JP2007301436A - Filter medium for air filter - Google Patents

Filter medium for air filter Download PDF

Info

Publication number
JP2007301436A
JP2007301436A JP2006129685A JP2006129685A JP2007301436A JP 2007301436 A JP2007301436 A JP 2007301436A JP 2006129685 A JP2006129685 A JP 2006129685A JP 2006129685 A JP2006129685 A JP 2006129685A JP 2007301436 A JP2007301436 A JP 2007301436A
Authority
JP
Japan
Prior art keywords
air filter
filter medium
air
layer
nanofiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006129685A
Other languages
Japanese (ja)
Inventor
Teruhiro Komatsu
輝弘 小松
Kazuya Nitta
和也 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FYUUENSU KK
Kanai Juyo Kogyo Co Ltd
Original Assignee
FYUUENSU KK
Kanai Juyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FYUUENSU KK, Kanai Juyo Kogyo Co Ltd filed Critical FYUUENSU KK
Priority to JP2006129685A priority Critical patent/JP2007301436A/en
Publication of JP2007301436A publication Critical patent/JP2007301436A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium for an air filter which has an extremely low pressure loss, is most suitable for the air filtration treatment and is capable of trapping fine powder with high efficiency. <P>SOLUTION: The air filter medium 10 is provided with a sheet-like nanofiber structure layer 12 with which the nanofiber is three-dimensionally entangled, an upstream side porous material layer 14 which integrally overlies the surface of the filtration upstream side of the nanofiber structure layer 12 and a downstream side porous material layer 16 which is integrally laminated on the surface of the filtration downstream side of the nanofiber structure layer 12. The face which is integrally laminated with the nanofiber structure layer 12 of the upstream side porous material layer 14 and the downstream side porous material layer 16 is flat and smooth with no fluffy projections. The downstream side porous material layer 16 has gas permeability of which the pressure loss is 100 pa or less at the air flow rate of 1 m/second. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エアフィルタ用濾材に関し、特に例えば、圧力損失が極めて低く高風量での気体濾過処理に最適であり、且つ微細な粉塵を高効率で捕集できるエアフィルタ用濾材に関するものである。   The present invention relates to an air filter medium, and more particularly to an air filter medium that is extremely low in pressure loss and optimal for gas filtration with a high air volume and that can collect fine dust with high efficiency.

従来エアフィルタとしては、捕集粉塵の大きさと捕集効率によってプレフィルタ、中性能フィルタ、高性能(HEPA)フィルタ、超高性能フィルタ(ULPA)フィルタが工場・ビル・病院等の空調設備に広く使用されている。工場空調のクリーンルームに使用される高性能HEPAフィルタは、例えば縦610mm×横610mm×奥行き50mmのケース内に、プリーツ加工が施されたフィルタ濾材がセットされ、フィルタユニットとしては0.3μm以上の粉塵の捕集効率99.99%以上で、処理風量10m3/min・圧力損失300pa・処理風速0.5m/s(濾材内風速0.05m/秒前後)で使用されている。また中性能フィルタはフィルタ材が縦594mm×横594mm×奥行き96mmのケース内にプリーツ加工されてセットされ、0.3μm以上の粉塵の捕集効率65%以上で処理風量50m3/min・圧力損失170pa・処理風速2.0m/s(濾材内風速0.06m/秒前後)で使用されている。これらエアフィルタユニットに使用されるエアフィルタ用濾材では、グラスファイバーと合成繊維で構成された不織布のHEPAフィルタ材としての性能(プリーツ加工をせずに平板での性能)は面風速5.3cm/秒に於いて0.3〜0.5μmの初期粉塵捕集効率が約97%であり、またメルトブローン等の不織布が使用される中性能フィルタ材は面風速5.3cm/秒に於いて初期粉塵効率が約50%である。ナノ繊維を使用したエアフィルタは高効率が期待できるが、例えば特許文献1に見られるようにナノ繊維層がエア流におかれた時に特異な状態を示す事が十分に把握されずに使用されている。
特表2005−527344号公報
As conventional air filters, pre-filters, medium performance filters, high performance (HEPA) filters, and ultra high performance filters (ULPA) filters are widely used in air conditioning facilities in factories, buildings, hospitals, etc., depending on the size and collection efficiency of collected dust. in use. A high-performance HEPA filter used in a clean room for factory air conditioning, for example, is a 610 mm long x 610 mm wide x 50 mm deep case in which a pleated filter medium is set, and the filter unit has a dust of 0.3 μm or more. Is used at a processing air volume of 10 m 3 / min, a pressure loss of 300 pa, a processing air speed of 0.5 m / s (an air speed in the filter medium of around 0.05 m / sec). The medium performance filter is set by pleating a filter material in a case of 594 mm long × 594 mm wide × 96 mm deep, with a collection efficiency of 65% or more of dust of 0.3 μm or more and a processing air flow of 50 m 3 / min / pressure loss. It is used at a rate of 170 pa · processed wind speed of 2.0 m / s (around 0.06 m / second in the filter medium). In the filter material for air filters used in these air filter units, the performance as a HEPA filter material of a nonwoven fabric composed of glass fibers and synthetic fibers (performance on a flat plate without pleating) is a surface wind speed of 5.3 cm / The initial dust collection efficiency of 0.3 to 0.5 μm per second is about 97%, and the medium performance filter material using non-woven fabric such as meltblown is the initial dust at a surface wind speed of 5.3 cm / sec. Efficiency is about 50%. An air filter using nanofibers can be expected to have high efficiency, but for example, as seen in Patent Document 1, it is used without sufficiently grasping that a nanofiber layer shows a unique state when placed in an air flow. ing.
JP 2005-527344 A

従来使用されているエアフィルタに於いては、濾材内設計風速は中性能フィルタ・HEPAフィルタにおいては5〜6cm/秒でULPAフィルタにおいては5cm/秒以下で使用されている。濾材内設計風速以上の環境で使用すると、風速が上昇するにしたがって圧力損失が増大し、捕集した粉塵等が再飛散しフィルタの粉塵捕集効率が低下する。これはエア流速が上昇すると、エアフィルタの下流で発生するカルマン渦・乱流渦が次第に大きくなり濾材全体を下流方向に引っぱる力が働き粉塵が脱落していき、ついにはフィルタを構成する繊維がエア流方向に対して垂直方向に固有振動する事によって濾材内に捕集された粉塵が次第に移動してエア流下流に流れていく事によって捕集効率が低下する。また、ナノ繊維によって構成されるエアフィルタにおいてはナノ繊維に接するフリーの繊維あるいはケバ状の繊維があると前記のカルマン渦・乱流渦で激しく振動してナノ繊維の配列を乱しあるいは損傷の発生も生まれ、やはり捕集効率の低下につながる。従来使用されているエアフィルタ材は主に短繊維によって構成されているのでこの現象を発生し易い。本発明は、上記問題点に鑑みてなされたもので、圧力損失が極めて低く高風量での気体濾過処理に最適であり、且つ微細な粉塵を高効率で捕集できるエアフィルタ用濾材を提供することを目的とする。   In the conventionally used air filter, the design wind speed in the filter medium is 5 to 6 cm / second in the medium performance filter / HEPA filter and 5 cm / second or less in the ULPA filter. When used in an environment above the design wind speed in the filter medium, the pressure loss increases as the wind speed increases, and the collected dust or the like rescatters, reducing the dust collection efficiency of the filter. This is because when the air flow rate rises, Karman vortices and turbulent vortices generated downstream of the air filter gradually increase, and the force pulling the entire filter medium in the downstream direction acts to drop off the dust. Due to the natural vibration in the direction perpendicular to the air flow direction, the dust collected in the filter medium gradually moves and flows downstream of the air flow, thereby reducing the collection efficiency. In addition, in an air filter composed of nanofibers, if there are free fibers or tangle-like fibers in contact with the nanofibers, they will vibrate vigorously with the Karman vortex / turbulent vortex and disturb the nanofiber arrangement or damage. Occurrence is also born, which also leads to a decrease in collection efficiency. Since the conventionally used air filter material is mainly composed of short fibers, this phenomenon is likely to occur. The present invention has been made in view of the above problems, and provides an air filter medium that is extremely low in pressure loss and is optimal for gas filtration with a high air volume, and that can collect fine dust with high efficiency. For the purpose.

請求項1に記載の発明は、ナノ繊維が三次元的に交絡されてなるシート状のナノ繊維構造体層と、ナノ繊維構造体層の濾過上流側の面に一体に積層される上流側多孔質体層と、ナノ繊維構造体層の濾過下流側の面に一体に積層される下流側多孔質体層とを備え、上流側多孔質体層および下流側多孔質体層のナノ繊維構造体層と一体に積層される側の面は、ケバ状の突起物がなく平滑であり、下流側多孔質体層は、エア流速1m/秒に於ける圧力損失が100pa以下となる通気性を備え、濾過下流側において乱流を発しないことを特徴とする、エアフィルタ用濾材である。   The invention according to claim 1 is a sheet-like nanofiber structure layer in which nanofibers are entangled three-dimensionally, and an upstream porosity layered integrally on the surface of the nanofiber structure layer on the upstream side of filtration. And a downstream porous body layer integrally laminated on a filtration downstream side surface of the nanofiber structure layer, the upstream porous body layer and the downstream porous body layer nanofiber structure The surface on the side laminated with the layer is smooth with no protrusions, and the downstream porous body layer has air permeability such that the pressure loss at an air flow rate of 1 m / sec is 100 pa or less. A filter medium for an air filter, characterized in that no turbulent flow is generated on the downstream side of the filtration.

請求項2に記載の発明は、ナノ繊維構造体層は、層毎に繊維径の異なる複数以上の層からなり、ナノ繊維構造体層を構成する各層のナノ繊維の繊維径は、濾過下流側の層にいくにしたがって小さくなる、請求項1に記載のエアフィルタ用濾材である。   In the invention according to claim 2, the nanofiber structure layer is composed of a plurality of layers having different fiber diameters for each layer, and the fiber diameter of the nanofibers of each layer constituting the nanofiber structure layer is determined on the downstream side of the filtration. The filter material for an air filter according to claim 1, which decreases as it goes to the layer.

