JP2013193080A - Bag filter medium - Google Patents

Bag filter medium Download PDF

Info

Publication number
JP2013193080A
JP2013193080A JP2012086858A JP2012086858A JP2013193080A JP 2013193080 A JP2013193080 A JP 2013193080A JP 2012086858 A JP2012086858 A JP 2012086858A JP 2012086858 A JP2012086858 A JP 2012086858A JP 2013193080 A JP2013193080 A JP 2013193080A
Authority
JP
Japan
Prior art keywords
filter medium
fiber
bag filter
woven fabric
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012086858A
Other languages
Japanese (ja)
Inventor
Toshio Senda
登志雄 千田
Masayuki Okamoto
正行 岡本
Kazuhiro Okuyama
一博 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AIR FILTER KK
Shinwa Corp
Original Assignee
NIPPON AIR FILTER KK
Shinwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AIR FILTER KK, Shinwa Corp filed Critical NIPPON AIR FILTER KK
Priority to JP2012086858A priority Critical patent/JP2013193080A/en
Publication of JP2013193080A publication Critical patent/JP2013193080A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bag filter medium capable of improving collection efficiency for dust within dust and exhaust gas, and having a large dust collecting capacity and a long service life as a result of withstanding dust sweeping off of the bag filter media, that is, expansion and contraction of the filter media.SOLUTION: An ultrafine fiber having a fiber diameter of 0.01 to 0.5 μm is laminated on or mixed with non-woven or woven cloth made of synthetic fiber or glass fiber or natural fiber, etc., and a filter medium in which an ultrafine fiber is formed integrally with non-woven or woven fabric is folded cylindrically or in a zigzag pattern to be pleated so that the circular or envelop-formed bag filter medium can be obtained for regeneration by sweeping off.

Description

本発明は、表面に付着した捕集ダストを払い落とし再生させるようにしたバグフィルタろ材に関するものである。  The present invention relates to a bag filter medium in which collected dust adhering to the surface is removed and regenerated.

従来より、バグフィルタは焼却設備や製鉄・製鋼工業における電気炉・転炉など各種工場から排出されるダスト排ガスからダストを除去して清浄なエアーとして除去するなどの幅広い分野で利用されている。  Conventionally, bag filters have been used in a wide range of fields, such as incinerators and the removal of dust from clean exhaust gas discharged from various factories such as electric furnaces and converters in the steel and steel industry.

通常、バグフィルタは各種工場から排出されるダスト排ガスをバグフィルタ本体内に吸煙導通し、バグフィルタろ材にてダストを捕集し清浄エアーとして外気に排気し環境汚染防止などの幅広い分野に利用されている。
そして、バグフィルタはダストなどを除去する途中に、バグフィルタろ材の捕集面を再生するため、ダスト捕集面とは逆のろ材面から、逆洗エアーやパルスジェットなどの圧縮空気を噴出してダスト捕集面を払い落としダスト捕集面の再生を行って、集じん運転を再開している。
Normally, bag filters are used in a wide range of fields such as preventing dust from being exhausted into the bag filter body by collecting dust exhaust gas discharged from various factories, collecting dust with the bag filter medium, and exhausting it into the outside as clean air. ing.
The bag filter regenerates the collecting surface of the bag filter medium while removing dust, etc., so compressed air such as backwash air or pulse jet is ejected from the surface of the filter medium opposite to the dust collecting surface. The dust collection surface is removed, the dust collection surface is regenerated, and the dust collection operation is resumed.

しかし、ダスト捕集面に送気した圧縮空気はバグフィルタ本体内に均等に圧力がかからないため、捕集したダストの一部しか効果的に剥離させることができず、結果的にまた直ちにダスト捕集面にダストが付着してしまい、再び上記の払い落とし操作を繰り返さざるを得ず、十分な集じん機能を果たすことが出来ない上集じん捕集率が不足し、ろ材の固有抵抗が高くなるといった問題がある上、上記の払い落とし操作によりバグフィルタろ材の寿命が早く来てしまうといった問題もあった。  However, since the compressed air sent to the dust collection surface does not apply pressure evenly in the bag filter body, only a part of the collected dust can be effectively peeled off. Dust adheres to the collecting surface, and the above-mentioned removal operation must be repeated again, so that it cannot perform a sufficient dust collecting function, and the dust collection rate is insufficient, and the specific resistance of the filter medium is high. In addition, there is a problem that the life of the bag filter medium is shortened by the above-described dropping operation.

また、これを解決するために、圧縮空気圧力または圧縮空気量を増加してバグフィルタ本体の内圧を高めダスト捕集面のダストを払い落とし再生させることが可能となるが、間欠的に使用する圧縮空気を一時的に貯めておくためのタンクやコンプレッサー容量が膨大となるため、設備費用の増大を伴うことになるなどコスト的な問題が生じてしまいなかなか採用されないといった懸念があった。  In order to solve this problem, it is possible to increase the compressed air pressure or the amount of compressed air to increase the internal pressure of the bag filter main body and to remove the dust on the dust collecting surface for regeneration. There is a concern that the tank and the compressor capacity for temporarily storing the compressed air become enormous, which causes an increase in equipment costs and causes cost problems, which are not easily adopted.

そして、上記のようなことからバグフィルタろ材に用いられる特性としては、集じん効率が高いこと、即ちダスト漏れが少ないこと、圧力損失が小さいこと、即ち通気性がよく且細孔径が小さいこと、またバグフィルタろ材の強度が大であること、例えばガスの通気圧に対して破れなどを生じないこと、耐用年数が長いこと、例えばパルス逆洗時にかかる繰り返しの屈曲に対する耐久性が大であることなどが要求されていた。  And, as described above, the characteristics used for the bag filter medium include high dust collection efficiency, that is, less dust leakage, low pressure loss, that is, good air permeability and small pore diameter, In addition, the strength of the bag filter medium is large, for example, it does not break against the gas aeration pressure, has a long service life, for example, has high durability against repeated bending during pulse backwashing. Etc. were requested.

