JP2013104960A - Photomask and exposure method - Google Patents

Photomask and exposure method Download PDF

Info

Publication number
JP2013104960A
JP2013104960A JP2011247561A JP2011247561A JP2013104960A JP 2013104960 A JP2013104960 A JP 2013104960A JP 2011247561 A JP2011247561 A JP 2011247561A JP 2011247561 A JP2011247561 A JP 2011247561A JP 2013104960 A JP2013104960 A JP 2013104960A
Authority
JP
Japan
Prior art keywords
photomask
light
exposure
irradiated
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247561A
Other languages
Japanese (ja)
Inventor
Daisuke Nakamura
大亮 中村
Koki Hayashi
甲季 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011247561A priority Critical patent/JP2013104960A/en
Publication of JP2013104960A publication Critical patent/JP2013104960A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photomask installed on a normal contact exposure apparatus or a proximity exposure apparatus in parallel to an irradiation object body without any necessity of inclining the irradiation object body, and capable of performing diagonal exposure with a plurality of different angles by a single exposure to the irradiation object body.SOLUTION: The photomask emits parallel light that is perpendicular to the photomask and emitted by an exposure apparatus, to an irradiation object body in an inclined manner. The photomask includes a diffraction optical element formed on the irradiation surface side of a transparent substrate, and a pattern of a light transmission part that selectively transmits diffraction light from the diffraction optical element, formed on an emission surface side of the transparent substrate.

Description

本発明は、斜方露光用フォトマスクに関する。   The present invention relates to a photomask for oblique exposure.

フォトリソグラフィ技術を利用した電子部品や光部品は、従来より研究開発され、数多く生産されている。フォトリソグラフィは、フォトレジストを塗布した基板(被照射体)の表面を、フォトマスクを介して、露光機により平行光で露光し、露光された部分と露光されていない部分からなるパターンを生成する技術であって、現像後フォトレジストを除去された部位に表面処理を施す。あるいは、現像された後に残されたフォトレジストをそのまま利用する。現像後のフォトレジストや表面処理された基板のパターンの端部は、一般的には、ほぼ垂直、あるいは若干傾いた形状をしている。しかし、近年、この端部パターンの形状を、断面視で傾斜した形状、もしくは針立した形状にするフォトリソグラフィ技術が利用されるようになっている。このような技術としては、MEMS、光導波路の形状作製、液晶配向処理、液晶配向用突起作製などがある。例えば、基板に対し、斜方露光することによって、砒化ガリウム電界効果トランジスタの特性を向上する手法が開示されている(特許文献2)。また、液晶表示装置の配向膜の異なる配向を形成するために、位置合わせをしたマスクと基板に対し、斜方露光する技術が開示されている(特許文献6)。さらに、基板上にテーパー形状の部分を形成するために、位置合わせをしたマスクと基板に対し、斜方露光する技術が開示されている(特許文献8)。そのほかに斜方露光技術の応用として、光導波路(特許文献1)、薄膜トランジスタ(特許文献3)、光回折格子(特許文献4)、プラズマ表示パネル用電極(特許文献5)、反射型液晶表示パネルの凹凸を有する反射板(特許文献7)、凹凸を有するマイクロミキサー(特許文献9)など数多く開示されている。   Many electronic parts and optical parts utilizing photolithography technology have been researched and developed in the past. In photolithography, the surface of a substrate (irradiated body) coated with a photoresist is exposed with parallel light through an exposure machine through a photomask to generate a pattern composed of an exposed portion and an unexposed portion. It is a technique, and a surface treatment is applied to a portion where the photoresist is removed after development. Alternatively, the photoresist left after development is used as it is. In general, the end portions of the developed photoresist and the surface-treated substrate pattern are substantially vertical or slightly inclined. However, in recent years, a photolithography technique has been used in which the shape of the end pattern is inclined in a cross-sectional view or a needle-like shape. Such techniques include MEMS, optical waveguide shape fabrication, liquid crystal alignment treatment, and liquid crystal alignment protrusion fabrication. For example, a technique for improving the characteristics of a gallium arsenide field effect transistor by obliquely exposing a substrate is disclosed (Patent Document 2). In addition, a technique is disclosed in which oblique exposure is performed on a mask and a substrate that are aligned in order to form different alignments of alignment films of a liquid crystal display device (Patent Document 6). Furthermore, a technique is disclosed in which oblique exposure is performed on an aligned mask and substrate in order to form a tapered portion on the substrate (Patent Document 8). Other applications of oblique exposure technology include optical waveguides (Patent Document 1), thin film transistors (Patent Document 3), optical diffraction gratings (Patent Document 4), electrodes for plasma display panels (Patent Document 5), and reflective liquid crystal display panels. There are many disclosures such as a reflector having a concavo-convex shape (Patent Document 7) and a micromixer having a concavo-convex shape (Patent Document 9).

特開平5−264833号公報JP-A-5-264833 特開平6−45363号公報JP-A-6-45363 特開平7−226519号公報JP-A-7-226519 特開平10−10307号公報Japanese Patent Laid-Open No. 10-10307 特開2000−30607号公報JP 2000-30607 A 特開2000−122302号公報JP 2000-122302 A 特開2001−201619号公報JP 2001-201619 A 特開2001−235873号公報JP 2001-235873 A 特開2005−199245号公報JP 2005-199245 A

