JP2011128046A - Radiation detection device - Google Patents

Radiation detection device Download PDF

Info

Publication number
JP2011128046A
JP2011128046A JP2009287408A JP2009287408A JP2011128046A JP 2011128046 A JP2011128046 A JP 2011128046A JP 2009287408 A JP2009287408 A JP 2009287408A JP 2009287408 A JP2009287408 A JP 2009287408A JP 2011128046 A JP2011128046 A JP 2011128046A
Authority
JP
Japan
Prior art keywords
radiation detection
radiation
detection element
temperature
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009287408A
Other languages
Japanese (ja)
Other versions
JP5408432B2 (en
Inventor
Yoshihiko Ohigata
祐彦 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009287408A priority Critical patent/JP5408432B2/en
Publication of JP2011128046A publication Critical patent/JP2011128046A/en
Application granted granted Critical
Publication of JP5408432B2 publication Critical patent/JP5408432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detection device, capable of improving S/N by inputting into a radiation detection element, a radiation flux after transmission through a sample without reduction. <P>SOLUTION: The device is provided with a radiation source; a first radiation detecting element for receiving a radiation from the radiation source through an inspection object; and at least one second radiation detecting element which is equivalent to the first radiation detecting element, and arranged close to the first radiation detecting element. The device also includes a separation means for separating the second radiation detecting element from the radiation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばオンライン厚さ計に用いて好適な放射線検出装置に関し、詳しくは断続的若しくは連続的に温度・迷光の補正を行うようにした放射線検出装置に関する。   The present invention relates to a radiation detection apparatus suitable for use in, for example, an on-line thickness gauge, and more particularly to a radiation detection apparatus adapted to correct temperature and stray light intermittently or continuously.

図2(a,b)は本発明が適用される被検査物(試料)の厚さをオンラインで測定する放射線検査装置の概略構成図である。図において、1はO形フレームである。2は被検査物であり、例えは紙やプラスチックフィルム、金属等のシートである。3はO形フレーム1の下側のビームに設けられ,β線やX線を発生する線源部、4はO形フレーム1の上側のビームに設けられ,被検査物を透過した線源部3からの放射線を検出する放射線検出部である。 2A and 2B are schematic configuration diagrams of a radiation inspection apparatus that measures the thickness of an inspection object (sample) to which the present invention is applied on-line. In the figure, 1 is an O-shaped frame. Reference numeral 2 denotes an object to be inspected, for example, a sheet of paper, plastic film, metal foil or the like. Reference numeral 3 denotes a beam source section for generating β-rays and X-rays provided on the lower beam of the O-shaped frame 1, and reference numeral 4 denotes a beam source section provided for the upper beam of the O-shaped frame 1 and transmitted through the object to be inspected. 3 is a radiation detection unit for detecting radiation from 3.

5は上下ヘッド3,4を同期して駆動してO形フレーム1上を往復走行させるモータ、7はモータ5へ駆動電流を供給する駆動回路である。8は検出部4の出力に基づいて被検査物の厚さや塗工量を演算する演算処理部である。   Reference numeral 5 denotes a motor that drives the upper and lower heads 3 and 4 synchronously to reciprocate on the O-shaped frame 1, and 7 denotes a drive circuit that supplies a drive current to the motor 5. Reference numeral 8 denotes an arithmetic processing unit that calculates the thickness of the inspection object and the coating amount based on the output of the detection unit 4.

上記の構成において,上下ヘッドは装置が稼働しているときは,装置の向かって左側(BK)端部(校正点)に退避している。そして測定が開始されると,まず,上下ヘッドは左側(BK)から右側(FR)へシート2の幅方向に走行し,所定のデータ採取位置(シート2の幅方向に数百ポイント設定してある)にくると,制御部6は検出部4が検出したデータを取り込んで,シート2の厚さを演算する。そして上下ヘッドは左側と右側との間を往復走行し,検出が続けられる。   In the above configuration, when the apparatus is operating, the upper and lower heads are retracted to the left (BK) end (calibration point) toward the apparatus. When the measurement is started, the upper and lower heads first travel in the width direction of the sheet 2 from the left side (BK) to the right side (FR), and set a predetermined data collection position (several hundred points in the width direction of the sheet 2). The control unit 6 takes in the data detected by the detection unit 4 and calculates the thickness of the sheet 2. The upper and lower heads reciprocate between the left side and the right side, and detection continues.