請求項3に記載の発明は、汎用エアフィルタ用濾材と、請求項1または請求項2に記載のエアフィルタ用濾材とを組合せてなるエアフィルタ用濾材であって、請求項1または請求項2に記載のエアフィルタ用濾材を、汎用エアフィルタ用濾材の濾過下流側の面に密着した状態で配置した又は汎用エアフィルタ用濾材の濾過下流側の気流の乱れの範囲内の距離を置いて配置した、エアフィルタ用濾材である。   The invention according to claim 3 is a filter medium for an air filter obtained by combining the filter medium for general-purpose air filter and the filter medium for air filter according to claim 1 or claim 2, wherein the filter medium for air filter is claim 1 or claim 2. The filter medium for air filter described in the above is disposed in close contact with the downstream surface of the filter medium for general-purpose air filter, or is disposed at a distance within the range of the turbulence of the air stream on the downstream side of the filter medium for general-purpose air filter. This is a filter medium for an air filter.

請求項4に記載の発明は、汎用エアフィルタ、エアフィルタ用濾材のいずれか一方または双方がユニット化された請求項3に記載のエアフィルタ用濾材である。   The invention according to claim 4 is the air filter medium according to claim 3, wherein either or both of the general-purpose air filter and the air filter medium are unitized.

本発明にかかるエアフィルタ用濾材によれば、圧力損失が極めて低く高風量での気体濾過処理に最適であり、且つ微細な粉塵を高効率で捕集できるエアフィルタ用濾材を提供する事が可能であり、これによりエア処理設備の高性能化、イニシャルコストの低減,ランニングコストの低減を可能となる。さらには、工業製品、衛生製品用の優れた資材を提供することができる。   According to the air filter medium according to the present invention, it is possible to provide an air filter medium that is extremely low in pressure loss and optimal for gas filtration with a high air volume and that can collect fine dust with high efficiency. This makes it possible to improve the performance of the air treatment facility, reduce initial costs, and reduce running costs. Furthermore, excellent materials for industrial products and hygiene products can be provided.

図1は、本発明にかかるエアフィルタ用濾材の一実施の形態を示す断面図解図である。エアフィルタ用濾材10は、ナノ繊維構造体層12を含む。ナノ繊維構造体層12は、ナノ繊維12aが3次元的に交絡されてなるシート状の繊維構造体からなる。ナノ繊維構造体層12は、公知のナノ繊維ウェブ製造方法などの繊維構造体製造方法により作製されるが、ナノ繊維12aの繊維径、ウェブの目付け,ポアサイズの制御が容易なことによりエレクトロスピニング法により作製されるのが好ましい。ナノ繊維12aの繊維径およびナノ繊維構造体層12の目付は、ナノ繊維構造体層12のポアサイズを決定する要素であり、繊維径が細く、目付が大きいほど形成されるポアサイズは小さくなり、細かい粉塵を捕集する事が可能となるが、繊維径が略500nmより小さくなるほど被濾過気体が抜け易くなることより、ナノ繊維12aの繊維径は500nm以下とされるのが好ましい。   FIG. 1 is a cross-sectional view showing an embodiment of a filter medium for an air filter according to the present invention. The air filter medium 10 includes a nanofiber structure layer 12. The nanofiber structure layer 12 is composed of a sheet-like fiber structure in which nanofibers 12a are three-dimensionally entangled. The nanofiber structure layer 12 is manufactured by a fiber structure manufacturing method such as a known nanofiber web manufacturing method, but the electrospinning method is easy because the fiber diameter of the nanofibers 12a, the basis weight of the web, and the pore size can be easily controlled. It is preferable to be manufactured by. The fiber diameter of the nanofiber 12a and the basis weight of the nanofiber structure layer 12 are factors that determine the pore size of the nanofiber structure layer 12, and the smaller the fiber diameter and the larger the basis weight, the smaller the pore size formed. Although dust can be collected, it is preferable that the fiber diameter of the nanofibers 12a is 500 nm or less because the filtered gas becomes easier to escape as the fiber diameter becomes smaller than about 500 nm.

ナノ繊維12aの原料としては、ポリアクリロニトリル,6ナイロン,66ナイロン,ポリエチレン,ポリプロピレン,ポリエチレンテレフタレート,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリスチレン,ポリエチレンオキサイド,セルロース,ポリエーテルウレタン,導電性高分子,ポリ乳酸,ポリカプロラクタン,フィブロイン,コラーゲンその他のタンパク質等のポリマーを使用することができる。なお、ナノ繊維構造体層12の作製方法については、後段において詳述する。   The raw material of the nanofiber 12a is polyacrylonitrile, 6 nylon, 66 nylon, polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyethylene oxide, cellulose, polyether urethane, conductive polymer, polylactic acid. , Polymers such as polycaprolactan, fibroin, collagen and other proteins can be used. The method for producing the nanofiber structure layer 12 will be described in detail later.

ナノ繊維構造体層12の濾過上流側の面には、上流側多孔質体層14が一体に積層されている。上流側多孔質体層14は、ナノ繊維構造体層12のプレフィルタとして機能する多孔質体である。すなわち、本発明にかかるエアフィルタ用濾材10では、粒径の大きな粉塵は上流側多孔質体層14により捕集し、捕集のメイン対象とする大きさの粉塵はナノ繊維構造体層12により捕集行うように構成されている。上流側多孔質体層14は、ナノ繊維構造体層12のプレフィルタとして機能するために、ナノ繊維構造体層12のポアサイズより大きなポアサイズを有する多孔質体が用いられるのが好ましい。   An upstream porous body layer 14 is integrally laminated on the surface of the nanofiber structure layer 12 on the upstream side of filtration. The upstream porous body layer 14 is a porous body that functions as a prefilter for the nanofiber structure layer 12. That is, in the filter medium 10 for an air filter according to the present invention, dust having a large particle size is collected by the upstream porous body layer 14, and dust having a size as a main target for collection is collected by the nanofiber structure layer 12. It is configured to collect. The upstream porous body layer 14 preferably functions as a prefilter for the nanofiber structure layer 12, and a porous body having a pore size larger than the pore size of the nanofiber structure layer 12 is preferably used.

上流側多孔質体層14には、有機繊維または無機繊維からなる不織布、ウェブ、織物、紙、ネット、有孔フィルム等の被濾過気体を通過させることのできるポアまたは流路に有しているものが適用可能である。なお、上流側多孔質体層14のナノ繊維構造体層12と一体に積層される面は、繊維状のケバがなく平滑な表面とされている。その理由は、被濾過気体を濾過している状態において上流側多孔質体層14の下流には幾分かのカルマン渦や乱流渦が発生する。カルマン渦や乱流渦が発生した状態で、フリーの繊維あるいはケバ状の繊維が存在するとその繊維またはケバは激しく振動し、ナノ繊維構造体層12中のナノ繊維12aの配列を乱したり、損傷する可能性が生じ、その結果、エアフィルタ用濾材10の捕集効率の低下を招くためである。この現象は、上流側多孔質体層1が短繊維からなる多孔質体から形成されているときに生じやすい。この問題を鑑みれば、上流側多孔質体層14には、連続繊維により構成され表面にケバがなく平滑なスパンボンド不織布を使用することが望ましい。しかしながら、上流側多孔質体層14に適用可能な多孔質体は、スパンボンド不織布に限られるのではなく、ナノ繊維構造体層12と接触する面のケバ焼き処理や熱ロール加工、樹脂コーティング加工によって表面をケバがなく平滑な状態にすることにより、上述の材料からなる中性能フィルタ,HEPAフィルタ,ULPAフィルタ等の汎用エアフィルタ用濾材が使用することができる。なお、上流側多孔質体層14は、エアフィルタ用濾材10の製品寿命を考慮して、所望の粉塵保持容量を備えるものを適宜選択して使用されればよい。   The upstream porous body layer 14 has a pore or a flow path through which a gas to be filtered such as a nonwoven fabric, a web, a woven fabric, paper, a net, a perforated film, or the like made of organic fibers or inorganic fibers can pass. Things are applicable. In addition, the surface laminated | stacked integrally with the nanofiber structure layer 12 of the upstream porous body layer 14 is made into a smooth surface without a fibrous mark. The reason is that some Karman vortices and turbulent vortices are generated downstream of the upstream porous body layer 14 in a state in which the gas to be filtered is filtered. In the state where Karman vortex or turbulent vortex is generated, if free fiber or fluffy fiber is present, the fiber or flake vibrates vigorously, disturbing the arrangement of nanofibers 12a in the nanofiber structure layer 12, This is because there is a possibility of damage, and as a result, the collection efficiency of the air filter medium 10 is reduced. This phenomenon is likely to occur when the upstream porous body layer 1 is formed of a porous body made of short fibers. In view of this problem, it is desirable to use a spunbonded nonwoven fabric that is made of continuous fibers and has no surface fluff and is smooth for the upstream porous body layer 14. However, the porous body applicable to the upstream porous body layer 14 is not limited to the spunbonded nonwoven fabric, but the surface in contact with the nanofiber structure layer 12 is baked, heat-rolled, or resin coated. By making the surface smooth and free from flaws, it is possible to use a general-purpose air filter medium such as the medium performance filter, HEPA filter, or ULPA filter made of the above-mentioned materials. The upstream porous body layer 14 may be used by appropriately selecting one having a desired dust holding capacity in consideration of the product life of the air filter medium 10.