以上のような斜方露光技術では、露光装置から出射された平行光を、フォトマスクおよび被照射体に、斜方から照射している。このため、露光装置の出射光の面をフォトマスクに対して斜めに設置する必要がある。したがって従来の平行光を出射する露光装置はそのままでは利用できず、新たな機能を備えた装置が必要となる。また、被照射体を傾けるため、大きな被照射体では被照射面内において、照射エネルギーのバラツキが生じる。さらに、被照射体に同時に照射するため、1つの角度での露光しか出来ない。したがって、異なる角度のテーパー形状を形成したい場合は、同じ被照射体に対し、複数回露光する必要がある。   In the oblique exposure technique as described above, the parallel light emitted from the exposure apparatus is irradiated obliquely onto the photomask and the irradiated object. For this reason, it is necessary to install the surface of the emitted light of the exposure apparatus obliquely with respect to the photomask. Therefore, a conventional exposure apparatus that emits parallel light cannot be used as it is, and an apparatus having a new function is required. Further, since the irradiated body is tilted, the irradiation energy varies in the irradiated surface in the large irradiated body. Furthermore, since the irradiated object is irradiated at the same time, only exposure at one angle can be performed. Therefore, when it is desired to form tapered shapes having different angles, it is necessary to expose the same irradiated object a plurality of times.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、被照射体を傾ける必要がなく、通常の密着露光装置または近接露光装置に被照射体と平行に設置して、1度の露光で複数の異なる角度の斜め露光を、被照射体に対して行うことができるフォトマスクを提供することである。   The present invention is proposed in view of the above-described problems, and the problem to be solved by the present invention is that there is no need to tilt the irradiated object, and the normal contact exposure apparatus or the proximity exposure apparatus can be connected to the irradiated object. The object is to provide a photomask which can be installed in parallel and can be subjected to oblique exposure at a plurality of different angles with respect to the irradiated object in one exposure.

上記の課題を解決するための手段として、請求項1に記載の発明は、露光装置より照射されたフォトマスクに垂直な平行光を、被照射体に傾斜させて出射するフォトマスクであって、透明基板の照射面側に、回折光学素子が形成され、透明基板の出射面側に、回折光学素子からの回折光を選択的に透過する光透過部のパターンが形成されたことを特徴とするフォトマスクである。   As means for solving the above-mentioned problems, the invention according to claim 1 is a photomask that emits parallel light perpendicular to the photomask irradiated from the exposure apparatus while being inclined to the irradiated object, A diffractive optical element is formed on the irradiation surface side of the transparent substrate, and a light transmission portion pattern that selectively transmits diffracted light from the diffractive optical element is formed on the emission surface side of the transparent substrate. It is a photomask.

また、請求項2に記載の発明は、回折光学素子が、回折格子を含むことを特徴とする請求項1に記載のフォトマスクである。   The invention according to claim 2 is the photomask according to claim 1, wherein the diffractive optical element includes a diffraction grating.

また、請求項3に記載の発明は、回折光学素子が、回折レンズを含むことを特徴とする請求項1または2に記載のフォトマスクである。   The invention according to claim 3 is the photomask according to claim 1 or 2, wherein the diffractive optical element includes a diffractive lens.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載のフォトマスクに露光装置の光源より垂直に照射された平行光を、基板上にフォトレジストを塗布しフォトマスクと位置合わせされた被照射体に出射して斜め露光を行うことを特徴とする露光方法である。   According to a fourth aspect of the present invention, the photomask according to any one of the first to third aspects is obtained by applying a parallel light irradiated perpendicularly from a light source of an exposure apparatus to a photomask on a substrate. It is an exposure method characterized in that it is emitted obliquely to the irradiated object that has been aligned and subjected to oblique exposure.

また、請求項5に記載の発明は、フォトレジストがネガタイプであって、露光後に現像することによって、テーパーを有する針立、斜立した3次元形状物が形成できることを特徴とする請求項4に記載の露光方法である。   The invention according to claim 5 is characterized in that the photoresist is of a negative type, and by developing after exposure, a tapered needle stand and an oblique three-dimensional shape can be formed. The exposure method described.

また、請求項6に記載の発明は、フォトレジストがポジタイプであって、露光後に現像することによって、テーパーを有する斜め方向に掘り下げられた形状の孔が形成できることを特徴とする請求項4に記載の露光方法である。   According to a sixth aspect of the present invention, the photoresist is a positive type, and by developing after the exposure, a hole having a tapered shape dug in a diagonal direction can be formed. Exposure method.

本発明は、透明基板の照射面側に、回折光学素子が形成され、透明基板の出射面側に、回折光学素子からの回折光を選択的に透過する光透過部のパターンが形成されることにより、露光装置から照射されたフォトマスクに垂直な平行光を、被照射体に傾斜させて出射する構造を有するフォトマスクが得られるので、斜め露光を望む場合の露光時に、被照射体もフォトマスクも傾ける必要がない。従って、大きな被照射体であっても照射エネルギーのバラツキが生じ難い。また、通常の密着露光装置または近接露光装置に設置して、1度の露光で複数の異なる角度の斜め露光を被照射体に対して行うことができるフォトマスクを提供することができる。   In the present invention, the diffractive optical element is formed on the irradiation surface side of the transparent substrate, and the light transmitting portion pattern that selectively transmits the diffracted light from the diffractive optical element is formed on the emission surface side of the transparent substrate. As a result, a photomask having a structure in which parallel light perpendicular to the photomask irradiated from the exposure apparatus is emitted to be tilted to the irradiated body can be obtained. There is no need to tilt the mask. Therefore, even if it is a big to-be-irradiated body, it is hard to produce the variation of irradiation energy. In addition, it is possible to provide a photomask that can be installed in a normal contact exposure apparatus or a proximity exposure apparatus and can perform oblique exposure at a plurality of different angles on an irradiated object in one exposure.

本発明のフォトマスクとそれを用いる露光工程の第1の例を、断面で示した説明図である。It is explanatory drawing which showed the 1st example of the photomask of this invention, and the exposure process using the same in the cross section. 本発明のフォトマスクとそれを用いる露光工程の第2の例を、断面で示した説明図である。It is explanatory drawing which showed the 2nd example of the photomask of this invention, and the exposure process using the same in the cross section. 本発明のフォトマスクとそれを用いる露光工程の第3の例を、断面で示した説明図である。It is explanatory drawing which showed the 3rd example of the photomask of this invention, and the exposure process using the same in the cross section. 本発明のフォトマスクとそれを用いる露光工程の第4の例を、断面で示した説明図である。It is explanatory drawing which showed the 4th example of the photomask of this invention, and the exposure process using the same in the cross section. 本発明のフォトマスクとそれを用いる露光工程の第5の例を、断面で示した説明図である。It is explanatory drawing which showed the 5th example of the photomask of this invention, and the exposure process using the same in the cross section. 本発明のフォトマスクとそれを用いる露光工程の第6の例を、断面で示した説明図である。It is explanatory drawing which showed the 6th example of the photomask of this invention, and the exposure process using the same in the cross section.