このことから、従来バグフィルタ用ろ材の材質としては、ポリエステル、アラミド、4フッ化エチレン樹脂繊維などを混合し、ニードリングしたフェルトが主に用いられていた。  For this reason, as a material of the filter medium for the bag filter, a felt obtained by mixing polyester, aramid, tetrafluoroethylene resin fiber and the like and needling is mainly used.

しかし、合成繊維フェルトからなるバグフィルタろ材は、微粒子に対してダスト漏れが多く通気性も低く一般的に圧力損失が高いという欠点がありパルスなどでの再生使用中ろ材の膨張・収縮動作でダスト表面層の脱落に耐えられず亀裂などが発生しダストがそのまま漏れてしまうといった懸念があった。  However, bag filter media made of synthetic fiber felt have the disadvantages of having a large amount of dust leakage with respect to fine particles, low air permeability, and generally high pressure loss. There was a concern that the surface layer could not withstand dropping and cracks occurred and the dust leaked as it was.

本発明の目的は、低圧力損失でダスト排ガス中のダストに対する捕集効率を向上させると共にダストの捕集容量が大きく、ダスト払い落とし動作すなわち、ろ材の膨張・収縮動作に耐えられ、使用寿命の長いバグフィルタろ材を提供しようとしたものである。  The object of the present invention is to improve the collection efficiency of dust in exhaust gas with low pressure loss and to have a large dust collection capacity, which can withstand the dust removal operation, that is, the expansion / contraction operation of the filter medium, and has a long service life. It is intended to provide a long bag filter media.

本発明の目的は、低圧力損失でダストの捕集効率及び強度に優れ、かつ逆洗時のダストの払い落としが容易なバグフィルタろ材を提供しようとしたものである。  An object of the present invention is to provide a bag filter medium that is low in pressure loss, excellent in dust collection efficiency and strength, and easy to remove dust during backwashing.

本発明の目的は、ダスト捕集面の清掃再生時期を延ばしランニングコストなどの維持費削減を図ろうとしたものである。  An object of the present invention is to extend the cleaning and regeneration period of the dust collecting surface and reduce maintenance costs such as running costs.

本発明の目的は、ダスト捕集効率と低圧力損失を持ちながら、焼却処分可能な新規なバグフィルタろ材を提供しようとしたものである。An object of the present invention is to provide a novel bag filter medium that can be incinerated while having dust collection efficiency and low pressure loss.

本発明の目的は、長期間の耐熱性、耐薬品性に優れたバグフィルタろ材を提供しようとしたものである。  An object of the present invention is to provide a bag filter medium excellent in long-term heat resistance and chemical resistance.

本発明の第1の解決手段はバグフィルタろ材を合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布に、繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタろ材から構成したものである。  The first solving means of the present invention is to laminate a bag filter filter medium on a nonwoven fabric or woven fabric made of synthetic fiber, glass fiber, natural fiber or the like, and laminate a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm, It is composed of a laminated filter medium in which a nonwoven fabric or a woven fabric and an ultrafine fiber are integrated.

本発明の第2の解決手段は、バグフィルタろ材を前記積層フィルタろ材の超極細繊維の薄い層の表面または裏面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織布を乾燥固着して一体にした多層積層フィルタろ材から構成したものである。  According to a second solution of the present invention, a bag filter filter medium is formed by attaching an adhesive medium of a binder, molten fiber or adhesive powder to the surface or back surface of a thin layer of super fine fibers of the laminated filter medium, and the fiber diameter is 1 to 100 μm. And a multilayer laminated filter medium in which a non-woven fabric or woven fabric having a thickness of 0.05 to 2.5 mm is dried and fixed and integrated.

本発明の第3の解決手段は、バグフィルタろ材を合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布に、繊維径が0.01〜0.5μmの超極細繊維を絡ませて、前記不織布あるいは織布と超極細繊維を混合一体化した混合フィルタろ材から構成したものである。  According to a third solution of the present invention, the bag filter medium is entangled with a non-woven fabric or woven fabric made of synthetic fiber, glass fiber, natural fiber, or the like, with ultrafine fibers having a fiber diameter of 0.01 to 0.5 μm, It is composed of a mixed filter medium in which a nonwoven fabric or a woven fabric and superfine fibers are mixed and integrated.

本発明の第4の解決手段は、バグフィルタろ材を混合フィルタろ材の表面または裏面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織布を乾燥固着して一体にした混合フィルタろ材から構成したものである。  According to a fourth solution of the present invention, a bag filter medium is attached to the front or back surface of a mixed filter medium with a binder, molten fiber or adhesive powder adhesive medium, and the fiber diameter is 1 to 100 μm and the thickness is 0.05 to 2. It is composed of a mixed filter medium in which a non-woven fabric or woven fabric of .5 mm is dry-fixed and integrated.

本発明の第5の解決手段は、バグフィルタろ材を前記[0014]から[0017]のフィルタろ材にグラフト重合や薬液添着法あるいは活性炭添着法などの手法によりイオン交換基や化学反応基を付与したガス除去フィルタろ材から構成したものである。  According to a fifth solution of the present invention, an ion exchange group or a chemically reactive group is imparted to the filter medium of the above [0014] to [0017] by means of graft polymerization, chemical solution deposition method or activated carbon deposition method. It is composed of a gas removal filter medium.