ナノ繊維構造体層12の濾過下流側の面には、下流側多孔質体層16が一体に積層されている。下流層多孔質体層16は、ナノ繊維構造体層12を濾過下流側から支持し、被濾過気体より加えられる風圧等によりナノ繊維構造体層12が破損しないようにするためのものである。下流側多孔質体層16としては、上流側多孔質体層14と同様に、有機繊維または無機繊維からなる不織布、ウェブ、織物、紙、ネット、有孔フィルム等の被濾過気体を通過させることのできるポアまたは流路に有しているものが適用可能であるが、ナノ繊維構造体層12をスムーズに流れてきたエア流を乱さないように圧力損失が低いものでなければならない。また、下流側多孔質体層16の濾過上流側の面に繊維状のケバなどがあると、上流側多孔質体層14と同様に、ナノ繊維構造体層12中のエア流の流れの妨げになるばかりか、ケバ状の繊維が激しく振動し、ナノ繊維構造体層12中のナノ繊維12aの配列を乱したり、損傷する可能性が生じ、その結果、エアフィルタ用濾材10の捕集効率の低下を招く可能性がある。このことより、下流側多孔質体層16にはエア流速1m/sにおいて圧力損失が100pa以下となる多孔質体であることが好ましい。また、ケバにより生ずる問題に対処するため、上流側多孔質体層14と同様に、連続繊維により構成され表面にケバがなく平滑なスパンボンド不織布を使用することが望ましい。しかしながら、下流側多孔質体層16に適用可能な多孔質体は、スパンボンド不織布に限られるのではなく、ナノ繊維構造体層12と接触する面のケバ焼き処理や熱ロール加工,樹脂コーティング加工によって表面にケバが存在せず、表面が平滑な状態にすることにより、上述の材料からなる中性能フィルタ,HEPAフィルタ,ULPAフィルタ等の汎用エアフィルタ用濾材が使用可能である。さらには、下流側多孔質体層16には、上述した条件を具備したものであれば、多孔質体とネット材などのような強度保持材とが複合された複合体が使用されてもよい。   A downstream porous body layer 16 is integrally laminated on the surface of the nanofiber structure layer 12 on the downstream side of filtration. The downstream porous body layer 16 supports the nanofiber structure layer 12 from the downstream side of filtration, and prevents the nanofiber structure layer 12 from being damaged by wind pressure or the like applied from the gas to be filtered. As the downstream porous body layer 16, similarly to the upstream porous body layer 14, a gas to be filtered such as a nonwoven fabric, a web, a woven fabric, paper, a net, a perforated film made of organic fibers or inorganic fibers is allowed to pass through. However, the pressure loss must be low so as not to disturb the air flow smoothly flowing through the nanofiber structure layer 12. Further, if there is a fibrous mark on the upstream surface of the downstream porous body layer 16 in the filtration, the flow of the air flow in the nanofiber structure layer 12 is hindered as in the upstream porous body layer 14. In addition, the kerberous fibers vibrate vigorously, and the arrangement of the nanofibers 12a in the nanofiber structure layer 12 may be disturbed or damaged. As a result, the air filter medium 10 is collected. There is a possibility of causing a decrease in efficiency. Accordingly, the downstream porous body layer 16 is preferably a porous body having a pressure loss of 100 pa or less at an air flow rate of 1 m / s. Moreover, in order to cope with the problem caused by the chipping, it is desirable to use a spunbonded nonwoven fabric which is composed of continuous fibers and has no surface fluff and is smooth like the upstream porous body layer 14. However, the porous body applicable to the downstream porous body layer 16 is not limited to the spunbonded nonwoven fabric, but the surface in contact with the nanofiber structure layer 12 is baked, heat-rolled, or resin-coated. By making the surface smooth with no blemishes on the surface, it is possible to use a medium air filter material such as a medium performance filter, HEPA filter, or ULPA filter made of the above-mentioned materials. Furthermore, the downstream porous body layer 16 may be a composite in which a porous body and a strength retaining material such as a net material are combined as long as the above-described conditions are satisfied. .

従来のフィルタでは、被処理気体の風速が上昇すると、濾材の濾過下流側に発生するカルマン渦や乱流により濾材が振動し、捕集・保持した粉塵が再び飛散する再飛散現象が発生し粉塵捕集効率が低下するが、本発明にかかるエアフィルタ用濾材10では、上述した構成により、カルマン渦,乱流渦が発生しにくく、被濾過流体がスムーズに流れるので、再飛散が無く粉塵捕集効率が高風量下においても低下することがない。   In the conventional filter, when the wind speed of the gas to be processed increases, the filter medium vibrates due to Karman vortices and turbulent flow generated downstream of the filter medium, and a re-scattering phenomenon occurs in which the collected and retained dust is scattered again. Although the collection efficiency is reduced, in the filter medium 10 for air filter according to the present invention, Karman vortices and turbulent vortices are less likely to be generated and the fluid to be filtered flows smoothly due to the above-described configuration. The collection efficiency does not decrease even under high airflow.

図2は、本発明にかかる別の実施の形態を示す断面図解図である。この実施の形態のエアフィルタ用濾材20は、図1に示す実施の形態とはナノ繊維構造体層の構造が異なる。ナノ繊維構造体層22は、濾過上流側よりナノ繊維構造体層22a,ナノ繊維構造体層22b,ナノ繊維構造体層22cの順に構成された複数の層から形成されている。ナノ繊維構造体層22a,22b,22cは、全て繊維径が500nm以下のナノ繊維により形成されているが、濾過下流側の層にいくにしたがって、層を構成するナノ繊維23の繊維径が小さくなっている。これによりこの実施の形態では、図1に示す実施の形態が奏する効果に加え、ナノ繊維構造体層22内でふるい効果が発生することにより、さらに効率的に濾過粉塵を捕集することが可能であり、また製品の高寿命化が可能となる。なお、本実施の形態においては、ナノ繊維構造体層22を3層構造としたが、これに限らず、所望の粉塵捕集効率、製品寿命が得られるように適宜な数に層は増減されてもよい。   FIG. 2 is an illustrative sectional view showing another embodiment according to the present invention. The air filter medium 20 of this embodiment differs from the embodiment shown in FIG. 1 in the structure of the nanofiber structure layer. The nanofiber structure layer 22 is formed from a plurality of layers configured in the order of the nanofiber structure layer 22a, the nanofiber structure layer 22b, and the nanofiber structure layer 22c from the upstream side of the filtration. The nanofiber structure layers 22a, 22b, and 22c are all formed of nanofibers having a fiber diameter of 500 nm or less, but the fiber diameter of the nanofibers 23 constituting the layer decreases as it goes to the downstream layer of filtration. It has become. Thereby, in this embodiment, in addition to the effect that the embodiment shown in FIG. 1 has, the sieving effect is generated in the nanofiber structure layer 22 so that the filtered dust can be collected more efficiently. In addition, the product life can be extended. In the present embodiment, the nanofiber structure layer 22 has a three-layer structure. However, the number of layers is not limited to this, and the number of layers may be increased or decreased to an appropriate number so that desired dust collection efficiency and product life can be obtained. May be.

図3は、本発明にかかるさらに別の実施形態を示す図解図である。本実施の形態は、図1または図2に示すエアフィルタ用濾材10,20と汎用エアフィルタ用濾材32とを一体に配置・組合せることにより構成したエアフィルタ用濾材30である。なお、本発明で示す汎用エアフィルタ用濾材32とは、従来よりある中性能フィルタ,HEPAフィルタ,ULPAフィルタ等のような気体濾過に使用されるエアフィルタ用濾材のことを指す。   FIG. 3 is an illustrative view showing still another embodiment according to the present invention. The present embodiment is an air filter medium 30 configured by integrally arranging and combining the air filter mediums 10 and 20 and the general-purpose air filter medium 32 shown in FIG. 1 or 2. The general-purpose air filter medium 32 shown in the present invention refers to an air filter medium used for gas filtration such as conventional medium performance filters, HEPA filters, ULPA filters and the like.

本実施の形態のエアフィルタ用濾材30では、エアフィルタ用濾材10またはエアフィルタ用濾材20の濾過上流側の面に、汎用エアフィルタ用濾材32が一体に配置されている。本実施の形態では、上述の構成とすることで、汎用エアフィルタ用濾材32がその濾過下流側において発生するカルマン渦,乱流渦を、エアフィルタ用濾材10またはエアフィルタ用濾材20が整流し消滅させる。これにより、この実施の形態のエアフィルタ用濾材30では、汎用エアフィルタ濾材32を単独で使用したときと比較して、カルマン渦等が原因により生ずる粉塵の再飛散が起こりにくくなり、汎用エアフィルタ濾材32が処理可能な風速が約10倍前後向上させることが可能である。なお、汎用エアフィルタ濾材32は、エアフィルタ用濾材10,20の濾過上流側の面に密着させて配置することが最も好ましい。しかし、汎用エアフィルタ濾材32が影響をうけるカルマン渦や乱流が生じている範囲内にエアフィルタ用濾材10,20を配置すれば、汎用エアフィルタ濾材32へカルマン渦等の影響が小さくすることができるので、汎用エアフィルタ濾材32が影響を受けるカルマン渦、乱流等が発生する範囲内に、エアフィルタ用濾材10,20が配置されればよい。また、この実施の形態においては、汎用エアフィルタ濾材32と、エアフィルタ用濾材10,20とを平らなシート状のまま使用したが、汎用エアフィルタ濾材32とエアフィルタ用濾材10,20とが双方とも又はいずれか一方がプリーツ加工などを施してユニット化されてもよい。   In the air filter medium 30 of the present embodiment, the general-purpose air filter medium 32 is integrally disposed on the surface of the air filter medium 10 or the air filter medium 20 on the upstream side of the filtration. In the present embodiment, the air filter medium 10 or the air filter medium 20 rectifies the Karman vortex and the turbulent flow vortex generated on the downstream side of the filtration by the general-purpose air filter medium 32 with the above-described configuration. Extinguish. Thereby, in the filter medium 30 for air filter of this embodiment, compared with the case where the general-purpose air filter medium 32 is used alone, the dust re-scattering caused by Karman vortex or the like is less likely to occur. The wind speed that can be processed by the filter medium 32 can be improved by about 10 times. The general-purpose air filter medium 32 is most preferably arranged in close contact with the upstream surface of the air filter medium 10, 20. However, if the air filter mediums 10 and 20 are arranged in a range where Karman vortices and turbulent flow affected by the general-purpose air filter medium 32 are produced, the influence of the Karman vortex and the like on the general-purpose air filter medium 32 is reduced. Therefore, the air filter media 10 and 20 need only be arranged within a range where Karman vortices, turbulence, and the like that affect the general-purpose air filter media 32 are generated. In this embodiment, the general-purpose air filter media 32 and the air filter media 10 and 20 are used in the form of a flat sheet, but the general-purpose air filter media 32 and the air filter media 10 and 20 are used. Both or either one may be unitized by pleating.