図3はオンライン厚さ計としてラインセンサを用いた線源と試料の関係を模式的に示す概略構成図である。線源3aからの放射線はスリット(図示せず)を介して扇状に出射し、試料2を幅方向に直線的に照射する。試料2を透過した放射線は素子取付板10上に遮光フィルム11で覆われて直線状に配置された放射線検出素子(ラインセンサ)12に入射する。13はラインセンサに近接して配置された温度検出素子である。   FIG. 3 is a schematic configuration diagram schematically showing a relationship between a source and a sample using a line sensor as an on-line thickness meter. Radiation from the radiation source 3a is emitted in a fan shape through a slit (not shown), and irradiates the sample 2 linearly in the width direction. The radiation that has passed through the sample 2 is incident on a radiation detection element (line sensor) 12 that is covered with a light shielding film 11 on the element mounting plate 10 and arranged linearly. Reference numeral 13 denotes a temperature detection element disposed in the vicinity of the line sensor.

図2で示すような上下ヘッド3,4がスキャンするオンライン厚さ計では上下ヘッド3,4が試料位置から外れた地点で不連続に照射を一時停止してバックグランド値を求め、その値を用いて測定信号の補償を行っている。   In the on-line thickness gauge that is scanned by the upper and lower heads 3 and 4 as shown in FIG. 2, the irradiation is discontinuously paused at the point where the upper and lower heads 3 and 4 deviate from the sample position, and the background value is obtained. To compensate the measurement signal.

また、図3に示すラインセンサ12を用いたものでは、厚さ測定に際し遮光フィルム11で外来光を遮蔽するとともに温度検出素子13を設け、ラインセンサ12の温度による暗電流は、温度検出素子を用いて周囲温度を測定し、温度補償係数を用いて暗電流に相当する値を計算し、これをバックグランド値として差し引いて演算している。   In the case of using the line sensor 12 shown in FIG. 3, when the thickness is measured, extraneous light is shielded by the light shielding film 11 and the temperature detection element 13 is provided. It is used to measure the ambient temperature, calculate a value corresponding to the dark current using the temperature compensation coefficient, and subtract this as a background value for calculation.

特公平7−15372Japanese Patent Publication No. 7-15372 特開2000−180714JP 2000-180714 A

ところで半導体を用いた放射線検出素子は以下のような問題がある。
1)温度感受性が高く、僅かな温度変化も測定値に影響を与えてしまう。
2)シンチレータを組合わせた場合の光検出素子では、放射線による発光以外の迷光成分も取り込みやすく、測定値に影響を与えてしまう。
By the way, the radiation detection element using a semiconductor has the following problems.
1) The temperature sensitivity is high, and even a slight temperature change affects the measured value.
2) In the light detection element in the case where a scintillator is combined, stray light components other than light emission due to radiation are easily taken in, which affects the measurement value.

3)遮光フィルムによって迷光を回避しようとすると、放射線も合わせて減弱されてしまう。そのため、特に低エネルギー帯の放射線成分を用いて薄い素材を測定する際にはS/Nが悪くなってしまう。 3) When stray light is to be avoided by the light shielding film, radiation is also attenuated. For this reason, the S / N ratio is deteriorated particularly when a thin material is measured using a radiation component in a low energy band.

4)温度検出素子から温度を求め、その温度に対応する放射線検出素子が持つ温度と暗電流の関係から温度補償係数を求め、温度による暗電流のバックグランド値を差し引いて膜厚を演算している。この際、温度検出素子の温度/測定値の関係と放射線検出素子の持つ温度/測定値の関係が同様とは限らないため、温度補償の手順がやや煩雑であり、また放射線検出素子と温度検出素子の種類によって、温度に対する係数が異なるため、補償係数を個別に設定する必要がある。 4) Obtain the temperature from the temperature detection element, obtain the temperature compensation coefficient from the relationship between the temperature and dark current of the radiation detection element corresponding to that temperature, and calculate the film thickness by subtracting the background value of dark current due to temperature. Yes. At this time, since the relationship between the temperature / measurement value of the temperature detection element and the relationship between the temperature / measurement value of the radiation detection element is not always the same, the temperature compensation procedure is somewhat complicated, and the radiation detection element and the temperature detection Since the coefficient for temperature differs depending on the type of element, it is necessary to set the compensation coefficient individually.