本発明の第6の解決手段は、バグフィルタろ材は前記フィルタろ材またはガス除去フィルタろ材を円筒状に形成した円筒ろ材としたものである。  According to a sixth solving means of the present invention, the bag filter medium is a cylindrical filter medium in which the filter medium or the gas removal filter medium is formed in a cylindrical shape.

本発明の第7の解決手段は、バグフィルタろ材はフィルタろ材またはガス除去フィルタろ材をジグザグ状に折り畳んでひだ折り加工して円形状あるいは封筒形にしたものである。  According to a seventh solution of the present invention, the bag filter filter medium is formed into a circular shape or an envelope shape by folding the filter filter medium or the gas removal filter medium in a zigzag shape and then folding it.

ここで、フィルタろ材の基材である不織布あるいは織布はポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、レーヨン、ポリプロピレン繊維などの有機繊維やガラス繊維、パルプ繊維が使用可能である。これらを単独で用いてもよいし2種類以上を併用しても良い。  Here, the nonwoven fabric or woven fabric that is the base material of the filter medium can be organic fibers such as polyester fibers, polyamide fibers, polyethylene fibers, rayon, polypropylene fibers, glass fibers, and pulp fibers. These may be used alone or in combination of two or more.

これらの不織布あるいは織布の形成方法としては湿式抄紙法を用いる方法や乾式法、スパンボンド法、メルトブロー法、電界紡糸法などが用いられる。  As a method for forming these nonwoven fabrics or woven fabrics, a method using a wet papermaking method, a dry method, a spunbond method, a melt blow method, an electrospinning method, or the like is used.

フィルタろ材の接着媒体はバインダ、溶融繊維あるいは接着パウダーなどが使用される。そしてバインダは有機系バインダ、無機系バインダ又は混合して加えて得られる混合バインダが使用される。なお、好ましくはアクリル樹脂が使用される。溶融繊維は芯鞘構造の繊維などが使用される。さらに接着パウダーとしては軟化点の低い樹脂の粉末などが使用される。  A binder, molten fiber, adhesive powder, or the like is used as an adhesive medium for the filter medium. As the binder, an organic binder, an inorganic binder, or a mixed binder obtained by mixing is used. An acrylic resin is preferably used. As the molten fiber, a fiber having a core-sheath structure is used. Further, resin powder having a low softening point is used as the adhesive powder.

そして超極細繊維層は電界紡糸法により紡糸された平均繊維径が0.001〜1μmの高分子繊維からなる極細繊維で形成されたものである。このように電界紡糸法により製造された超極細繊維層は他不織布、織布などの基材と併用することで十分な強度を有するためバグフィルタろ材の加工性にすぐれている。この電界紡糸法とは従来公知の方法でありノズルなどから供給した紡糸溶液に対して電界を作用させることにより延伸して繊維化する方法である。  The ultrafine fiber layer is formed of ultrafine fibers made of polymer fibers having an average fiber diameter of 0.001 to 1 μm spun by an electrospinning method. Thus, the super extra fine fiber layer manufactured by the electrospinning method has sufficient strength when used in combination with other base materials such as other nonwoven fabrics and woven fabrics, and therefore has excellent workability of the bag filter medium. The electrospinning method is a conventionally known method, and is a method of drawing and fiberizing by applying an electric field to a spinning solution supplied from a nozzle or the like.

フィルタろ材の超極細繊維は単繊維直径が0.01〜0.5μmの範囲内にあるものであるものを指し、その形態は繊維状の形態であればよく、長さや断面形状にはこだわらないものである。そして超極細繊維を構成する材料は特に限定されるものではないが、例えばポリエステルやポリアミド、ポリオレフイン、ポリフェニレンスルフイド(PPS)、アラミドなどが挙げられる。ポリエステルとしてはポリエチレンテレフタレート(PET)、ポリトリメチレンテレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。また、ポリアミドとしてはナイロン6(N6)、ナイロン66(N66)、ナイロン11(N11)などが挙げられる。ポリオレフインとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)などが挙げられる。上記材料以外にもフェノール樹脂やポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリエーテルサルフォン(PES)、ポリスルホン、フッ素系高分子やそれらの誘導体を用いることももちろん可能である。  The ultra-fine fiber of the filter medium refers to one having a single fiber diameter in the range of 0.01 to 0.5 μm, and the form may be a fibrous form, and does not stick to the length or cross-sectional shape. Is. The material constituting the ultrafine fiber is not particularly limited, and examples thereof include polyester, polyamide, polyolefin, polyphenylene sulfide (PPS), and aramid. Examples of the polyester include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polylactic acid (PLA). Examples of polyamide include nylon 6 (N6), nylon 66 (N66), nylon 11 (N11), and the like. Examples of the polyolefin include polyethylene (PE), polypropylene (PP), and polystyrene (PS). In addition to the above materials, it is of course possible to use phenol resins, polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyethersulfone (PES), polysulfone, fluorine-based polymers and their derivatives.

本発明に使用される超極細繊維層は上述のような超極細繊維から構成されているが、超極細繊維は束状になく超極細繊維が分散した状態にあるのが好ましい。これは超極細繊維がスリップフロー効果で流体の流れが良くなり低圧力損失になるためである。  The super extra fine fiber layer used in the present invention is composed of the super extra fine fibers as described above, but the super extra fine fibers are preferably not in a bundle but in a state in which the extra extra fine fibers are dispersed. This is because the ultrafine fiber has a slip flow effect that improves the fluid flow and lowers the pressure loss.