引き続き、エアフィルタ用濾材10の製造方法を例にして、本発明にかかるエアフィルタ用濾材10の製造方法について説明を行う。なお、本エアフィルタ用濾材10を製造するに使用するエレクトロスピニング装置は、従来より存在するエレクトロスピニング装置を使用することより、エレクトロスピニング装置およびその各部に関する説明について割愛する。   Subsequently, the method for producing the air filter medium 10 according to the present invention will be described using the method for producing the air filter medium 10 as an example. In addition, the electrospinning apparatus used for manufacturing the filter medium 10 for this air filter omits description about an electrospinning apparatus and its each part from using the electrospinning apparatus which exists conventionally.

まず、ナノ繊維構造体層10をエレクトロスピニング方法により形成するために、ナノ繊維構造体層12の材料である段落0007で例示したポリマーを、それぞれのポリマーをエレクトロスピニングするに最適な溶剤(アセトン、クロロホルム、エタノール、メタノール、トルエン、キシロール、シクロヘキサン、ジメチルホルアミド、蟻酸、酢酸等)に溶解し、2〜20重量%の濃度の溶解液を作製する。   First, in order to form the nanofiber structure layer 10 by the electrospinning method, the polymer exemplified in paragraph 0007, which is the material of the nanofiber structure layer 12, is prepared by using an optimum solvent (acetone, electrospinning of each polymer). (Chloroform, ethanol, methanol, toluene, xylol, cyclohexane, dimethylformamide, formic acid, acetic acid, etc.) to prepare a solution having a concentration of 2 to 20% by weight.

次に、この溶解液をエレクトロスピニング装置の針状ノズル電極から放出して、コレクタ電極上にナノ繊維12aを堆積させてナノ繊維構造体層12を形成する。溶解液は、1KV〜5KV/cmの電界強度でもって放出してコレクタ電極上にナノ繊維構造体層12を形成させるが、ナノ繊維構造体層12自体だけでは、エアフィルタ用濾材としての強度を備えていないため、コレクタ電極上に下流側多孔質体層16を配置し、下流側多孔質体層16上にナノ繊維構造体層12を堆積させて形成する。   Next, this solution is discharged from the needle nozzle electrode of the electrospinning apparatus, and nanofibers 12a are deposited on the collector electrode to form the nanofiber structure layer 12. The solution is discharged with an electric field strength of 1 KV to 5 KV / cm to form the nanofiber structure layer 12 on the collector electrode. However, the nanofiber structure layer 12 itself has a strength as an air filter medium. Since it is not provided, the downstream porous body layer 16 is disposed on the collector electrode, and the nanofiber structure layer 12 is deposited on the downstream porous body layer 16.

このとき、ナノ繊維構造体層12を堆積させる下流側多孔質体層16の表面に繊維状ケバなどの極端な凹凸が存在すると、ナノ繊維12aの配列が乱れて均一なポアサイズのナノ繊維構造体層12が形成されない。特に、10μm以上の長さの繊維状ケバ付近では、図4に示すように、針状ノズル電極から飛んできたナノ繊維12aがケバの上を滑り、ケバの根元で略U字状に堆積してしまう。また、ケバの上をナノ繊維12aが滑らない場合には、図5に示すように、ケバを支えにしてナノ繊維12aがトンネル状に堆積され、欠陥である大きなポアを造り易い。従って、下流側多孔質体層16は、ケバがなく表面が平滑な多孔質体が使用されるのが好ましく、段落0017で述べた理由からも、連続繊維で構成されたスパンボンド不織布が使用されるのが好ましい。なお、ここでは、コレクタ電極上に下流側多孔質体層16を配置させナノ繊維構造体12を形成させたが、これに限らず、コレクタ電極上に上流側多孔質体層14を配置させてナノ繊維構造体層12を形成されてもよい。この場合においても、本段落で述べた理由から上流側多孔質体層14の表面は、ケバなどがなく平滑であることが好ましい。また、上流側多孔質体層14に汎用エアフィルタ用濾材等を使用する場合には、少なくとも上流側多孔質体層14のナノ繊維構造体層12が積層される面は、ケバ焼き処理や熱ロール加工,樹脂コーティング加工によってケバがなく表面が平滑な状態とされるのが好ましい。   At this time, if there are extreme irregularities such as fibrous kerks on the surface of the downstream porous body layer 16 on which the nanofiber structure layer 12 is deposited, the arrangement of the nanofibers 12a is disturbed and the nanofiber structure has a uniform pore size. Layer 12 is not formed. In particular, in the vicinity of a fibrous kerb with a length of 10 μm or more, as shown in FIG. 4, the nanofibers 12a flying from the needle-like nozzle electrode slide on the kerf and accumulate in a substantially U shape at the root of the kerb. End up. Further, when the nanofibers 12a do not slide on the cutout, as shown in FIG. 5, the nanofibers 12a are deposited in a tunnel shape while supporting the cutout, and it is easy to make a large pore that is a defect. Therefore, it is preferable that the downstream porous body layer 16 is a porous body having no fluff and a smooth surface. For the reason described in paragraph 0017, a spunbond nonwoven fabric composed of continuous fibers is used. It is preferable. Here, the downstream porous body layer 16 is disposed on the collector electrode to form the nanofiber structure 12, but this is not limiting, and the upstream porous body layer 14 is disposed on the collector electrode. The nanofiber structure layer 12 may be formed. Even in this case, for the reason described in this paragraph, the surface of the upstream porous body layer 14 is preferably smooth and free from fluff. Further, when a general-purpose air filter medium or the like is used for the upstream porous body layer 14, at least the surface of the upstream porous body layer 14 on which the nanofiber structure layer 12 is laminated is subjected to baked or heat treatment. It is preferable that the surface is smooth without rolls by roll processing or resin coating processing.

次に、下流側多孔質体層16の表面上にナノ繊維構造体層12を堆積・形成させた直後、上流側多孔質体層14がナノ繊維構造体層12に積層され一体とされる。なお、上流側多孔質体層14とナノ繊維構造体層12とを強固に一体化させるために後処理で、超音波融着、熱ロール等の後処理が施されてもよい。また、上流側多孔質体層14上にナノ繊維構造体層12を堆積・形成させた場合にも、下流側多孔質体層16がナノ繊維構造体層12に積層され一体とされればよい。   Next, immediately after the nanofiber structure layer 12 is deposited and formed on the surface of the downstream porous body layer 16, the upstream porous body layer 14 is laminated and integrated with the nanofiber structure layer 12. In addition, in order to firmly integrate the upstream porous body layer 14 and the nanofiber structure layer 12, post-treatment such as ultrasonic fusion and hot roll may be performed in post-treatment. Further, when the nanofiber structure layer 12 is deposited and formed on the upstream porous body layer 14, the downstream porous body layer 16 may be laminated and integrated with the nanofiber structure layer 12. .

上述した工程を経て製造されたエアフィルタ用濾材10は、ナノ繊維構造体層12に繊維の乱れや欠陥となる大きなポアは形成されず、また、ナノ繊維構造体層12中のエア流の妨げとなったり、ナノ繊維12aの配列を乱したり,損傷する原因となるケバがない良好な状態である。   The air filter medium 10 manufactured through the above-described steps does not form large pores that cause fiber disturbance or defects in the nanofiber structure layer 12, and hinders air flow in the nanofiber structure layer 12. It is a good state with no injuries that cause damage to the array of nanofibers 12a or damage.

なお、本実施の形態では、ナノ繊維構造体層12を一層により構成した場合について説明を行ったが、濾過下流の層にいくにしたがって繊維径が細くなる複数の層よりナノ繊維構造体層12を構成する場合には、エレクトロスピニングを行う条件を層毎に違えて、上流側多孔質体層14または下流側多孔質体層16上にナノ繊維構造体層12が形成されればよい。   In the present embodiment, the case where the nanofiber structure layer 12 is configured as a single layer has been described. However, the nanofiber structure layer 12 is more than a plurality of layers in which the fiber diameter becomes smaller toward the downstream layer of filtration. In this case, the nanofiber structure layer 12 may be formed on the upstream porous body layer 14 or the downstream porous body layer 16 with different electrospinning conditions for each layer.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。請求項に記載した範囲内で適宜変更することにより、所望のエアフィルタ用濾材が作製されればよい。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. A desired filter material for an air filter may be produced by appropriately changing within the scope described in the claims.

