、繊維径が0.3〜50μm、厚みが0.1〜1.0mmの合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に、ノズルなどから供給した紡糸材料に対して電界を作用させ延伸した超極細繊維を形成する電界紡糸法、溶融紡糸法により0.01〜0.5μmの超極細繊維層を積層させることで、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタろ材を形成する。 The production of a laminated filter medium that exhibits a high-efficiency dust collection function with low pressure loss is a synthetic fiber or glass fiber or natural fiber having a fiber diameter of 0.3 to 50 μm and a thickness of 0.1 to 1.0 mm. Electrospinning which forms an ultra-fine fiber that is stretched by applying an electric field to the spinning material supplied from a nozzle or the like on a non-woven fabric or woven fabric composed of a binder, molten fiber or adhesive powder. A laminated filter medium in which the nonwoven fabric or woven fabric and the ultrafine fiber are integrated is formed by laminating 0.01 to 0.5 μm superfine fiber layers by a method or a melt spinning method.
さらに、積層フィルタろ材のもう一つの形態は前記積層フィルタろ材の超極細繊維層の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜1.5mmの不織布あるいは織布を乾燥固着するか、単に物理的に重ねて一体にした積層フィルタろ材である。 Furthermore, another form of the laminated filter medium is that the surface of the ultrafine fiber layer of the laminated filter medium is attached with an adhesive medium of binder, molten fiber or adhesive powder, the fiber diameter is 1 to 100 μm, and the thickness is 0.05 to It is a laminated filter medium in which a 1.5 mm non-woven fabric or woven fabric is dry-fixed or simply physically stacked and integrated.
そして低い圧力損失でありながら高効率の粉じん捕集機能を発揮する機能性フィルタの製作は、積層フィルタろ材をジグザグ状に折り畳んでひだ折り加工し、ひだ折り加工したろ材間にセパレータまたはビード状接着剤を挟み込んで外枠内にシール材で気密に取り付けて製作される。 The production of a functional filter that exhibits a high-efficiency dust collection function with low pressure loss is achieved by folding the laminated filter media in a zigzag shape and then folding the filter media between the fold-folded filter media. It is manufactured by sandwiching the agent and sealingly attaching it with a sealing material in the outer frame.
機能性フィルタをフィルタパックとして使用する場合は積層フィルタろ材の超極細繊維の薄い層の表面にバインダを塗布し、不織布を乾燥固着して一体に配置するのが好ましい。しかしこれに限定される事なくどのような態様で使用しても良い。 When the functional filter is used as a filter pack, it is preferable to apply a binder to the surface of the thin layer of the ultrafine fibers of the laminated filter medium, and dry and fix the nonwoven fabric so as to be integrally arranged. However, the present invention is not limited to this and may be used in any manner.
そしてフィルタパックとして使用する場合は内側にシール材を取り付けたセル型のフィルタ枠に気密性をもたされた状態で取り付けられる。 And when using as a filter pack, it attaches in the state with the airtightness to the cell-type filter frame which attached the sealing material inside.
また、もう一つの形態の機能性フィルタの製作は、表面に突出するエンボスと裏面に突出するエンボスを幅方向に交互に形成した積層フィルタろ材を、突出するエンボス同士が接触するようにジグザグ状に折り畳んでひだ折り加工し、外枠内に接着材で気密に取り付けて製作される。 In addition, another type of functional filter is manufactured in a zigzag shape so that the protruding embosses are in contact with each other, with the laminated filter medium in which the embosses protruding on the front surface and the embosses protruding on the back surface are alternately formed in the width direction. It is made by folding and fold-folding, and attaching it tightly with an adhesive in the outer frame.
次に、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮するイオン交換フィルタろ材の製作は、前記積層フィルタろ材にα線、β線、γ線、X線、電子線などの放射線を照射してラジカル(反応開始種)を生成させる。この照射後の積層フィルタろ材を重合性モノマー含有溶液に浸漬して重合性モノマーを積層フィルタろ材繊維にグラフト重合させる。その結果この重合性モノマーが繊維にグラフト重合側鎖として結合したものが生成する。この生成された重合性モノマーを側鎖として有する繊維をアニオン交換基又はカチオン交換基を有する化合物と接触反応させることにより、グラフト重合された側鎖の重合性モノマーにイオン交換基が導入されて最終生成物が得られる。また、ガスとの反応性を持った溶液を含浸、乾燥させてガス除去フィルタろ材も製作できる。そこで、かかる生成物が空気中のアルカリ性ガス、酸性ガスなどの汚染ガスと接触した際には、表面積の多い超極細繊維がガスと接触して、効率よく接触するので、その汚染ガス除去率が優れたものとなる。 Next, the production of an ion exchange filter medium having a high-efficiency dust collection function while exhibiting a low pressure loss and exhibiting the function of adsorbing polluted gases is performed by using α-ray, β-ray, γ-ray, Radiation (reaction initiation species) is generated by irradiation with radiation such as X-rays or electron beams. The laminated filter medium after irradiation is immersed in a polymerizable monomer-containing solution, and the polymerizable monomer is graft-polymerized on the laminated filter medium fiber. As a result, the polymerizable monomer is bound to the fiber as a graft polymerization side chain. The resulting fiber having a polymerizable monomer as a side chain is contact-reacted with a compound having an anion exchange group or a cation exchange group, whereby an ion exchange group is introduced into the polymerizable monomer of the graft polymerized side chain, and finally A product is obtained. Also, a gas removal filter medium can be produced by impregnating and drying a solution having reactivity with gas. Therefore, when such a product comes into contact with a pollutant gas such as an alkaline gas or an acid gas in the air, the ultrafine fiber having a large surface area comes into contact with the gas and efficiently comes into contact with the product. It will be excellent.
また重合性モノマーとして、ビニルスルホン酸、スチレンスルホン酸、ビニルピリジンアクリル酸、メタクリル酸、アリールアミン、クロロメチルスルホン酸などがあるが、カチオン交換基、アニオン交換基の必要性によって適宜選択されるものでありこれらの範囲に限定されるものではない。 Examples of the polymerizable monomer include vinyl sulfonic acid, styrene sulfonic acid, vinyl pyridine acrylic acid, methacrylic acid, arylamine, and chloromethyl sulfonic acid, which are appropriately selected depending on the necessity of a cation exchange group and an anion exchange group. And are not limited to these ranges.
また、含浸反応液としては水酸化カリウム、炭酸カリウム、硫酸、アミンなどが使用される。 As the impregnation reaction solution, potassium hydroxide, potassium carbonate, sulfuric acid, amine or the like is used.
なお、ガス除去フィルタろ材は、イオン交換基や薬品を付与した不織布あるいは織布に繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維とを組み合わせた構成でもよい。 The gas removal filter medium is formed by laminating a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm on a nonwoven fabric or woven fabric provided with an ion exchange group or a chemical, and the nonwoven fabric or woven fabric and the superfine fiber. The structure which combined these may be sufficient.