5)放射線検出装置と放射線源を固定して連続測定に用いる場合には、放射線の照射を止める事無く、連続で測定したいと言うニーズが強い。このため、不連続に照射を停止し、バックグランド値を測定する方法は適さない。
6)大線量を用いるという点では、ニーズの少なさから流通量が少ない等の理由から安定な線源を得難く、環境に左右されず長周期でバックグランド値を一定にするためには種々の対策を取る必要があり、これがコスト高の要因となる。
5) When a radiation detector and a radiation source are fixed and used for continuous measurement, there is a strong need for continuous measurement without stopping radiation irradiation. For this reason, the method of stopping the irradiation discontinuously and measuring the background value is not suitable.
6) In terms of using a large dose, it is difficult to obtain a stable radiation source for reasons such as low needs and low circulation volume. It is necessary to take this measure, and this becomes a factor of high cost.

7)また、多くの素子を用いて測定を行うという点で、補償ポイントが多くなるにも関わらず、検出素子と補償用温度モニタとの補償係数合わせ込みを個々に行う必要が出てくる。このことは、チューニング作業の工数増加や補償演算用機器数の増加にも繋がり、コスト高になりやすい。 7) Further, in terms of measurement using many elements, it is necessary to individually adjust the compensation coefficients of the detection element and the temperature monitor for compensation despite the increase in the number of compensation points. This leads to an increase in the number of man-hours for tuning work and an increase in the number of devices for compensation calculation, which tends to increase costs.

8)ラインセンサ等を用いた構造体では、その構造体が背景技術に説明したようなポイントを測定するセンサに比べて大きい。このため、ワークから引き出してバックグランド値を測定する場合に引き出す空間を多く必要としたり、複雑で大掛かりな構造を持つ必要がある等でコスト高になりやすい。 8) A structure using a line sensor or the like is larger than a sensor that measures points as described in the background art. For this reason, it is easy to increase the cost because it requires a lot of space for drawing out from the workpiece and measuring the background value, or it is necessary to have a complicated and large structure.

従って本発明は、
1)遮光フィルムにより試料透過後の線束を減ずる事無く、放射線検出素子に入力させることでS/Nを改善する。
2)温度モニタ用の素子を用いて温度補償係数を演算する手間を省き、放射線検出器の測定信号と温度成分による暗電流分との差分をとる簡易な演算により温度補償を行えるようにする。
3)電気回路やソフトウェア構造を簡易化することで、低コストで連続的に温度・迷光成分の補正を行えるようにする。
ことを目的としている。
Therefore, the present invention
1) The S / N is improved by inputting to the radiation detection element without reducing the line bundle after passing through the sample by the light shielding film.
2) Eliminates the trouble of calculating a temperature compensation coefficient using a temperature monitoring element, and enables temperature compensation by a simple calculation that obtains the difference between the measurement signal of the radiation detector and the dark current due to the temperature component.
3) By simplifying the electric circuit and software structure, temperature and stray light components can be corrected continuously at low cost.
The purpose is that.

このような課題を達成するために、本発明の請求項1の放射線検出装置は、
放射線源と、該放射線源からの放射線を被検査物を介して受光する第1放射線検出素子と、該第1放射線検出素子の近傍に配置された前記第1放射線検出素子と同等の第2放射線検出素子を少なくとも一つ設けるとともに、前記第2放射線検出素子を前記放射線から隔離する隔離手段を備えたことを特徴とする放射線検出装置。
In order to achieve such a problem, the radiation detection apparatus according to claim 1 of the present invention provides:
A radiation source, a first radiation detection element that receives radiation from the radiation source via an object to be inspected, and a second radiation equivalent to the first radiation detection element disposed in the vicinity of the first radiation detection element A radiation detection apparatus comprising: at least one detection element; and an isolating means for isolating the second radiation detection element from the radiation.

請求項2においては、請求項1記載の放射線検出装置において、
前記第2放射線検出素子と同等の遮光フィルムを貼付した少なくとも一つの第3検出素子を設け、第2放射線検出素子同様放射線から隔離したことを特徴とする。
In Claim 2, In the radiation detection apparatus of Claim 1,
At least one third detection element to which a light-shielding film equivalent to the second radiation detection element is attached is provided, and is isolated from the radiation like the second radiation detection element.