ナノ繊維構造体層12の材料としてナイロン6ペレット(ユニチカ株式会社製A1030BRL、分子量16000)を使用した。このナイロン6ペレットを15gを蟻酸(キシダ化学株式会社製 濃度98%)85g中に常温溶解させて15重量%濃度のナイロン6溶液を作成した。このナイロン6溶液をルアーロック先注射筒に入れエレクトロスピニング装置(株式会社フューエンス製Esprayer ES−2000)に装着し、コレクタ電極上の載置した下流側多孔質体層16となる縦13cm×横12cmの大きさのスパンボンド上にエレクトロスピニングすることによりナノ繊維構造体層12を作製した。なお、下流側多孔質体層16には、エア流1m/sの時の圧力損失が50paであるナイロン6製スパンボンド(目付20g/m2、厚み0.11mm、縦引張強力7kg/5cm巾)を使用した。また、このときのエレクトロスピニングの条件は、スプレーノズルとして内径φ0.21mmのMN−27G−13(岩下エンジニアリング株式会社製)を使用して、溶液送液速度1μl/min、ノズルコレクタ電極間電圧20kV、ノズルコレクタ電極間距離10cmとした。上述の条件によりナイロン6製スパンボンド上に、平均繊維径100nm,平均ポアサイズ140nmとなるように目付がそれぞれ0.2g/m2、0.19g/m2、0.15g/m2の3種を形成した。 Nylon 6 pellets (A1030BRL manufactured by Unitika Ltd., molecular weight 16000) were used as the material of the nanofiber structure layer 12. 15 g of this nylon 6 pellet was dissolved in 85 g of formic acid (concentration 98% manufactured by Kishida Chemical Co., Ltd.) at room temperature to prepare a nylon 6 solution having a concentration of 15 wt%. This nylon 6 solution is placed in a luer lock tip syringe and attached to an electrospinning apparatus (Esprayer ES-2000 manufactured by Fuence Co., Ltd.). The downstream porous body layer 16 placed on the collector electrode becomes 13 cm long × 12 cm wide. The nanofiber structure layer 12 was produced by electrospinning on a spunbond of a size of. The downstream porous body layer 16 has a nylon 6 spunbond (weight per unit area 20 g / m 2 , thickness 0.11 mm, longitudinal tensile strength 7 kg / 5 cm width) with a pressure loss of 50 pa when the air flow is 1 m / s. )It was used. The electrospinning conditions at this time were MN-27G-13 (manufactured by Iwashita Engineering Co., Ltd.) having an inner diameter of 0.21 mm as a spray nozzle, a solution feed speed of 1 μl / min, and a nozzle collector electrode voltage of 20 kV. The distance between the nozzle collector electrodes was 10 cm. Three types of weights of 0.2 g / m 2 , 0.19 g / m 2 , and 0.15 g / m 2 are formed on the nylon 6 spunbond under the above-mentioned conditions so that the average fiber diameter is 100 nm and the average pore size is 140 nm. Formed.

その後、ナノ繊維構造体層12上に下流側多孔質体層16に用いたスパンボンドと同じスパンボンドを上流側多孔質体層14として一体に積層化させて目付の異なる3種の実施例を作製した。   Thereafter, the same spunbond as the spunbond used for the downstream porous body layer 16 is integrally laminated on the nanofiber structure layer 12 as the upstream porous body layer 14 so that three examples with different basis weights are formed. Produced.

(エア流試験1)
実施例1のナノ繊維構造体層12の目付が0.2g/m2のエアフィルタ用濾材10の濾過下流側に線径0.1mmの網戸用ポリエチレンネット(エア流速1m/sにおける圧力損失5pa)を重ね置き、これを縦85mm×横85mmにカットして実施例2を作製し、エア流状態の観察試験を行った。また、比較例1として実施例2と同じサイズで、平均繊維径20μmのメルトブローン不織布製の中性能フィルタ(金井重要工業株式会社製 品番90p、目付120g/m2,厚み0.4mm)を作製して、同様にエア流状態の観察試験を行った。
(Air flow test 1)
A polyethylene screen for a screen door having a wire diameter of 0.1 mm on the downstream side of the air filter medium 10 having a basis weight of the nanofiber structure layer 12 of Example 1 of 0.2 g / m 2 (pressure loss 5 pa at an air flow rate of 1 m / s). ), And this was cut into a length of 85 mm × width of 85 mm to produce Example 2, and an air flow state observation test was performed. Further, as Comparative Example 1, a medium-performance filter made of a melt-blown nonwoven fabric having an average fiber diameter of 20 μm and having an average fiber diameter of 20 μm (manufactured by Kanai Important Industry Co., Ltd., product number 90p, basis weight 120 g / m 2 , thickness 0.4 mm) Similarly, an observation test of the air flow state was conducted.

エアフィルタ用濾材を通過するエア流を観察するために、図6に示す装置を使用した。透明風洞4として、アクリル板(厚み3mm)を成形して外形が縦80mm×横80mm×長さ160mmの中空角柱を2本作り、中央部にエアフィルタ用濾材6をセットしてアルミシールテープでアクリル板中空角柱2本と一体接着固定した。透明風洞のエア出口は連結プラスチックダクト7でエア吸引装置3に連結した。透明風洞のエア吸い込み口には蚊取り線香を用意し、蚊取り線香の煙(粒径0.1〜0.15μm)の流れにメタルハライドファイバー照明装置(株式会社住田光学ガラス製LS−M250)の光を当てて、高速度カメラ(株式会社日本ローバ製Motionscope−M2)で撮影し、画像をパソコンに取り込んだ。   The apparatus shown in FIG. 6 was used to observe the air flow passing through the air filter medium. As the transparent wind tunnel 4, an acrylic plate (thickness 3 mm) is molded to form two hollow prisms with an outer dimension of 80 mm × width 80 mm × length 160 mm, and a filter medium 6 for air filter is set at the center and an aluminum seal tape is used. It was integrally bonded and fixed to two hollow acrylic prisms. The air outlet of the transparent wind tunnel was connected to the air suction device 3 by a connecting plastic duct 7. Prepare a mosquito-repellent incense stick at the air inlet of the transparent wind tunnel, and shine the light from the metal halide fiber lighting device (LS-M250 made by Sumita Optical Glass Co., Ltd.) on the flow of smoke (particle size 0.1-0.15 μm) The images were taken with a high-speed camera (Motionscope-M2 manufactured by Nippon Rover Co., Ltd.) and the images were taken into a personal computer.

図7は、実施例2の風速1m/秒におけるエア流を高速度カメラで撮像した画像であり、図8は、比較例1の風速1m/秒におけるエア流を高速度カメラで撮像した画像である。図8を見て明らかなように、比較例1では、濾材の上流側までは煙が直線状に流入してくるが、濾材を通過した後は、煙が渦を巻くジグザグ状となっている。渦状のところでは煙濃度高くそれ以外では煙濃度が低くなることから、比較例1の下流側において激しい乱流が発生していることが確認できる。他方、実施例2では、図7の画像が示すように、濾材の上流側まで煙が直線状に流入し、濾材12内を拡散して煙の巾が広くなって出て行くが、出て行く煙に濃淡が無く均一である。実施例2ではカルマン渦及び乱流渦発生が無くエアがスムーズに出て行くことが確認することができた。   FIG. 7 is an image obtained by imaging the air flow at a wind speed of 1 m / sec in Example 2 with a high-speed camera, and FIG. 8 is an image obtained by imaging the air flow at a wind speed of 1 m / sec in Comparative Example 1 with a high-speed camera. is there. As is apparent from FIG. 8, in Comparative Example 1, smoke flows in a straight line up to the upstream side of the filter medium, but after passing through the filter medium, the smoke has a zigzag shape in which a vortex is wound. . Since the smoke concentration is high at the vortex and the smoke concentration is low at other portions, it can be confirmed that intense turbulence is generated on the downstream side of Comparative Example 1. On the other hand, in Example 2, as shown in the image of FIG. 7, the smoke flows straight up to the upstream side of the filter medium, diffuses in the filter medium 12, and then the smoke becomes wider. The smoke that goes is uniform with no shading. In Example 2, it was confirmed that there was no Karman vortex and turbulent vortex generation, and that the air exited smoothly.

〔実施例3〕
〔実施例4〕
(組合せエアフィルタ用濾材試験1)
次に、従来の中性能フィルタとHEPAフィルタとを汎用エアフィルタ用濾材32に適用し、これら濾材と実施例2のエアフィルタ用濾材10とを組合わせて段落0014に示すエアフィルタ用濾材30を構成した実施例3および実施例4について、エア風速と粉塵捕集効率について試験を行った。合成ゴムシート(縦250mm×横250mm×厚み1mm)に縦80mm×横80mmの開口部を開け、エア上流側に中性能フィルタ(縦90mm×横90mm)下流側にエアフィルタ用濾材10(縦90mm×横90mm、目付0.19g/m2)を重ねて取り付けアルミシールテープで周囲を接着固定して実施例2を作製した。また、エア上流側に上記の寸法のHEPAフィルタと下流側にエアフィルタ用濾材10(縦90mm×横90mm、目付0.15g/m2)を重ねて取り付け、上記と同様の処理をした実施例3を作製した。また、実施例3,4と同様の寸法の中性能フィルタのみをゴムシートの開口部に固定したものを比較例2として、さらに、実施例3,4と同様の寸法のHEPAフィルタのみをゴムシートの開口部に固定したものを比較例3として作製した。フィルタ性能試験装置としては、株式会社日本カノマックス製のフィルタ濾材試験装置S030951を使用した。
Example 3
Example 4
(Filter media test 1 for combination air filter)
Next, the conventional medium performance filter and the HEPA filter are applied to the general-purpose air filter medium 32, and the filter medium 30 is combined with the air filter medium 10 of Example 2 to obtain an air filter medium 30 shown in paragraph 0014. About Example 3 and Example 4 which comprised, it tested about the air wind speed and dust collection efficiency. A synthetic rubber sheet (250 mm long x 250 mm wide x 1 mm thick) has an opening of 80 mm long x 80 mm wide, medium performance filter (90 mm long x 90 mm wide) upstream of air, and air filter medium 10 (90 mm long) downstream. × 90 mm in width, 0.19 g / m 2 ), and attached, and the periphery was adhered and fixed with an aluminum seal tape to produce Example 2. Further, the HEPA filter having the above dimensions on the upstream side of the air and the filter medium 10 for air filter (length 90 mm × width 90 mm, basis weight 0.15 g / m 2 ) are attached to the downstream side, and the same processing as above is performed. 3 was produced. Further, only a medium performance filter having the same dimensions as those of Examples 3 and 4 was fixed to the opening of the rubber sheet as Comparative Example 2, and only a HEPA filter having the same dimensions as those of Examples 3 and 4 was used as the rubber sheet. What was fixed to the opening of was prepared as Comparative Example 3. As the filter performance test apparatus, a filter medium test apparatus S030951 manufactured by Nippon Kanomax Co., Ltd. was used.