次いで前記繊維化した超極細繊維を不織布あるいは織布上に積層させて超極細繊維層を形成できる。この不織布あるいは織布は超極細繊維を捕集でき且つ、バグフィルタろ材の加工性および強度が保持できるものであれば良く形状は特に限定されるものではない。  Subsequently, the ultrafine fibers layered can be formed by laminating the fiberized ultrafine fibers on a nonwoven fabric or a woven fabric. The shape of the nonwoven fabric or woven fabric is not particularly limited as long as it can collect ultrafine fibers and can maintain the workability and strength of the bag filter medium.

低い圧力損失でありながら高効率のダスト捕集機能を発揮する多層積層フィルタろ材または混合フィルタろ材の製作は、繊維径が1.0〜100μm、厚みが0.1〜1.0mmの合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に、ノズルなどから供給した紡糸材料に対して電界を作用させ延伸した超極細繊維を形成する電界紡糸法、溶融紡糸法により0.01〜0.5μmの超極細繊維層を積層させるかまたは混合することで、前記不織布あるいは織布と超極細繊維を一体化したフィルタろ材を形成する。  The production of a multilayer laminated filter medium or a mixed filter medium that exhibits a high-efficiency dust collection function with low pressure loss is a synthetic fiber having a fiber diameter of 1.0 to 100 μm and a thickness of 0.1 to 1.0 mm. A super-fine fiber stretched by attaching an adhesive medium of binder, molten fiber or adhesive powder to a nonwoven fabric or woven fabric made of glass fiber, natural fiber, etc., and then applying an electric field to the spinning material supplied from a nozzle etc. A filter medium in which the nonwoven fabric or woven fabric and the ultrafine fiber are integrated is formed by laminating or mixing the ultrafine fiber layers of 0.01 to 0.5 μm by electrospinning method or melt spinning method. To do.

さらに、フィルタろ材のもう一つの形態は前記フィルタろ材の超極細繊維層の表面または裏面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織布を乾燥固着するか、単に物理的に重ねて一体にした多層積層フィルタろ材である。  Furthermore, another form of the filter medium is that the fiber diameter is 1 to 100 μm and the thickness is 0.05 to 0.05 by attaching an adhesive medium of a binder, molten fiber or adhesive powder to the surface or back surface of the ultrafine fiber layer of the filter medium. It is a multilayer laminated filter medium in which a 2.5 mm non-woven fabric or woven fabric is dried and fixed, or is simply physically stacked and integrated.

そして低い圧力損失でありながら高効率のダスト捕集機能を発揮するバグフィルタろ材の製作は、フィルタろ材を円筒状に巻き、端部を一体にして円筒ろ材としたものである。  The production of a bag filter medium that exhibits a high-efficiency dust collecting function with low pressure loss is obtained by winding the filter medium in a cylindrical shape and integrating the ends into a cylindrical filter medium.

もう一つのバグフィルタろ材の製作は、フィルタろ材をジグザグ状に折り畳んでひだ折り加工し円形状あるいは封筒形としたものである。  Another bag filter medium is manufactured by folding the filter medium in a zigzag shape and folding it into a circular or envelope shape.

次に、低い圧力損失でありながら高効率の粉じん捕集機能を有し且つ汚染ガスの吸着機能を発揮するイオン交換基や反応基を付与したガス除去フィルタろ材の製作は、前記多層積層フィルタろ材または混合フィルタろ材にα線、β線、γ線、X線、電子線などの放射線を照射してラジカル(反応開始種)を生成させる。この照射後の積層フィルタろ材を重合性モノマー含有溶液に浸漬して重合性モノマーを多層積層フィルタろ材または混合フィルタろ材繊維にグラフト重合させる。その結果この重合性モノマーが繊維にグラフト重合側鎖として結合したものが生成する。この生成された重合性モノマーを側鎖として有する繊維をアニオン交換基又はカチオン交換基を有する化合物と接触反応させることにより、グラフト重合された側鎖の重合性モノマーにイオン交換基が導入されて最終生成物が得られる。また、ガスとの反応性を持った化学反応溶液を含浸、乾燥させてガス除去フィルタろ材も製作できる。そこで、かかる生成物が空気中のアルカリ性ガス、酸性ガスなどの汚染ガスと接触した際には、表面積の多い超極細繊維がガスと接触して、低圧損で効率よく接触するので、その汚染ガス除去率が優れたものとなる。  Next, the production of a gas removal filter medium having an ion exchange group and a reactive group that has a low-pressure-loss and high-efficiency dust collection function and exhibits a pollutant gas adsorption function is the multilayer laminated filter medium. Alternatively, the mixed filter medium is irradiated with radiation such as α rays, β rays, γ rays, X rays, and electron beams to generate radicals (reaction initiation species). The laminated filter medium after irradiation is immersed in a polymerizable monomer-containing solution, and the polymerizable monomer is graft-polymerized on the multilayer laminated filter medium or mixed filter medium fiber. As a result, the polymerizable monomer is bound to the fiber as a graft polymerization side chain. The resulting fiber having a polymerizable monomer as a side chain is contact-reacted with a compound having an anion exchange group or a cation exchange group, whereby an ion exchange group is introduced into the polymerizable monomer of the graft polymerized side chain, and finally A product is obtained. Further, a gas removal filter medium can be produced by impregnating and drying a chemical reaction solution having reactivity with gas. Therefore, when such a product comes into contact with a pollutant gas such as an alkaline gas or acid gas in the air, the ultrafine fiber having a large surface area comes into contact with the gas and efficiently comes into contact with the low pressure loss. The removal rate is excellent.