請求項3においては、請求項1記載の放射線検出装置において、
前記第2放射線検出素子は迷光および温度による暗電流のバックグランド値を補償するための素子であることを特徴とする。
In Claim 3, In the radiation detection apparatus of Claim 1,
The second radiation detection element is an element for compensating for a background value of dark current due to stray light and temperature.

請求項4においては、請求項1記載の放射線検出装置において、
放射線検出信号を下記の式により演算することを特徴とする。

放射線検出信号=第1放射線検出素子の出力−第2放射線検出素子の出力
In Claim 4, In the radiation detection apparatus of Claim 1,
The radiation detection signal is calculated by the following equation.
Radiation detection signal = output of the first radiation detection element−output of the second radiation detection element

請求項5においては、請求項2記載の放射線検出装置において、
迷光分のバックグランド信号を下記の式により演算することを特徴とする。

迷光分のバックグランド信号=第2放射線検出素子の出力−第3放射線検出素子の出力
In Claim 5, In the radiation detection apparatus of Claim 2,
The background signal for stray light is calculated by the following equation.
Background signal for stray light = output of second radiation detection element−output of third radiation detection element

請求項6においては、請求項2記載の放射線検出装置において、
第1放射線検出素子としてラインセンサを用いるに際しては、ラインセンサを構成する複数の素子に対して1:1またはn:1またはn:nまたはn:m(n,mは整数)の割合で前記第3放射線検出素子および第2放射線検出素子を配置し、それぞれの割合で配置した前記第3放射線検出素子および第2放射線検出素子からの検出信号を元に放射線検出信号を演算するようにしたことを特徴とする。
In Claim 6, in the radiation detection apparatus of Claim 2,
When a line sensor is used as the first radiation detection element, the ratio is 1: 1, n: 1, n: n, or n: m (n and m are integers) with respect to a plurality of elements constituting the line sensor. The third radiation detection element and the second radiation detection element are arranged, and the radiation detection signal is calculated based on the detection signals from the third radiation detection element and the second radiation detection element arranged at the respective ratios. It is characterized by.

請求項7においては、請求項6記載の放射線検出装置において、
前記第3放射線検出素子および第2放射線検出素子は、第1放射線測定用の素子を挟んで両側に、または対角に配置したことを特徴とする。
In Claim 7, In the radiation detection apparatus of Claim 6,
The third radiation detection element and the second radiation detection element are arranged on both sides or diagonally across the first radiation measurement element.

本発明によれば以下のような効果がある。
請求項1〜4によれば、
第1放射線検出素子の近傍に前記第1放射線検出素子と同等の第2放射線検出素子を少なくとも一つ設けるとともに、前記第2放射線検出素子を前記放射線から隔離する隔離手段を備え、
放射線検出信号を第1放射線検出素子の出力から第2放射線検出素子の出力を差し引くことで、迷光分と温度成分によるバックグランド信号を差し引いて求めるようにしたので、従来のような放射線検出素子に遮光フィルムを用いる場合に比較して放射線の減衰が少なくS/Nの高い測定が可能になる。
The present invention has the following effects.
According to claims 1 to 4,
Providing at least one second radiation detection element equivalent to the first radiation detection element in the vicinity of the first radiation detection element, and comprising an isolating means for isolating the second radiation detection element from the radiation,
Since the radiation detection signal is obtained by subtracting the output of the second radiation detection element from the output of the first radiation detection element, the background signal due to the stray light component and the temperature component is subtracted. Compared to the case of using a light-shielding film, radiation attenuation is small and measurement with a high S / N becomes possible.

請求項6,7によれば、
ラインセンサを構成する複数の素子に対して1:1またはn:1またはn:nまたはn:m(n,mは整数)の割合で温度検出素子および第2放射線検出素子を配置し、第3放射線検出素子および第2放射線検出素子を、第1放射線測定用の素子を挟んで両側に、または対角に配置しそれぞれの割合で配置した第3放射線検出素子および第2放射線検出素子からの検出信号を元に放射線検出信号を演算するようにしたので、空間分布の改善が可能となり温度と迷光の補償精度を向上させることができる。
According to claims 6 and 7,
The temperature detection element and the second radiation detection element are arranged at a ratio of 1: 1, n: 1, n: n, or n: m (n and m are integers) with respect to a plurality of elements constituting the line sensor. The three radiation detection elements and the second radiation detection elements are arranged on both sides or diagonally with the first radiation measurement element sandwiched between them, and from the third radiation detection element and the second radiation detection element, which are arranged at respective ratios. Since the radiation detection signal is calculated based on the detection signal, the spatial distribution can be improved, and the temperature and stray light compensation accuracy can be improved.