そして、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮する機能性フィルタの製作は、ガス除去フィルタろ材などをジグザグ状に折り畳んでひだ折り加工し、ひだ折り加工したろ材間にセパレータまたはビード状接着剤を挟み込んで外枠内に接着材で気密に取り付けて製作される。 And the production of a functional filter that has a high-efficiency dust collection function while exhibiting a low pressure loss and a function of adsorbing polluted gas, folds the gas removal filter medium in a zigzag shape, It is manufactured by sandwiching a separator or bead-like adhesive between pleated filter media and attaching it airtightly with an adhesive in the outer frame.
また、ガス除去フィルタろ材などからなる機能性フィルタをフィルタパックとして使用する場合はガス除去フィルタろ材などの超極細繊維の薄い層の表面にバインダを塗布し、不織布を乾燥固着して一体に配置するのが好ましい。しかしこれに限定される事なくどのような態様で使用しても良い。 When a functional filter made of a gas removal filter medium or the like is used as a filter pack, a binder is applied to the surface of a thin layer of superfine fibers such as a gas removal filter medium, and the nonwoven fabric is dried and fixed and arranged integrally. Is preferred. However, the present invention is not limited to this and may be used in any manner.
そしてフィルタパックとして使用する場合は内側にシール材を取り付けたセル型のフィルタ枠に気密性をもたされた状態で取り付けられる。 And when using as a filter pack, it attaches in the state with the airtightness to the cell type filter frame which attached the sealing material inside.
また、もう一つの形態の機能性フィルタの製作は、表面に突出するエンボスと裏面に突出するエンボスを幅方向に交互に形成したガス除去フィルタろ材などを、突出するエンボス同士が接触するようにジグザグ状に折り畳んでひだ折り加工し、外枠内に接着材で気密に取り付けて製作される。この方法により、従来の粉塵ろ過用フィルタと同じ構造で製作でき、従来フィルタと同じ位置・取り付け方法にて取り付けることができる。 In addition, another type of functional filter can be manufactured by zigzag the gas removal filter medium, which has embosses protruding on the front surface and embosses protruding on the back surface alternately in the width direction, so that the protruding embosses are in contact with each other. It is manufactured by folding it into a pleat and then folding it into a pleat and attaching it tightly with an adhesive inside the outer frame. By this method, it can be manufactured with the same structure as the conventional filter for dust filtration, and can be attached by the same position and attachment method as the conventional filter.
また、他の種類の異なるフィルタは、ガスタービン吸気装置の空気取入口のフィルタ取付枠にガスタービンの吸気環境の粉塵濃度および大気塵粒径分布に応じて、下記のフィルタ群から選択される。なお、フィルタの選択は各フィルタ群の粉塵保持量、粒径別捕集率から最適なものを組み合わせることができる。 Further, different types of different filters are selected from the following filter group according to the dust concentration and the atmospheric particle size distribution in the intake environment of the gas turbine on the filter mounting frame of the air intake port of the gas turbine intake device. In addition, selection of a filter can combine the optimal thing from the dust retention amount of each filter group, and the collection rate according to particle size.
プレフィルタ群は種々のものがあり一つはガラス繊維をカールさせてあるいは合成繊維による不織布をバインダで繊維同士を結合させて弾力の優れたマット状基材とし、この基材を空気流入側の比較的目の粗い層と、出口側の密度の高い層からなる密度勾配構造にして形成したろ材を方形状に切断し500×500mm〜610×610mmで厚さ20〜100mm程度の金属製や木製の外枠に収納したパネル型エアフィルタが使用される。使用されるろ材には乾式または粘着剤を塗布した湿式がある。湿式ろ材は使い捨てタイプであるが、乾式のろ材では水で洗浄して再利用するタイプもある。 There are various types of prefilters. One is curled glass fiber or synthetic fiber nonwoven fabric is bonded to each other with a binder to form a mat-like substrate with excellent elasticity. A filter medium formed with a density gradient structure consisting of a relatively coarse layer and a high-density layer on the outlet side is cut into a square shape and is made of metal or wood having a thickness of about 500 to 500 mm to 610 to 610 mm and a thickness of about 20 to 100 mm. A panel type air filter housed in the outer frame is used. The filter medium used includes a dry type or a wet type in which an adhesive is applied. Wet filter media is a disposable type, but some dry filter media are washed with water and reused.
もう一つは前記フィルタろ材を長尺寸法で切断してロール状に巻いたろ材を装置の上部に装填しろ過面を通して下部で巻き取る自動更新型エアフィルタも使用される。ろ材は、タイマにより間欠的に巻き取る方法と、ろ材の圧力損失を検出して巻き取る方法の2通りがある。作動状態が確実である前者が主に使用される。自動更新型エアフィルタにはろ過面が平坦な構造のほかにろ過部分を前後にV字型やW字型に曲げて装置の寸法に比較してろ材面積を大きくしたものなどがある。 The other is an automatic renewal type air filter in which the filter medium is cut into a long size and rolled into a roll shape, loaded on the upper part of the apparatus, and wound at the lower part through the filtration surface. There are two types of filter media: a method of winding up intermittently with a timer and a method of winding up by detecting the pressure loss of the filter media. The former whose operation state is certain is mainly used. In addition to the structure with a flat filtration surface, the self-updating air filter includes one in which the filtration part is bent back and forth into a V shape or a W shape to increase the filter medium area compared to the size of the device.
次に中高性能フィルタ群も種々のものがあり一つはガラス繊維または合繊繊維製の嵩高なろ材や合成繊維不織布を袋状に縫製した袋状ろ材をハニカム型ヘッダあるいはスリット型ヘッダあるいはチャンネルスリットヘッダ形状にした空気流入口を設けた枠に取り付けた吹き流し形エアフィルタがある。袋は隣同志が密着しないように袋の数ヶ所に仕切り縫いがされている。外枠には主として金属製が使用されるが使用後の焼却処理が容易なように、難燃性合板やプラスチックが使用される場合がある。外形寸法は空気流入口の縦横が610×610mm程度奥行きは300〜1000mm程度である。 Next, there are various types of medium and high performance filters. One is a bulky filter medium made of glass fiber or synthetic fiber, or a bag-shaped filter medium in which synthetic fiber nonwoven fabrics are sewn in a bag shape. There is a blow-off type air filter attached to a frame provided with a shaped air inlet. The bag is sewn in several places on the bag to prevent the neighbors from sticking together. Although metal is mainly used for the outer frame, flame retardant plywood or plastic may be used so that incineration after use is easy. As for the external dimensions, the length and width of the air inlet are about 610 × 610 mm, and the depth is about 300 to 1000 mm.