以下、図面に従って、本発明を実施するための形態について説明する。
図1は、本発明のフォトマスクとそれを用いる露光工程の第1の例を、断面で示した説明図である。
本発明のフォトマスクは、図示していない露光装置より照射されたフォトマスクに垂直な平行光2を、被照射体3に傾斜させて出射するフォトマスク1であって、透明基板10の照射面側に、回折光学素子11が形成され、透明基板10の出射面側に、回折光学素子11からの回折光23を選択的に透過する光透過部12のパターンが形成されたことを特徴とする。なお、照射面とは、図の透明基板の上側の平行光2が照射される面を指し、出射面とは、図の透明基板の下側の回折光23が出て行く面を指し、以下同様である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing, in section, a first example of the photomask of the present invention and an exposure process using the photomask.
The photomask of the present invention is a photomask 1 that emits parallel light 2 perpendicular to a photomask irradiated from an exposure apparatus (not shown) while being tilted toward an irradiated body 3, and an irradiation surface of a transparent substrate 10. The diffractive optical element 11 is formed on the side, and the pattern of the light transmitting portion 12 that selectively transmits the diffracted light 23 from the diffractive optical element 11 is formed on the emission surface side of the transparent substrate 10. . The irradiation surface refers to the surface irradiated with the parallel light 2 on the upper side of the transparent substrate in the figure, and the emission surface refers to the surface from which the diffracted light 23 on the lower side of the transparent substrate in the figure exits. It is the same.

本例における回折光学素子11は回折格子であって、格子周期に対応して、照射された平行光2から波長に依存する回折角度が決まり、複次の回折光21、22、23を発する。透明基板10の出射面側に設けた光透過部12は、遮光膜13のパターン形成により選択的に設けることができ、回折光の内で一定の角度を有する回折光23のみを選択的に透過して被照射体3を露光することができる。一方、回折光23とは異なる角度を有する他の回折光21、22は、出射面側の遮光膜13により遮蔽することができる。また、本例では、照射面側に、回折格子11の他に遮光膜14を設けることにより、直進照射される平行光2を適宜照射面側で先に遮蔽することができ、被照射体3に向けて出射する光を回折光23による斜め方向の光のみに限定することが可能となる。   The diffractive optical element 11 in this example is a diffraction grating, and the diffraction angle depending on the wavelength is determined from the irradiated parallel light 2 corresponding to the grating period, and multi-order diffracted light 21, 22, 23 is emitted. The light transmission part 12 provided on the light emission surface side of the transparent substrate 10 can be selectively provided by pattern formation of the light shielding film 13, and selectively transmits only the diffracted light 23 having a certain angle in the diffracted light. Thus, the irradiated object 3 can be exposed. On the other hand, other diffracted lights 21 and 22 having an angle different from that of the diffracted light 23 can be shielded by the light shielding film 13 on the exit surface side. Further, in this example, by providing the light shielding film 14 in addition to the diffraction grating 11 on the irradiation surface side, the parallel light 2 that is linearly irradiated can be appropriately shielded first on the irradiation surface side, and the irradiated object 3 It is possible to limit the light emitted toward the light to only the light in the oblique direction by the diffracted light 23.

本発明の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト31を塗布しフォトマスク1と位置合わせされた被照射体3に対して、斜め方向の光を含む出射である斜め露光を行う。露光時のフォトマスク1と被照射体3との間隔を設けない密着露光、または、上記間隔として70μm〜300μmの微小ギャップを設ける近接(プロキシミティ)露光が本発明の露光方法として適用でき、以下の他の例においても同様である。本例におけるフォトレジスト31は、ネガタイプ、すなわち、露光された領域が光硬化する感光性樹脂であり、露光された部分が現像工程後に、テーパーを有する針立、斜立した3次元形状物となる部分32を形成することができる。   In the exposure method of the present invention, the light beam (not shown) of the exposure apparatus is aligned with the photomask 1 by applying the parallel light 2 irradiated onto the above-described photomask 1 perpendicularly to the photoresist 30 on the substrate 30. The oblique exposure that is emission including light in an oblique direction is performed on the irradiated object 3. Adhesion exposure that does not provide a gap between the photomask 1 and the irradiated object 3 during exposure, or proximity exposure that provides a fine gap of 70 μm to 300 μm as the gap can be applied as the exposure method of the present invention. The same applies to other examples. The photoresist 31 in this example is a negative type, that is, a photosensitive resin in which the exposed region is photocured, and the exposed portion becomes a tapered needle-like or oblique three-dimensional shape after the development process. Portions 32 can be formed.

次に、本発明のフォトマスクを構成する要素について詳述する。
本発明のフォトマスクは、従来のフォトリソ技術を用いて、製造できる。製造方法とともに、構成要素の詳細を以下に例示する。
Next, the elements constituting the photomask of the present invention will be described in detail.
The photomask of the present invention can be manufactured using a conventional photolithography technique. The details of the components together with the manufacturing method are exemplified below.