性能測定用の粉塵としては、一般室内大気に含まれる粉塵を使用した。室内空気を試験装置により吸引してフィルタの上流側と下流側のエアを小径チューブでそれぞれパーティクルカウンタに一定量導入し、0.3〜0.5μmの粒径粉塵数を計測して粉塵捕集効率を算出した。試験方法は、試験フィルタサンプルを試験装置に取付けた後、風速を0.05m/秒から1m/秒まで段階的に上げて行き、各風速での捕集効率を算出し、その後適当な時間間隔をおいて同様の計測作業を実施した。その試験結果を表およびグラフに示す。   As dust for performance measurement, dust contained in general indoor air was used. Dust collection by sucking room air with a test device and introducing a certain amount of upstream and downstream air into the particle counter with small diameter tubes, measuring the number of particles with a particle size of 0.3 to 0.5 μm Efficiency was calculated. In the test method, after the test filter sample is attached to the test device, the wind speed is gradually increased from 0.05 m / sec to 1 m / sec, the collection efficiency at each wind speed is calculated, and then the appropriate time interval is obtained. The same measurement work was carried out. The test results are shown in the table and graph.

Figure 2007301436
Figure 2007301436

Figure 2007301436
Figure 2007301436

Figure 2007301436
Figure 2007301436

Figure 2007301436
なお、表1は、比較例2の各風速に対する濾過効率の値を示す表であり、図9は、表1の値をグラフ化した図である。また、表2は、比較例3の各風速に対する濾過効率の値を示す表であり、図10は、表2の値をグラフ化した図である。表3は、実施例3の各風速に対する濾過効率の値を示す表であり、図11は、表3の値をグラフ化した図である。また、表1は、実施例4の各風速に対する濾過効率の値を示す表であり、図12は、表4の値をグラフ化した図である。
Figure 2007301436
In addition, Table 1 is a table | surface which shows the value of the filtration efficiency with respect to each wind speed of the comparative example 2, FIG. 9 is the figure which graphed the value of Table 1. FIG. Table 2 is a table showing the value of the filtration efficiency for each wind speed of Comparative Example 3, and FIG. 10 is a graph of the values of Table 2. Table 3 is a table showing the value of the filtration efficiency for each wind speed in Example 3, and FIG. 11 is a graph of the values in Table 3. Moreover, Table 1 is a table | surface which shows the value of the filtration efficiency with respect to each wind speed of Example 4, FIG. 12 is the figure which graphed the value of Table 4. FIG.

図9を見て明らかなように、比較例2では、中性能フィルタが通常使用される濾材内風速0.05m/秒で粉塵捕集効率約50%から風速が上がるほど粉塵捕集効率が低下していく。図10が示すように、比較例3についても同様の傾向を示す。しかしながら、図11が示すように、実施例3では、中性能フィルタが通常使用される風速0.5m/秒、粉塵捕集効率約95%から風速上昇とともに粉塵捕集効率が上昇し、風速0.8m/秒において極大点を示す。また、図12に示すように、実施例4では、粉塵捕集効率は次第に上昇し、風速1.1m/秒に於いて100%となった。   As is apparent from FIG. 9, in Comparative Example 2, the dust collection efficiency decreases as the wind speed increases from about 50% at a filter medium wind speed of 0.05 m / sec in which a medium performance filter is normally used. I will do it. As FIG. 10 shows, the same tendency is shown for Comparative Example 3. However, as shown in FIG. 11, in Example 3, the dust collection efficiency increases as the wind speed rises from the wind speed of 0.5 m / second, in which the medium performance filter is normally used, and the dust collection efficiency of about 95%. The maximum point is shown at 8 m / sec. Also, as shown in FIG. 12, in Example 4, the dust collection efficiency gradually increased to 100% at a wind speed of 1.1 m / sec.

〔実施例5〕
ナノ繊維構造体層12の材料としてポリアクリロニトリル繊維(分子量約6万、帝人テクノプロダクツ株式会社製)を使用した。このポリアクリロニトリル繊維10gをN,N−ジメチルホルムアミド(和光純薬工業株式会社製、濃度99.5%、)90gで常温溶解して10重量%濃度ポリアクリロニトリル溶液100gを作製した。このポリアクリロニトリル溶液をルアーロック先注射筒(容量1ml、硬質ガラス)に入れエレクトロスピニング装置(株式会社フューエンス製Esprayer ES−2000)に装着し、コレクタ電極上の載置した下流側多孔質体層16となる縦13cm×横12cmの大きさのスパンボンド上にエレクトロスピニングすることによりナノ繊維構造体層12を作製した。なお、下流側多孔質体層16には、エア流1m/sの時の圧力損失が50paであるナイロン6製スパンボンド(目付20g/m2、厚み0.11mm、縦引張強力7kg/5cm巾)を使用した。また、このときのエレクトロスピニングの条件は、スプレーノズルとして内径φ0.52mmのMN−21G−13(岩下エンジニアリング株式会社製)を使用して、溶液送液速度6μl/min、ノズルコレクタ電極間電圧14kV、ノズルコレクタ電極間距離15cmとした。上述の条件によりナイロン6製スパンボンド上に、平均繊維径190nm,平均ポアサイズ230nmとなるように目付がそれぞれ0.36g/m2と0.2g/m2の2種を形成した。
Example 5
Polyacrylonitrile fiber (molecular weight: about 60,000, manufactured by Teijin Techno Products Co., Ltd.) was used as the material for the nanofiber structure layer 12. 10 g of this polyacrylonitrile fiber was dissolved at room temperature with 90 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., concentration: 99.5%) to prepare 100 g of a 10 wt% polyacrylonitrile solution. This polyacrylonitrile solution is placed in a luer lock tip syringe (capacity 1 ml, hard glass) and attached to an electrospinning apparatus (Esprayer ES-2000 manufactured by Fuence Co., Ltd.), and the downstream porous body layer 16 placed on the collector electrode is placed on the collector electrode. The nanofiber structure layer 12 was produced by electrospinning on a spunbond having a size of 13 cm in length and 12 cm in width. Note that the downstream porous layer 16, Nylon 6 manufactured by spunbond (basis weight 20 g / m 2 pressure loss is 50pa when the air flow 1 m / s, thickness 0.11 mm, the longitudinal tensile strength 7 kg / 5 cm width )It was used. In addition, electrospinning conditions at this time were as follows: MN-21G-13 (manufactured by Iwashita Engineering Co., Ltd.) having an inner diameter of 0.52 mm as a spray nozzle, a solution feed speed of 6 μl / min, and a nozzle collector electrode voltage of 14 kV. The distance between the nozzle collector electrodes was 15 cm. Under the conditions described above, two types of basis weights of 0.36 g / m 2 and 0.2 g / m 2 were formed on the nylon 6 spunbond so as to have an average fiber diameter of 190 nm and an average pore size of 230 nm, respectively.

〔実施例6〕
(エア流試験2)
エア流観察試験1と同様の要領で、実施例5のナノ繊維構造体層12の目付が0.2g/m2のエアフィルタ用濾材10の濾過下流側に線径0.1mmの網戸用ポリエチレンネットを重ね置き、これを縦85mm×横85mmにカットして実施例6を作製し、エア流状態の観察試験を行った。図13は、実施例6の風速1m/秒におけるエア流を高速度カメラで撮像した画像であるが、画像から明らかなように、実施例2と同様に実施例6の下流に於いてカルマン渦,乱流渦は発生していない。
Example 6
(Air flow test 2)
In the same manner as in the air flow observation test 1, a screen door polyethylene having a wire diameter of 0.1 mm on the downstream side of the air filter medium 10 having a basis weight of the nanofiber structure layer 12 of Example 5 of 0.2 g / m 2. The net was placed on top of each other, and this was cut into a length of 85 mm × width of 85 mm to produce Example 6, and an air flow state observation test was performed. FIG. 13 is an image obtained by capturing the air flow at a wind speed of 1 m / second in Example 6 with a high-speed camera. As is apparent from the image, the Karman vortex is arranged downstream of Example 6 as in Example 2. , No turbulent vortices are generated.

〔実施例7〕
〔実施例8〕
(組合せエアフィルタ用濾材試験2)
組合せエアフィルタ用濾材試験1と同様の要領で、従来の中性能フィルタとHEPAフィルタとを汎用エアフィルタ用濾材32に適用し、これら濾材と実施例6のエアフィルタ用濾材10とを組合わせて段落0014に示すエアフィルタ用濾材30を構成した実施例7および実施例8について、エア風速と粉塵捕集効率について試験を行った。その試験結果を表およびグラフに示す。
Example 7
Example 8
(Filter medium test 2 for combination air filter)
The same medium performance filter and HEPA filter are applied to the general-purpose air filter medium 32 in the same manner as in the filter medium test 1 for the combined air filter, and these filter medium and the air filter medium 10 of Example 6 are combined. About Example 7 and Example 8 which comprised the filter medium 30 for air filters shown to the paragraph 0014, it tested about the air wind speed and dust collection efficiency. The test results are shown in the table and graph.

Figure 2007301436
Figure 2007301436

Figure 2007301436
表5は、実施例7の各風速に対する濾過効率の値を示す表であり、図14は、表5をグラフ化した図である。また、表6は、実施例8の各風速に対する濾過効率の値を示す表であり、図15は、表6をグラフ化した図である。図14が示すように、実施例7においては風速0.3m/秒近傍に於いて捕集効率85%の極大点が存在し、中性能フィルタが通常使用される風速0.5m/秒に於ける粉塵捕集効率50%より向上した。また、実施例8においては、図15が示すように、風速が上がるに従って捕集効率は向上した。グラフ上には図示していないが、後の実験によって風速1m/秒近傍に於いて捕集効率100%の極大点が存在する事が判明した。なお、グラフには記入できていないが、後の実験によって風速1m/秒近傍に於いて捕集効率100%の極大点が存在する事が判明した。
Figure 2007301436
Table 5 is a table showing the value of the filtration efficiency for each wind speed of Example 7, and FIG. 14 is a graph of Table 5. Table 6 is a table showing the value of the filtration efficiency for each wind speed in Example 8, and FIG. 15 is a graph of Table 6. As shown in FIG. 14, in Example 7, there is a maximum point with a collection efficiency of 85% near the wind speed of 0.3 m / second, and at a wind speed of 0.5 m / second where the medium performance filter is normally used. The dust collection efficiency was improved from 50%. Moreover, in Example 8, as FIG. 15 showed, the collection efficiency improved as the wind speed increased. Although not shown on the graph, it has been found by experiments later that there is a maximum point with a collection efficiency of 100% in the vicinity of a wind speed of 1 m / sec. Although not shown in the graph, it was found by a later experiment that there was a maximum point with a collection efficiency of 100% near a wind speed of 1 m / sec.