次に中高性能フィルタ群のもう一つの形態はろ材を外枠の中に折込み、アルミニウム、クラフト紙、プラスチックなどで作られた波形のセパレータをろ材の間に入れて、ろ材同志が密着しないようにしたセパレータ型のものと、ろ材間にセパレータを挿入せずに糸状または紐状の樹脂をろ材間に挟んだり、接着剤樹脂によって折込んだろ材の山の間隙を固定したり数mmの幅に切ったろ材のリボンをろ材間に挟むことによってセパレータの代わりをさせたミニプリーツ型のものがある。外枠には金属板や合板が使用され、フランジ型あるいはボックス型となっている。外形寸法は縦横が300〜1300×300〜1300mm程度、奥行きは65〜300mm程度である。 Next, another form of medium-high performance filter group is to fold the filter medium into the outer frame and insert a corrugated separator made of aluminum, kraft paper, plastic, etc. between the filter medium so that the filter mediums do not adhere to each other Between the filter medium and the filter medium, without inserting a separator between the filter medium, a thread-like or string-like resin is sandwiched between the filter mediums, or the gap between the filter medium folds is fixed with an adhesive resin. There is a mini-pleat type that replaces the separator by sandwiching a cut filter ribbon between the filter media. A metal plate or a plywood is used for the outer frame, which is a flange type or a box type. The external dimensions are about 300 to 1300 × 300 to 1300 mm in length and width, and the depth is about 65 to 300 mm.
そしてセパレータ型の場合ろ材と枠は接着剤で接着される場合が多く、ろ材のひとつは繊維径が20μm以下程度のガラス繊維からなり粉塵保持容量の大きな上流側ろ材と、同じガラス繊維からなり撥水効果の高いより密な下流側ろ材を重ね密度勾配を持たせることにより大きな粉塵保持容量をえることができる2枚重ねろ材のタイプのものが使用される。 In the case of the separator type, the filter medium and the frame are often bonded with an adhesive, and one of the filter mediums is made of glass fibers having a fiber diameter of about 20 μm or less and the upstream filter medium having a large dust holding capacity and the same glass fibers. A two-layer filter medium type that can obtain a large dust holding capacity by providing a dense density gradient with a denser downstream filter medium having a high water effect is used.
ミニプリーツ型の場合は奥行きの浅いろ材パックを接着せずにそのまま外枠に組み込む場合と、このろ材パックを外枠の中にV字型に配置して使用する場合あるいはろ材パックを枠に接着剤で接着する場合がある。ミニプリーツ型の場合は主に接着せずに枠とろ材パックを容易に分離できる構造にしてフィルタが最終圧力損失に達したときはろ材パックのみ取り出して廃棄し、外枠は再使用する形式となっている。 In the case of the mini-pleat type, when the filter medium pack with a small depth is incorporated into the outer frame as it is without being bonded, when this filter medium pack is arranged in a V shape in the outer frame, or the filter medium pack is bonded to the frame Adhesives may be used. In the case of the mini-pleat type, a structure in which the frame and the filter medium pack can be easily separated without mainly bonding, and when the filter reaches the final pressure loss, only the filter medium pack is taken out and discarded, and the outer frame is reused. It has become.
さらにミニプリーツ型の場合、ろ材の種類は繊維径30〜3μmのガラス繊維と繊維同志を接着するバインダからなるガラス繊維製のものと不織布のほかメルトブロー法で作られた細い繊維からなる合成繊維製ろ材がありろ材の厚みは0.5mm程度が多い。 Furthermore, in the case of the mini-pleat type, the type of filter medium is made of glass fiber with a fiber diameter of 30 to 3 μm and a binder made of glass fiber and a non-woven fabric as well as synthetic fibers made of thin fibers made by the melt blow method. There is a filter medium, and the thickness of the filter medium is about 0.5 mm.
準HEPAフィルタ群はろ材を枠の中にジグザグ状に折込み、アルミニウム、クラフト紙、プラスチックなどで作られた波形のセパレータをろ材の間に入れてろ材同志が密着しないようにし、ろ材と外枠とはシール材を外枠内面全周に塗布して気密性を持たせて一体化したものである。外枠には金属板や合板が使用され、フランジ型あるいはボックス型となっている。外形寸法は縦横が300〜1300×300〜1300mm程度、奥行きは150〜800mm程度である。ろ材のひとつは繊維径が10μm以下程度のガラス繊維あるいは合成繊維製からなり粉塵保持容量の大きな上流側ろ材と、繊維径が0.5〜5μm以下程度のガラス繊維あるいは合成繊維からなり撥水効果の高いより密な下流側ろ材を重ね密度勾配を持たせることにより大きな粉塵保持容量をえることができる2枚重ねろ材のタイプのものと、もう1つは繊維径1.0μm以下程度のガラス繊維同志を接着するバインダからなるガラス繊維製あるいは合成繊維製ろ材タイプのものが使用される。ろ材の厚みは0.5mm程度が多い。 The quasi-HEPA filter group folds the filter medium in a zigzag shape in the frame, and puts a corrugated separator made of aluminum, kraft paper, plastic, etc. between the filter medium to prevent the filter medium from adhering to each other. Is formed by applying a sealing material to the entire inner periphery of the outer frame to provide airtightness. A metal plate or a plywood is used for the outer frame, which is a flange type or a box type. The external dimensions are about 300 to 1300 × 300 to 1300 mm in length and width, and the depth is about 150 to 800 mm. One of the filter media is made of glass fiber or synthetic fiber with a fiber diameter of about 10 μm or less, and has an upstream filter medium with a large dust holding capacity, and glass fiber or synthetic fiber with a fiber diameter of about 0.5 to 5 μm or less. A denser downstream filter medium with a high density and a double-layer filter medium type that can obtain a large dust holding capacity by giving a density gradient, and the other is a glass fiber with a fiber diameter of about 1.0 μm or less. A glass fiber or synthetic fiber filter material made of a binder to which comrades are bonded is used. The thickness of the filter medium is often about 0.5 mm.
HEPAフィルタ群はろ材を外枠の中にジグザグ状に折込み、アルミニウム、クラフト紙、プラスチックなどで作られた波形のセパレータをろ材の間に入れて、ろ材同志が密着しないようにしたセパレータ型のものと、ろ材間にセパレータを挿入せずに糸状または紐状の樹脂をろ材間に挟んだり、接着剤樹脂によって折込んだろ材の山の間隙を固定したり数mmの幅に切ったろ材のリボンをろ材間に挟むことによってセパレータの代わりをさせたミニプリーツ型のものがある。ろ材と外枠とはシール材を外枠内面全周に塗布して気密性を持たせて一体化している。外枠には金属板や合板が使用され、フランジ型あるいはボックス型となっている。外形寸法は縦横が300〜1300×300〜1300mm程度、奥行きは65〜300mm程度である。 The HEPA filter group is a separator type in which the filter medium is folded in a zigzag shape in the outer frame, and a corrugated separator made of aluminum, kraft paper, plastic, etc. is inserted between the filter mediums so that the filter mediums do not adhere to each other. And a ribbon of filter media cut into a width of several millimeters by fixing a gap between the filter media folds with an adhesive resin without inserting a separator between the filter media between the filter media. There is a mini pleat type that replaces the separator by sandwiching between the filter media. The filter medium and the outer frame are integrated with each other by applying a sealing material to the entire inner periphery of the outer frame to provide airtightness. A metal plate or a plywood is used for the outer frame, which is a flange type or a box type. The external dimensions are about 300 to 1300 × 300 to 1300 mm in length and width, and the depth is about 65 to 300 mm.