透明基板10の片面に、従来のフォトマスクの製造方法と同様の方法により、光透過部12のパターンを形成する。透明基板としては、透明ガラスであれば利用できるが、熱膨張率が低くフォトレジストの感光領域である近紫外域の光の透過率に優れた石英ガラスがより好ましい。光透過部12のパターンを形成するには、透明基板の表面に、例えば、クロム等の金属からなる遮光膜13を充分な遮光性を有して薄く均一に真空成膜法により形成し、レジストを塗布し、描画装置によりパターン描画し、現像し、パターン化されたレジストをエッチングレジストとして、金属膜をエッチングした後に、不要なレジストを剥膜することによってできる。   A pattern of the light transmitting portion 12 is formed on one surface of the transparent substrate 10 by the same method as the conventional photomask manufacturing method. As the transparent substrate, transparent glass can be used, but quartz glass having a low coefficient of thermal expansion and excellent light transmittance in the near ultraviolet region, which is a photosensitive region of a photoresist, is more preferable. In order to form the pattern of the light transmission portion 12, a light shielding film 13 made of, for example, a metal such as chromium is formed on the surface of the transparent substrate with a sufficient light shielding property by a thin and uniform vacuum film formation method. Is applied, and a pattern is drawn with a drawing device, developed, and after etching the metal film using the patterned resist as an etching resist, an unnecessary resist is peeled off.

次に、透明基板10の他方の片面に、回折格子11を形成する。回折格子は、遮光膜1
4のパターン形成を上記遮光膜13のパターン形成と同様な方法で行う場合に、遮光膜パターンブロックを短冊形スリット状に並べて、遮光膜14のパターンと同時形成できる。しかし、遮光膜を使用する回折格子は、光の吸収減衰により回折光の強度が小さくなるので、製造上の利便性を別にすれば、光の減衰を伴わないタイプで回折効率の高い方式がより望ましい。回折格子の種類を大別すれば、表面の微細な凹凸からなるレリーフ型と、厚さ方向の屈折率に平面位置による差を形成して位相差を設ける体積型が可能である。中でも、レリーフ型で、透明基板10のガラス面に直接溝形状を平行に加工したり、塗布した感光性樹脂を断面が矩形波状や鋸歯状となるように形状を制御して成形する方法は、従来のフォトリソグラフィー法を利用して容易に製作できるので、好ましい。さらに、上記レリーフ形状を元に、表面加工により、フォトマスクの表面を保護し強度を高めることも可能である。
Next, the diffraction grating 11 is formed on the other side of the transparent substrate 10. The diffraction grating is a light shielding film 1
When the pattern formation of 4 is performed by the same method as the pattern formation of the light shielding film 13, the light shielding film pattern blocks can be arranged in a strip-like slit shape and simultaneously formed with the pattern of the light shielding film 14. However, a diffraction grating that uses a light-shielding film reduces the intensity of diffracted light due to light absorption attenuation. Therefore, aside from manufacturing convenience, a type that does not involve light attenuation and has a higher diffraction efficiency is more suitable. desirable. If the types of diffraction gratings are roughly classified, a relief type consisting of fine irregularities on the surface and a volume type which provides a phase difference by forming a difference in refractive index in the thickness direction depending on the plane position are possible. Among them, the method of forming the groove shape directly on the glass surface of the transparent substrate 10 in a relief type or controlling the shape so that the coated photosensitive resin has a rectangular wave shape or a sawtooth shape as a cross section, This is preferable because it can be easily manufactured using a conventional photolithography method. Furthermore, it is possible to protect the surface of the photomask and increase the strength by surface processing based on the relief shape.

本発明のフォトマスク1を製造するにあたって、透明基板10の両面にそれぞれパターン形成するためには、透明基板10の板厚と利用すべき回折光23の傾斜角度より、表裏のそれぞれのパターン形状と位置合わせ状態を設計する必要がある。また、表裏の位置合わせに適したアライメント機構を有する露光機を用いることが重要である。なお、両面の各パターンを形成する順序は、上記の説明に限定されず、逆順も可能であるほか、同時形成も場合により可能となり、後述の第2の例以下の他の例においても同様である。   In manufacturing the photomask 1 of the present invention, in order to form a pattern on both sides of the transparent substrate 10, according to the thickness of the transparent substrate 10 and the inclination angle of the diffracted light 23 to be used, It is necessary to design the alignment state. In addition, it is important to use an exposure machine having an alignment mechanism suitable for front and back positioning. Note that the order of forming the patterns on both sides is not limited to the above description, and the reverse order is possible, and simultaneous formation is also possible in some cases, and the same applies to other examples after the second example described later. is there.

図2は、本発明のフォトマスクとそれを用いる露光工程の第2の例を、断面で示した説明図である。
本例において、フォトマスク1は、前述の第1の例と同じである。本例の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト33を塗布しフォトマスク1と位置合わせされた被照射体3に対して、斜め方向の光を含む出射である斜め露光を行う。本例におけるフォトレジスト33は、ポジタイプ、すなわち、露光された領域が光分解する感光性樹脂であり、露光された部分が現像工程後に、テーパーを有する斜め方向に掘り下げられた形状の孔34を形成することができる。
FIG. 2 is a cross-sectional view illustrating a second example of the photomask of the present invention and an exposure process using the photomask.
In this example, the photomask 1 is the same as the first example described above. In the exposure method of this example, the parallel light 2 irradiated perpendicularly to the above-described photomask 1 from a light source (not shown) of an exposure apparatus is coated on the substrate 30 with a photoresist 33 and aligned with the photomask 1. The oblique exposure that is emission including light in an oblique direction is performed on the irradiated object 3. The photoresist 33 in this example is a positive type, that is, a photosensitive resin in which an exposed region is photodecomposed, and the exposed portion forms a hole 34 having a tapered shape that is dug down in a diagonal direction after the development process. can do.