また重合性モノマーとして、ビニルスルホン酸、スチレンスルホン酸、ビニルピリジンアクリル酸、メタクリル酸、アリールアミン、クロロメチルスルホン酸などがあるが、カチオン交換基、アニオン交換基の必要性によって適宜選択されるものでありこれらの範囲に限定されるものではない。  Examples of the polymerizable monomer include vinyl sulfonic acid, styrene sulfonic acid, vinyl pyridine acrylic acid, methacrylic acid, arylamine, and chloromethyl sulfonic acid, which are appropriately selected depending on the necessity of a cation exchange group and an anion exchange group. And are not limited to these ranges.

また、含浸反応液としては水酸化カリウム、炭酸カリウム、硫酸、アミンなどが使用される。  As the impregnation reaction solution, potassium hydroxide, potassium carbonate, sulfuric acid, amine or the like is used.

なお、ガス除去フィルタろ材は、イオン交換基や薬品を付与した不織布あるいは織布に繊維径が0.01〜0.5μmの超極細繊維層を積層または超極細繊維を混合させ、前記不織布あるいは織布と超極細繊維とを組み合わせた構成でもよい。  The gas removal filter medium is made by laminating a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm or mixing a superfine fiber on a nonwoven fabric or a woven fabric to which an ion exchange group or a chemical is added, and the nonwoven fabric or the woven fabric. The structure which combined cloth and super extra fine fiber may be sufficient.

そして、低い圧力損失でありながら高効率のダスト捕集機能を有し且つ汚染ガスの吸着機能を発揮するバグフィルタろ材の製作は、ガス除去フィルタろ材を円筒状に巻くか、またはジグザグ状に折り畳んでひだ折り加工し円形状に円筒ろ材に製作される。  And the production of bag filter media that has a high efficiency dust collection function and exhibits a pollutant gas adsorption function with low pressure loss, is to wrap the gas removal filter media in a cylindrical shape or fold it into a zigzag shape. It is made into a cylindrical filter medium in a circular shape by fold folding.

上記課題解決による作用は次の通りである。  The effect | action by the said problem solution is as follows.

まず、集じん機の運転によりバグフィルタ内に吸入される汚染ガスやダストを含んだエアーは、バグフィルタろ材を経由してバグフィルタ外へ排気される。この時、ダストは超微小孔が形成された超極細繊維層で捕集される。ここで超極細繊維よりなる緻密な高密度捕捉機能を備えた超極細繊維層から構成されているので、低い圧力損失でありながら高効率の機能が発揮される。
またバグフィルタろ材のダスト払い落としに際しては、電界紡糸法を利用し、極細繊維層(不織布層)と補強用基材を用いることによって、強度向上を目的とした形状保持機能とじん挨保持容量の大きな機能を形成できるので、バグフィルタろ材のダスト払い落とし作動すなわちろ材の膨張・収縮作動に耐えられ結果として使用寿命が長いバグフィルタろ材を提供できるものである。
First, air containing pollutant gas and dust sucked into the bag filter by the operation of the dust collector is exhausted out of the bag filter through the bag filter medium. At this time, the dust is collected by the ultrafine fiber layer in which ultrafine holes are formed. Here, since it is comprised from the super extra fine fiber layer provided with the precise | minute high density capture | acquisition function which consists of a super extra fine fiber, a highly efficient function is exhibited though it is a low pressure loss.
Also, when removing dust from bag filter media, the electrospinning method is used, and by using an ultrafine fiber layer (nonwoven fabric layer) and a reinforcing base material, a shape retention function and a dust retention capacity for the purpose of improving strength are achieved. Since a large function can be formed, it is possible to provide a bag filter medium that can withstand the dust removal operation of the bag filter medium, that is, the expansion / contraction operation of the filter medium, and has a long service life as a result.

