JP2013096796A - Radiation measuring apparatus - Google Patents

Radiation measuring apparatus Download PDF

Info

Publication number
JP2013096796A
JP2013096796A JP2011238830A JP2011238830A JP2013096796A JP 2013096796 A JP2013096796 A JP 2013096796A JP 2011238830 A JP2011238830 A JP 2011238830A JP 2011238830 A JP2011238830 A JP 2011238830A JP 2013096796 A JP2013096796 A JP 2013096796A
Authority
JP
Japan
Prior art keywords
radiation
measured
calibration sample
line sensor
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238830A
Other languages
Japanese (ja)
Inventor
Yasushi Ichizawa
康史 市沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2011238830A priority Critical patent/JP2013096796A/en
Publication of JP2013096796A publication Critical patent/JP2013096796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a radiation measuring apparatus capable of, in an entire width measurement using a line sensor, performing real-time correction for a central part and a peripheral part and a medium-and-long term correction.SOLUTION: The radiation measuring apparatus irradiates radiation on a measuring object having a predetermined width from a radiation source, and measures intensity of the radiation transmitted through the measuring object by a line sensor, thereby measuring a thickness or basis weight of the measuring object by referring to predetermined transmitted radiation intensity characteristics measured on a plurality of reference objects of the same material as the measuring object and with known thicknesses. The radiation measuring apparatus includes: calibration sample moving means for moving a calibration sample along a detection part of the line sensor, the calibration sample being arranged between the radiation source and the measuring object and having known basis weight or thickness determined by another measurement; and calibration processing means for calculating a correction value based on a transmitted radiation intensity signal obtained by the line sensor at a moved position of the calibration sample and correcting the transmitted radiation intensity characteristics.

Description

本発明は、放射線源から所定の幅を有する被測定物に放射線を照射し、前記被測定物を透過した放射線の強度をラインセンサにより前記幅方向に測定し、前記被測定物と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過放射線強度特性を参照して前記被測定物の厚さ若しくは坪量を測定する放射線測定装置に関するものである。   The present invention irradiates a measurement object having a predetermined width from a radiation source, measures the intensity of the radiation transmitted through the measurement object in the width direction by a line sensor, and uses the same material as the measurement object. The present invention relates to a radiation measuring apparatus that measures the thickness or basis weight of the object to be measured with reference to transmission radiation intensity characteristics obtained in advance by measuring a plurality of reference objects with known thicknesses.

本発明の放射線測定装置で使用される放射線源としては、X線源、β線を含む放射線源等が選択肢となるが、以下の説明及び図面の表記では、一般的なX線源による実施例を説明する。   As a radiation source used in the radiation measuring apparatus of the present invention, an X-ray source, a radiation source containing β-rays, and the like are options. However, in the following description and drawing notation, an example using a general X-ray source is used. Will be explained.

図10は、特許文献1に開示されている従来のX線測定装置の構成例を示す機能ブロック図である。所定の幅を有し、矢印P方向に移送される被測定物20に対して直交方向よりX線源10からX線を照射し、被測定物20を透過したX線の強度をラインセンサ30により幅方向に測定する。   FIG. 10 is a functional block diagram showing a configuration example of a conventional X-ray measurement apparatus disclosed in Patent Document 1. As shown in FIG. The X-ray source 10 irradiates X-rays from the X-ray source 10 in the orthogonal direction to the DUT 20 having a predetermined width and transported in the direction of the arrow P, and the line sensor 30 Measure in the width direction.

ラインセンサ30の測定値Xiは、坪量算出手段40に入力される。坪量算出手段40は、測定値Xiにより被測定物20と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過X線強度特性をテーブルまたは近似関数で保持する透過X線強度特性保持手段50を参照し、測定値Xiに対する坪量Wiを取得し、外部出力手段60に渡す。   The measured value Xi of the line sensor 30 is input to the basis weight calculation means 40. The basis weight calculating means 40 holds a transmission X-ray intensity characteristic obtained in advance by measurement of a plurality of reference objects having the same material as the object to be measured 20 and a known thickness based on the measurement value Xi in a table or an approximate function. The basis weight Wi with respect to the measured value Xi is acquired with reference to the line intensity characteristic holding unit 50, and passed to the external output unit 60.

被測定物に対するX線の照射位置の近傍に、坪量Wsが予め別の測定により既知の校正サンプル70が固定配置されている。X線源10よりこの校正サンプル70にX線を照射し、透過した透過X線強度をラインセンサ30で測定した測定値Xi´を透過X線強度補正手段80に入力する。   A calibration sample 70 whose basis weight Ws is known in advance by another measurement is fixedly arranged in the vicinity of the X-ray irradiation position on the object to be measured. The calibration sample 70 is irradiated with X-rays from the X-ray source 10, and a measured value Xi ′ obtained by measuring the transmitted X-ray intensity with the line sensor 30 is input to the transmitted X-ray intensity correcting means 80.

透過X線強度補正手段80は、対測定値Xi´する透過X線強度特性保持手段50による参照値Wi´が、校正サンプル70の坪量Wsに一致するような補正値Mを演算して透過X線強度特性保持手段50に保持されている特性データを修正する。   The transmitted X-ray intensity correction means 80 calculates a correction value M such that the reference value Wi ′ by the transmitted X-ray intensity characteristic holding means 50 for the measured value Xi ′ matches the basis weight Ws of the calibration sample 70 and transmits the correction value M ′. The characteristic data held in the X-ray intensity characteristic holding means 50 is corrected.

特開2003−329430号公報JP 2003-329430 A

従来構成のX線測定装置では、被測定物20の脇(X線照射位置近傍)に校正サンプル70を設置して補正を行っているが、ラインセンサ30の一端部での校正サンプルの透過強度測定値により測定系全体に補正をかける手法である。   In the X-ray measuring apparatus having the conventional configuration, the calibration sample 70 is placed beside the object to be measured 20 (in the vicinity of the X-ray irradiation position) for correction. However, the transmission intensity of the calibration sample at one end of the line sensor 30 is corrected. In this method, the entire measurement system is corrected by the measured value.