図3は、本発明のフォトマスクとそれを用いる露光工程の第3の例を、断面で示した説明図である。
本例において、照射面側に設ける回折光学素子11は、前述の第1の例および第2の例の回折格子11と同様であって、異なる回折角度を有する複次の回折光21、22、23を発し、その後の挙動は、前述の第1の例および第2の例と同様である。すなわち、透明基板10の出射面側に設けた光透過部12は、遮光膜13のパターン形成により選択的に設けることができ、回折光の内で一定の角度を有する回折光23は選択的に透過して被照射体3を露光することができるが、他の回折光21、22は、出射面側の遮光膜13により遮蔽される。
一方、本例において、フォトマスク1は、前述の第1の例および第2の例とは異なり、照射面側に、回折格子11の他に遮光膜14を設けることなく、フォトマスク1に垂直に直進照射される平行光2の一部をそのまま入射させ、光透過部12に示す出射面側の遮光膜13の開口パターンを通して、被照射体3に向けて垂直に出射する光を、前記回折光23による斜め方向の光に追加することが可能となる。
FIG. 3 is a cross-sectional view illustrating a third example of the photomask of the present invention and an exposure process using the photomask.
In this example, the diffractive optical element 11 provided on the irradiation surface side is the same as the diffraction grating 11 of the first example and the second example described above, and the multi-order diffracted lights 21, 22 having different diffraction angles, 23, and the subsequent behavior is the same as in the first and second examples described above. That is, the light transmitting portion 12 provided on the light exit surface side of the transparent substrate 10 can be selectively provided by pattern formation of the light shielding film 13, and the diffracted light 23 having a certain angle among the diffracted light is selectively selected. The irradiated object 3 can be exposed through the light, but the other diffracted lights 21 and 22 are shielded by the light shielding film 13 on the exit surface side.
On the other hand, in this example, unlike the above-described first and second examples, the photomask 1 is perpendicular to the photomask 1 without providing the light shielding film 14 in addition to the diffraction grating 11 on the irradiation surface side. A part of the parallel light 2 irradiated in a straight line is incident as it is, and light emitted perpendicularly toward the irradiated body 3 through the opening pattern of the light shielding film 13 on the emission surface side shown in the light transmission part 12 is diffracted. It becomes possible to add to the light in the oblique direction by the light 23.

上記第3の例のフォトマスクを用いる本発明の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト31を塗布しフォトマスク1と位置合わせされた被照射体3に出射して、斜め露光と垂直露光とを含む露光を行う。すなわち、図において、光透過部12を通過する2種類のブロック矢印で示す方向にフォトレジスト31を光照射する。本例におけるフォトレジスト31は、ネガタイプ、すなわち、露光された領域が光硬化する感光性樹脂であり、露光さ
れた部分が現像工程後に、テーパーを有する針立、斜立した3次元形状物となる部分35を形成することができる。
In the exposure method of the present invention using the photomask of the third example, parallel light 2 irradiated perpendicularly to the above-described photomask 1 from a light source (not shown) of an exposure apparatus is applied onto the substrate 30 with a photoresist 31. Is applied to the irradiated object 3 aligned with the photomask 1, and exposure including oblique exposure and vertical exposure is performed. That is, in the drawing, the photoresist 31 is irradiated with light in the directions indicated by the two types of block arrows that pass through the light transmitting portion 12. The photoresist 31 in this example is a negative type, that is, a photosensitive resin in which the exposed region is photocured, and the exposed portion becomes a tapered needle-like or oblique three-dimensional shape after the development process. Portions 35 can be formed.

図4は、本発明のフォトマスクとそれを用いる露光工程の第4の例を、断面で示した説明図である。
本例において、フォトマスク1は、前述の第3の例と同じである。本例の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト33を塗布しフォトマスク1と位置合わせされた被照射体3に出射して、斜め露光と垂直露光とを含む露光を行う。すなわち、図において、光透過部12を通過する2種類のブロック矢印で示す方向にフォトレジスト33を光照射する。本例におけるフォトレジスト33は、ポジタイプ、すなわち、露光された領域が光分解する感光性樹脂であり、露光された部分が現像工程後に、テーパーを有する斜め方向に掘り下げられた形状の孔36を形成することができる。
FIG. 4 is an explanatory view showing, in section, a fourth example of the photomask of the present invention and an exposure process using the photomask.
In this example, the photomask 1 is the same as the third example described above. In the exposure method of this example, the parallel light 2 irradiated perpendicularly to the above-described photomask 1 from a light source (not shown) of an exposure apparatus is coated on the substrate 30 with a photoresist 33 and aligned with the photomask 1. The light is emitted to the irradiated body 3 and exposure including oblique exposure and vertical exposure is performed. That is, in the drawing, the photoresist 33 is irradiated with light in the directions indicated by the two types of block arrows passing through the light transmitting portion 12. The photoresist 33 in this example is a positive type, that is, a photosensitive resin in which an exposed region is photodecomposed, and the exposed portion forms a tapered hole 36 that is dug down in an oblique direction after the development process. can do.