上述したように本発明のバグフィルタろ材は次のような効果がえられる。
(1)バグフィルタろ材は、強度向上を目的とした形状保持機能およびじん埃保持容量の大きな不織布あるいは織布と超極細繊維よりなる緻密な高密度捕捉機能を備えた超極細繊維層を混合または積層し、超極細繊維層でダストを捕集するようにしているので、微粒子を含む広範囲なダストに対しても確実に捕集でき、さらに低い圧力損失でありながら高効率の機能を発揮できる。
(2)バグフィルタろ材を強度向上を目的とした形状保持機能およびじん埃保持容量の大きな不織布あるいは織布で補強したので、度重なる逆洗作動に耐えられ、バグフィルタろ材の寿命を延ばすことができると共に捕集機能の低下を最小限に押さえることができる。
(3)フィルタろ材にグラフト重合や薬液添着法などの手法によりイオン交換基や反応基を付与したガス除去フィルタろ材からを払い落し再生用のバグフィルタろ材としたので、汚染ガスを確実に除去すると共に低い圧力損失でありながら高効率の機能を発揮できる。
(4)バグフィルタろ材表面を平滑にも出来るのでダストの剥離も向上でき、再生時に発生させる逆洗エアー量が少量であっても超極細繊維層から剥離、再生させることができるため、圧縮空気を貯めるためのバッファタンク容量を最小化と省電力化ができる。
(5)超極細遷移層を積層または混合一体化することで、ダストの捕集効率が大幅に向上すると共に、剥離効率も大幅に向上する。
即ち、互いに相反する機能を両立させることができる。
(6)本発明のバグフィルタろ材は極細繊維の交点が熱融着された不織布あるいは交絡された不織布と、強度の大きい繊維製ネットが熱融着されあるいは交絡された物である。したがって、このろ材は、引張強力に優れ、圧力損失が小さく、5μm以下の微粒子をも捕捉でき、ろ過精度に優れ、通気度も多く、加熱に対し孔径安定性が良く、加熱等により目開きしない。このろ材は加熱に対し孔径安定性が良いので、加熱や、高温ろ過などを行っても、安定した高精度のろ過を行うことが出来る。又このろ材は、ひだ折り凹凸状の加工が出来る。又このひだ折り加工されたろ材は前記効果に加え、ろ過面積が多いのでろ過の寿命が長いという効果がある。
As described above, the bag filter medium of the present invention has the following effects.
(1) The bag filter medium is a mixture of a super-fine fiber layer having a shape retention function for the purpose of improving strength and a dense non-woven fabric or woven cloth having a large dust retention capacity and a dense high-density capture function composed of ultra-fine fibers. Since the dust is collected by the superfine fiber layer, it can be reliably collected even for a wide range of dust containing fine particles, and a highly efficient function can be exhibited with a low pressure loss.
(2) The bag filter media is reinforced with a non-woven fabric or woven fabric with a shape retention function and a large dust holding capacity for the purpose of improving strength, so that it can withstand repeated backwash operations and extend the life of the bag filter media. It is possible to minimize the deterioration of the collection function.
(3) Since the filter media used for the regeneration is a bag filter media for regeneration by removing from the gas removal filter media provided with ion exchange groups or reactive groups by techniques such as graft polymerization or chemical solution impregnation, the polluted gas is reliably removed. At the same time, it is possible to exhibit a highly efficient function with a low pressure loss.
(4) Since the surface of the bag filter medium can be made smooth, the separation of dust can be improved, and even if the amount of backwash air generated during regeneration is small, it can be separated and regenerated from the ultrafine fiber layer, so compressed air The capacity of the buffer tank for storing water can be minimized and power can be saved.
(5) By stacking or mixing and integrating the ultrafine transition layer, dust collection efficiency is greatly improved, and peeling efficiency is also greatly improved.
That is, it is possible to make compatible functions compatible with each other.
(6) The bag filter medium of the present invention is a non-woven fabric in which the intersections of ultrafine fibers are heat-sealed or entangled with a high-strength fiber net that is heat-sealed or entangled. Therefore, this filter medium has excellent tensile strength, small pressure loss, can capture fine particles of 5 μm or less, excellent filtration accuracy, high air permeability, good pore diameter stability against heating, and does not open by heating etc. . Since this filter medium has good pore diameter stability against heating, stable high-accuracy filtration can be performed even if heating, high-temperature filtration, or the like is performed. Moreover, this filter medium can process a fold fold uneven | corrugated shape. In addition to the above effect, the fold-folded filter medium has an effect that the filtration life is long because of the large filtration area.

積層フィルタろ材を円筒形状にしたバグフィルタろ材。Bag filter media with cylindrical filter media. 図1の平面図。The top view of FIG. 積層フィルタろ材をジグザグ状にひだ折り加工し円筒形状にしたバグフィルタろ材。Bag filter media made by fold-folding laminated filter media into a zigzag shape into a cylindrical shape. 図3の平面図。FIG. 4 is a plan view of FIG. 3.

図1はバグフィルタろ材1で、バグフィルタろ材1はフィルタろ材2を円筒状に巻き、端部を一体にして円筒ろ材としたものである。  FIG. 1 shows a bag filter medium 1. The bag filter medium 1 is formed by winding a filter medium 2 in a cylindrical shape and integrating the ends into a cylindrical filter medium.

図3はフィルタろ材2をジグザグ状に折り畳んで円形状にひだ折り加工し端部を一体にして円筒ろ材としたものである。
そして、積層フィルタろ材2は下記に示す構成となっている。
FIG. 3 shows a filter medium 2 which is folded into a zigzag shape and is folded into a circular shape, and ends thereof are integrated into a cylindrical filter medium.
The multilayer filter medium 2 has the following configuration.

フィルタろ材2の第1の実施形態は繊維径が1.0〜100μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織り布のフィルタ基材3表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が0.01〜0.5μmの超極細繊維の薄い層4を重ね乾燥固着して一体化して形成される。  The first embodiment of the filter medium 2 is the surface of the filter base 3 made of a nonwoven fabric or a woven fabric made of glass fiber, synthetic fiber or natural fiber having a fiber diameter of 1.0 to 100 μm and a thickness of 0.1 to 1.0 mm. A thin layer 4 of ultra-fine fibers having a fiber diameter of 0.01 to 0.5 μm is laminated and fixed by drying and adhering to each other.

第2の実施形態は前記実施形態の超極細繊維の薄い層4の表面に繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織り布を一体にしてフィルタろ材2が形成される。  In the second embodiment, the filter medium 2 is formed by integrating a nonwoven fabric or a woven fabric having a fiber diameter of 1 to 100 μm and a thickness of 0.05 to 2.5 mm on the surface of the thin layer 4 of ultrafine fibers of the above embodiment. Is done.

第3の実施形態は、繊維径が1.0〜100μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織り布のフィルタ基材3表面に繊維径が0.01〜0.5μmの超極細繊維を重ねニードリング加工して繊維混合するか、前記フィルタ基材3表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が0.01〜0.5μmの超極細繊維を重ねニードリング加工し繊維混合して一体化されたフィルタろ材2が形成される。In the third embodiment, the fiber diameter is 1.0 to 100 μm and the fiber diameter on the surface of the filter substrate 3 of a nonwoven fabric or a woven fabric made of glass fiber, synthetic fiber, natural fiber or the like having a thickness of 0.1 to 1.0 mm. Of ultrafine fibers having a diameter of 0.01 to 0.5 μm are overlapped and needling processed to mix the fibers, or a binder, a molten fiber or an adhesive powder adhesive medium is attached to the surface of the filter base 3, and the fiber diameter is added thereto. Is formed by superimposing ultrafine fibers having a diameter of 0.01 to 0.5 μm and performing needling processing and mixing the fibers to form an integrated filter medium 2.