この手法では、校正サンプル70の置かれた近傍(ラインセンサ30の端部周辺)での補正および短期的な線源変動に関しては正確に補正できる。一方で、ラインセンサ30の端部周辺と中央部で確実に同じ補正結果が得られるかは不明であり、端部周辺の測定と中央部での測定で同一性を保証することができない。   According to this method, correction in the vicinity where the calibration sample 70 is placed (around the end of the line sensor 30) and short-term source fluctuation can be accurately corrected. On the other hand, it is unclear whether the same correction result can be reliably obtained in the periphery and the center of the line sensor 30, and it is not possible to guarantee the identity between the measurement around the edge and the measurement at the center.

図11は、X線源、ラインセンサ、被測定物の相対関係を示す斜視図である。X線源10から被測定物20まで距離は、中央部距離L1と周端部L2距離では異なる。また、ラインセンサ30までの距離及び照射角度が異なることで、X線の投影面積もS1とS2とで異なる。この面積比に応じて中央部と周辺部ではX線の透過強度が異なる。また、照射距離が変わることで大気(温度、湿度、気圧など)の影響を受ける。
(0000)
また、周端部ではビームハードニングの影響を受ける。更に、周端部では被検査物(シート)20を斜めに通過するため被測定物20の厚さが同一であっても、ラインセンサ30の出力はフラックスの入射角によって透過後線量は小さくなる。例えば、測定範囲が線源から左右に45°に開いた扇状ビームで被検査物20の全幅測定を行う場合を想定すれば、cos45°=0.707と30%近くも変化を生じてしまう。
(0000)
坪量測定の測定精度は、一般に0.数%程度を期待されるため、被検査物20が無い状態で校正を一時的に正確にできたとしても、中・長期的に周辺と中央が初期状態を保てているかは保証することができない。
FIG. 11 is a perspective view showing the relative relationship between the X-ray source, the line sensor, and the object to be measured. The distance from the X-ray source 10 to the object to be measured 20 is different between the central portion distance L1 and the peripheral end portion L2 distance. In addition, since the distance to the line sensor 30 and the irradiation angle are different, the projected area of X-rays is also different between S1 and S2. Depending on the area ratio, the X-ray transmission intensity differs between the central portion and the peripheral portion. Moreover, it is affected by the atmosphere (temperature, humidity, atmospheric pressure, etc.) by changing the irradiation distance.
(0000)
Further, the peripheral edge is affected by beam hardening. Furthermore, since the peripheral edge portion passes through the inspection object (sheet) 20 obliquely, the output of the line sensor 30 is reduced in the post-transmission dose depending on the incident angle of the flux even if the measurement object 20 has the same thickness. . For example, assuming a case where the full width measurement of the inspection object 20 is performed with a fan-shaped beam whose measurement range is 45 ° left and right from the radiation source, cos 45 ° = 0.707, which is nearly 30%.
(0000)
Since the measurement accuracy of the basis weight measurement is generally expected to be about a few percent, even if the calibration can be performed temporarily accurately without the inspection object 20, the periphery and center are initially in the middle and long term. It cannot be guaranteed that the state is maintained.

本発明の目的は、ラインセンサを用いた全幅測定において、中央部及び周端部のリアルタイム補正ならびに中長期の補正を可能とする放射線測定装置を実現することにある。   An object of the present invention is to realize a radiation measurement apparatus that enables real-time correction and mid-long-term correction of the central portion and the peripheral end portion in full width measurement using a line sensor.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)放射線源から所定の幅を有する被測定物に放射線を照射し、前記被測定物を透過した放射線の強度をラインセンサにより前記幅方向に測定し、前記被測定物と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過放射線強度特性を参照して前記被測定物の厚さ若しくは坪量を測定する放射線測定装置において、
前記放射線源と前記被測定物間に介在させた坪量若しくは厚さが予め別の測定により既知の校正サンプルを、前記ラインセンサの検出部に沿って移動させる校正サンプル移動手段と、
前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度信号に基づいて補正値を演算し、前記透過放射線強度特性を補正する校正処理手段と、
を備えることを特徴とする放射線測定装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) Radiation is applied to a measurement object having a predetermined width from a radiation source, the intensity of the radiation transmitted through the measurement object is measured in the width direction by a line sensor, and the thickness is the same as that of the measurement object. In a radiation measuring apparatus that measures the thickness or basis weight of the object to be measured with reference to transmission radiation intensity characteristics obtained in advance by measurement of a plurality of reference objects whose lengths are known,
Calibration sample moving means for moving a calibration sample whose basis weight or thickness interposed between the radiation source and the object to be measured is known in advance by another measurement along the detection unit of the line sensor;
Calibration processing means for calculating a correction value based on a transmission radiation intensity signal by the line sensor at the movement position of the calibration sample, and correcting the transmission radiation intensity characteristics;
A radiation measurement apparatus comprising:

(2)前記校正処理手段は、前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度測定信号の瞬時情報に基づいて前記透過放射線強度特性をリアルタイムに補正することを特徴とする(1)に記載の放射線測定装置。 (2) The calibration processing means corrects the transmission radiation intensity characteristic in real time based on instantaneous information of a transmission radiation intensity measurement signal from the line sensor at the movement position of the calibration sample. The radiation measuring apparatus described.