そしてセパレータ型の場合ろ材と外枠は接着剤で接着される場合が多く、ろ材のひとつは繊維径が10μm以下程度のガラス繊維からなり粉塵保持容量の大きな上流側ろ材と、繊維径が0.3〜3.0μm程度のガラス繊維からなり撥水効果の高いより密な下流側ろ材を重ね密度勾配を持たせることにより大きな粉塵保持容量をえることができる2枚重ねろ材のタイプのものともう1つは繊維径0.3〜5.0μmのガラス繊維同志を接着するバインダからなるガラス繊維製あるいは合成繊維製タイプのろ材が使用される。 In the case of the separator type, the filter medium and the outer frame are often bonded with an adhesive, and one of the filter mediums is made of glass fiber having a fiber diameter of about 10 μm or less and an upstream filter medium having a large dust holding capacity and a fiber diameter of 0. A two-layer filter medium type that can obtain a large dust holding capacity by stacking a dense downstream filter medium made of glass fiber of about 3 to 3.0 μm and having a high water repellency effect to give a density gradient. One is a glass fiber or synthetic fiber type filter medium made of a binder that bonds glass fibers having a fiber diameter of 0.3 to 5.0 μm.
ミニプリーツ型の場合のろ材は繊維径0.3〜5.0μmのガラス繊維と繊維同志を接着するバインダからなるガラス繊維製タイプのものと不織布のほかメルトブロー法で作られた細い繊維からなる合成繊維製タイプのろ材が使用される。そしてろ材の厚みは0.5mm程度が多い。 In the case of the mini-pleat type, the filter medium is a glass fiber type consisting of glass fiber with a fiber diameter of 0.3 to 5.0 μm and a binder that bonds the fibers together with non-woven fabric and synthetic fibers consisting of fine fibers made by the melt blow method. A fiber type filter medium is used. The thickness of the filter medium is often about 0.5 mm.
ULPAフィルタ群はろ材を外枠の中にジグザグ状に折込み、アルミニウム、クラフト紙、プラスチックなどで作られた波形のセパレータをろ材の間に入れて、ろ材同志が密着しないようにしたセパレータ型のものと、ろ材間にセパレータを挿入せずに糸状または紐状の樹脂をろ材間に挟んだり、接着剤樹脂によって折込んだろ材の山の間隙を固定したり数mmの幅に切ったろ材のリボンをろ材間に挟むことによってセパレータの代わりをさせたミニプリーツ型のものがある。ろ材と外枠とはシール材を枠内面全周に塗布して気密性を持たせて一体化している。外枠には金属板や合板が使用され、フランジ型あるいはボックス型となっている。外形寸法は縦横が300〜1300×300〜1300mm程度、奥行きは65〜300mm程度である。 The ULPA filter group is a separator type in which the filter medium is folded in a zigzag shape in the outer frame, and a corrugated separator made of aluminum, kraft paper, plastic, etc. is inserted between the filter mediums so that the filter mediums do not adhere to each other. And a ribbon of filter media cut into a width of several millimeters by fixing a gap between the filter media folds with an adhesive resin without inserting a separator between the filter media between the filter media. There is a mini pleat type that replaces the separator by sandwiching between the filter media. The filter medium and the outer frame are integrated with each other by applying a sealing material to the entire inner periphery of the frame to provide airtightness. A metal plate or a plywood is used for the outer frame, which is a flange type or a box type. The external dimensions are about 300 to 1300 × 300 to 1300 mm in length and width, and the depth is about 65 to 300 mm.
セパレータ型の場合ろ材と外枠は接着剤で接着される場合が多く、ろ材は繊維径1.0〜0.5μmのガラス繊維同志を接着するバインダからなるガラス繊維製タイプのろ材が使用される。 In the case of the separator type, the filter medium and the outer frame are often bonded with an adhesive, and the filter medium is a glass fiber type filter medium made of a binder that bonds glass fibers having a fiber diameter of 1.0 to 0.5 μm. .
ミニプリーツ型の場合のろ材は繊維径0.3〜5.0μmのガラス繊維と繊維同志を接着するバインダからなるガラス繊維製タイプのものと不織布のほかメルトブロー法で作られた細い繊維からなる合成繊維製タイプのろ材が使用される。そしてろ材の厚みは0.5mm程度が多い。 In the case of the mini-pleat type, the filter medium is a glass fiber type consisting of glass fiber with a fiber diameter of 0.3 to 5.0 μm and a binder that bonds the fibers together with non-woven fabric and synthetic fibers consisting of fine fibers made by the melt blow method. A fiber type filter medium is used. The thickness of the filter medium is often about 0.5 mm.
上記課題解決による作用は次の通りである。
ここで、フィルタの配列はガスタービンの吸気環境の粉塵濃度および大気塵粒径分布に応じて変更されるが、1例として2段目に機能性フィルタを、1段目に捕集効率の低いフィルタを、3段目に高い捕集効率のフィルタを3段組み合わせた場合について述べる。The effect | action by said problem solution is as follows.
Here, the arrangement of the filters is changed in accordance with the dust concentration and the atmospheric dust particle size distribution in the intake environment of the gas turbine. As an example, the functional filter is in the second stage and the collection efficiency is low in the first stage. A case will be described in which three filters are combined in the third stage with a high collection efficiency.
まず、ガスタービンの吸気運転によりハウジング内に吸入される汚染ガスや粉じんを含んだ大気は1段目フィルタを通過する。ここで粗い粒径の大気塵が除去されるが、ここで1段目フィルタはろ材厚みを増し、粉じん保持容量を大きくしているので、後段のフィルタへの負荷を軽減できると共に粉塵の詰まりによる交換頻度も突出しないようになっている。 First, the atmosphere containing pollutant gas and dust sucked into the housing by the intake operation of the gas turbine passes through the first stage filter. Here, atmospheric dust having a coarse particle diameter is removed, but the first stage filter increases the thickness of the filter medium and increases the dust holding capacity, so that the load on the subsequent stage filter can be reduced and the dust is clogged. The exchange frequency does not protrude.
さらに1段目フィルタを通過した有害ガスや細かな粒径の大気塵を含んだエアーは2段目の機能性フィルタに吸入される。 Furthermore, air containing harmful gas and fine particle size atmospheric dust that has passed through the first stage filter is sucked into the second stage functional filter.