第4の実施形態は繊維径が1.0〜100μm、厚みが0.1〜1.0mmのガラス繊維や合繊繊維または天然繊維などからなる不織布あるいは織り布の表面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、その上に繊維径が0.01〜0.5μmの超極細繊維の薄い層を重ね乾燥固着して一体化したフィルタ基材3に放射線照射した後、スチレンスルホン酸あるいはアクリル酸グリシジルの重合性単量体モノマーを接触させ、それぞれカチオン交換基あるいはアニオン交換基を形成する。これによりカチオン交換基すなわちアルカリガス吸着機能またはアニオン交換基すなわち酸性ガス吸着機能を有したガス除去フィルタろ材2が形成される。  In the fourth embodiment, the surface of a nonwoven fabric or woven fabric made of glass fiber, synthetic fiber or natural fiber having a fiber diameter of 1.0 to 100 μm and a thickness of 0.1 to 1.0 mm is bonded to a binder, molten fiber, or adhesive powder. After attaching a thin layer of ultrafine fibers having a fiber diameter of 0.01 to 0.5 μm thereon and drying and fixing them to irradiate the filter substrate 3 with radiation, styrene sulfonic acid or A polymerizable monomer monomer of glycidyl acrylate is contacted to form a cation exchange group or an anion exchange group, respectively. Thereby, the gas removal filter medium 2 having a cation exchange group, that is, an alkali gas adsorption function or an anion exchange group, that is, an acid gas adsorption function is formed.

なお、本発明は前記実施形態そのままに限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化でき、また前記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の変更が可能である。  Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage, and a plurality of components disclosed in the embodiments. Various modifications can be made by an appropriate combination of the above.

さらに、払い落とし機構を使用せず静的な捕集としてのエアフィルタにも使用できるものである。  Furthermore, it can be used for an air filter as a static collection without using a dropping mechanism.

バグフィルタを扱っている業界においては、低い圧力損失で且つ高い捕集効率および長寿命の性能を持ったバグフィルタろ材を従来から追い求めている。しかしこれらの性能は相反する性能を持ったものであることなどからなかなか理想とするものが生まれてこなかった。そこで近年繊維業界の技術開発により、超極細繊維などが開発されてきたのをきっかけにフィルタ業界でも理想の性能をもったバグフィルタろ材の開発が注目されている。そこで本発明はこれらの問題を解決し、超極細繊維効果を遺憾無く発揮し低圧損で高効率且つ多層、表面平滑などで長寿命の性能を持ったバグフィルタろ材を提供しょうとしたもので本発明は産業上極めて利用価値の高いものである。  In the industry dealing with bag filters, bag filter media having low pressure loss, high collection efficiency and long life performance have been sought after. However, these performances have contradictory performances, making it difficult to create an ideal one. Therefore, the development of bag filter media having ideal performance in the filter industry has been attracting attention as a result of technological development in the textile industry in recent years and the development of ultra-fine fibers. Therefore, the present invention is intended to solve these problems and to provide a bag filter medium that exhibits the ultra-fine fiber effect without regret, has high efficiency with low pressure loss, and has a multi-layered, smooth surface and long life. The invention is extremely useful in industry.

1・・・バグフィルタろ材 2・・・フィルタろ材
3・・・フィルタ基材 4・・・超極細繊維の薄い層
DESCRIPTION OF SYMBOLS 1 ... Bag filter filter medium 2 ... Filter filter medium 3 ... Filter base material 4 ... Thin layer of super fine fiber

Claims (7)