以上の結果より、通常のフィルタは処理風速が上昇すると再飛散現象によって粉塵捕集効率が低下するが、本発明にかかるエアフィルタ用濾材では、その下流にカルマン渦,乱流渦が発生しにくく、エアがスムーズに流れるので、再飛散が無く高性能のフィルタ材を得ることが可能である。また、従来より存在するあらゆるエアフィルタ用濾材のエアー下流側に本発明にかかるエアフィルタ用濾材を配置したエアフィルタ用濾材は処理風速を10倍以上にする事が可能となると同時に粉塵捕集効率が大きく上昇する。   From the above results, when the processing wind speed increases, the dust collection efficiency decreases due to the re-scattering phenomenon. However, in the air filter filter medium according to the present invention, Karman vortices and turbulent vortices are unlikely to occur downstream. Since air flows smoothly, it is possible to obtain a high-performance filter material without re-scattering. In addition, the air filter medium in which the air filter medium according to the present invention is disposed downstream of any air filter medium that has existed conventionally can increase the treatment wind speed by 10 times or more, and at the same time dust collection efficiency. Will rise significantly.

本発明にかかるエアフィルタ用濾材の一実施の形態を示す断面図解図である。It is a cross-sectional solution figure which shows one Embodiment of the filter medium for air filters concerning this invention. 本発明にかかる別の実施の形態を示す断面図解図である。It is a cross-sectional schematic solution figure which shows another embodiment concerning this invention. 本発明にかかるさらに別の実施形態を示す図解図である。It is an illustration figure which shows another embodiment concerning this invention. 針状ノズル電極から飛んできたナノ繊維がケバの上を滑り、ケバの根元で略U字状に堆積した状態を示す図解図である。It is an illustration figure which shows the state which the nanofiber which flew from the needle-shaped nozzle electrode slipped on the mark, and was deposited in the substantially U shape at the root of the mark. ケバを支えにしてナノ繊維がトンネル状に堆積された状態示す図解図である。FIG. 3 is an illustrative view showing a state in which nanofibers are deposited in a tunnel shape while supporting a knot. エア流を観察するための試験装置を撮影した画像である。It is the image which image | photographed the test apparatus for observing an air flow. 実施例2の風速1m/秒におけるエア流を高速度カメラで撮像した画像である。It is the image which imaged the air flow in the wind speed of 1 m / sec of Example 2 with the high-speed camera. 比較例1の風速1m/秒におけるエア流を高速度カメラで撮像した画像である。It is the image which imaged the air flow in the wind speed of 1 m / sec of the comparative example 1 with the high speed camera. 表1の値をグラフ化した図である。It is the figure which made the value of Table 1 into a graph. 表2の値をグラフ化した図である。It is the figure which made the value of Table 2 into a graph. 表3の値をグラフ化した図である。It is the figure which made the value of Table 3 into a graph. 表4の値をグラフ化した図である。It is the figure which made the value of Table 4 into a graph. 実施例6の風速1m/秒におけるエア流を高速度カメラで撮像した画像である。It is the image which imaged the air flow in the wind speed of 1 m / sec of Example 6 with the high-speed camera. 表5をグラフ化した図である。FIG. 6 is a graph of Table 5. 表6をグラフ化した図である。FIG. 7 is a graph of Table 6.

符号の説明Explanation of symbols

10,20,30 エアフィルタ用濾材
12,22 ナノ繊維構造体層
14 上流側多孔質体層
16 下流側多孔質体層
32 汎用エアフィルタ用濾材

10, 20, 30 Air filter media 12, 22 Nanofiber structure layer 14 Upstream porous material layer 16 Downstream porous material layer 32 General-purpose air filter media

Claims (4)

ナノ繊維が三次元的に交絡されてなるシート状のナノ繊維構造体層と、
前記ナノ繊維構造体層の濾過上流側の面に一体に積層される上流側多孔質体層と、
前記ナノ繊維構造体層の濾過下流側の面に一体に積層される下流側多孔質体層とを備え、
前記上流側多孔質体層および前記下流側多孔質体層の前記ナノ繊維構造体層と一体に積層される側の面は、ケバ状の突起物がなく平滑であり、
前記下流側多孔質体層は、エア流速1m/秒に於ける圧力損失が100pa以下となる通気性を備え、
濾過下流側において乱流を発しないことを特徴とする、エアフィルタ用濾材。
A sheet-like nanofiber structure layer in which nanofibers are entangled three-dimensionally;
An upstream porous body layer integrally laminated on the filtration upstream surface of the nanofiber structure layer;
A downstream porous body layer integrally laminated on the filtration downstream surface of the nanofiber structure layer,
The surfaces of the upstream porous body layer and the downstream porous body layer, which are laminated integrally with the nanofiber structure layer, are smooth and free from protrusions.
The downstream porous body layer has air permeability such that a pressure loss at an air flow rate of 1 m / sec is 100 pa or less,
A filter medium for an air filter, characterized in that no turbulent flow is generated on the downstream side of the filtration.
前記ナノ繊維構造体層は、層毎に繊維径の異なる複数以上の層からなり、
前記ナノ繊維構造体層を構成する各層のナノ繊維の繊維径は、濾過下流側の層にいくにしたがって小さくなる、請求項1に記載のエアフィルタ用濾材。
The nanofiber structure layer is composed of a plurality of layers having different fiber diameters for each layer,
The filter medium for an air filter according to claim 1, wherein the fiber diameter of the nanofiber of each layer constituting the nanofiber structure layer decreases as it goes to the layer on the downstream side of the filtration.
汎用エアフィルタ用濾材と、請求項1または請求項2に記載のエアフィルタ用濾材とを組合せてなるエアフィルタ用濾材であって、
前記請求項1または請求項2に記載のエアフィルタ用濾材を、前記汎用エアフィルタ用濾材の濾過下流側の面に密着した状態で配置した又は前記汎用エアフィルタ用濾材の濾過下流側の気流の乱れの範囲内の距離を置いて配置した、エアフィルタ用濾材。
A filter medium for air filter comprising a combination of the filter medium for general-purpose air filter and the filter medium for air filter according to claim 1 or 2,
The air filter medium according to claim 1 or 2 is disposed in close contact with the filtration downstream surface of the general air filter medium, or the air flow downstream of the general air filter medium is filtered. Air filter media placed at a distance within the turbulence range.
前記汎用エアフィルタ、前記エアフィルタ用濾材のいずれか一方または双方がユニット化された請求項3に記載のエアフィルタ用濾材。

The air filter medium according to claim 3, wherein one or both of the general-purpose air filter and the air filter medium are unitized.

JP2006129685A 2006-05-08 2006-05-08 Filter medium for air filter Withdrawn JP2007301436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129685A JP2007301436A (en) 2006-05-08 2006-05-08 Filter medium for air filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129685A JP2007301436A (en) 2006-05-08 2006-05-08 Filter medium for air filter

Publications (1)

Publication Number Publication Date
JP2007301436A true JP2007301436A (en) 2007-11-22

Family

ID=38835840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129685A Withdrawn JP2007301436A (en) 2006-05-08 2006-05-08 Filter medium for air filter

Country Status (1)

Country Link
JP (1) JP2007301436A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233550A (en) * 2008-03-26 2009-10-15 Kuraray Co Ltd Filter medium for gas filter
WO2010055693A1 (en) * 2008-11-17 2010-05-20 株式会社 フューエンス Nanofiber structure and manufacturing method thereof
WO2010120668A1 (en) 2009-04-13 2010-10-21 Entegris, Inc. Porous composite membrane
CN101983097A (en) * 2008-04-07 2011-03-02 纳幕尔杜邦公司 Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
JP2012166158A (en) * 2011-02-15 2012-09-06 Nippon Air Filter Kk Air filter apparatus
JP2013500150A (en) * 2009-07-22 2013-01-07 ドナルドソン カンパニー,インコーポレイティド Filter media construction using PTFE film and carbon web for HEPA efficiency and odor control
JP2013022569A (en) * 2011-07-25 2013-02-04 Shinshu Univ Filtering material for bag filter
JP2013022570A (en) * 2011-07-25 2013-02-04 Shinshu Univ Filtering material for bag filter
JP2013034986A (en) * 2011-07-13 2013-02-21 Panasonic Corp Air filter and manufacturing method thereof, and air cleaning device with the air filter attached
JP2013111572A (en) * 2011-11-29 2013-06-10 Nippon Air Filter Kk Filter medium for gas removal
WO2013121733A1 (en) * 2012-02-15 2013-08-22 パナソニック株式会社 Air filter, air purifier provided with air filter, and method for producing air filter
JP2013188734A (en) * 2012-02-15 2013-09-26 Panasonic Corp Air filter, air purifier provided with the air filter, and method for producing the air filter
JP2013226710A (en) * 2012-04-25 2013-11-07 Panasonic Corp Integrated laminate sheet manufacturing system and method for manufacturing integrated laminate sheet
JP2013244452A (en) * 2012-05-25 2013-12-09 Panasonic Corp Air filter, air purifier having the same, and method for producing the air filter
JP2014039905A (en) * 2012-08-22 2014-03-06 Panasonic Corp Air filter filtering medium and air filter, and air cleaning device including the same
JP2014057950A (en) * 2012-08-22 2014-04-03 Panasonic Corp Air filter medium, air filter, and air cleaning device using air filter
JP2014514158A (en) * 2011-05-09 2014-06-19 インテグリス・インコーポレーテッド Porous composite membrane comprising microporous membrane layer and nanofiber layer
JP2014144579A (en) * 2013-01-29 2014-08-14 Tamaru Seisakusho:Kk Thin film deodorizing shielding member for housing material formed by laminating nanofiber, and production apparatus of the same
CN104066492A (en) * 2012-02-15 2014-09-24 松下电器产业株式会社 Air filter, air purifier provided with air filter, and method for producing air filter
US8939295B2 (en) 2009-02-17 2015-01-27 Essentra Porous Technologies Corp. Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures
JP2015047566A (en) * 2013-09-02 2015-03-16 進和テック株式会社 Collecting dust bag filter
CN104801113A (en) * 2014-01-28 2015-07-29 中国科学院宁波材料技术与工程研究所 High efficiency air filtering and purifying material
JP2015214161A (en) * 2015-07-31 2015-12-03 パナソニックIpマネジメント株式会社 System and method for production of integrated laminate sheet
CN105135542A (en) * 2015-08-27 2015-12-09 张小江 Air purifier provided with nanofiber filtering membrane
KR101747322B1 (en) * 2014-03-18 2017-06-14 주식회사 아모그린텍 Membrane of Natural Ventilation Type and System Window Using the Same
KR20170068423A (en) * 2017-06-08 2017-06-19 주식회사 아모그린텍 Membrane of Natural Ventilation Type and System Window Using the Same
JP2017176167A (en) * 2016-03-28 2017-10-05 株式会社ジック Filter for germ-free animal breeding device, sterilization can, and conveyance can
JP2018079465A (en) * 2011-07-21 2018-05-24 イー・エム・デイー・ミリポア・コーポレイシヨン Nanofiber-containing composite structure
KR20180055551A (en) * 2016-11-17 2018-05-25 현대자동차주식회사 Nonwoven fabric laminate, method for producing the same and cabin air filter comprising the same
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
US10722602B2 (en) 2009-03-19 2020-07-28 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
JP2021007929A (en) * 2019-07-02 2021-01-28 阿波製紙株式会社 Multilayer composite filter medium and production method of the same
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
JP2022527393A (en) * 2019-04-12 2022-06-01 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー Nonwoven multi-layer structure with nanofiber layer