(3)前記校正処理手段は、前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度測定信号のトレンド情報に基づき、前記透過放射線強度特性の中長期特性を演算して補正することを特徴とすることを特徴とする(1)に記載の放射線測定装置。 (3) The calibration processing means calculates and corrects the medium- to long-term characteristic of the transmitted radiation intensity characteristic based on trend information of the transmitted radiation intensity measurement signal by the line sensor at the movement position of the calibration sample. The radiation measuring apparatus according to (1), wherein:

(4)前記校正処理手段は、前記トレンド情報の移動平均演算または運転周期変動演算により前記中長期特性を演算して前記周透過放射線強度特性を補正することを特徴とする
(3)に記載の放射線測定装置。
(4) The calibration processing means calculates the medium-long-term characteristic by moving average calculation or operation cycle fluctuation calculation of the trend information, and corrects the peripheral transmission radiation intensity characteristic according to (3) Radiation measurement device.

(5)前記校正処理手段は、前記校正サンプルの移動位置端部において前記被測定物を介在させない状態で前記校正サンプルからの透過放射線強度を前記ラインセンサで測定した信号に基づいて前記透過放射線強度特性を補正することを特徴とする(1)乃至(4)のいずれかに記載の放射線測定装置。 (5) The calibration processing means, based on a signal obtained by measuring the transmitted radiation intensity from the calibration sample with the line sensor in the state where the measurement object is not interposed at the moving position end of the calibration sample, The radiation measuring apparatus according to any one of (1) to (4), wherein the characteristic is corrected.

(6)前記校正サンプルの移動位置情報ならびに前記校正処理手段による補正情報を表示する表示手段を備えることを特徴とする(1)乃至(5)のいずれかに記載の放射線測定装置。 (6) The radiation measuring apparatus according to any one of (1) to (5), further comprising display means for displaying movement position information of the calibration sample and correction information by the calibration processing means.

(7)前記校正サンプルは、前記被測定物と材質が同一もしくは前記被測定物と原子番号が同程度の材質であることを特徴とする(1)乃至(6)のいずれかに記載の放射線測定装置。 (7) The radiation according to any one of (1) to (6), wherein the calibration sample is made of a material having the same material as that of the object to be measured or having an atomic number equivalent to that of the object to be measured. measuring device.

(8)前記校正サンプルは、前記被測定物より坪量もしくは厚さが数倍程度大きなものであって、前記被測定物と同一材質の場合は複数枚の重ね合わせたもの、前記被測定物と原子番号が同程度の材質の場合は坪量または厚さが数倍程度大きな材質であることを特徴とする(7)に記載の放射線測定装置。 (8) The calibration sample has a basis weight or thickness that is several times larger than that of the object to be measured, and in the case of the same material as the object to be measured, a plurality of stacked samples, the object to be measured And the atomic number is the same, the radiation measuring apparatus according to (7), wherein the basis weight or thickness is several times larger.

(9)前記校正サンプルは、前記被測定物より十分小さく、その移動により前記被測定物と重なる領域は、前記被測定物のサイズ対して十分狭い範囲であることを特徴とする(1)乃至(8)のいずれかに記載の放射線測定装置。 (9) The calibration sample is sufficiently smaller than the object to be measured, and a region overlapping with the object to be measured due to the movement thereof is a sufficiently narrow range with respect to the size of the object to be measured. The radiation measuring apparatus according to any one of (8).

本発明によれば、次のような効果を期待することができる。
(1)ラインセンサの中央部と周端部で同じ測定精度を得ることができる。
(2)運転周期(生産ロット単位の周期、朝晩のデイリーな周期変動など)の補正ができる。
(3)測定環境(温度、湿度、気圧など)の影響を補正することができる。
(4)リアルタイムに校正サンプルの測定値をオペレータウィンドウに表示することで、オペレータに常時測定精度を明示することができる。
(5)校正サンプルの測定値をトレンド管理することで、線量低下や検出器感度の安定性など保守情報の収集が可能である。
(6)定期的に被測定物の無い領域において校正サンプルのみで校正することにより、装置全体を引き出して校正サンプルを検証する長期的(数ヶ月)で煩雑な保証作業も不要になる。
According to the present invention, the following effects can be expected.
(1) The same measurement accuracy can be obtained at the center portion and the peripheral end portion of the line sensor.
(2) It is possible to correct the operation cycle (production lot unit cycle, morning / night daily cycle fluctuation, etc.).
(3) The influence of the measurement environment (temperature, humidity, atmospheric pressure, etc.) can be corrected.
(4) By displaying the measurement value of the calibration sample in real time in the operator window, the measurement accuracy can always be clearly shown to the operator.
(5) Trend management of the measured values of the calibration sample enables collection of maintenance information such as dose reduction and detector sensitivity stability.
(6) Periodic calibration with only the calibration sample in the area where there is no object to be measured eliminates the need for a long-term (several months) and complicated guarantee work for pulling out the entire apparatus and verifying the calibration sample.

本発明を適用したX線測定装置の一実施例を示す機能ブロック図である。It is a functional block diagram which shows one Example of the X-ray measuring apparatus to which this invention is applied. X線源、ラインセンサ、被測定物、校正サンプルの相対関係を示す斜視図である。It is a perspective view which shows the relative relationship of a X-ray source, a line sensor, a to-be-measured object, and a calibration sample. X線源、ラインセンサ、被測定物、校正サンプルの相対関係を示す縦断面図である。It is a longitudinal cross-sectional view which shows the relative relationship of a X-ray source, a line sensor, a to-be-measured object, and a calibration sample. ラインセンサの出力特性図である。It is an output characteristic figure of a line sensor. X線透過強度特性の補正手法を説明する特性図である。It is a characteristic view explaining the correction | amendment method of a X-ray transmission intensity characteristic. 表示手段の画面構成図である。It is a screen block diagram of a display means. 校正サンプルの走査軌跡と測定不可能領域を説明する模式図である。It is a schematic diagram explaining the scanning locus of a calibration sample and a non-measurable region. 本発明を適用したX線測定装置の他の実施例を示す機能ブロック図である。It is a functional block diagram which shows the other Example of the X-ray measuring apparatus to which this invention is applied. 校正サンプル保持具の構成例を示す斜視図である。It is a perspective view which shows the structural example of a calibration sample holder. 従来のX線測定装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the conventional X-ray measuring apparatus. X線源、ラインセンサ、被測定物の相対関係を示す斜視図である。It is a perspective view which shows the relative relationship of a X-ray source, a line sensor, and a to-be-measured object.