本発明の実施形態の一例を示す放射線検出装置の概略構成図である。It is a schematic block diagram of the radiation detection apparatus which shows an example of embodiment of this invention. 従来の放射線検出装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional radiation detection apparatus. 従来の放射線検出装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the conventional radiation detection apparatus.

以下本発明を、図面を用いて詳細に説明する。図1は本発明の実施形態の一例を示す放射線検出装置の模式的な概略構成図である。なお、図3に示す従来の概略構成図とは第2放射線検出素子を設けるとともに、第2放射線検出素子を放射線から隔離する隔離手段を設けた点のみが異なっている。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic schematic configuration diagram of a radiation detection apparatus showing an example of an embodiment of the present invention. 3 differs from the conventional schematic configuration diagram shown in FIG. 3 only in that a second radiation detection element is provided and an isolation means for isolating the second radiation detection element from radiation is provided.

図1において、線源3aからの放射線はスリット(図示せず)を介して扇状に出射し、被検査物2を幅方向に直線的に照射する。被検査物2を透過した放射線は素子取付板10上に直線状に配置された第1放射線検出素子(ラインセンサ)12に入射する。13はラインセンサに近接して配置された温度検出のための第3放射線検出素子、14は同じく素子取付板10上に配置された第1放射線検出素子と同等の機能を有する第2放射線検出素子である。   In FIG. 1, radiation from a radiation source 3a is emitted in a fan shape through a slit (not shown), and irradiates the inspection object 2 linearly in the width direction. The radiation that has passed through the inspection object 2 enters a first radiation detection element (line sensor) 12 that is linearly arranged on the element mounting plate 10. Reference numeral 13 denotes a third radiation detecting element for temperature detection arranged in the vicinity of the line sensor, and reference numeral 14 denotes a second radiation detecting element having a function equivalent to that of the first radiation detecting element arranged on the element mounting plate 10. It is.

15は第2放射線検出素子を放射線から隔離する隔離手段であり、図では素子取付板10上に矩形状の板の一辺が衝立状に固定され、衝立の一方の(向こう)側に第1放射線検出素子12が他方の(手前)側に温度検出素子13と第2放射線検出素子14が配置されている。隔離手段(隔壁)15は第2放射線検出素子14側への放射線の漏れ防止機構として機能する。   Reference numeral 15 denotes an isolating means for isolating the second radiation detecting element from the radiation. In the drawing, one side of a rectangular plate is fixed on the element mounting plate 10 in a partition shape, and the first radiation is placed on one side (the other side) of the partition. The temperature detection element 13 and the second radiation detection element 14 are arranged on the other (near side) side of the detection element 12. The separating means (partition wall) 15 functions as a mechanism for preventing radiation leakage to the second radiation detection element 14 side.

上述の構成において被検査物2を透過した放射線は第1放射線検出素子12により検出されるが、その検出出力には放射線のほかに検出素子の周囲の迷光や温度による暗電流の影響を含んだ出力となっている。   In the configuration described above, the radiation transmitted through the inspection object 2 is detected by the first radiation detection element 12, but the detection output includes the influence of stray light around the detection element and dark current due to temperature in addition to the radiation. It is output.

従って本発明では放射線による検出信号から迷光の影響を除去するために、
放射線検出信号=第1放射線検出素子の出力−第2放射線検出素子の出力
として演算する。
Therefore, in the present invention, in order to remove the influence of stray light from the detection signal due to radiation,
Calculated as radiation detection signal = output of first radiation detection element−output of second radiation detection element.