ここで、2段目の機能性フィルタが積層フィルタろ材の場合、細かな粒径の大気塵を含んだエアーは不織布あるいは織布および超極細繊維層で捕集され清浄空気として通過する。この際形状保持機能および強度向上を目的とした塵埃保持容量の大きな不織布あるいは織布と超極細繊維よりなる緻密な高密度捕捉機能を備えた超極細繊維層の2層から構成しているので、低い圧力損失でありながら高効率の機能が発揮される。 Here, when the second-stage functional filter is a laminated filter medium, air containing fine dust particles of atmospheric dust is collected by the nonwoven fabric or woven fabric and the ultrafine fiber layer and passes as clean air. At this time, because it is composed of two layers of a superfine fiber layer having a dense high density capturing function consisting of a nonwoven fabric or a woven fabric having a large dust retention capacity and a superfine fiber for the purpose of improving the shape retention function and strength, High-efficiency functions are demonstrated with low pressure loss.
また2段目の機能性フィルタがガス除去フィルタろ材の場合、エアーガス中に含まれた汚染ガスは機能性フィルタに吸着捕集されると共に、粉塵除去効率も1段目フィルタの捕集率より高くなっているので、細かな粒径の粒子をほとんど捕集してしまい、より細かな粒径以下の大気塵のみしか2段目フィルタを通過しないようになっている。 When the second-stage functional filter is a gas removal filter medium, the pollutant gas contained in the air gas is adsorbed and collected by the functional filter, and the dust removal efficiency is higher than the collection rate of the first-stage filter. As a result, almost all particles having a fine particle diameter are collected, and only atmospheric dust having a finer particle diameter or less passes through the second-stage filter.
そして、2段目フィルタを通過した最も細かな粒径の大気塵を含んだエアーは、さらに高い捕集率を有している3段目フィルタを通過した後清浄なエアーとしてガスタービンへ供給される。これによりガスタービンの性能は低下されることなく維持されるものである。 The air containing the finest particle size atmospheric dust passing through the second stage filter is supplied to the gas turbine as clean air after passing through the third stage filter having a higher collection rate. The Thereby, the performance of the gas turbine is maintained without being deteriorated.
そして長期間運転により各フィルタに捕集される粉じんは捕集率の低い順で多く捕集される一方逆に捕集率の高い順でエアーを通しにくくなっているすなわち圧力損失が高くなっているため、フィルタの目詰まりによる寿命が捕集率の低い順に早くなるか各フィルタの寿命が同時に来るようになっている。 Dust collected in each filter by long-term operation is collected in the order of low collection rate, but conversely, it is difficult to pass air in order of high collection rate, that is, the pressure loss becomes high. Therefore, the lifetime due to the clogging of the filter is increased in ascending order of the collection rate, or the lifetime of each filter comes simultaneously.
上述したように本発明のガスタービン用吸気フィルタユニットは次のような効果がえられる。
(1)ガスタービンの吸気環境の粉塵濃度および大気塵粒径分布に応じて捕集率の異なるフィルタを複数の種類組み合わせて、ガスタービン吸気装置内に設置したのでガスタービンの出力低下を防げる。
(2)ガスタービン用吸気フィルタユニットは1段目フィルタで粉塵保持を大きくしているので、後段のフィルタへの負荷を軽減できると共に粉塵の詰まりによる寿命も突出しないようになっている。
(3)機能性フィルタが積層フィルタろ材の場合、形状保持機能および強度向上を目的とした塵埃保持容量の大きな不織布あるいは織布と超極細繊維よりなる緻密な高密度捕捉機能を備えた超極細繊維層とを積層しているので、低い圧力損失でありながら高効率の機能を発揮する。
(4)機能性フィルタがガス除去フィルタの場合、軽量かつコンパクトな形状とでき、汚染ガスを確実に除去すると共に低い圧力損失でありながら高効率の機能を発揮する。
(5)汚染ガスや粉塵によるガスタービンのブレードの損傷、腐蝕、汚れを防止できる。
(6)ガスタービン発電出力の低下防止にも役立つ。
(7)各段フィルタのメンテナンスあるいは取替え回数を減らすことができるのでランニングコストの削減が可能となる。
(8)各段のフィルタを最適な形状としたので、設置スペースを小さくでき現地設置の簡素化が図れる。
(9)ガスタービン用吸気装置内のフィルタ取付枠に簡単に取り付けられるため、改造が不要で交換が容易である。As described above, the gas turbine intake filter unit of the present invention has the following effects.
(1) Since a plurality of types of filters having different collection rates are combined in accordance with the dust concentration and atmospheric dust particle size distribution in the intake environment of the gas turbine and installed in the gas turbine intake device, the output of the gas turbine can be prevented from decreasing.
(2) Since the intake filter unit for gas turbine uses a first-stage filter to increase dust retention, the load on the subsequent-stage filter can be reduced and the life due to dust clogging is not projected.
(3) When the functional filter is a laminated filter medium, a super fine fiber having a dense high density capturing function composed of a nonwoven fabric or a woven cloth having a large dust holding capacity and a super fine fiber for the purpose of improving the shape retaining function and strength. Since the layers are laminated, it exhibits a highly efficient function with a low pressure loss.
(4) When the functional filter is a gas removal filter, it can be made lightweight and compact, and it can reliably remove polluted gases and exhibits a highly efficient function with low pressure loss.
(5) It is possible to prevent the gas turbine blade from being damaged, corroded or soiled by polluting gas or dust.
(6) It also helps to prevent a decrease in gas turbine power generation output.
(7) Since the number of times of maintenance or replacement of each stage filter can be reduced, the running cost can be reduced.
(8) Since the filter at each stage has an optimal shape, the installation space can be reduced and the on-site installation can be simplified.
(9) Since it is easily attached to the filter mounting frame in the gas turbine intake device, it is not necessary to be modified and can be easily replaced.
以下、積層フィルタろ材あるいはガス除去フィルタろ材を使用した機能性フィルタの形状について添付図1〜12に基づいて説明する。 Hereinafter, the shape of the functional filter using the laminated filter medium or the gas removal filter medium will be described with reference to FIGS.