以下、図面を用いて本発明を詳細に説明する。図1は、本発明を適用したX線測定装置の一実施例を示す機能ブロック図である。図2は、図1におけるX線源、ラインセンサ、被測定物、校正サンプルの相対関係を示す斜視図である。図3は、X線源、ラインセンサ、被測定物、校正サンプルの相対関係を示す縦断面図である。図1、図2、図3において、図10、図11で説明した従来構成と同一要素には同一符号を付して説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of an X-ray measuring apparatus to which the present invention is applied. FIG. 2 is a perspective view showing the relative relationship of the X-ray source, line sensor, object to be measured, and calibration sample in FIG. FIG. 3 is a longitudinal sectional view showing a relative relationship among the X-ray source, the line sensor, the object to be measured, and the calibration sample. 1, 2, and 3, the same components as those in the conventional configuration described in FIGS. 10 and 11 are denoted by the same reference numerals, and the description thereof is omitted.

X線源10、被測定物20、ラインセンサ30の構成は、図10および図11と同一であり、X線源10に対しラインセンサ30が正対して設置され、被測定物20は線源から離れた位置で且つ、ラインセンサ30の近傍に置かれている。   The configurations of the X-ray source 10, the DUT 20, and the line sensor 30 are the same as those in FIGS. 10 and 11. The line sensor 30 is installed facing the X-ray source 10. It is placed at a position away from the line sensor 30 and in the vicinity of the line sensor 30.

この被測定物20をX線の照射方向に対してほぼ直角方向(図2では水平方向)に移動してラインセンサ30で測定すれば被測定物の全幅測定が可能である。この構成に加えて、X線源10の直下にビーム整形用のコリメータを設けてもよい。   If the measurement object 20 is moved in a direction substantially perpendicular to the X-ray irradiation direction (horizontal direction in FIG. 2) and measured by the line sensor 30, the full width of the measurement object can be measured. In addition to this configuration, a beam shaping collimator may be provided immediately below the X-ray source 10.

ラインセンサ30の上空で且つ被測定物20のわずかに上空には、ラインセンサ30の検出範囲の全域に渡って移動(走査)可能な校正サンプル移動手段200が設けられている。この校正サンプル移動手段200には、校正サンプル100を保持する保持具201が設けられ、校正サンプル100をラインセンサ300に対して平行に移動でき、移動範囲の端部では折り返す連続反復移動が可能な構成となっている。   Calibration sample moving means 200 that can move (scan) over the entire detection range of the line sensor 30 is provided above the line sensor 30 and slightly above the object 20 to be measured. The calibration sample moving means 200 is provided with a holder 201 that holds the calibration sample 100, can move the calibration sample 100 in parallel with the line sensor 300, and can continuously and repeatedly move back at the end of the movement range. It has a configuration.

この校正サンプル100が、被測定物20の測定中にこれを横切るようにして移動走査し、校正サンプル100と被検査物20を連続して透過した透過線量がラインセンサ30で測定される。校正サンプル100の移動形態は、前記の連続反復移動の他、間欠移動、一時停止を含む。   The calibration sample 100 is moved and scanned across the object to be measured 20 during the measurement of the object to be measured 20, and the transmitted dose transmitted through the calibration sample 100 and the object to be inspected 20 continuously is measured by the line sensor 30. The movement form of the calibration sample 100 includes intermittent movement and temporary stop in addition to the above-mentioned continuous repeated movement.

一般的な校正サンプルとしては、予め既知の面積に正確に切り出したアルミ板や樹脂プレートなどで実現可能であり、これを電子天秤で正確に重量測定して坪量が既知のものを用いる。   As a general calibration sample, it can be realized by an aluminum plate or a resin plate accurately cut into a known area in advance, and a sample having a known basis weight by accurately measuring the weight with an electronic balance is used.

本発明では、この一般的な校正サンプルを用いてもよいが、最適は、被測定物20と同じ材質(コーティングを施した複合材料であっても良い)で、同様に既知の面積に正確に切り出して、電子天秤で正確に重量測定したものがより好ましい。この校正サンプルを、複数枚(3〜7枚)重ねて保持具201にセットする。   In the present invention, this general calibration sample may be used, but optimally, the same material as the object to be measured 20 (or a composite material with coating) may be used. What was cut out and measured accurately with an electronic balance is more preferable. A plurality of (3 to 7) calibration samples are stacked and set on the holder 201.

X線源10はラインセンサ30から距離を離して配置しなければならないため、X線源10のエネルギー強度は空気の影響を比較的受けないように高いエネルギー帯(15〜25KeV)が用いられる。   Since the X-ray source 10 must be arranged at a distance from the line sensor 30, a high energy band (15 to 25 KeV) is used so that the energy intensity of the X-ray source 10 is relatively unaffected by air.

被測定物20が薄い樹脂シート、金属箔、電池電極シートなどの場合では、10〜15KeVが測定には適当であるが、高いエネルギー帯(15〜25KeV)を用いれば、被測定物20に対して十分過ぎる透過力があり、複数枚を透過させることが可能である。   When the object to be measured 20 is a thin resin sheet, metal foil, battery electrode sheet, etc., 10 to 15 KeV is appropriate for the measurement, but if a high energy band (15 to 25 KeV) is used, the object to be measured 20 is measured. In addition, there is a sufficient transmission power, and it is possible to transmit a plurality of sheets.