また、第2放射線検出器14は第1放射線検出素子12を含む測定空間とは熱絶縁をしていないので、迷光分による暗電流値と温度による暗電流値を一緒に取り込んでいる。このため、迷光分による暗電流値のみを得たい場合は、温度成分のみの検出を行う第3放射線検出素子からの出力を元に測定できる。
迷光分による暗電流値=第2放射線検出素子の出力−第3放射線検出素子の出力。
上述したように温度によるバックグランド値は、第3放射線検出素子から得る出力値をそのまま利用して演算により求めることができる。
温度成分による暗電流値=第3放射線検出素子の出力
Further, since the second radiation detector 14 is not thermally insulated from the measurement space including the first radiation detection element 12, the dark current value due to stray light and the dark current value due to temperature are taken together. For this reason, when it is desired to obtain only the dark current value due to the stray light, it is possible to measure based on the output from the third radiation detection element that detects only the temperature component.
Dark current value due to stray light = output of second radiation detection element−output of third radiation detection element.
As described above, the background value due to temperature can be obtained by calculation using the output value obtained from the third radiation detection element as it is.
Dark current value due to temperature component = Output of third radiation detector

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば第2放射線検出素子の出力を常に監視し、放射線測定信号に比べてS/Nが悪化した場合には、迷光によるS/N悪化警報を出力し、放射線検出信号のダイナミックレンジを確保できるようにしても良い。   The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, the output of the second radiation detection element is constantly monitored, and when the S / N deteriorates compared to the radiation measurement signal, an S / N deterioration alarm due to stray light is output so that the dynamic range of the radiation detection signal can be secured. Anyway.

また、第2放射線検出素子および温度検出素子は、隔壁の手前側に複数個を配置しても良く、第1放射線検出素子の向こう側に第2の隔壁を設けてその第2の隔壁の外側に第2放射線検出素子を設けて第1放射線検出素子を挟んで対角に配置する等して検出値に関する空間分布の改善を図っても良い。   A plurality of second radiation detection elements and temperature detection elements may be arranged on the front side of the partition wall, and a second partition wall is provided on the other side of the first radiation detection element, and the outside of the second partition wall. The spatial distribution related to the detection value may be improved by providing a second radiation detecting element and arranging the second radiation detecting element diagonally across the first radiation detecting element.

また、放射線測定値の演算には、遮光した素子は必ずしも必要ではなく迷光モニタ用の素子と放射線測定用素子の組合せで迷光と温度の補償を同時に行う構造でも良い。
また、保護等のために遮光フィルムに準ずる構造を持つ場合には、迷光モニタ用の素子は必ずしも必要ではなく、この場合には、測定用素子と温度モニタ用素子に組合わせで温度補償を行う構造でも良い。
Further, for the calculation of the radiation measurement value, a light-shielded element is not necessarily required, and a structure in which stray light and temperature are compensated simultaneously by a combination of a stray light monitoring element and a radiation measurement element may be employed.
In addition, when the structure conforms to the light-shielding film for protection or the like, the stray light monitoring element is not necessarily required. In this case, temperature compensation is performed by combining the measuring element and the temperature monitoring element. Structure may be sufficient.

また、放射線検出信号と暗電流値の演算に際しては、適宜合わせ込みのための係数を与えるようにしてもよい。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
In addition, when calculating the radiation detection signal and the dark current value, a coefficient for matching may be appropriately provided.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

1 O型フレーム
2 被検査物(試料)
3 線源部(下ヘッド)
4 検出部(上ヘッド)
5 モータ
6 駆動回路
7 カウンタ
8 演算処理部
10 素子取付板
12 第1放射線検出素子
13 温度検出素子
14 第2放射線検出素子
1 O-type frame 2 Inspected object (sample)
3 Radiation source (lower head)
4 Detection unit (upper head)
DESCRIPTION OF SYMBOLS 5 Motor 6 Drive circuit 7 Counter 8 Arithmetic processing part 10 Element mounting plate 12 1st radiation detection element 13 Temperature detection element 14 2nd radiation detection element

Claims (7)

放射線源と、該放射線源からの放射線を被検査物を介して受光する第1放射線検出素子と、該第1放射線検出素子の近傍に配置された前記第1放射線検出素子と同等の第2放射線検出素子を少なくとも一つ設けるとともに、前記第2放射線検出素子を前記放射線から隔離する隔離手段を備えたことを特徴とする放射線検出装置。   A radiation source, a first radiation detection element that receives radiation from the radiation source via an object to be inspected, and a second radiation equivalent to the first radiation detection element disposed in the vicinity of the first radiation detection element A radiation detection apparatus comprising: at least one detection element; and an isolating means for isolating the second radiation detection element from the radiation. 前記第2放射線検出素子と同等の遮光フィルムを貼付した少なくとも一つの第3検出素子を設け、第2放射線検出素子同様放射線から隔離したことを特徴とする請求項1記載の放射線検出装置。   The radiation detection apparatus according to claim 1, wherein at least one third detection element having a light-shielding film equivalent to the second radiation detection element is provided, and the radiation detection apparatus is isolated from radiation in the same manner as the second radiation detection element. 前記第2放射線検出素子は迷光および温度による暗電流のバックグランド値を補償するための素子であることを特徴とする請求項1記載の放射線検出装置。   The radiation detection apparatus according to claim 1, wherein the second radiation detection element is an element for compensating for a background value of dark current due to stray light and temperature. 放射線検出信号を下記の式により演算することを特徴とする請求項1記載の放射線検出装置。