図1はパネル型プレフィルタでろ材1と外枠2の接合部分はすべて接着構造で耐久性に優れ、ろ材1の裏側に接着した金網とフィンガーによって均一なプリーツ間隙と山の高さが保持されてろ材1全体でまんべんなく粉塵が捕集できるため急激な圧損の上昇がなく、旧来にない長寿命の特長を持っている。しかも超軽量・コンパクトなため交換作業が容易で、さらに使用済みのフィルタは圧縮・減容して廃棄できる。
そしてろ材1の材質は積層フィルタろ材あるいはガス除去フィルタろ材からなり、外枠2の材質はカードボードとなっている。FIG. 1 shows a panel type pre-filter, where the joining parts of the
The material of the
図2は長尺寸法の積層フィルタろ材あるいはガス除去フィルタろ材1をタイマにより間欠的に巻き取るかまたはろ材の圧力損失を検出して巻き取るようにした自動更新型エアフィルタである。ろ材1はマット状にしたもので非常に復元力が強く柔軟性を有したものである。しかも長さ20mものろ材1が直径30cmほどのコンパクトなロールになっているがろ過面では50cmの厚さに戻り表面濾過でなくその厚み全体で粉塵を捕集するので粉塵保持容量の極めて大きなものとなっている。 FIG. 2 shows an automatic update type air filter in which a laminated filter medium or a gas
図3は、図2に示す自動更新型エアフィルタの特長を生かし、更に前記ろ材1のろ過面をジグザグにすることによって、限られたスペースで大容量を処理できるようにしたものである。 FIG. 3 makes it possible to process a large volume in a limited space by taking advantage of the automatic update type air filter shown in FIG. 2 and further zigzag the filtration surface of the
図4は、積層フィルタろ材あるいはガス除去フィルタろ材を袋状に縫製した袋状ろ材3で金属製のハニカム型ヘッダ枠4に取り付けてなる吹き流し形エアフィルタである。そして袋状ろ材3は奥行きが890mmある6個のフィルタポケットから構成されている。そして高い捕集率、低い圧力損失でダスト保持容量が極めて大きくそして非常にコンパクトなものとなっている。 FIG. 4 shows a blow-off type air filter formed by attaching a laminated filter medium or a gas removal filter medium to a metallic
図5は金属製のスリット型ヘッダ枠5に袋状ろ材3を取り付けた吹き流し形エアフィルタで、低いろ過抵抗ですべてのポケットが膨らみろ材は隅々まで有効ろ過面となりダストはろ材全面で捕集されるようになるので、圧力損失の上昇が極めて緩やかになる効果を有している。 Fig. 5 shows a blow-off type air filter in which a bag-
図6は積層フィルタろ材あるいはガス除去フィルタろ材1を金属製外枠6の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠6内周面とをシール材で気密性を持たせて一体化したフランジ型機能性フィルタである。
そしてろ材1は繊維径が0.3〜50μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織布1Aにバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が1〜100μm、厚みが0.05〜1.繊維径が0.01〜0.5μmの超極細繊維層1Bを積層させ、不織布あるいは織布1Aと超極細繊維層1Bを一体化した積層フィルタろ材である。In FIG. 6, the laminated filter medium or the gas
The
図7は図6のフランジ型機能性フィルタの変形例で金属製外枠6に代えて合板枠8にしたボックス型機能性フィルタである。 FIG. 7 shows a modified example of the flange-type functional filter of FIG. 6, which is a box-type functional filter in which a plywood frame 8 is used instead of the metal
図8は積層フィルタろ材あるいはガス除去フィルタろ材1を金属製外枠9の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠9内周面とを接着剤で塗布して気密性を持たせて一体化した両フランジ型準HEPAフィルタである。 FIG. 8 shows that the laminated filter medium or the gas
図9は積層フィルタろ材あるいはガス除去フィルタろ材1を金属製外枠10の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に、ろ材1と外枠9内周面とをシール材で気密性を持たせて一体化した両フランジ型HEPAフィルタである。そしてろ材1は繊維径が0.3〜50μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織布1Aにバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が1〜100μm、厚みが0.05〜1.5mmの超極細繊維層1Bを積層させた積層フィルタろ材をグラフト重合法などの手法によりイオン交換基を付与したガス除去フィルタろ材である。 FIG. 9 shows a multilayer filter medium or a gas
図10は積層フィルタろ材あるいはガス除去フィルタろ材1を金属製外枠11の中にジグザグ状に折込み、ろ材間に糸状の樹脂12を挟んでろ材1の間隔を一定幅に保持して形成したフィルタパックを外枠11内周面にシール材で一体化したボックス型HEPAフィルタである。 FIG. 10 shows a filter formed by folding a laminated filter medium or a gas
図11は積層フィルタろ材あるいはガス除去フィルタろ材1を金属製外枠13の中にジグザグ状に折込み、波形のアルミニウムセパレータ7をろ材1の間に入れてろ材1と外枠13内周面とをシール材で塗布して気密性を持たせて一体化したフランジ型ULPAフィルタである。 In FIG. 11, the laminated filter medium or the gas
図12は積層フィルタろ材あるいはガス除去フィルタろ材1の表面に突出するエンボス14と裏面に突出するエンボス15を幅方向に交互に形成し突出するエンボス同士が接触するようにジグザグ状に折り畳んでひだ折り加工して形成した機能性フィルタパックの斜視図を示したものである。 FIG. 12 shows an emboss 14 protruding on the surface of the
次に具体的実施例について述べる。 Next, specific examples will be described.
ガスタービン内に吸気を導く空気吸込口の上流側から順に1段目フィルタ、2段目フィルタ、3段目フィルタの組み合せおよび結果は下記の如くであった。
「フィルタ組み合せ」
(1)1段目フィルタ:パネル型プレフィルタ
ろ材:合成繊維製不織布
性能:処理風量 56m3/min 個数30ケ
圧力損失 初期圧損 59Pa
最終圧損 196Pa
効率:85%以上(JISB9908型式3「質量法」)
(2)2段目フィルタ:中高性能の機能性フィルタ
ろ材:合成繊維層に極細繊維層を積層した積層フィルタろ材
性能:処理風量 56m3/min 個数30ケ
圧力損失 初期圧損 72Pa
最終圧損 168Pa
効率:90%以上(JISB9908型式2「比色法」)
(3)3段目フィルタ:HEPAフィルタ
ろ材:難燃性グラスファイバー
性能:処理風量 50m3/min 個数34ケ
圧力損失 初期圧損 180Pa
最終圧損 498Pa
効率:99.97%以上(JISB9908型式1「計数法」)The combinations and results of the first-stage filter, second-stage filter, and third-stage filter were as follows in order from the upstream side of the air intake port that guides intake air into the gas turbine.
"Filter combination"
(1) First stage filter: Panel type pre-filter
Filter medium: Non-woven fabric made of synthetic fiber Performance: Treated air volume 56m 3 / min 30 pieces
Pressure loss Initial pressure loss 59Pa
Final pressure loss 196Pa
Efficiency: 85% or more (JIS B 9908
(2) Second stage filter: Medium to high performance filter
Filter media: Multilayer filter media in which an ultrafine fiber layer is laminated on a synthetic fiber layer
Performance: Processing air volume 56m 3 / min 30 pieces
Pressure loss Initial pressure loss 72Pa
Final pressure loss 168Pa
Efficiency: 90% or more (JIS B 9908
(3) Third stage filter: HEPA filter
Filter media: Flame retardant glass fiber
Performance: Processing air volume 50m 3 / min 34 pieces
Pressure loss Initial pressure loss 180Pa
Final pressure loss 498Pa
Efficiency: 99.97% or more (JISB 9908
ガスタービン内に吸気を導く空気吸込口の上流側から順に1段目フィルタ、2段目フィルタ、3段目フィルタの組み合せおよび結果は下記の如くであった。
「フィルタ組み合せ」
(1)1段目フィルタ:パネル型プレフィルタ
ろ材:グラスファイバー
性能:処理風量 56m3/min 個数30ケ
圧力損失 初期圧損 44Pa
最終圧損 118Pa
効率:85%以上(JISB9908型式3「質量法」)
(2)2段目フィルタ:中高性能の機能性フィルタ
ろ材:ガス除去フィルタろ材
性能:処理風量 56m3/min 個数30ケ
圧力損失 初期圧損 80Pa
最終圧損 180Pa
効率:90%以上(JISB9908型式2「比色法」)
(3)3段目フィルタ:HEPA性能の機能性フィルタ
ろ材:合成繊維層に極細繊維層を積層した積層フィルタろ材
性能:処理風量 50m3/min 個数34ケ
圧力損失 初期圧損 150Pa
最終圧損 498Pa
効率:99.97%以上(JISB9908型式1「計数法」)The combinations and results of the first-stage filter, second-stage filter, and third-stage filter were as follows in order from the upstream side of the air intake port that guides intake air into the gas turbine.