図4は、ラインセンサ30の出力特性図であり、被測定物20の幅方向に対するラインセンサ30の測定値を示す。校正サンプル100が通過する重なり箇所W以外では、ラインセンサ30の測定値Xiを入力する坪量算出手段300は、透過X線強度特性保持手段50を参照して幅方向の坪量のプロファイルWiを算出し、外部出力手段60に渡す。この坪量算出手法は、従来構成と同一である。   FIG. 4 is an output characteristic diagram of the line sensor 30 and shows measured values of the line sensor 30 in the width direction of the DUT 20. The basis weight calculation means 300 that inputs the measurement value Xi of the line sensor 30 except the overlapping portion W through which the calibration sample 100 passes refers to the transmission direction X-ray intensity characteristic holding means 50 to obtain the basis weight profile Wi in the width direction. Calculate and pass to the external output means 60. This basis weight calculation method is the same as the conventional configuration.

重なり部分Wのラインセンサ30の測定値Xi´を入力する校正処理手段400は、この測定値から補正値Mを演算して、透過X線強度特性保持手段50に出力し、校正サンプル100が通過中の領域を除く全領域の透過X線強度特性を補正する。   The calibration processing means 400 that inputs the measurement value Xi ′ of the line sensor 30 in the overlapping portion W calculates the correction value M from this measurement value and outputs it to the transmission X-ray intensity characteristic holding means 50, so that the calibration sample 100 passes. The transmitted X-ray intensity characteristics of all regions except the inner region are corrected.

校正処理手段400は、リアルタイムの補正値を算出する瞬時補正値算出手段401、トレンドデータ保持手段402、トレンド情報に基づいた中長期の補正値を算出する中長期補正値算出手段403を備える。   The calibration processing unit 400 includes an instantaneous correction value calculating unit 401 that calculates a real-time correction value, a trend data holding unit 402, and a medium to long-term correction value calculating unit 403 that calculates a medium to long-term correction value based on trend information.

中長期補正値算出手段403は、所定期間のトレンド情報の移動平均演算または運転周期変動演算を実行し中長期補正値Mを演算し、透過X線強度特性保持手段50に出力して透過X線強度特性を補正する。トレンド情報に基づく解析手法として、校正サンプル100の通過位置毎に、その通過位置を考慮して過去のデータと現在のデータに基づくトレンド解析を実行する。   The medium / long-term correction value calculation means 403 calculates the medium / long-term correction value M by executing the moving average calculation or the operation cycle fluctuation calculation of the trend information for a predetermined period, and outputs it to the transmission X-ray intensity characteristic holding means 50 for transmission X-ray. Correct the intensity characteristics. As an analysis method based on trend information, for each passing position of the calibration sample 100, a trend analysis based on past data and current data is executed in consideration of the passing position.

補正値Mは、校正サンプル100の枚数との枚数比に応じて補正量を換算して求めるが、実際に被測定物20の坪量が重くなったのか、外乱によって変化が出たかは定かでないため、直接的にその差分で補正することはせず、具体的には下記のように行う。   The correction value M is obtained by converting the correction amount in accordance with the ratio of the number of calibration samples 100 to the number of calibration samples 100. However, it is not certain whether the basis weight of the object to be measured 20 has actually become heavy or whether a change has occurred due to a disturbance. Therefore, it is not directly corrected by the difference, and specifically, it is performed as follows.

校正サンプル枚数を4枚とした場合の測定精度への影響は、重なり部には坪量が不明な1枚分(被測定物)の透過減衰と既知の坪量4枚分の透過減衰の和となる。被測定物の坪量が200g/m2として、規定値より2%(=4g/m2)重くなった場合には、4/(200+(200×4))=0.4g/m2変化として重なり部の測定値が高くなる。   The effect on the measurement accuracy when the number of calibration samples is four is the sum of the transmission attenuation of one sheet (object to be measured) whose basis weight is unknown at the overlapping part and the transmission attenuation of four known basis weights. It becomes. If the basis weight of the object to be measured is 200g / m2 and 2% (= 4g / m2) heavier than the specified value, the overlap will be 4 / (200+ (200 × 4)) = 0.4g / m2 change. The measured value of becomes higher.

この変化の要因が、実際に被測定物の坪量が重くなったものか、外乱によって2%の変化が出たかは瞬時的には定かではないが、中長期補正値算出手段403移動平均演算と組み合わせることにより、短期的に変化があったものか、長期的に現れているかの推測は可能である。   Although it is not immediately known whether the cause of this change is the fact that the basis weight of the object to be measured has become heavy or a 2% change has occurred due to disturbance, the medium- to long-term correction value calculation means 403 moving average calculation By combining with, it is possible to infer whether there has been a change in the short term or a long term.

本発明によるオペレーションでは、基本的には短期的な変動に対しては、補正を行わないか軽微な補正に留めるようにし、校正サンプルの走査による周期と一致する変化量や運転周期(生産ロット単位の周期、朝晩のデイリーな周期変動など)と一致するものについては積極的に補正をかけていく。   In the operation according to the present invention, for short-term fluctuations, basically, correction is not performed or only slight correction is performed, and the amount of change or operation cycle (production lot unit) that matches the cycle of the calibration sample scan. ) And those that coincide with the daily fluctuation of the morning and evening, etc.) will be positively corrected.

校正サンプル100の走査周期は、数秒〜10秒で、数回〜数十回の移動平均情報により補正値のデータを作成する。例えば16回の移動平均値(1分間程度)であれば、ばらつきは1/√16=1/4になり、前記の0.4g/m2は0.1g/m2まで安定した補正値となり、被測定物が介在しているものの、外乱の値を補正するに十分な補正値Mを得ることができる。   The scanning cycle of the calibration sample 100 is several seconds to 10 seconds, and correction value data is created from moving average information several times to several tens of times. For example, if the moving average value is 16 times (about 1 minute), the variation is 1 / √16 = 1/4, and the above 0.4 g / m2 is a stable correction value up to 0.1 g / m2, and the object to be measured However, a correction value M sufficient to correct the disturbance value can be obtained.