図5は、本発明のフォトマスクとそれを用いる露光工程の第5の例を、断面で示した説明図である。
本例において、照射面側に設ける回折光学素子11は、前述の第1の例〜第4の例の回折格子11と同様であって、異なる回折角度を有する複次の回折光21、22、23を発し、その後の挙動は、前述の第1の例〜第4の例と同様である。すなわち、透明基板10の出射面側に設けた光透過部12は、遮光膜13のパターン形成により選択的に設けることができ、回折光の内で一定の角度を有する回折光23は選択的に透過して被照射体3を露光することができるが、他の回折光21、22は、出射面側の遮光膜13により遮蔽される。
一方、本例において、フォトマスク1は、前述の第3の例および第4の例とは異なり、照射面側に、回折格子11の他に遮光膜14を設けるが、前述の第1の例および第2の例とは異なる形状に出射面側の遮光膜13の開口パターンを広くして、光透過部12を図のように設ける。上記の構造をフォトマスクに形成することにより、フォトマスク1に垂直に直進照射される平行光2の内、回折光学素子11に入射する平行光2とは一定の距離を離した平行光2の一部をそのまま入射させ、光透過部12に示す出射面側の遮光膜13の開口パターンを通して、被照射体3に向けて垂直に出射する光を、前記回折光23による斜め方向の光に追加することが可能となる。
FIG. 5 is a cross-sectional view illustrating a fifth example of the photomask of the present invention and an exposure process using the photomask.
In this example, the diffractive optical element 11 provided on the irradiation surface side is the same as the diffraction grating 11 of the first to fourth examples described above, and the multiple-order diffracted light beams 21, 22 having different diffraction angles. 23 and the subsequent behavior is the same as in the first to fourth examples described above. That is, the light transmitting portion 12 provided on the light exit surface side of the transparent substrate 10 can be selectively provided by pattern formation of the light shielding film 13, and the diffracted light 23 having a certain angle among the diffracted light is selectively selected. The irradiated object 3 can be exposed through the light, but the other diffracted lights 21 and 22 are shielded by the light shielding film 13 on the exit surface side.
On the other hand, in this example, the photomask 1 is provided with the light shielding film 14 in addition to the diffraction grating 11 on the irradiation surface side, unlike the third example and the fourth example described above, but the first example described above. And the opening pattern of the light shielding film 13 on the exit surface side is widened in a shape different from that of the second example, and the light transmitting portion 12 is provided as shown in the figure. By forming the above-described structure on the photomask, the parallel light 2 that is perpendicularly irradiated to the photomask 1 perpendicularly to the parallel light 2 incident on the diffractive optical element 11 is separated from the parallel light 2 by a certain distance. A part of the light is incident as it is, and the light emitted perpendicularly toward the irradiated body 3 through the opening pattern of the light shielding film 13 on the light emitting surface side shown in the light transmission part 12 is added to the light in the oblique direction by the diffracted light 23. It becomes possible to do.

上記第5の例のフォトマスクを用いる本発明の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト31を塗布しフォトマスク1と位置合わせされた被照射体3に出射して、斜め露光と垂直露光とを含む露光を行う。すなわち、図において、光透過部12を通過する2種類のブロック矢印で示す方向にフォトレジスト31を光照射する。本例におけるフォトレジスト31は、ネガタイプ、すなわち、露光された領域が光硬化する感光性樹脂であり、露光された部分が現像工程後に、テーパーを有する針立、斜立した3次元形状物となる部分37を形成することができる。   In the exposure method of the present invention using the photomask of the fifth example, parallel light 2 irradiated perpendicularly to the above-mentioned photomask 1 from a light source (not shown) of an exposure apparatus is applied onto the substrate 30 with a photoresist 31. Is applied to the irradiated object 3 aligned with the photomask 1, and exposure including oblique exposure and vertical exposure is performed. That is, in the drawing, the photoresist 31 is irradiated with light in the directions indicated by the two types of block arrows that pass through the light transmitting portion 12. The photoresist 31 in this example is a negative type, that is, a photosensitive resin in which the exposed region is photocured, and the exposed portion becomes a tapered needle-like or oblique three-dimensional shape after the development process. Portions 37 can be formed.

図6は、本発明のフォトマスクとそれを用いる露光工程の第6の例を、断面で示した説明図である。
本例におけるフォトマスク1の回折光学素子15は回折レンズであって、例えば、深さが光の波長程度の微細なレリーフ形状を複数の同心円パターンとして平面配列したレリーフ型回折レンズや、光の透過率を同心円状に周期的に変化させた振幅形回折レンズや、簡単に透過領域と遮光領域とを同心円状に繰り返し配列した平面形状のフレネルゾーンプレートのように、回折光を利用する光学素子を透明基板10の照射面側に設ける。
また、透明基板10の出射面側に、回折レンズ15からの回折光24を選択的に透過する光透過部12のパターンが、遮光膜13の開口パターンとして形成されることは、本発明
の前述の他の例において光透過部12が回折格子11からの回折光23を選択的に透過することと同様である。
FIG. 6 is an explanatory view showing, in section, a sixth example of the photomask of the present invention and an exposure process using the photomask.
The diffractive optical element 15 of the photomask 1 in this example is a diffractive lens. For example, a relief type diffractive lens in which a fine relief shape whose depth is about the wavelength of light is arranged in a plane as a plurality of concentric patterns, or light transmission. Optical elements that use diffracted light, such as an amplitude-type diffractive lens whose ratio is periodically changed concentrically and a planar Fresnel zone plate in which transmission regions and light-shielding regions are simply arranged concentrically, are used. It is provided on the irradiation surface side of the transparent substrate 10.
In addition, the pattern of the light transmitting portion 12 that selectively transmits the diffracted light 24 from the diffractive lens 15 is formed as the opening pattern of the light shielding film 13 on the emission surface side of the transparent substrate 10. In other examples, the light transmission unit 12 selectively transmits the diffracted light 23 from the diffraction grating 11.

本例の露光方法は、露光装置の光源(図示せず)より上述のフォトマスク1に垂直に照射された平行光2を、基板30上にフォトレジスト31を塗布しフォトマスク1と位置合わせされた被照射体3に対して、斜め方向の光を含む出射である斜め露光を行う。
本例におけるフォトレジスト31は、ネガタイプ、すなわち、露光された領域が光硬化する感光性樹脂であり、露光された部分が現像工程後に、テーパーを有する針立、斜立した3次元形状物となる部分38を形成することができる。
The exposure method of this example is aligned with the photomask 1 by applying a photoresist 31 on the substrate 30 with the parallel light 2 irradiated perpendicularly to the photomask 1 from a light source (not shown) of an exposure apparatus. The oblique exposure that is emission including light in an oblique direction is performed on the irradiated object 3.
The photoresist 31 in this example is a negative type, that is, a photosensitive resin in which the exposed region is photocured, and the exposed portion becomes a tapered needle-like or oblique three-dimensional shape after the development process. Portion 38 can be formed.