放射線検出信号=第1放射線検出素子の出力−第2放射線検出素子の出力
The radiation detection apparatus according to claim 1, wherein the radiation detection signal is calculated by the following equation.
Radiation detection signal = output of the first radiation detection element−output of the second radiation detection element
迷光分のバックグランド信号を下記の式により演算することを特徴とする請求項2記載の放射線検出装置。

迷光分のバックグランド信号=第2放射線検出素子の出力−第3放射線検出素子の出力
The radiation detection apparatus according to claim 2, wherein a background signal for stray light is calculated by the following equation.
Background signal for stray light = output of second radiation detection element−output of third radiation detection element
第1放射線検出素子としてラインセンサを用いるに際しては、ラインセンサを構成する複数の素子に対して1:1またはn:1またはn:nまたはn:m(n,mは整数)の割合で前記第3放射線検出素子および第2放射線検出素子を配置し、それぞれの割合で配置した前記第3放射線検出素子および第2放射線検出素子からの検出信号を元に放射線検出信号を演算するようにしたことを特徴とする請求項2記載の放射線検出装置。   When a line sensor is used as the first radiation detection element, the ratio is 1: 1, n: 1, n: n, or n: m (n and m are integers) with respect to a plurality of elements constituting the line sensor. The third radiation detection element and the second radiation detection element are arranged, and the radiation detection signal is calculated based on the detection signals from the third radiation detection element and the second radiation detection element arranged at the respective ratios. The radiation detection apparatus according to claim 2. 前記第3放射線検出素子および第2放射線検出素子は、第1放射線測定用の素子を挟んで両側に、または対角に配置したことを特徴とする請求項6記載の放射線検出装置。   The radiation detection apparatus according to claim 6, wherein the third radiation detection element and the second radiation detection element are arranged on both sides or diagonally across the first radiation measurement element.
JP2009287408A 2009-12-18 2009-12-18 Radiation detection apparatus and radiation detection method using this apparatus Active JP5408432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287408A JP5408432B2 (en) 2009-12-18 2009-12-18 Radiation detection apparatus and radiation detection method using this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287408A JP5408432B2 (en) 2009-12-18 2009-12-18 Radiation detection apparatus and radiation detection method using this apparatus

Publications (2)

Publication Number Publication Date
JP2011128046A true JP2011128046A (en) 2011-06-30
JP5408432B2 JP5408432B2 (en) 2014-02-05

Family

ID=44290789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287408A Active JP5408432B2 (en) 2009-12-18 2009-12-18 Radiation detection apparatus and radiation detection method using this apparatus

Country Status (1)