合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布に、繊維径が0.01〜0.5μmの超極細繊維層を積層させ、前記不織布あるいは織布と超極細繊維を一体化した積層フィルタろ材を円筒状に巻き、端部を接合して円筒ろ材としたことを特徴とする払い落し再生用のバグフィルタろ材。  Laminate made of synthetic fiber, glass fiber, natural fiber, etc., laminated with a superfine fiber layer having a fiber diameter of 0.01 to 0.5 μm, and the nonwoven fabric or woven cloth and superfine fiber are integrated. A bag filter medium for scraping regeneration, wherein the filter medium is wound in a cylindrical shape, and ends are joined to form a cylindrical filter medium. 請求項1の積層フィルタろ材の超極細繊維の薄い層の表面または裏面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織布を乾燥固着して一体にした多層積層フィルタろ材を円筒状に巻き円筒ろ材としたことを特徴とするバグフィルタろ材。  An adhesive medium of a binder, molten fiber or adhesive powder is attached to the surface or back surface of the thin layer of the ultrafine fiber of the multilayer filter medium of claim 1, the fiber diameter is 1 to 100 μm, and the thickness is 0.05 to 2.5 mm A bag filter medium characterized in that a multilayer laminated filter medium in which a nonwoven fabric or a woven cloth is dry-fixed and integrated to form a cylindrical filter medium. 合繊繊維またはガラス繊維や天然繊維などからなる不織布あるいは織布に、繊維径が0.01〜0.5μmの超極細繊維層を絡ませて、前記不織布あるいは織布と超極細繊維を混合一体化した混合フィルタろ材を円筒状に巻き、端部を接合して円筒ろ材としたことを特徴とする払い落し再生用のバグフィルタろ材。  A non-woven fabric or woven fabric made of synthetic fiber, glass fiber, natural fiber or the like is entangled with a super fine fiber layer having a fiber diameter of 0.01 to 0.5 μm, and the non-woven fabric or woven fabric and the super fine fiber are mixed and integrated. A bag filter medium for scraping regeneration, wherein the mixed filter medium is wound in a cylindrical shape, and ends are joined to form a cylindrical filter medium. 請求項3の混合フィルタろ材の表面または裏面にバインダ、溶融繊維あるいは接着パウダーの接着媒体を付けて、繊維径が1〜100μm、厚みが0.05〜2.5mmの不織布あるいは織布を乾燥固着して一体にした混合フィルタろ材を円筒状に巻き、円筒ろ材としたことを特徴とするバグフィルタろ材。  A binder, molten fiber or adhesive powder adhesive medium is attached to the front or back surface of the mixed filter medium of claim 3, and a non-woven fabric or woven fabric having a fiber diameter of 1 to 100 μm and a thickness of 0.05 to 2.5 mm is fixed by drying. A bag filter medium characterized in that a mixed filter medium integrated into a cylindrical shape is wound into a cylindrical filter medium. 請求項1および2の積層フィルタろ材をジグザグ状に折り畳んでひだ折り加工して円形状あるいは封筒形にしたことを特徴とするバグフィルタろ材。  A bag filter medium, wherein the laminated filter medium of claims 1 and 2 is folded into a zigzag shape and fold-folded into a circular shape or an envelope shape. 請求項3および4の混合フィルタろ材をジグザグ状に折り畳んでひだ折り加工して円形状あるいは封筒形にしたことを特徴とするバグフィルタろ材。  A bag filter medium, wherein the mixed filter medium of claims 3 and 4 is folded into a zigzag shape and fold-folded into a circular shape or an envelope shape. 請求項1から4までのフィルタろ材にグラフト重合や薬液添着法あるいは活性炭添着法などの手法によりイオン交換基や化学反応基を付与したガス除去フィルタろ材を円筒状に巻くか、またはジグザグ状に折り畳んでひだ折り加工して円形状または封筒形にしたことを特徴とするバグフィルタろ材。  A gas removal filter medium to which an ion exchange group or a chemical reaction group is added is wrapped around the filter medium according to any one of claims 1 to 4 by a graft polymerization method, a chemical solution deposition method, or an activated carbon deposition method, or is folded in a zigzag shape. A bag filter medium characterized by being folded and folded into a circular shape or an envelope shape.
JP2012086858A 2012-03-21 2012-03-21 Bag filter medium Pending JP2013193080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086858A JP2013193080A (en) 2012-03-21 2012-03-21 Bag filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086858A JP2013193080A (en) 2012-03-21 2012-03-21 Bag filter medium

Publications (1)

Publication Number Publication Date
JP2013193080A true JP2013193080A (en) 2013-09-30

Family

ID=49392670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086858A Pending JP2013193080A (en) 2012-03-21 2012-03-21 Bag filter medium

Country Status (1)

Country Link
JP (1) JP2013193080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801111A (en) * 2015-05-07 2015-07-29 福建龙净环保股份有限公司 Electrostatic-bag dust collector and filter bag thereof
CN107261657A (en) * 2017-06-30 2017-10-20 江苏灵氟隆环境工程有限公司 A kind of industrial bag dust collector
KR20190123010A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
CN112556440A (en) * 2020-12-30 2021-03-26 刘露雨 Smoke-eliminating, dust-removing, desulfurizing and denitrifying technical device for coal-fired boiler and kiln

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801111A (en) * 2015-05-07 2015-07-29 福建龙净环保股份有限公司 Electrostatic-bag dust collector and filter bag thereof
CN107261657A (en) * 2017-06-30 2017-10-20 江苏灵氟隆环境工程有限公司 A kind of industrial bag dust collector
CN107261657B (en) * 2017-06-30 2020-04-14 江苏灵氟隆环境工程有限公司 Industrial filter bag dust collector
KR20190123010A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
KR102116377B1 (en) * 2018-04-23 2020-05-28 충남대학교산학협력단 Manufacturing method of fine dust filter
CN112556440A (en) * 2020-12-30 2021-03-26 刘露雨 Smoke-eliminating, dust-removing, desulfurizing and denitrifying technical device for coal-fired boiler and kiln

Similar Documents

Publication Publication Date Title
JP5547062B2 (en) Method for forming a laminate of nanoweb and substrate and filter using the laminate
JP5490680B2 (en) Baghouse filters and media
KR101281864B1 (en) Filtration media for filtering particulate material from gas streams
US8282712B2 (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
CN107530598A (en) Stable filter medium comprising nanofiber
GB2462192A (en) Method of manufacturing a composite filter media
JP2011508665A5 (en)
JP2010201419A (en) Hepa (h-10) performance synthetic nonwoven and nanofiber composite filter media
KR101878355B1 (en) Gas filter
JP2014529495A (en) Multilayer filter media and filter elements made from multilayer filter media
JP2013193080A (en) Bag filter medium
KR102270152B1 (en) Washable fine dust filter module using nano fiber
JP6158061B2 (en) Air filter media
JP2013104421A (en) Intake filter unit for gas turbine
JP2011194389A (en) Medium high performance filter
KR20160141909A (en) Adsorption type liquid filter
JP2014079731A (en) Bag filter material
CN103285663B (en) A kind of Spunbond filament filter material
JP2021514300A (en) Filter medium
JP2013111572A (en) Filter medium for gas removal
JP3677197B2 (en) Separating functional fiber sheet and filter
JPH0389912A (en) Laminated adsorptive body and filter using it
JP2004267828A (en) Coarse dust filter
US20230323055A1 (en) Systems and methods for retaining nanoparticles within nonwoven material
US20230321570A1 (en) Systems and methods for continuous production of fibrous materials and nanoparticles