次に、本例におけるフォトマスクを構成する要素について詳述する。
透明基板10の片面に、従来のフォトマスクの製造方法と同様の方法により、光透過部12のパターンを形成する。透明基板としては、透明ガラスであれば利用できるが、熱膨張率が低くフォトレジストの感光領域である近紫外域の光の透過率に優れた石英ガラスがより好ましい。光透過部12のパターンを形成するには、透明基板の表面に、例えば、クロム等の金属からなる遮光膜13を充分な遮光性を有して薄く均一に真空成膜法により形成し、レジストを塗布し、描画装置によりパターン描画し、現像し、パターン化されたレジストをエッチングレジストとして、金属膜をエッチングした後に、不要なレジストを剥膜することによってできる。
Next, the elements constituting the photomask in this example will be described in detail.
A pattern of the light transmitting portion 12 is formed on one surface of the transparent substrate 10 by the same method as the conventional photomask manufacturing method. As the transparent substrate, transparent glass can be used, but quartz glass having a low coefficient of thermal expansion and excellent light transmittance in the near ultraviolet region, which is a photosensitive region of a photoresist, is more preferable. In order to form the pattern of the light transmission portion 12, a light shielding film 13 made of, for example, a metal such as chromium is formed on the surface of the transparent substrate with a sufficient light shielding property by a thin and uniform vacuum film formation method. Is applied, and a pattern is drawn with a drawing device, developed, and after etching the metal film using the patterned resist as an etching resist, an unnecessary resist is peeled off.

次に、透明基板10の他方の片面に、回折レンズ15を形成する。回折レンズ15としてフレネルゾーンプレートを形成する場合について説明すると、遮光膜のパターン形成を、上記遮光膜13のパターン形成と同様に、フォトリソグラフィー法を利用した方法で行うことができる。本例のフォトマスクの製作工程において、透明基板10の厚さとフォトマスク利用時の露光光の波長と露光ギャップを考慮して予め設計された、透過領域と遮光領域とを同心円状に繰り返し配列したフレネルゾーンプレートのパターンを、反対面の光透過部12のパターンすなわち遮光膜13の開口パターンと正確に位置合わせして形成することができる。   Next, the diffraction lens 15 is formed on the other side of the transparent substrate 10. The case where a Fresnel zone plate is formed as the diffractive lens 15 will be described. The pattern formation of the light shielding film can be performed by a method using a photolithography method in the same manner as the pattern formation of the light shielding film 13. In the photomask manufacturing process of this example, a transmission region and a light shielding region, which were designed in advance in consideration of the thickness of the transparent substrate 10, the wavelength of exposure light when using the photomask, and the exposure gap, were repeatedly arranged concentrically. The Fresnel zone plate pattern can be accurately aligned with the pattern of the light transmitting portion 12 on the opposite surface, that is, the opening pattern of the light shielding film 13.

なお、本発明において、フォトマスク1を構成する透明基板10の照射面側に設ける回折光学素子は、回折格子11または回折レンズ15を使用できるが、回折格子11および回折レンズ15を併存させて使用することも可能である。いずれの場合も、透明基板の出射面側に、回折光学素子からの回折光を選択的に透過する光透過部12のパターンと遮光する遮光膜13のパターンが形成される。一方、第1の例、第2の例、および第5の例で例示したように、透明基板の照射面側にも各種の回折光学素子と併存させて、遮光膜14のパターンを適宜設けることができる。上記フォトマスクを構成する各パターンの形状と配置は、被照射体3上に形成されるフォトレジスト31、33の最終的に獲得すべきパターン形状と配置に対応させて、任意に設計し製作される。   In the present invention, the diffractive optical element provided on the irradiation surface side of the transparent substrate 10 constituting the photomask 1 can use the diffraction grating 11 or the diffractive lens 15, but the diffractive grating 11 and the diffractive lens 15 are used together. It is also possible to do. In either case, the pattern of the light transmitting portion 12 that selectively transmits the diffracted light from the diffractive optical element and the pattern of the light shielding film 13 that shields light are formed on the exit surface side of the transparent substrate. On the other hand, as exemplified in the first example, the second example, and the fifth example, the pattern of the light shielding film 14 is appropriately provided on the irradiation surface side of the transparent substrate in combination with various diffractive optical elements. Can do. The shape and arrangement of each pattern constituting the photomask is arbitrarily designed and manufactured in accordance with the pattern shape and arrangement to be finally obtained of the photoresists 31 and 33 formed on the irradiated body 3. The

1・・・フォトマスク
2・・・照射平行光
3・・・被照射体
10・・・透明基板
11・・・回折光学素子(回折格子)
12・・・光透過部
13・・・遮光膜(出射面側)
14・・・遮光膜(照射面側)
15・・・回折光学素子(回折レンズ)
21、22、23・・・回折光
24・・・回折光
30・・・基板
31・・・フォトレジスト(ネガタイプ)
32、35、37、38・・・3次元形状物となる部分
33・・・フォトレジスト(ポジタイプ)
34、36・・・孔となる部分
DESCRIPTION OF SYMBOLS 1 ... Photomask 2 ... Irradiation parallel light 3 ... Subject 10 ... Transparent substrate 11 ... Diffractive optical element (diffraction grating)
12 ... light transmission part 13 ... light shielding film (outgoing surface side)
14 ... Light-shielding film (irradiated surface side)
15 ... Diffraction optical element (diffractive lens)
21, 22, 23 ... diffracted light 24 ... diffracted light 30 ... substrate 31 ... photoresist (negative type)
32, 35, 37, 38 ... 3D shaped part 33 ... Photoresist (positive type)
34, 36 ... portions to be holes

Claims (6)