Country Link
JP (1) JP5408432B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096894A (en) * 2011-11-02 2013-05-20 Yokogawa Electric Corp Radiation inspection apparatus
JP2013101074A (en) * 2011-11-09 2013-05-23 Yokogawa Electric Corp Radiation inspection apparatus
WO2015049765A1 (en) * 2013-10-03 2015-04-09 株式会社システムスクエア Package inspection device
JP2015068791A (en) * 2013-09-30 2015-04-13 株式会社東芝 Radiation detection device and radiation detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106589A (en) * 1977-02-28 1978-09-16 Toshiba Corp Semiconductor radiation detector
JPS63181740A (en) * 1987-01-23 1988-07-26 松下電器産業株式会社 X-ray image receiving apparatus
JPH09131337A (en) * 1995-11-07 1997-05-20 Toshiba Medical Eng Co Ltd X-ray image pickup device
JPH11326526A (en) * 1998-05-08 1999-11-26 Aloka Co Ltd Radiation measuring device
JP2001340324A (en) * 2001-03-16 2001-12-11 Toshiba Medical System Co Ltd X-ray detector and radiodiagnostic device using the same
JP2002101343A (en) * 2000-09-22 2002-04-05 Toshiba Medical System Co Ltd X-ray plane detector and x-ray diagnostic system
JP2002158340A (en) * 2000-11-16 2002-05-31 Canon Inc Radiation imaging device, photoelectric converter and radiation imaging system
JP2006275605A (en) * 2005-03-28 2006-10-12 Mitsubishi Heavy Ind Ltd Apparatus and method for measuring thickness of sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106589A (en) * 1977-02-28 1978-09-16 Toshiba Corp Semiconductor radiation detector
JPS63181740A (en) * 1987-01-23 1988-07-26 松下電器産業株式会社 X-ray image receiving apparatus
JPH09131337A (en) * 1995-11-07 1997-05-20 Toshiba Medical Eng Co Ltd X-ray image pickup device
JPH11326526A (en) * 1998-05-08 1999-11-26 Aloka Co Ltd Radiation measuring device
JP2002101343A (en) * 2000-09-22 2002-04-05 Toshiba Medical System Co Ltd X-ray plane detector and x-ray diagnostic system
JP2002158340A (en) * 2000-11-16 2002-05-31 Canon Inc Radiation imaging device, photoelectric converter and radiation imaging system
JP2001340324A (en) * 2001-03-16 2001-12-11 Toshiba Medical System Co Ltd X-ray detector and radiodiagnostic device using the same
JP2006275605A (en) * 2005-03-28 2006-10-12 Mitsubishi Heavy Ind Ltd Apparatus and method for measuring thickness of sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096894A (en) * 2011-11-02 2013-05-20 Yokogawa Electric Corp Radiation inspection apparatus
JP2013101074A (en) * 2011-11-09 2013-05-23 Yokogawa Electric Corp Radiation inspection apparatus
JP2015068791A (en) * 2013-09-30 2015-04-13 株式会社東芝 Radiation detection device and radiation detection method
WO2015049765A1 (en) * 2013-10-03 2015-04-09 株式会社システムスクエア Package inspection device
JP5720028B1 (en) * 2013-10-03 2015-05-20 株式会社 システムスクエア Packaging inspection equipment
CN104718447A (en) * 2013-10-03 2015-06-17 世高株式会社 Package inspection device
US9733384B2 (en) 2013-10-03 2017-08-15 System Square Inc. Package inspection system
EP3045897B1 (en) 2013-10-03 2019-07-03 System Square Inc. Package inspection device

Also Published As

Publication number Publication date
JP5408432B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
EP2180342B1 (en) Radiation detector
KR100593290B1 (en) Radiation image taking apparatus
JP5408432B2 (en) Radiation detection apparatus and radiation detection method using this apparatus
JP2011242374A (en) X-ray inspector
US20120153167A1 (en) Positron annihilation characteristics measurement system and method for measuring positron annihilation characteristics
US20100296627A1 (en) Imaging apparatus, control method thereof, and program
JP5423705B2 (en) Radiation inspection equipment
TW201139983A (en) Radiation thickness meter
KR101524453B1 (en) A Scintillation Detector with Temperature Compensation Funtion and Control Method thereof
US7795599B2 (en) Radioactivity monitoring apparatus and method
CN115683937B (en) Lithium battery pole piece surface density detection system and method based on linear array photoelectric sensor
JP5362282B2 (en) X-ray diagnostic equipment
JP3219565B2 (en) Defect depth position detection apparatus and method
JP2015158407A (en) X-ray inspection apparatus
JP5255736B1 (en) Radioactive contamination inspection device, inspection method and inspection program
JP2011145127A (en) Radiation measurement apparatus
US11086027B2 (en) Detector strip for x-ray film
JPH0866388A (en) Radiation image pick-up device
EP3035082B1 (en) Method for measuring x-ray energy of an accelerator in an inspection system
JP2011196753A (en) Radiation measurement method
JP2003329430A (en) Method for measuring thickness of work
JP2015190940A (en) X-ray inspection apparatus
KR102615862B1 (en) Calibration method for denoising x-ray image
JP6371572B2 (en) X-ray inspection equipment
US20140117243A1 (en) Method of inspecting an electromagnetic radiation sensing panel, an electromagnetic radiation sensing panel inspection device and method of manufacturing an electromagnetic radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5408432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250