図5は、X線透過強度特性の補正手法を説明する特性図である。図10で説明した従来手法と同様に、被測定物20と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過X線強度特性F1を基礎データとしてテーブルまたは近似関数で保持する。この基礎データは、線源変動が十分抑えられた安定した状態で、厚さの異なる複数の校正用サンプルを測定して求めることもできる。   FIG. 5 is a characteristic diagram for explaining a method for correcting the X-ray transmission intensity characteristic. Similar to the conventional method described with reference to FIG. 10, the transmission X-ray intensity characteristic F1 obtained in advance by measurement of a plurality of reference objects having the same material as the object to be measured 20 and a known thickness is used as a basic data in a table or approximate function. Hold. This basic data can also be obtained by measuring a plurality of calibration samples having different thicknesses in a stable state in which fluctuations in the radiation source are sufficiently suppressed.

補正サンプル100を被測定物上で移動させて測定した測定した実測値による中長期補正値Mで透過X線強度特性F1の基礎データを補正した特性をF2で示す。測定値Xiの時に補正のない基礎データによる特性F1基づく坪量Wi1は、補正した特性に基づく坪量Wi2に補正され、測定精度が改善される。   A characteristic obtained by correcting the basic data of the transmission X-ray intensity characteristic F1 with the medium-to-long-term correction value M based on the actually measured value measured by moving the correction sample 100 on the object to be measured is indicated by F2. The basis weight Wi1 based on the characteristic F1 based on the uncorrected basic data at the measurement value Xi is corrected to the basis weight Wi2 based on the corrected characteristic, and the measurement accuracy is improved.

ラインセンサー30の中央部では前回測定周期の測定値と今回測定値間に変化がなく、周辺だけに変化が認められる場合には、ラインセンサー30のエリアを限定した補正を実行することができる。   When there is no change between the measurement value of the previous measurement cycle and the current measurement value in the central part of the line sensor 30 and a change is recognized only in the periphery, the correction limited to the area of the line sensor 30 can be executed.

走査した校正サンプル100が、瞬時的な変動を除く補正結果として、常時規格値内の測定値を表示すことで、ラインセンサ30の中央部と周端部の差や、経時変化に対して十分な測定精度を維持していることをオペレータに明示することができる。   The scanned calibration sample 100 always displays the measured value within the standard value as a correction result excluding instantaneous fluctuations, so that it is sufficient for the difference between the center portion and the peripheral end portion of the line sensor 30 and the change with time. It is possible to clearly indicate to the operator that a high measurement accuracy is maintained.

図6は、表示手段500の画面構成図である。重なり部の測定値から、被測定物の坪量分を除いて校正サンプル100の坪量をリアルタイムに計算し、補正情報として表示手段500に渡し、オペレーティングウィンドウに表示する。校正サンプル100の位置移動位置情報Pと一緒に表示してもよい。   FIG. 6 is a screen configuration diagram of the display means 500. The basis weight of the calibration sample 100 is calculated in real time from the measured value of the overlapped portion, and the basis weight of the calibration sample 100 is calculated, passed to the display means 500 as correction information, and displayed on the operating window. It may be displayed together with the position movement position information P of the calibration sample 100.

中央の測定部に、時間とともに測定値が更新され、古いデータは上方に消えてゆく。校正サンプルが通過した軌跡は、測定部より厚くなるために黒く表示され、結果的にジグザグのラインとして表示される。ラインの先端には校正サンプルの測定値が坪量で表示され、時々刻々と更新される。校正サンプルの坪量測定値が既知の規程値であることで校正処理が正常に実行されていることが明示される。   The measured value is updated with time in the central measuring unit, and the old data disappears upward. The trajectory through which the calibration sample has passed is displayed in black because it is thicker than the measurement part, and as a result, is displayed as a zigzag line. At the tip of the line, the measured value of the calibration sample is displayed in basis weight and is updated every moment. It is clearly indicated that the calibration process is normally executed when the basis weight measurement value of the calibration sample is a known regulation value.

測定部の平均値も画面右下付近に表示される。厚塗りが発生した場合は、色分けまたはグレースケールレベルで測定結果が表示され、面情報としてグラフ化されてオペレータが認識することができる。   The average value of the measurement unit is also displayed near the lower right corner of the screen. When thick coating occurs, the measurement result is displayed at a color-coded or gray scale level, and is graphed as surface information and can be recognized by the operator.

画面は、時々刻々と流れて行くが、ログは残るようにし、データ集計することで過去のデータ解析を時系列に行うことができる。校正サンプルが通過した軌跡は、連続したジグザグで示したが、数分、数時間おきに横切るような形態で時々測定して表示することもできる。   The screen flows from moment to moment, but logs remain so that past data analysis can be performed in chronological order by collecting data. The trajectory through which the calibration sample has passed is shown as a continuous zigzag, but it can also be measured and displayed from time to time in a form that crosses every few minutes or hours.

図7は、校正サンプルの走査軌跡と測定不可能領域を説明する模式図である。校正サンプル100の走査軌跡は、被測定物20の移動によりジグザグのラインとして表示される。校正サンプル100が折り返えされる両端部で被測定物20に重ならない区間を設け、この区間では校正サンプル100のみの坪量を測定し、この測定値に基づき透過X線強度特性を補正することができる。   FIG. 7 is a schematic diagram for explaining the scanning trajectory of the calibration sample and the unmeasurable region. The scanning trajectory of the calibration sample 100 is displayed as a zigzag line as the object to be measured 20 moves. A section that does not overlap the object to be measured 20 is provided at both ends where the calibration sample 100 is folded back. In this section, the basis weight of only the calibration sample 100 is measured, and the transmitted X-ray intensity characteristics are corrected based on the measured value. Can do.