"Filter combination"
(1) First stage filter: Panel type pre-filter
Filter media: glass fiber
Performance: Processing air volume 56m 3 / min 30 pieces
Pressure loss Initial pressure loss 44Pa
Final pressure loss 118Pa
Efficiency: 85% or more (JIS B 9908
(2) Second stage filter: Medium to high performance filter
Filter media: Gas removal filter media
Performance: Processing air volume 56m 3 / min 30 pieces
Pressure loss Initial pressure loss 80Pa
Final pressure loss 180Pa
Efficiency: 90% or more (JIS B 9908
(3) Third stage filter: functional filter with HEPA performance
Filter media: Multilayer filter media in which an ultrafine fiber layer is laminated on a synthetic fiber layer
Performance: Processing air volume 50m 3 / min 34 pieces
Pressure loss Initial pressure loss 150Pa
Final pressure loss 498Pa
Efficiency: 99.97% or more (JISB 9908
尚、本実施例では本発明の一実施例を述べたもので、これに限定されることなく、種々変更しても何ら本発明の要旨を変更するものではない。 In this embodiment, one embodiment of the present invention has been described. The present invention is not limited to this embodiment, and the gist of the present invention is not changed at all by various modifications.
ガスタービンプラントにおいてはガスタービンを保護および維持するために、ガスタービンプラントの空気取入口にハウジングを設け吸気用フィルタを多数並列に並べて外気中の塵埃を除去した清浄エアーを取り入れるようにしている。しかし、従来のシステムフィルタではトータル圧損が高くなり交換頻度も高くこれを解決するため、今までいろいろな工夫がなされてきているが十分満足のいくものでなかった。 In a gas turbine plant, in order to protect and maintain the gas turbine, a housing is provided at an air intake port of the gas turbine plant, and a large number of intake filters are arranged in parallel so as to take in clean air from which dust in the outside air has been removed. However, in order to solve this problem with the conventional system filter, the total pressure loss is high and the replacement frequency is high, so far, various attempts have been made, but it has not been fully satisfactory.
そこで、本発明はガスタービンの吸気環境の粉塵濃度および大気塵粒径分布に応じて、捕集率の異なるフィルタを複数の種類組み合わせて設置し、圧損などによるガスタービンの出力低下を防ぐとともに各段のフィルタがともに低圧力損失となって長寿命化し、且つ空気中に含まれるアルカリ性ガスあるいは酸性ガス、これらの固形粒子や汚染ガスの除去を可能にしたもので、産業上の利用価値が甚だ大きいものである。 Therefore, the present invention installs a plurality of types of filters having different collection rates in accordance with the dust concentration and the atmospheric dust particle size distribution in the intake environment of the gas turbine to prevent a decrease in the output of the gas turbine due to pressure loss and the like. Both stage filters have low pressure loss and long service life, and can remove alkaline gas or acid gas, solid particles and polluted gases contained in the air, and are of great industrial value. It ’s a big one.
1・・・ろ材 1A・・・不織布あるいは織布 1B・・・超極細繊維層
2・・・外枠 3・・・袋状ろ材 4・・・ハニカム型ヘッダ枠
5・・・スリット型ヘッダ枠 6・・・金属製外枠
7・・・波形のアルミニウムセパレータ 8・・・合板枠
9、10、11、13・・・金属製外枠 12・・・糸状の樹脂
14、15・・・エンボスDESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011260955A JP2013104421A (en) | 2011-11-11 | 2011-11-11 | Intake filter unit for gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011260955A JP2013104421A (en) | 2011-11-11 | 2011-11-11 | Intake filter unit for gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013104421A true JP2013104421A (en) | 2013-05-30 |
Family
ID=48624151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011260955A Pending JP2013104421A (en) | 2011-11-11 | 2011-11-11 | Intake filter unit for gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013104421A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015108961A1 (en) | 2014-01-16 | 2015-07-23 | Bha Altair, Llc | Gas turbine inlet gas phase contaminant removal |
KR101623083B1 (en) | 2014-12-31 | 2016-05-20 | 이충중 | Catalyst Pre Filter |
JP2020012425A (en) * | 2018-07-19 | 2020-01-23 | 株式会社Jvcケンウッド | Blower device |
US20200073348A1 (en) * | 2018-08-30 | 2020-03-05 | Carl Freudenberg Kg | Design, control and operation of filters for turbomachines |
JP2020075251A (en) * | 2018-09-28 | 2020-05-21 | ダイキン工業株式会社 | Air filter medium, filter pack, air filter unit, and method for manufacture thereof |
CN111265942A (en) * | 2020-03-09 | 2020-06-12 | 佛山市人居环保工程有限公司 | Large central efficient air filter |
CN112483254A (en) * | 2020-12-04 | 2021-03-12 | 北京信和洁能新能源技术服务有限公司 | Ion waterfall purification device and gas turbine air inlet system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07253029A (en) * | 1994-03-14 | 1995-10-03 | Nippon Muki Co Ltd | Gas turbine intake high performance filter and gas turbine intake filter unit using it |
JPH07253028A (en) * | 1994-03-14 | 1995-10-03 | Nippon Muki Co Ltd | Gas turbine intake filter unit |
JPH09220427A (en) * | 1996-02-19 | 1997-08-26 | Nitta Ind Corp | Filter media for air filter and forming device therefor |
JPH11207117A (en) * | 1998-01-21 | 1999-08-03 | Taikisha Ltd | Gas purification filter |
JP2001263089A (en) * | 2000-03-15 | 2001-09-26 | Nippon Muki Co Ltd | Filter unit for gas turbine intake |
JP2001263090A (en) * | 2000-03-15 | 2001-09-26 | Nippon Muki Co Ltd | Filter unit for gas turbine intake |
JP2002292215A (en) * | 2001-03-29 | 2002-10-08 | Nippon Muki Co Ltd | High performance filter for gas turbine intake air and filter unit for gas turbine intake air using the same |
JP2003093825A (en) * | 2001-09-27 | 2003-04-02 | Ebara Corp | Gas removing method and gas removing filter |
WO2003043717A1 (en) * | 2001-11-21 | 2003-05-30 | Mitsubishi Heavy Industries, Ltd. | Dust collecting filter, dust collecting device, and intake device of gas turbine |
JP2009183926A (en) * | 2008-02-01 | 2009-08-20 | Shinwa Corp | Air conditioning filter |
JP2009183927A (en) * | 2008-02-01 | 2009-08-20 | Shinwa Corp | Air filter for high temperature |