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233550A (en) * 2008-03-26 2009-10-15 Kuraray Co Ltd Filter medium for gas filter
CN101983097A (en) * 2008-04-07 2011-03-02 纳幕尔杜邦公司 Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
WO2010055693A1 (en) * 2008-11-17 2010-05-20 株式会社 フューエンス Nanofiber structure and manufacturing method thereof
US8939295B2 (en) 2009-02-17 2015-01-27 Essentra Porous Technologies Corp. Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures
US10722602B2 (en) 2009-03-19 2020-07-28 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
WO2010120668A1 (en) 2009-04-13 2010-10-21 Entegris, Inc. Porous composite membrane
KR20120050925A (en) 2009-04-13 2012-05-21 엔테그리스, 아이엔씨. Porous composite membrane
JP2012523320A (en) * 2009-04-13 2012-10-04 インテグリス・インコーポレーテッド Porous composite membrane
KR101695998B1 (en) 2009-04-13 2017-01-23 엔테그리스, 아이엔씨. Porous composite membrane
US9457322B2 (en) 2009-04-13 2016-10-04 Entegris, Inc. Porous composite membrane
US9108130B2 (en) 2009-07-22 2015-08-18 Donaldson Company, Inc. Filter media construction using PTFE film and carbon web for HEPA efficiency and odor control
JP2013500150A (en) * 2009-07-22 2013-01-07 ドナルドソン カンパニー,インコーポレイティド Filter media construction using PTFE film and carbon web for HEPA efficiency and odor control
US10322363B2 (en) 2009-07-22 2019-06-18 Donaldson Company, Inc. Filter media construction
US9849415B2 (en) 2009-07-22 2017-12-26 Donaldson Company, Inc. Filter media construction with nanofiber and carbon web
JP2012166158A (en) * 2011-02-15 2012-09-06 Nippon Air Filter Kk Air filter apparatus
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
JP2014514158A (en) * 2011-05-09 2014-06-19 インテグリス・インコーポレーテッド Porous composite membrane comprising microporous membrane layer and nanofiber layer
JP2013034986A (en) * 2011-07-13 2013-02-21 Panasonic Corp Air filter and manufacturing method thereof, and air cleaning device with the air filter attached
JP2018079465A (en) * 2011-07-21 2018-05-24 イー・エム・デイー・ミリポア・コーポレイシヨン Nanofiber-containing composite structure
JP2013022570A (en) * 2011-07-25 2013-02-04 Shinshu Univ Filtering material for bag filter
JP2013022569A (en) * 2011-07-25 2013-02-04 Shinshu Univ Filtering material for bag filter
JP2013111572A (en) * 2011-11-29 2013-06-10 Nippon Air Filter Kk Filter medium for gas removal
CN104066492B (en) * 2012-02-15 2016-04-27 松下知识产权经营株式会社 Air cleaner, there is the air cleaning unit of this air cleaner and the manufacture method of this air cleaner
WO2013121733A1 (en) * 2012-02-15 2013-08-22 パナソニック株式会社 Air filter, air purifier provided with air filter, and method for producing air filter
CN104066492A (en) * 2012-02-15 2014-09-24 松下电器产业株式会社 Air filter, air purifier provided with air filter, and method for producing air filter
JP2013188734A (en) * 2012-02-15 2013-09-26 Panasonic Corp Air filter, air purifier provided with the air filter, and method for producing the air filter
JP2013226710A (en) * 2012-04-25 2013-11-07 Panasonic Corp Integrated laminate sheet manufacturing system and method for manufacturing integrated laminate sheet
JP2013244452A (en) * 2012-05-25 2013-12-09 Panasonic Corp Air filter, air purifier having the same, and method for producing the air filter
JP2014057950A (en) * 2012-08-22 2014-04-03 Panasonic Corp Air filter medium, air filter, and air cleaning device using air filter
JP2014039905A (en) * 2012-08-22 2014-03-06 Panasonic Corp Air filter filtering medium and air filter, and air cleaning device including the same
JP2014144579A (en) * 2013-01-29 2014-08-14 Tamaru Seisakusho:Kk Thin film deodorizing shielding member for housing material formed by laminating nanofiber, and production apparatus of the same
JP2015047566A (en) * 2013-09-02 2015-03-16 進和テック株式会社 Collecting dust bag filter
CN104801113A (en) * 2014-01-28 2015-07-29 中国科学院宁波材料技术与工程研究所 High efficiency air filtering and purifying material
KR101747322B1 (en) * 2014-03-18 2017-06-14 주식회사 아모그린텍 Membrane of Natural Ventilation Type and System Window Using the Same
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
JP2015214161A (en) * 2015-07-31 2015-12-03 パナソニックIpマネジメント株式会社 System and method for production of integrated laminate sheet
CN105135542A (en) * 2015-08-27 2015-12-09 张小江 Air purifier provided with nanofiber filtering membrane
JP2017176167A (en) * 2016-03-28 2017-10-05 株式会社ジック Filter for germ-free animal breeding device, sterilization can, and conveyance can
KR20180055551A (en) * 2016-11-17 2018-05-25 현대자동차주식회사 Nonwoven fabric laminate, method for producing the same and cabin air filter comprising the same
KR101905563B1 (en) 2016-11-17 2018-10-08 현대자동차 주식회사 Nonwoven fabric laminate, method for producing the same and cabin air filter comprising the same
KR102001003B1 (en) * 2017-06-08 2019-07-18 주식회사 아모그린텍 Membrane of Natural Ventilation Type and System Window Using the Same
KR20170068423A (en) * 2017-06-08 2017-06-19 주식회사 아모그린텍 Membrane of Natural Ventilation Type and System Window Using the Same
JP2022527393A (en) * 2019-04-12 2022-06-01 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー Nonwoven multi-layer structure with nanofiber layer
JP2021007929A (en) * 2019-07-02 2021-01-28 阿波製紙株式会社 Multilayer composite filter medium and production method of the same
JP7321799B2 (en) 2019-07-02 2023-08-07 阿波製紙株式会社 Multilayer composite filter medium and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2007301436A (en) Filter medium for air filter
JP5037034B2 (en) Filter filter medium, its production method and method of use, and filter unit
JP5696919B2 (en) Durable laminate of nanoweb and scrim
US7789930B2 (en) Particle filter system incorporating nanofibers
CN107208336B (en) Melt spun filter media for respiratory devices and face masks
JP5539877B2 (en) Improved pleated nanoweb structure
JP7077575B2 (en) Mixed non-woven fabrics, laminates, filter media for filters, and methods for manufacturing these
US9186608B2 (en) Process for forming a high efficiency nanofiber filter
KR20080017324A (en) Filter medium, process for producing the same, method of use thereof and filter unit
JP2007531831A (en) Aligned fiber web
CN104043286A (en) Nanofiber filter facemasks and cabin filters
WO2009140385A1 (en) Particle filter system incorporating electret nanofibers
BR112018073436B1 (en) GAS FILTER MEDIUM, ELEMENT COMPRISING SAID GAS FILTER MEDIUM AND METHODS FOR FILTRATING A GAS
JP2009028703A (en) Filtering medium for air filter
JP2014124578A (en) Filtration material for filter and production method of the same
JP2015010313A (en) Filter medium and manufacturing method thereof
JP2000140587A (en) Filter unit and dust-proof mask using filter unit
JP2004188355A (en) Filtering material for air filter, its using method, air filter unit, and air permeable supporting material
JP4737039B2 (en) Filter nonwoven fabric for air intake
JP2002346319A (en) Suction filter medium for turbine
WO2022065516A1 (en) Air filter filtering medium, filter pritz pack, and air filter unit
Akgul et al. Nanofibrous composite air filters
JP2012183538A (en) Filter medium for air filter
KR20200034518A (en) Nanofiber filter and preparation method thereof
WO2022065515A1 (en) Air filter filtration member, filter pleat pack, and air filter unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804