図8は、本発明を適用したX線測定装置の他の実施例を示す機能ブロック図である。図1との相違点は、X線源10からのX線が校正サンプル100のみを透過し、被測定物20を介さないでラインセンサ20に直接入力されている構成である。   FIG. 8 is a functional block diagram showing another embodiment of the X-ray measuring apparatus to which the present invention is applied. The difference from FIG. 1 is a configuration in which X-rays from the X-ray source 10 pass only through the calibration sample 100 and are directly input to the line sensor 20 without passing through the DUT 20.

このように、被測定物20を含まない校正サンプル100のみで周期的に測定する仕組みを組み込むことにより、装置全体を引き出して校正サンプルを検証する長期的(数ヶ月)で煩雑な保証作業は不要になる。   In this way, by incorporating a mechanism for periodically measuring only the calibration sample 100 that does not include the object to be measured 20, long-term (several months) and complicated guarantee work for drawing out the entire apparatus and verifying the calibration sample is unnecessary. become.

図9は、校正サンプル保持具201の構成例を示す斜視図である。図9(A)に示すように、校正サンプル100を支持するリブを狭くするか無くすことで測定できない領域を減らすことができる。   FIG. 9 is a perspective view illustrating a configuration example of the calibration sample holder 201. As shown in FIG. 9A, the area that cannot be measured can be reduced by narrowing or eliminating the rib that supports the calibration sample 100.

図9(B)に示すように、校正サンプル100を片持ち支持する構成により、校正サンプル100の端面を正確に重ねられれば、図9(C)に示すように校正サンプル通過中であっても測定できない領域を減らす、もしくは無くすことが可能である。   As shown in FIG. 9B, if the end face of the calibration sample 100 can be accurately overlapped by the configuration in which the calibration sample 100 is cantilevered, even when the calibration sample is passing as shown in FIG. It is possible to reduce or eliminate areas that cannot be measured.

10 X線源
20 被測定物
30 ラインセンサ
50 透過X線強度特性保持手段
60 外部出力手段
100 校正サンプル
200 校正サンプル移動手段
201 保持具
300 坪量算出手段
400 校正処理手段
401 瞬時補正値算出手段
402 トレンド情報保持手段
403 中長期補正値算出手段
500 表示手段
DESCRIPTION OF SYMBOLS 10 X-ray source 20 Measured object 30 Line sensor 50 Transmission X-ray intensity characteristic holding means 60 External output means 100 Calibration sample 200 Calibration sample moving means 201 Holder 300 Basis weight calculation means 400 Calibration processing means 401 Instantaneous correction value calculation means 402 Trend information holding means 403 Medium to long-term correction value calculating means 500 Display means

Claims (9)

放射線源から所定の幅を有する被測定物に放射線を照射し、前記被測定物を透過した放射線の強度をラインセンサにより前記幅方向に測定し、前記被測定物と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過放射線強度特性を参照して前記被測定物の厚さ若しくは坪量を測定する放射線測定装置において、
前記放射線源と前記被測定物間に介在させた、坪量若しくは厚さが予め別の測定により既知の校正サンプルを、前記ラインセンサの検出部に沿って移動させる校正サンプル移動手段と、
前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度信号に基づいて補正値を演算し、前記透過放射線強度特性を補正する校正処理手段と、
を備えることを特徴とする放射線測定装置。
Radiation is irradiated from a radiation source to an object to be measured having a predetermined width, the intensity of the radiation transmitted through the object to be measured is measured in the width direction by a line sensor, and the thickness is known with the same material as the object to be measured. In the radiation measurement apparatus for measuring the thickness or basis weight of the object to be measured with reference to the transmitted radiation intensity characteristics obtained in advance in the measurement of the plurality of reference objects,
A calibration sample moving means for moving a calibration sample whose basis weight or thickness is known in advance by another measurement, interposed between the radiation source and the object to be measured, along the detection unit of the line sensor;
Calibration processing means for calculating a correction value based on a transmission radiation intensity signal by the line sensor at the movement position of the calibration sample, and correcting the transmission radiation intensity characteristics;
A radiation measurement apparatus comprising:
前記校正処理手段は、前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度測定信号の瞬時情報に基づいて前記透過放射線強度特性をリアルタイムに補正することを特徴とする請求項1に記載の放射線測定装置。   2. The radiation according to claim 1, wherein the calibration processing unit corrects the transmitted radiation intensity characteristic in real time based on instantaneous information of a transmitted radiation intensity measurement signal by the line sensor at a movement position of the calibration sample. measuring device. 前記校正処理手段は、前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度測定信号のトレンド情報に基づき、前記透過放射線強度特性の中長期特性を演算して補正することを特徴とすることを特徴とする請求項1に記載の放射線測定装置。   The calibration processing means calculates and corrects the medium- to long-term characteristic of the transmitted radiation intensity characteristic based on trend information of the transmitted radiation intensity measurement signal by the line sensor at the movement position of the calibration sample. The radiation measuring apparatus according to claim 1, wherein 前記校正処理手段は、前記トレンド情報の移動平均演算または運転周期変動演算により前記中長期特性を演算して前記周透過放射線強度特性を補正することを特徴とする請求項3に記載の放射線測定装置。   The radiation measurement apparatus according to claim 3, wherein the calibration processing unit calculates the medium-long-term characteristic by moving average calculation or operation cycle variation calculation of the trend information to correct the circumferential transmission radiation intensity characteristic. . 前記校正処理手段は、前記校正サンプルの移動位置端部において前記被測定物を介在させない状態で前記校正サンプルからの透過放射線強度を前記ラインセンサで測定した信号に基づいて前記透過放射線強度特性を補正することを特徴とする請求項1乃至4のいずれかに記載の放射線測定装置。   The calibration processing unit corrects the transmitted radiation intensity characteristic based on a signal obtained by measuring the transmitted radiation intensity from the calibration sample with the line sensor in a state where the measurement object is not interposed at the moving position end of the calibration sample. The radiation measuring apparatus according to claim 1, wherein 前記校正サンプルの移動位置情報ならびに前記校正処理手段による補正情報を表示する表示手段を備えることを特徴とする請求項1乃至5のいずれかに記載の放射線測定装置。   6. The radiation measuring apparatus according to claim 1, further comprising display means for displaying movement position information of the calibration sample and correction information by the calibration processing means. 前記校正サンプルは、前記被測定物と材質が同一もしくは前記被測定物と原子番号が同程度の材質であることを特徴とする請求項1乃至6のいずれかに記載の放射線測定装置。   The radiation measurement apparatus according to claim 1, wherein the calibration sample is made of a material having the same material as that of the object to be measured or having an atomic number equivalent to that of the object to be measured. 前記校正サンプルは、前記被測定物より坪量もしくは厚さが数倍程度大きなものであって、前記被測定物と同一材質の場合は複数枚の重ね合わせたもの、前記被測定物と原子番号が同程度の材質の場合は坪量または厚さが数倍程度大きな材質であることを特徴とする請求項7に記載の放射線測定装置。   The calibration sample is one whose basis weight or thickness is several times larger than the object to be measured, and in the case of the same material as the object to be measured, a plurality of stacked ones, the object to be measured and the atomic number 8. The radiation measuring apparatus according to claim 7, wherein when the same material is used, the basis weight or thickness is several times larger. 前記校正サンプルは、前記被測定物より十分小さく、その移動により前記被測定物と重なる領域は、前記被測定物のサイズ対して十分狭い範囲であることを特徴とする請求項1乃至8のいずれかに記載の放射線測定装置。   9. The calibration sample according to claim 1, wherein the calibration sample is sufficiently smaller than the object to be measured, and a region overlapping the object to be measured by the movement thereof is a sufficiently narrow range with respect to the size of the object to be measured. A radiation measuring apparatus according to claim 1.
JP2011238830A 2011-10-31 2011-10-31 Radiation measuring apparatus Pending JP2013096796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238830A JP2013096796A (en) 2011-10-31 2011-10-31 Radiation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238830A JP2013096796A (en) 2011-10-31 2011-10-31 Radiation measuring apparatus