JP2009226380A (en) * | 2008-03-25 | 2009-10-08 | Nichias Corp | Chemical filter and method for producing the same |
JP2010063959A (en) * | 2008-09-09 | 2010-03-25 | Nichias Corp | Chemical filter and method of manufacturing the same |
JP2010255612A (en) * | 2009-04-28 | 2010-11-11 | Shinwa Corp | Intake filter unit for gas turbine |
JP2011194389A (en) * | 2010-03-17 | 2011-10-06 | Nippon Air Filter Kk | Medium high performance filter |
-
2011
- 2011-11-11 JP JP2011260955A patent/JP2013104421A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07253029A (en) * | 1994-03-14 | 1995-10-03 | Nippon Muki Co Ltd | Gas turbine intake high performance filter and gas turbine intake filter unit using it |
JPH07253028A (en) * | 1994-03-14 | 1995-10-03 | Nippon Muki Co Ltd | Gas turbine intake filter unit |
JPH09220427A (en) * | 1996-02-19 | 1997-08-26 | Nitta Ind Corp | Filter media for air filter and forming device therefor |
JPH11207117A (en) * | 1998-01-21 | 1999-08-03 | Taikisha Ltd | Gas purification filter |
JP2001263089A (en) * | 2000-03-15 | 2001-09-26 | Nippon Muki Co Ltd | Filter unit for gas turbine intake |
JP2001263090A (en) * | 2000-03-15 | 2001-09-26 | Nippon Muki Co Ltd | Filter unit for gas turbine intake |
JP2002292215A (en) * | 2001-03-29 | 2002-10-08 | Nippon Muki Co Ltd | High performance filter for gas turbine intake air and filter unit for gas turbine intake air using the same |
JP2003093825A (en) * | 2001-09-27 | 2003-04-02 | Ebara Corp | Gas removing method and gas removing filter |
WO2003043717A1 (en) * | 2001-11-21 | 2003-05-30 | Mitsubishi Heavy Industries, Ltd. | Dust collecting filter, dust collecting device, and intake device of gas turbine |
JP2009183926A (en) * | 2008-02-01 | 2009-08-20 | Shinwa Corp | Air conditioning filter |
JP2009183927A (en) * | 2008-02-01 | 2009-08-20 | Shinwa Corp | Air filter for high temperature |
JP2009226380A (en) * | 2008-03-25 | 2009-10-08 | Nichias Corp | Chemical filter and method for producing the same |
JP2010063959A (en) * | 2008-09-09 | 2010-03-25 | Nichias Corp | Chemical filter and method of manufacturing the same |
JP2010255612A (en) * | 2009-04-28 | 2010-11-11 | Shinwa Corp | Intake filter unit for gas turbine |
JP2011194389A (en) * | 2010-03-17 | 2011-10-06 | Nippon Air Filter Kk | Medium high performance filter |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015108961A1 (en) | 2014-01-16 | 2015-07-23 | Bha Altair, Llc | Gas turbine inlet gas phase contaminant removal |
JP2017504757A (en) * | 2014-01-16 | 2017-02-09 | ビーエイチエイ アルテア,エルエルシー | Gas phase contaminant removal at gas turbine inlet |
EP3097290A4 (en) * | 2014-01-16 | 2017-11-08 | BHA Altair, LLC | Gas turbine inlet gas phase contaminant removal |
KR101623083B1 (en) | 2014-12-31 | 2016-05-20 | 이충중 | Catalyst Pre Filter |
JP2020012425A (en) * | 2018-07-19 | 2020-01-23 | 株式会社Jvcケンウッド | Blower device |
JP7091906B2 (en) | 2018-07-19 | 2022-06-28 | 株式会社Jvcケンウッド | Blower |
US20200073348A1 (en) * | 2018-08-30 | 2020-03-05 | Carl Freudenberg Kg | Design, control and operation of filters for turbomachines |
US11656588B2 (en) * | 2018-08-30 | 2023-05-23 | Carl Freudenberg Kg | Design, control and operation of filters for turbomachines |
JP2020075251A (en) * | 2018-09-28 | 2020-05-21 | ダイキン工業株式会社 | Air filter medium, filter pack, air filter unit, and method for manufacture thereof |
JP7014977B2 (en) | 2018-09-28 | 2022-02-02 | ダイキン工業株式会社 | Air filter filter media, filter pack, air filter unit, and manufacturing method thereof |
CN111265942A (en) * | 2020-03-09 | 2020-06-12 | 佛山市人居环保工程有限公司 | Large central efficient air filter |
CN112483254A (en) * | 2020-12-04 | 2021-03-12 | 北京信和洁能新能源技术服务有限公司 | Ion waterfall purification device and gas turbine air inlet system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8034146B2 (en) | Filter element, method of manufacture and use | |
JP2013104421A (en) | Intake filter unit for gas turbine | |
US7247237B2 (en) | Fluid cleaning filter and filter device | |
US9061234B2 (en) | Gas filter assemblies and methods for filtering gases | |
US20120272829A1 (en) | Air filter with sorbent particles | |
JP6243146B2 (en) | Air filter | |
US20060000196A1 (en) | Fluid filter | |
US20110005394A1 (en) | Media for removal of organic compounds | |
JP2004089982A (en) | Air cleaning filter | |
JP5080753B2 (en) | Filter element, manufacturing method and usage thereof | |
JP5334364B2 (en) | Gas removal filter medium, composite filter and filter element | |
JP2014144421A (en) | Deodorization-gas removal filter | |
CN1997437A (en) | Chemical filtration unit incorporating air transportation device | |
JP2011194389A (en) | Medium high performance filter | |
JPH0474505A (en) | Air cleaning filter element | |
JP2011072911A (en) | Air cleaning filter | |
JP2014176798A (en) | Method for use of filter element, filter frame, and filtration device | |
JP2013193080A (en) | Bag filter medium | |
JPH08281030A (en) | Filter sheet for air cleaning | |
JP2856486B2 (en) | Honeycomb type electret filter | |
JP2013111572A (en) | Filter medium for gas removal | |
JP2820730B2 (en) | Laminated adsorbent and filter using the same | |
JP2010255612A (en) | Intake filter unit for gas turbine | |
JP6318716B2 (en) | Air filter unit | |
JPH0389913A (en) | Laminated adsorptive body and filter using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160419 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160713 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160725 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20160909 |