露光装置より照射されたフォトマスクに垂直な平行光を、被照射体に傾斜させて出射するフォトマスクであって、透明基板の照射面側に、回折光学素子が形成され、透明基板の出射面側に、回折光学素子からの回折光を選択的に透過する光透過部のパターンが形成されたことを特徴とするフォトマスク。   A photomask that emits parallel light perpendicular to a photomask irradiated from an exposure apparatus while being tilted toward an irradiated object, and a diffractive optical element is formed on the irradiation surface side of the transparent substrate, and the emission surface of the transparent substrate A photomask, wherein a pattern of a light transmitting portion that selectively transmits diffracted light from a diffractive optical element is formed on the side. 回折光学素子が、回折格子を含むことを特徴とする請求項1に記載のフォトマスク。   The photomask according to claim 1, wherein the diffractive optical element includes a diffraction grating. 回折光学素子が、回折レンズを含むことを特徴とする請求項1または2に記載のフォトマスク。   The photomask according to claim 1, wherein the diffractive optical element includes a diffractive lens. 請求項1〜3のいずれかに記載のフォトマスクに露光装置の光源より垂直に照射された平行光を、基板上にフォトレジストを塗布しフォトマスクと位置合わせされた被照射体に出射して斜め露光を行うことを特徴とする露光方法。   Parallel light irradiated perpendicularly to the photomask according to any one of claims 1 to 3 from a light source of an exposure apparatus is emitted to an irradiated object that is coated with a photoresist on a substrate and aligned with the photomask. An exposure method comprising performing oblique exposure. フォトレジストがネガタイプであって、露光後に現像することによって、テーパーを有する針立、斜立した3次元形状物が形成できることを特徴とする請求項4に記載の露光方法。   5. The exposure method according to claim 4, wherein the photoresist is of a negative type and can be formed into a three-dimensional shape having a tapered needle or an oblique shape by developing after exposure. フォトレジストがポジタイプであって、露光後に現像することによって、テーパーを有する斜め方向に掘り下げられた形状の孔が形成できることを特徴とする請求項4に記載の露光方法。   5. The exposure method according to claim 4, wherein the photoresist is of a positive type, and a hole having a shape dug in a diagonal direction having a taper can be formed by developing after exposure.
JP2011247561A 2011-11-11 2011-11-11 Photomask and exposure method Pending JP2013104960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247561A JP2013104960A (en) 2011-11-11 2011-11-11 Photomask and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247561A JP2013104960A (en) 2011-11-11 2011-11-11 Photomask and exposure method

Publications (1)

Publication Number Publication Date
JP2013104960A true JP2013104960A (en) 2013-05-30

Family

ID=48624540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247561A Pending JP2013104960A (en) 2011-11-11 2011-11-11 Photomask and exposure method

Country Status (1)

Country Link
JP (1) JP2013104960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002284A1 (en) * 2013-07-05 2015-01-08 シャープ株式会社 Light-diffusing member, method for manufacturing same, and display device
US20150198812A1 (en) * 2014-01-15 2015-07-16 Georgia Tech Research Corporation Photo-Mask and Accessory Optical Components for Fabrication of Three-Dimensional Structures
KR20180035636A (en) * 2016-09-29 2018-04-06 주식회사 오피트 Plane style lens processing method
CN113366380A (en) * 2019-02-07 2021-09-07 株式会社V技术 Exposure apparatus for photo-alignment and exposure method for photo-alignment
US20210397094A1 (en) * 2018-11-07 2021-12-23 Waymo Llc Systems and Methods that Utilize Angled Photolithography for Manufacturing Light Guide Elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002284A1 (en) * 2013-07-05 2015-01-08 シャープ株式会社 Light-diffusing member, method for manufacturing same, and display device
JP2015014734A (en) * 2013-07-05 2015-01-22 シャープ株式会社 Light-diffusing member and method for manufacturing the same, and display device
US20150198812A1 (en) * 2014-01-15 2015-07-16 Georgia Tech Research Corporation Photo-Mask and Accessory Optical Components for Fabrication of Three-Dimensional Structures
KR20180035636A (en) * 2016-09-29 2018-04-06 주식회사 오피트 Plane style lens processing method
US20210397094A1 (en) * 2018-11-07 2021-12-23 Waymo Llc Systems and Methods that Utilize Angled Photolithography for Manufacturing Light Guide Elements
CN113366380A (en) * 2019-02-07 2021-09-07 株式会社V技术 Exposure apparatus for photo-alignment and exposure method for photo-alignment

Similar Documents

Publication Publication Date Title
KR100693024B1 (en) Method for manufacturing a microstructure, exposure device, and electronic apparatus
US8221963B2 (en) Method for producing fine structure
TWI452414B (en) Method of Making Surface Bump
JP2009134287A (en) Diffraction optical element, method of manufacturing the same and laser machining method
JP2013104960A (en) Photomask and exposure method
JP5391670B2 (en) Manufacturing method of fine structure
US10509327B1 (en) Variable neutral density filter for multi-beam interference lithography exposure
KR100990074B1 (en) Inclined exposure lithography system
JPH07506224A (en) Resolution-enhancing optical phase structure for projection illumination
JP2015170780A (en) Exposure method, manufacturing method of fine periodic structure, manufacturing method of grid polarization element, and exposure equipment
WO2011039864A1 (en) Method for manufacturing light guide plate, and light guide plate
JP2008299208A (en) Method for manufacturing stereoscopic pattern of thick film resist
JP2006339359A (en) Method of manufacturing fine structure, and electronic apparatus
JP2629671B2 (en) Holographic exposure method
TW200423837A (en) Lithographic method for wiring a side surface of a substrate
JP2007187732A (en) Diffractive optical element and its manufacturing method
KR100317881B1 (en) Plane light source unit and method for manufacturing hologram waveguide used for the same
JP2007079458A (en) Method for manufacturing fine three-dimensional structure and x-ray mask used therefor
JPH05224398A (en) Photomask having variable transmissivity and production of optical parts using the same
JPH05346503A (en) Manufacture of zone plate
JP2008286920A (en) Method for forming concavo-convex pattern on photosensitive substrate and exposure apparatus for interference fringe pattern
JP2012226129A (en) Photomask
JP6628121B2 (en) Polarizer manufacturing method and electron beam irradiation apparatus
JP2013246340A (en) Photomask and method of manufacturing the same, and pattern exposure method
JP2011028233A (en) Photomask