Publications (1)

Publication Number Publication Date
JP2013096796A true JP2013096796A (en) 2013-05-20

Family

ID=48618887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238830A Pending JP2013096796A (en) 2011-10-31 2011-10-31 Radiation measuring apparatus

Country Status (1)

Country Link
JP (1) JP2013096796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458675A (en) * 2017-12-20 2018-08-28 上海船舶工程质量检测有限公司 A kind of method of vertical metal support frame height in measurement composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313709A (en) * 1993-04-26 1994-11-08 Sollac Method and equipment for calibrating device that measures transverse-direction distribution of thickness of flat product
JP2000081328A (en) * 1998-09-03 2000-03-21 Futec Inc Measurement method for running sheet-shaped object
JP2003329430A (en) * 2002-05-09 2003-11-19 Matsushita Electric Ind Co Ltd Method for measuring thickness of work

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313709A (en) * 1993-04-26 1994-11-08 Sollac Method and equipment for calibrating device that measures transverse-direction distribution of thickness of flat product
JP2000081328A (en) * 1998-09-03 2000-03-21 Futec Inc Measurement method for running sheet-shaped object
JP2003329430A (en) * 2002-05-09 2003-11-19 Matsushita Electric Ind Co Ltd Method for measuring thickness of work

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458675A (en) * 2017-12-20 2018-08-28 上海船舶工程质量检测有限公司 A kind of method of vertical metal support frame height in measurement composite material

Similar Documents

Publication Publication Date Title
JP6133231B2 (en) X-ray energy spectrum measuring method, X-ray energy spectrum measuring apparatus and X-ray CT apparatus
US8891729B2 (en) X-ray analyzer and X-ray analysis method
US10054555B2 (en) X-ray transmission inspection apparatus and inspection method using the same
CN102200434B (en) Thickness and convexity detection device for plates and strips
CN114720324B (en) Method, device and system for detecting net coating amount of lithium battery pole piece
JPH09224632A (en) Measurement of density of fiber continuous body in tobacco processing industry and apparatus therefor
KR950703139A (en) ONLINE TOMOGRAPHIC GAUGING OF SHEET METAL
TWI439664B (en) Radiation thickness meter
CN105960590A (en) X-ray diffraction analyzer and analyzing method
JP2013096796A (en) Radiation measuring apparatus
JP2010249691A (en) Creation method of calibration curve
US20150146860A1 (en) Optical axis adjustment device for x-ray analyzer
JP2011128046A (en) Radiation detection device
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JPH0288952A (en) Method and device for analyzing tissue
JP6031857B2 (en) Radiation measurement method
JP4123816B2 (en) Method for measuring the thickness of an object to be inspected
EP3035082B1 (en) Method for measuring x-ray energy of an accelerator in an inspection system
JPS6259255B2 (en)
JPH0237539B2 (en)
JP2014021099A (en) Thickness profile measurement device
JP2006064580A (en) Measuring device and measuring method of double-layer film sheet using x-ray inspection method
JP2006090892A (en) Apparatus and method for measuring coated sheet, using x-ray transmission method
KR101109050B1 (en) Contactless thickness gauge using fluorescence x-rays
JP2006112956A (en) Device and method of measuring sheet using x-ray transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150701